
www.meteconferences.org

Leveraging Polyhedral Compilation in

Chapel Compiler
Sahil Yerawar, Siddharth Bhat, Michael Ferguson, Philip Pfaffe, Ramakrishna Upadrasta

IIT Hyderabad, IIIT Hyderabad, Cray Inc. , Karlsruhe Institute of Technology, IIT Hyderabad

Introduction

● Chapel is an emerging parallel programming
language developed with the aim of providing
better performance in High-Performance
Computing as well as accessibility to the
newcomer programmers in order to provide a
relatively smoother learning curve in Parallel
Computing.

● It is known that Chapel uses LLVM as one of its
backups to leverage its optimization toolset.

● We propose to integrate Polly’s Optimization
passes in Chapel. In today’s world, it is well
known that High-Performance Computing involves
nested loops as one of their most compute
intensive parts which are efficiently handled by
Polly-based optimizations, thereby making HPC
more productive

Motivation

Challenges

● Initially Polly failed to recognize simple Chapel
Loops involving Multi-Dimensional Array
Accesses. On further investigation, found out that
Polly was unable to detect inductively
loop-invariant accesses.

● The above approach didn’t handle more
generalized cases which Chapel analyzed. Thus
alternative approaches were discussed (one of
them is present in the next section)

● Aiming for both polly-codegen and
polly-codegen-ppcg, we first tried to teach the
existing ppcg-codegen about our new intrinsic.

● Issues faced during array allocation in CUDA due
to mismatch of data given by Chapel and what
Polly expects.

● Polly’s GPU runtime checks were improper due to
wrong evaluation of Invalid context of SCoP.
–Due to the constants of invalid context were

wrongly considered as LargeInts which
affected RTC’s

Multi-Dimensional Array Indexing Intrinsic

There are primarily one of the two views of array
indexing used for multiple dimensions case
For example:

If we consider C language based array indexing,
they are just concerned if the flattened
representations of the array accesses coincide with
same array location or not.

But if we consider the following tuples:

Here the second tuple represents an illegal access
in C perspective which is perceived to be legal
when considered in flattened format

However, there are some languages(Julia, Fortran,
Chapel) which tuple-indexed semantics where one
can infer that

As of now, LLVM’s getelementptr() is concerned
with only flattened representations. Due to dangers
of alias of illegal accesses, Polly considers the
multidimensional expressions, use and evaluates
them at runtime, causing a runtime performance
hit. This can cause Polly to bail out on most of the
cases.

Ideally one would like to convey the
multi-dimensional semantics directly to Polly,
making code faster and easier to analyze.

This can be achieved by introducing a new intrinsic
“multidim_array_index”, allowing to represent
multidimensional array accesses without the
compulsion for flattening

Evaluation and Results

During the GSoC Period, much of the analysis of
integrating Polly within Chapel was done by only
using the examples of 2D array initialization and 2d
matrix multiplication. For a more extensive testing,
some of the Polybench benchmarks were ported to
Chapel.
 In this evaluation, only the LARGE_DATASET has
been used.

Conclusion

Acknowledgments

Contact Information

● Push forward for integrated Chapel-Polly pipeline

● Working for inclusion of multidim_array_index()
method could be introduced within LLVM. RFC
will be developed shortly

● Extending Polly coverage to more general Chapel
Arrays like strided Arrays, Arrays with custom
indices and so on.

● Covering data-parallel forall() loops in addition to
the simpler for loops.

I would like to thank the GSoC Organization for allowing
me to collaborate with Polly and Chapel on this unique
project with my mentors.

 I would like to extend my special thanks to Michael Kruse
for always being available and also for allowing reference
of Molly used in our proposal

Again, special thanks to Tobias Grosser for allowing me
to use the reference related to COSMOS climate weather
model for substantiating our claim regarding
multi-dimensional array indexing

● Chapel has been constantly reaping benefits of
optimization from LLVM backend and its robust
ongoing set of inclusion of optimizations

● In a HPC setup, there are always instances of
compute-intensive loops which take up most parts
of the program in terms of compute time. (Hot
Regions)

● Apart from the set of optimizations Polly provides,
it also has its own built-in PPCG-NVPTX backend
to generate native CUDA code for GPU’s

Use cases

● This methodology has been used in an

experimental branch of Polly and was used on
the COSMOS climate weather model. This
greatly helped increase the accuracy of Polly’s
analysis, due to elimination of guessing here

● Molly also uses this kind of idea

● Implemented as a part of unifying GSoC effort
between Chapel and Polly

 Sahil Yerawar: cs15btech11044@iith.ac.in

Siddharth Bhat: siddharth.bhat@research.iiit.ac.in

Michael Ferguson: mppf@cray.com

Philip Pfaffe: philip.pfaffe@kit.edu

Ramakrishna Upadrasta: ramakrishna@iith.ac.in

