
Implementing Include-what-you-use Using

Clang

Craig Silverstein
Director of Technology, Google Inc.

4 November 2010

llvm: include-what-you-use



Summary

Google is developing a tool called include what you use. It analyzes symbols
and types used in C++ source files, using clang.

Only analyzes source code — uses RecursiveASTVisitor heavily. No
code generation.

Considered: gcc dehydra, gccxml, eclipse C++ frontend, KDeveloper C++
parser, klockwork, synopsis, EDGcpfe, clang.

Implemented: dehydra and clang.

clang is better suited to this task than gcc-based dehydra, but could be
even better.

llvm: include-what-you-use 1



What is Include What You Use?

IWYU: the principle that if you use a symbol or type from a .h file, you
should include that .h file.

foo.cc:
fprintf(stderr, "hello"); // uses <stdio.h>

typedef std::set<int8_t> IntSet; // uses <set>, <stdint.h>

if (FnReturningVector().empty()) ...; // uses <vector>

#if __WORDSIZE == 64 // uses <bits/wordsize.h>

• Always #include necessary .h files directly.
• Do not #include unnecessary .h files at all.

llvm: include-what-you-use 2



Why Include What You Use?

• Refactoring: can remove unneeded #includes from .h files.

• Obsoleting: easily find all clients of a library.

• Dependency breaking: can remove dependency on libraries we don’t use
anymore.

To maximize dependency breaking, we prefer forward declarations to
#includes whenever possible.

llvm: include-what-you-use 3



Implementation #1: Dehydra

Dehyra gets callbacks from gcc every time a symbol and function is parsed.
Available to clients (iwyu) via javascript bindings.

Challenges:

• gcc collapses function declarations and definition.
• Only see instantiated template classes/functions — and they’re attributed
to the declaration site.

• No way to distinguish template params in templated code.
• No access to preprocessor output (implemented our own preprocessor).
• Debugging javascript.

A local gcc expert could hack on gcc and dehydra to resolve issues. But
template problems were a dealbreaker.

llvm: include-what-you-use 4



Include What You Use is Surprisingly Difficult

foo.h:
typedef vector<int>::iterator RegionIterator;

inline RegionIterator RegionBegin() { ... }

foo.cc:
#include "foo.h"

RegionIterator it = RegionBegin(); // "uses" <vector>?

bar.h:
template<class A, class B=ClassFromBazH> MyClass;

bar.cc:
MyClass<int> a; // "uses" ClassFromBazH?

hash_set<MyClass<int> > b; // "uses" hash<MyClass<int> >?

llvm: include-what-you-use 5



Implementation #2: Clang

Needed to wait until C++ support was sufficiently advanced.

Needed to flesh out dgregor’s RecursiveASTVisitor.

Needed better TypeLoc support in clang.

Still need better preprocessor support: no PPCallbacks hooks for #if or
#ifdef.

iwyu sometimes gets confused due to lack of TypeLoc (only big trouble
spot left is NestedNameSpecifier).

Overall, clang is very clean, and AST structure is a natural fit for iwyu.
(Though traversing it requires a lot of casting!)

llvm: include-what-you-use 6



How IWYU Works

Basic idea:

• Traverse the AST to find all uses of a symbol.
• Use getDecl() to find the declaration.
• If they are in different files, mark an IWYU constraint.

Sample complications:

• Also need to capture uses of types. These are often not explicit in the
AST.

• There may be many declarations, need to canonicalize.
• The declaration may be in a private header file, so we need to canonicalize
that too — a manual process. Or the declaration may be a built-in (new
vs placement-new).

llvm: include-what-you-use 7



AST Utilities

• ASTNode: a union of all possible AST node types: Decl,
Stmt, Type/TypeLoc, TemplateArgument/TemplateArgumentLoc,
TemplateName, NestedNameSpace. Critically, it also knows its parent
in the AST tree. It has clever location-determining logic.

• ASTNode helpers: logic on an AST node (often involves parents).
e.g. IsDefaultTemplateTemplateArg (“you are a TemplateName,
parent is a TemplateArgument”).

• Decl helpers: e.g. HasImplicitConversionCtor (for CXXRecordDecl).

• Type helpers: TypeToDecl is key (tricky: needs to remove subst-
template type params, elaborations, etc). Also: RemoveElaboration,
RemovePointerFromType (follows typedefs only if necessary).

llvm: include-what-you-use 8



Finding Uses (Excepting Templates)

In these examples, a variable named a has type A.

stderr, etc. needs defn of symbol
a->b->c needs defn of A and B

a->b() needs defn of A, and needs defn of b() (!)
delete x needs defn of X and of some operator delete

new X uses some operator new

namespace a=b needs defn of b
using ns::a needs declaration of all ns::a’s (may be overloaded)
typedef A B needs defn of A (“re-exports” A)
X x needs defn of X
X* x needs declaration of X (class X* x needs nothing!)
#define A B needs definition of B (TODO if B is not a macro)
#if sizeof(A) needs definition of A (TODO)

llvm: include-what-you-use 9



Finding Uses (Templates)

In these examples, variable a has type TplClass<A>.

MyClass<X> needs either defn or declaration of X
vector<X> needs defn of X

does not need defn of std::allocator<X>
scoped_ptr<X> needs declaration (only) of X
hash_map<X> needs defn of hash<X> (in addition to X)
template<>

struct Foo<int> needs declaration of Foo<T>
a.foo() must evaluate foo() to see if needs defn of A
delete a must evaluate ~MyClass<A>() plus dtor of parents
sizeof(C<A>) must evaluate fields of C
C<A>() must evaluate fields of C and ctor and initializers
C<A*>() must still evaluate (for uses of *A)

llvm: include-what-you-use 10



When Forward-Declaring Isn’t Enough

Usually just need declarations of pointer/reference types. But...

• MyClass::MyClass(const Foo& foo); // implicit conversion

• MyClass::MySubclass* s; // nested-name-specifier use

By default just need declarations of template parameters. But if they’re
used... (And don’t forget to check uses like C<A>::value_type)

Figuring out if template template parameters can be forward-declared or
not, makes my head hurt.

llvm: include-what-you-use 11



On Beyond Uses

Other situations we keep an #include or forward declare:

• #include of a .c file
• #include of an associated, private .h file
• Forward-declare with an __attribute__ or linkage spec
• // NOLINT(iwyu)

• In code clang doesn’t see (#if 0 ...)

llvm: include-what-you-use 12



Public and Private

If we use a symbol defined in <bits/stl_vector.h>, we put the iwyu
constraint on <vector>.

If we use NULL, there are 14 files defining it. We pick to minimize changes.

A hard-coded list:

• 165 mappings for glibc C++
• 152 mappings for glibc C
• 113 mappings for C/C++ symbols
• 17 mappings for third-party code
• 23 for Google code

There can be chains of mappings: <bits/ios_base.h> → <ios> →

<iostream>. There can be optional stopping points (<ios> above).

llvm: include-what-you-use 13



Notes on Working with Clang

Go-to helpdesk: IRC channel. (Thanks to dgregor, rjmccall, nlewycky, and
others who have patiently helped me out!)

Go-to reference: doxygen documentation on the AST class hierarchy.

Doxygen wishlist: Top-of-class example code snippet:

/// foo in: foo<bar, baz>(); // function call

/// foo in: printf(foo); // variable use

class DeclRefExpr { ...

Per-method example code snippet:

/// Goes from decl2 to decl1 in this code snippet:

/// template<typename T> class Foo { ... }; // decl1

/// template<> class Foo<int> { ... }; // decl2

llvm: include-what-you-use 14


