
Enabling Multi- and Cross-Language Verification 
with LLVM

Jack J. Garzella, Marek Baranowski, Shaobo He, Zvonimir Rakamarić

• Many verifiers are made to support only C 
programming language 

• Nowadays programs are written in many 
different languages and their combinations

• New languages are being invented (e.g., Rust, 
Swift) to improve ease of development, 
security, and/or performance

• Verification tooling for these new languages 
does not exist

Strengths
• Modular architecture 

that uses LLVM avoids 
the need for front-end 
development

• New language can be 
added with modest 
amount of 
development effort

Challenges
• Modeling of standard 

libraries and large 
runtimes is 
challenging and time 
consuming

SMACK Toolflow Diagram Microbenchmark Results

Problem Conclusions

Boogie
IVL

(Backend	
Verifiers)

clang

llvm2bpl
IR	Translation

SMACK	
Models

X	compiler

X	compiler LLVM
IR

LLVM
IR

llvm-linkLLVM
IR

LLVM
IR

X	source

X stdlib
models

•LLVM IR models

•Verification primitives
1. Include 

SMACK headers

•Emit IR

•Identify top function

2. Compile to 
LLVM IR

•Language/IR features

•Standard libraries
3. Model missing 

features

Methodology

Benchmark C C++ Obj-C Rust Fortran D Swift Kotlin

basic

compute

function

forloop

fib

compound

array

pointer N/A N/A

inout N/A

method N/A N/A

dynamic N/A N/A

• Leverage LLVM IR to lower development cost of 
supporting multiple input languages

• SMACK software verifier already uses LLVM IR
• Explore feasibility of such approach

Solution

Microbenchmarks

This work was supported by the University of Utah Office of Undergraduate Research and National Science Foundation


