Implementing the C++ Core
Guidelines’ Lifetime Safety
Profile in Clang

Matthias Gehre Gabor Horvath

Motivation

Whirlwind tour of lifetime analysis
See the following talks for details:

Highlight some implementation details
Evaluation
Upstreaming

Conclusions

https://youtu.be/80BZxujhY38?t=1096
https://youtu.be/sjnp3P9x5jA

Microsoft: 70 percent of security patches are fixing memory errors

C++ has many sources of errors:
Manual memory management, temporary objects, Pointer-like objects, ...

Dynamic tools
Few false positives, not every arch is supported, coverage is important

Static tools
Arch independent, the earlier a bug is found the cheaper the fix
Works without good test coverage

https://youtu.be/PjbGojjnBZQ

int *p; string_view sv;

{ {
int x; string s{"EuroLLVM"};
P = &X; SV = S;

; ;

*p = 5; sv[@] = ‘c’;

Many static tools warn for the left snippet but not for the right,
even though they are fundamentally similar.

Intends to catch common errors (not a verification tool)

Classify types into categories
never dangle, implementation assumed to be correct

might dangle, tracking points-to sets
handled member-wise
everything else

Analysis is function local

Two implementations

We implemented it in a Clang fork
Kyle Reed and Neil Maclntosh implemented the MSVC version

Flow-sensitive analysis
We only need annotations for misclassifications (rare)
Maps each Pointer at each program point to a points-to set

Elements of a points-to set:
Null
Invalid
Static (lives longer than the pointer or we cannot reason about it)
Local variable/parameter
Aggregate member
Owned memory of an Owner

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

10

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = "p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

11

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = "p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

12

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5: p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = "p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

13

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

14

2: X 2: {x}

3: &[B1.2] 3: {x}

4: int *p = &x; 4. pset(p)={x}
int X; 5:p 5: {p}
int *p = &x; 6: [B1.5] (LValToRVal) 6: {x}
int *q = p; 7. int *q = p; 7. pset(q)={x}

Basic blocks contain subexprs in an eval order, no AST traversal required

End of full expression is not marked (apart from)

When to invalidate Pointers to temporaries?
Modified the CFG to include AST nodes

Clang Static Analyzer is another user

15

4

Analysis on the CFG Level — Merging Points-to Sets

* Calculate points-to sets
within each basic block

* Merge incoming points-to
sets on basic block entry

* Fixed-point iteration
- Loops

int* p;
// pset(p) = {(invalid)}
if (cond) {
p = &1;
// pset(p) = {i}
} else {
p = nullptr;
// pset(p) = {(null)}

}
// pset(p) = {i, (null)}

16

Analysis on the CFG Level — Dealing with Forks

void f(int* a) {

{0, =*a}
// pset(a) = {(null),
if (a) |
// pset(a) = {*a}

} else {

// pset(a) = {(null)}
}
// pset(a) = {(null), =*a) a != @\ /a = 9
} {0, *a)

Tracking Null Pointers — Logical operators

if (a && b)
*a:
}

*a;

¥

if (a) A q =
if (b) A
*a; // OK
}

}

*a; // warning

18

Tracking Null Pointers — The Role of noreturn

(a && b)? .. : noreturn();
xa a !=0

(@ 2 o))
I

= 0
= 0
noreturn

0

0

(@ pe))
I

|
|
|

av”

*

19

Tracking Null Pointers — Merging Too Early

)

bool ¢ = a && b;

c ? .. : noreturn();

*a; // false positive a = 0
CI:

noreturn

pA

void f(int* a, int *b) {
assert(a && b);

*pb :
) i}
a =
=0
void f(int* a, int *b) {
(bool)(a && b)? .. : noreturn();

*pb :
} *b noreturn

21

Summary of Flow-Sensitive Lifetime Analysis

* The performance overhead of the prototype is less than 10% of
-fsyntax-only

* 3 sources of false positives:
- Infeasible paths

- Miscategorizations
- Function modelling

22

reference_wrapper<int> data() A

int 1 = 3;
return {i};

}

auto add(int a) {
return [&a](int b) {
return a + b;
}s
Y

S& V = *get();

return o->name().c_str();

string_view sv = "test's;

23

Clang warnings exist for:

struct Y { int *data()
int *p; int 1 = 3;
Y(int i) : p(&i) {} return &i;
' }

new initializer_list<int>{1, 2, 3};

Let’s generalize them!

24

No false positives or true positives for LLVM and Clang head
Few FPs if we categorize every user defined type
FPs could be fixed with annotating

Sample of 22 lifetime related fixes
Faulty commits passed the reviews
11 would have been caught before breaking the bots
1 false negative due to not being automatically categorized as owner
3 are missed due to assignments not being checked

Less than 1% performance overhead

25

Faulty: StringRef Prefix = is_abs(dir)

? SysRoot : "";
Fixed: StringRef Prefix = is_abs(dir)
? SysRoot) : "";

Contextual information is required to catch the problem

26

check of the Clang Static Analyzer
found 3 true positives in Ceph, Facebook’s RocksDB, GPGME

GSoC 2018 project by Réka Kovacs
Problems were reported and fixed promptly

The true positives were all statement local problems

The same true positives can also be found with our statement-local
analysis

How many true positives would we expect from the original
warnings?

27

Annotations
Other analyses can start to adopt to type categories and tested on explicitly
annotated code

Generalize warnings
On by default for STL and explicitly annotated types

Type category inference

Add flow sensitive analysis
First handle function calls conservatively
Add further annotations
Infer annotations for functions
Implement use-after-move checks, add exception support

28

Herb’s analysis is useful for new projects, not always applicable to old

Type categories are useful for other analyses
Generalizing Clang warnings
Generalizing CSA checks
Generalizing Tidy checks

Generalized warnings has low performance impact, all sources of
false positives can be addressed

Infeasible paths — statement local analysis
Miscategorization - only trigger for STL and annotated types
Function modelling = only rely on known functions

29

Thank you!

Clang implementation
Lifetime paper

MSVC implementation

30

https://github.com/mgehre/clang
https://herbsutter.com/2018/09/20/lifetime-profile-v1-0-posted/
https://devblogs.microsoft.com/cppblog/lifetime-profile-update-in-visual-studio-2019-preview-2/

