Hierarchical Graph Coloring Register Allocation in LLVM

EuroLLVM Barcelona
March 18, 2016

Aaron Smith
“Register Allocation via Hierarchical Graph Coloring”
David Callahan and Brian Koblenz, PLDI 1991

• Graph coloring register allocation
 • construct & color an interference graph
 • optimal coloring is NP complete

• Callahan-Koblenz (CK) allocator
 • hierarchy of tiles that represent loops and conditional control flow to guide allocation and spilling decisions
Implementation in LLVM

- Original prototype developed in Microsoft Phoenix
 - 10 years of testing and tuning
 - used on several targets: Arm32, AArch64, x86, x64, PPC, EDGE
 - 70k LOCs / 80 files (cpp/h/inl)

- Surgically removed and converted to C++ then rewritten to use LLVM APIs and IR
 - lib/CodeGen/RegAllocTiled.cpp that inherent from RegAllocBase
 - lib/CodeGen/TiledAlloc/* contains allocator sources

- Current implementation uses one tile for entire function with point spilling (T0)
- As of today all our benchmarks compile and run with new allocator
 - mibench, bulletphysics, parsec, spec, parboil, ...
 - performance within 5% of greedy without any advanced features

- Coming soon...
 - cost model / edge profile support
 - rematerialization
 - multiple tiles
 - spilling heuristics
 - other targets (x64, AArch64)

- Releasing soon! Get in touch if you would like to collaborate!