
Mini-Tutorial:
How to implement an LLVM

Assembler

Simon Cook

2013 European LLVM Conference, Paris

This presentation

 Inspired by previous tutorials.

 Covering some of the details easily tripped up on.

 Using the OpenRISC 1000 backend as an example where
needed.

 More detailed version of this available in Embecosm
Application Note 10: LLVM Integrated Assembler

– http://www.embecosm.com/appnotes/ean10/ean10-
howto-llvmas-1.0.pdf

 Source used as demonstration in GitHub:

– https://github.com/simonpcook/llvm-or1k

http://www.embecosm.com/appnotes/ean10/ean10-howto-llvmas-1.0.pdf
https://github.com/simonpcook/llvm-or1k

Motivation for MC Based Assembler

 General (Simplified) Compiler Workflow.

– clang –target=foo -c bar.c

– Front End converts C to IR

– Back End lowers IR to foo’s instruction set

– Carefully format .s file

– Assembler parses .s, generates object

 Key Idea: More efficient to directly generate the object file
within the compiler.

 Additionally: We already defined our instruction set, why
define it again?

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

But First… FooInstrInfo.td

 Instruction definitions need to link printable instruction
to encoding.

– field bits<n> Inst;

– Inst field used with TableGen to get you 95% of the way by
building instruction encoding/decoding tables.

 Set bits for instruction opcodes/etc. and fields filled in by
backend.

Reduced or1k Example

class InstOR1K<dag outs, dag ins, string asmstr, list<dag> pattern> :
Instruction { field bits<32> Inst; bits<2> optype;
bits<4> opcode;
let Inst{31-30} = optype; let Inst{29-26} = opcode;

}

class InstRR<bits<4> op, dag outs, dag ins, string asmstr, list<dag>
pattern>
: InstOR1K<outs, ins, asmstr, pattern> {
let optype = 0b11;
let opcode = op;

}
class ALU_RR<bits<4> subOp, string asmstr, list<dag> pattern>
: InstRR<0x8, (outs GPR:$rD), (ins GPR:$rA, GPR:$rB),

!strconcat(asmstr, "\t$rD, $rA, $rB"), pattern> {
bits<5> rD; bits<5> rA; bits<5> rB;
let Inst{25-21} = rD; let Inst{20-16} = rA; let Inst{15-11} = rB;
let Inst{9-8} = op2; let Inst{3-0} = op3;

def ADD : ALU1_RR<0x0, "l.add", add>;

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Assembly Parsing

 Turns instruction strings into MC representations.

 Need to implement two classes:

– FooOperand – stores operand information and type

 e.g. “register”, “2”

– FooAsmParser – uses TableGen information to check
validity, but need to write functions for parsing operands
and creating FooOperands.

 validOpType ? createOpType : return 0;

 In ParseInstruction: If your instruction mnemonics are of
the form l.add, the string needs parsing to form [l, .add].

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Instruction Encoding

 To encode instructions, the class FooMCCodeEmitter needs
implementing providing the following functionality:

– Target operand encodings

 getMachineOpValue for registers and immediates with no
fixups.

– Byte emitting (for current endianness)

 Emit in EncodeInstruction after calling TableGen
getBinaryCodeForInstr.

– Custom register function (in some cases)

Encoding Custom Operands

 Custom operands need encoding manually.

 Specify EncoderMethod in operand definition.

 Encoding is done within l.s.n bits, regardless of final dest.

unsigned OR1KMCCodeEmitter::

getMemoryOpValue(const MCInst &MI, unsigned Op) const {

unsigned encoding;

const MCOperand op1 = MI.getOperand(1);

assert(op1.isReg() && "First operand is not register.");

encoding = (getOR1KRegisterNumbering(op1.getReg()) << 16);

MCOperand op2 = MI.getOperand(2);

assert(op2.isImm() && "Second operand is not immediate.");

encoding |= (static_cast<short>(op2.getImm()) & 0xffff);

return encoding;

}

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Instruction Decoding

 Whilst not needed to assemble, generally also useful.

 To decode, implement fooDisassembler, centered around
getInstruction.

– General flow of function:

1. Read N bytes of memory.

2. Call generated decodefooInstructionn.

3. Return instruction.

– In the case of variable length instructions, the approach is
to loop the above, e.g. try 16-bit insns, then 32-bit.

 Operands are added with instructions addOperand
function.

Decoding Tables with TableGen

 For disassembling to succeed, each possible encoding
must map to only one instruction.

 Otherwise, build fails:

 Conflicts can be solved by providing context as to when to
use each instruction.

– Simplest (when useful) is to declare instructions as
isPsuedo = 1 or isCodeGen = 1.

Decoding Conflict:

010001..........................

................................

JR 010001__________________________

RET 010001__________________________

4 Steps to Assembler Success

1. Parsing Instructions

2. Encoding Instructions

3. Decoding Instructions

4. Generating Object File (in our case ELF)

Writing ELF Objects

 To write ELF objects, fooELFObjectWriter and
fooAsmBackend need implementing.

– AsmBackend responsible for applying fixups when
information is available via applyFixup, adjustFixupValue
and writeNopData.

– ElfObjectWriter responsible for fixup to reloc conversion

 Other support definitions

– Relocations in include/llvm/Support/ELF.h

– Fixups in fooFixupKinds.h.

 createObjectWriter/createFooMCStreamer instantiates
all of the above.

Done

 You should now be able to test your new assembler


 To test your assembler with clang

– clang -target or1k -integrated-as helloworld.c

Thank you

www.embecosm.com

