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• Many verifiers are made to support only C 
programming language 

• Nowadays programs are written in many 
different languages and their combinations

• New languages are being invented (e.g., Rust, 
Swift) to improve ease of development, 
security, and/or performance

• Verification tooling for these new languages 
does not exist

Strengths
• Modular architecture 

that uses LLVM avoids 
the need for front-end 
development

• New language can be 
added with modest 
amount of 
development effort

Challenges
• Modeling of standard 

libraries and large 
runtimes is 
challenging and time 
consuming
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•LLVM IR models

•Verification primitives
1. Include 

SMACK headers

•Emit IR

•Identify top function

2. Compile to 
LLVM IR

•Language/IR features

•Standard libraries
3. Model missing 

features

Methodology

Benchmark C C++ Obj-C Rust Fortran D Swift Kotlin
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pointer N/A N/A

inout N/A

method N/A N/A

dynamic N/A N/A

• Leverage LLVM IR to lower development cost of 
supporting multiple input languages

• SMACK software verifier already uses LLVM IR
• Explore feasibility of such approach

Solution
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