Adventures with RISC-V <
Vectors and LLVM

Robin Kruppe Roger Espasa
A, Technische Chief Architect

Si6//=\ UNIVERSITAT a
L & DARMSTADT r ESpera Nnto

Embedded Systems and Applications Group

Background

* RISC-V is a new open-source ISA rapidly gaining momentum
» Definition controlled by the RISC-V Foundation
* No license fee to implement a processor using RISC-V
* Over 200 companies have joined the foundation

* Very simple and clean ISA, with focus on extensibility
» Supports RISC-V foundation sponsored extensions
* As well as your proprietary “secret sauce” extensions

* There's a backend in LLVM

g@ ' SKY X ORION ﬂﬂ%ggggal&ou (",) ANECHIPS \Western Digital.

i= z
HUAWEI =2
BITMAIN

g . = Go gle @A (Dantmicro
< Microsemi
T — CI(‘!?ICI‘OI‘I QUALCONW\ @ SiFive nvibia. rambus

§ESPRESSIF m KGO iR Q_iQUIt:kLDQIl: é,!!Q_OEg ga[O]S |[|"D"D|:@eras () runtime.io & GLOBALFOUNDRIES
&= Esperanto @ ||| 'Snesggfe e PIF ETHzirich £ ° {3 symbiotic EDA b_ WEEIRE

TECHNOLOGIE > Hortonworks Cém 5’% -”“..; oculus A ’ ' B8 & "\LES _
@Slllcon K o PR e TRINSIC 1D o TRINAMIC SECUREIRF gi,ﬁ‘iiii'lipmg UBILITE
h n I X - - !-.;; . MOTION CONTROL ge:.t%r ey — —
SIEMENS Y Minima NUCLE| MITCSAIL DELPHIN . ‘ GOWIN
INTRINSIX HITACHI ‘4“’ imt. poroRlk LZASHLING
ECOSM" Inspire the Next E D L VER Menlara
FEEE OR TF'NERF“" PAMGO ricrosvsmiy INORTHROP GRUMMAN vt

MINRES

LLLLLLLLLLLL

Fd
titute of Computer Science

- 1 A IE Th
CEVA ml e Perf),(/fab o i) ultra
tchanr oo 1‘ SAEE I I % RESEARCH ME;;IS @

DEVELOPMENT TOOLS jb cadence®
S®undAl NETRONGME HEX-Five Security CMC

GREEN g S“C ;NF; C?XfremeEDA SAMSUNG | @SEAGATE

°°°°°°°°°°°° . SHCONSULTING

‘VectorBon bluespec

FEEINS ocies Centipede ' |' S Suntecere DRAPER lowRISC = g Technolution eodqu
Rumble o o (=@l E2E- - GIAR l‘z@eﬂglggsg , ONUS D] 7 eogic
Development C ¢ ‘oo Logic ‘#ZL ATTICE "IDT) PRINCETON"‘-\I Blockstream o faas } 4

:csem °© o) aselsan UNTVERSITY' dxcorr "

@LWIMIER"

RISC-V Vector Extension (RVV)

* Simple, high performance, high efficiency vector processing
* Scale up & down to large & small cores

* Also base for further domain-specific extensions

* https://github.com/riscv/riscv-v-spec/

 Status: WIP but stable draft, building SW+HW and evaluating

https://github.com/riscv/riscv-v-spec/

Feature Highlight Reel

* Programmability: lots of support for vectorization
* Mixed-width computations, widening operations
* Fixed-point and f16

* Precise exceptions (with caveats for embedded platforms)

* Base for further specialized extensions, e.g. for matrix math, complex
numbers, DSP, ML, graphics, ...

* Wide variety of microarchitecture styles supported, yet portable code
* Yes, you can build SIMD
 Yes, you can also build temporal Vectors (Cray anyone?)

Support for Vectorization

* Strip-mined loops — no remainder handling needed

* Masking on (almost) every vector instruction

 Strided loads and stores, scatters, gathers

e Reduction instructions (sum, min/max, and/or, ...)

* Orthogonal set of vector operations, parity with scalar ISA

* fault-only-first loads for loops with data dependent exits

Register State: 32 registers of VLEN bits

* 32 register names: vO through v31

* Each register is VLEN-bits wide
* VLEN is chosen by implementation, must be power of 2
* See spec for additional restrictions in relation to ELEN and SLEN
* Some control registers
* VL = active vector length
 SEW = standard element width, hosted in vsew[2:0]
 LMUL = grouping multiplier

SEW determines number of elements per vector

e SEW = Standard Element Width
* Dynamically settable through ‘vsew[2:0]’
* Each vector register viewed as VLEN/SEW elements, each SEW-bits wide

* Polymorphic instruction
e vadd can be an i8/i16/i32/... add depending on SEW

e Set up along with VL (vsetvll to, a0, e32)

Example: VLEN=256b, vsew='010, SEW=32b, elements = VLEN/SEW = 8
VLEN = 256b

vo | I I I I I I I |
vl | I I I I I I I |

v31l | I I I I I I I |

¢ ——Fr——Fr——F— ¢ —————F—r——F—r— >
32b 32b 32b 32b 32b 32b 32b 32b

vfadd.vv vO, vl, v2

for (i = 0; 1 < VL; ++1i)
vo[i] = v1[i] + v2[i];
voO[VL. .VLMAX]

32|:1 32b 32b 32b 32b 32l} 32b 32b

* Lanes past VL don‘t trap, raise

exceptions, access memory, etc. ! -n-ﬂn-nn
vz I I T

6808850

OB 0 | 0 | 0 le+m|d+l[ctk[b+jla+i
9

Register Grouping: LMUL

e Groups registers to form “longer vector”
* Reduces number of valid register names

* Number of registers in each group is LMUL
e LMULcanbel, 24,8

* Example: when LMUL=2
 vadd v2, v4, v6 really means (v2,v3) := (v4,v5) + (v6,Vv7)

* Also used for widening operators (32b x 32b = 64b result)
* Like SEW, set with VL (vsetvli t0, a0, e32, m4)

Strip-mining

Increase each array element (length in a0, pointer in al) by the same amount (a2)
loop:

vsetvli tO, a0, e32 # t0 = VL = max(a@, VLMAX)

viw.v vo, (al)

vadd.vs v2, vO, a2

vsw.v v2, (al)

sub a@, a0, to

; advance ptr by VL elements
bnez a@, loop

Sets SEW
Polymorphic!

Strip-mining

Increase each array element (length in a0, pointer in al) by the same amount (a2)
loop:

vsetvli tO, a0@, e32 * to = = max(a@, VLMAX)

viw.v v, (al)

vadd.vs v2, vO, a2 a0=10,VvVL=4
vsw.v v2, (al)

sub a@, a0, to

... 5, advance ptr by VL elements a0=6,VL=4
bnez a0, loop
EEEN -

12

Mixed-precision Calculations

e Usually, biggest data type limits
vector length

* Unless you want lots of shuffles

ext(16b)|ext(16b)
32b 32b

Mixed-precision Calculations

e Usually, biggest data type limits
vector length

e Alternative with RISC-V V:

e pack 16b elements tightly
* 32b elements span two registers
e Switch LMUL to work with both

* No need to shuffle in registers
* Tradeoff: not a win on all uarchs

l
16b | 16b | 16b
} L‘l
32b 32b

32b

LLVM Support

e Qut-of-tree patches @ https://github.com/rkruppe/rvv-llvm

* Want to start upstreaming when spec frozen

* Mostly MC and CodeGen work so far

* Very interested in autovectorization, but needs groundwork
e Status: can manually write vector code in IR and CodeGen it

15

https://github.com/rkruppe/rvv-llvm

Strip-mined Loop in IR

loop:
%n = phi ...
%ptr = phi ...
%vl = call 132 @llvm.riscv.vsetvl(i32 %n)
%vl = call <scalable 1 x i32> @llvm.riscv.vlw(%ptr, 132 %vl)
%v2 = call .. @llvm.riscv.vadd.sv1i32(%v1l, %splat, 132 %vl)
call void @llvm.riscv.vsw(%ptr, %v2, i32 %vl)
sn.new = sub 132 %n, %vl
%ptr.new = ...

%done = icmp eq i32 %n.new, ©

IR Vector Type

e <scalable k x T> type proposed by Arm for their Scalable Vector
Extension (SVE)

 Lots of common ground (even more than last year!)
* vector register size unkown at compile time, constant at runtime
* but: known constant factor, e.g., VLEN multiple of 64b

* Want to use whatever gets accepted upstream for SVE

 References
* https://llvm.org/D32530

https://llvm.org/D32530

IR Intrinsics

e@llvm.riscv.vadd.sv1i32(opl, op2, i32 vl, mask)
* Active vector length is just another argument
* Masking as part of every operation, not external select

* Essentially like Simon Moll‘s Vector Predication proposal
* Note: no mention of SEW/LMUL

e References
* https://llvm.org/D57504
* Simon Moll’s talk earlier today

https://llvm.org/D57504

CodeGen Perspective

e VL is just another (allocatable) integer register
* Copies to/from GPR supported
* Input to most vector instructions, output of vsetvl
* Need to figure out how to “spill” it

* vtype is reserved physical register
* Implicitly used by everything, defined by vsetvl
* Managed by backend, no IR representation
 SEW, LMUL dictated by vector types used in IR

Instruction Selection

e Straightforward mapping of intrinsics to (pseudo-)instructions
* Hardware instructions are polymorphic, but compiler needs static info
* Pseudos for each element width and LMUL
 Different LMUL also means different register classes (e.g., pairs for LMUL=2)
* e.g. <scalable 4 xi32>add = vadd_e32 m4

* VL modelled as normal integer value
* Don’t set up configuration (SEW, LMUL) yet

After |Se]

* Place instruction that set up necessary SEW and LMUL
* Fold into existing vsetvl’s where possible

* MIR optimizations, e.g., removing redundant vl < GPR copies

* Copying vector registers is a mess
* Need to copy whole register (vl = MAX) in general
e Should usually prove that elements past current vl won‘t be read
* Not yet sure how to best achieve this

Next Steps needed

* Fill in more backend features

* Automatic vectorization (cf. SVE)

» Software ecosystem: vendor-tuned libraries
* Evaluate & adjust ISA

* Implementations will start popping out soon

* Please come help!

Conclusion

* RISC-V has a great, flexible vector extension
 https://github.com/riscv/riscv-v-spec/

* LLVM backend for it already started
* https://github.com/rkruppe/rvv-llvm

e Lots of industrial activity around it (even if you don’t see it)

23

https://github.com/riscv/riscv-v-spec/
https://github.com/rkruppe/rvv-llvm

