
Implementing the C++ Core
Guidelines’ Lifetime Safety
Profile in Clang

Gábor Horváth
xazax.hun@gmail.com

1

Matthias Gehre
gehre@silexica.com

Agenda

• Motivation

• Whirlwind tour of lifetime analysis
• See the following talks for details:

• https://youtu.be/80BZxujhY38?t=1096

• https://youtu.be/sjnp3P9x5jA

• Highlight some implementation details

• Evaluation

• Upstreaming

• Conclusions

2

https://youtu.be/80BZxujhY38?t=1096
https://youtu.be/sjnp3P9x5jA

Motivation

• Microsoft: 70 percent of security patches are fixing memory errors

• https://youtu.be/PjbGojjnBZQ

• C++ has many sources of errors:

• Manual memory management, temporary objects, Pointer-like objects, …

• Dynamic tools

• Few false positives, not every arch is supported, coverage is important

• Static tools

• Arch independent, the earlier a bug is found the cheaper the fix

• Works without good test coverage

3

https://youtu.be/PjbGojjnBZQ

Motivation #2

int *p;
{

int x;
p = &x;

}
*p = 5;

string_view sv;
{

string s{"EuroLLVM"};
sv = s;

}
sv[0] = ‘c’;

Many static tools warn for the left snippet but not for the right,
even though they are fundamentally similar.

4

A Tour of Herb’s Lifetime Analysis

• Intends to catch common errors (not a verification tool)

• Classify types into categories
• Owners: never dangle, implementation assumed to be correct

• Pointers: might dangle, tracking points-to sets

• Aggregates: handled member-wise

• Values: everything else

• Analysis is function local

• Two implementations

• We implemented it in a Clang fork

• Kyle Reed and Neil MacIntosh implemented the MSVC version

5

A Tour of Herb’s Lifetime Analysis #2

• Flow-sensitive analysis

• We only need annotations for misclassifications (rare)

• Maps each Pointer at each program point to a points-to set

• Elements of a points-to set:

• Null

• Invalid

• Static (lives longer than the pointer or we cannot reason about it)

• Local variable/parameter

• Aggregate member

• Owned memory of an Owner

6

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

7

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

8

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

9

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

10

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

11

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

12

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

13

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

14

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis Within
a Basic Block

• Basic blocks contain subexprs in an eval order, no AST traversal required

• End of full expression is not marked (apart from DeclStmt)

• When to invalidate Pointers to temporaries?

• Modified the CFG to include ExprWithCleanup AST nodes

• Clang Static Analyzer is another user

15

int x;
int *p = &x;
int *q = p;

2: x
3: &[B1.2]
4: int *p = &x;
5: p
6: [B1.5] (LValToRVal)
7: int *q = p;

2: {x}
3: {x}
4: pset(p)={x}
5: {p}
6: {x}
7: pset(q)={x}

Analysis on the CFG Level – Merging Points-to Sets

int* p;
// pset(p) = {(invalid)}
if (cond) {

p = &i;
// pset(p) = {i}

} else {
p = nullptr;
// pset(p) = {(null)}

}
// pset(p) = {i, (null)}

• Calculate points-to sets
within each basic block

• Merge incoming points-to
sets on basic block entry

• Fixed-point iteration

• Loops

16

Analysis on the CFG Level – Dealing with Forks

void f(int* a) {
// pset(a) = {(null), *a)
if (a) {
// pset(a) = {*a}

} else {
// pset(a) = {(null)}

}
// pset(a) = {(null), *a)

}

{0, *a}

0*a

a = 0a != 0

a != 0 a = 0
{0, *a}

17

Tracking Null Pointers – Logical operators

if (a && b) {
*a;

}
*a;

if (a) {
if (b) {

*a; // OK
}

}
*a; // warning

a

b

*a

*a

b = 0a = 0

a != 0

a != 0
b != 0

a != 0
b != 0

18

Tracking Null Pointers – The Role of noreturn

(a && b)? … : noreturn();
*a;

a

b

…

*a

b = 0

a = 0

a != 0

a != 0
b != 0

a != 0
b != 0

noreturn

19

Tracking Null Pointers – Merging Too Early

bool c = a && b;
c ? … : noreturn();
*a; // false positive

a

b

b = 0

a = 0

a != 0

a != 0
b != 0

c

… noreturn

*a

c = 0c != 0

20

Tracking Null Pointers – Challenges with Assertions

void f(int* a, int *b) {
assert(a && b);
*b;

}

a

b

b = 0
a = 0

a != 0

a != 0
b != 0

void f(int* a, int *b) {
(bool)(a && b)? … : noreturn();
*b; // false positive

}

cast

*b noreturn

21

Summary of Flow-Sensitive Lifetime Analysis

• The performance overhead of the prototype is less than 10% of
-fsyntax-only

• 3 sources of false positives:
• Infeasible paths

• Miscategorizations

• Function modelling

22

Typical Lifetime Issues

reference_wrapper<int> data() {
int i = 3;
return {i};

}

23

return o->name().c_str();auto add(int a) {
return [&a](int b) {
return a + b;

};
} string_view sv = "test"s;

S& V = *get();

Goal: Enable a Subset of Lifetime Warnings with
No False Positives

Clang warnings exist for:

24

Let’s generalize them!

int *data() {
int i = 3;
return &i;

}

new initializer_list<int>{1, 2, 3};

struct Y {
int *p;
Y(int i) : p(&i) {}

};

Evaluation of the Statement Local Analysis

• No false positives or true positives for LLVM and Clang head

• Few FPs if we categorize every user defined type

• FPs could be fixed with annotating llvm::ValueHandleBase

• Sample of 22 lifetime related fixes

• Faulty commits passed the reviews

• 11 would have been caught before breaking the bots

• 1 false negative due to Path not being automatically categorized as owner

• 3 are missed due to assignments not being checked

• Less than 1% performance overhead

25

What is the Issue Here?

• Contextual information is required to catch the problem

26

StringRef Prefix = is_abs(dir)
? SysRoot : "";

• Faulty:

• Fixed: StringRef Prefix = is_abs(dir)
? StringRef(SysRoot) : "";

Other True Positive Findings

• cplusplus.InnerPointer check of the Clang Static Analyzer
found 3 true positives in Ceph, Facebook’s RocksDB, GPGME

• GSoC 2018 project by Réka Kovács

• Problems were reported and fixed promptly

• The true positives were all statement local problems

• The same true positives can also be found with our statement-local
analysis

• How many true positives would we expect from the original
warnings?

27

Plans for upstreaming

• Annotations
• Other analyses can start to adopt to type categories and tested on explicitly

annotated code

• Generalize warnings
• On by default for STL and explicitly annotated types

• Type category inference

• Add flow sensitive analysis
• First handle function calls conservatively

• Add further annotations

• Infer annotations for functions

• Implement use-after-move checks, add exception support

28

Conclusions

• Herb’s analysis is useful for new projects, not always applicable to old

• Type categories are useful for other analyses
• Generalizing Clang warnings

• Generalizing CSA checks

• Generalizing Tidy checks

• Generalized warnings has low performance impact, all sources of
false positives can be addressed

• Infeasible paths → statement local analysis

• Miscategorization → only trigger for STL and annotated types

• Function modelling → only rely on known functions

29

Thank you!

30

• Clang implementation

• https://github.com/mgehre/clang

• Lifetime paper

• https://herbsutter.com/2018/09/20/lifetime-profile-v1-0-posted/

• MSVC implementation

• https://devblogs.microsoft.com/cppblog/lifetime-profile-update-in-visual-
studio-2019-preview-2/

https://github.com/mgehre/clang
https://herbsutter.com/2018/09/20/lifetime-profile-v1-0-posted/
https://devblogs.microsoft.com/cppblog/lifetime-profile-update-in-visual-studio-2019-preview-2/

