
PUBLIC

Matthias Liedtke, SAP
April 08, 2019

Handling massive concurrency
Development of a programming model for
GPU and CPU



2PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Our requirements and related concepts

The programming model

Results

Agenda



Our requirements and related concepts



4PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Llang compiler
§ Just in time compiler in existing server environment using the LLVM backend
§ Llang à internal language with little performance overhead compared to C++

Context of the programming model



5PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Ease-of-Use

Achieve comparable performance to CUDA

Write once

Supportability

Our requirements for the programming model



6PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

OpenMP

§ Sequential program

§ Added pre-processor directives for parallelization

àLimited expressiveness as parallelization is „on top“ of programming language

Existing GPU programming models



7PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

CUDA
§ Strong support for hardware capabilities
§ Many libraries for special needs
§ C-style interface, little abstraction
àLimited to Nvidia GPUs, no CPU execution possible

Existing GPU programming models



8PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

OpenCL

§ Platform independent programming of highly parallel kernels

§ Hardware abstraction

§ Mature (but complex) interface, also in C++

àVery close to what we need

àNo integration into existing environment

Existing GPU programming models



The programming model



10PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

_acc_kernel Void multiply(acc::GridInfo& gi, ForeignArray<Int32>& data) {

Size index = gi.getThreadIdX() + gi.getBlockIdX() * gi.getThreadCountX();

data[index] = data[index] * Int32(index);

}

export Void testMain() {

Size blockCount = 32z;

Size threadCount = 32z;

ForeignArray<Int64> array = /*...*/;

acc::GridConfig config(blockCount, threadCount);

acc::gridInvoke(config, _bind(multiply, array));

}

Example usage of the programming model



11PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

_acc_kernel Void multiply(acc::GridInfo& gi, ForeignArray<Int32>& data) { }

§ Keyword _acc_kernel
§ Function will be compiled for the CPU and GPU backend

acc::GridConfig config(blockCount, threadCount);

acc::gridInvoke(config, _bind(multiply, array));

§ GridConfig to set number of threads and thread groups
§ Kernel function bound with arguments

Programming model – Kernel invocation



12PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

acc::gridInvoke(config, _bind(multiply, array));

Data transfer handled by invoke mechanism

Programming model – Data transfer



13PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

_acc_kernel Void multiply(acc::GridInfo& gi, ForeignArray<Int32>& data) {

}

export Void testMain() {

Size blockCount = 32z;

Size threadCount = 32z;

ForeignArray<Int32> array = /*...*/;

acc::Stream stream;

{

acc::GridConfig config(blockCount, threadCount);

acc::Transfer arrayTransfer(array, stream);

acc::gridInvoke(config, _bind(multiply, array), stream);

acc::gridInvoke(config, _bind(multiply, array), stream);

} // end of lifetime of transfer object triggers transfer

}

Programming model – Explicit data transfers



15PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Aggregating multiple results into one, e.g. sum

_reduce(gridInfo, COMPLETE_GRID, partialResult, add, &result);

Programming model – Reduction

10

1 2 3 4



16PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Aim: Avoid self defined locks and dead locks

Concept: Have phases that are handled “sequentially”

_acc_kernel Void kernel(acc::GridInfo& gi, ForeignArray<Int32> in, ForeignArray<Int32>& out) {

_acc_shared ForeignArray<Int32> inShared;

_acc_shared ForeignArray<Int32> outShared;

_phased_execution "load" {

// load data from in to inShared

}

_phased_execution "process" {

// execution operation reading data from inShared and storing results in outShared

}

_phased_execution "aggregate" {

// aggregate results in outShared

}

}

Programming model – Execution phases



Results



18PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Kernel runtime
with 5’000 points and 10’000 edges
GPU: Nvidia Tesla P100
CPU: 4 x Intel Xeon  E7-8880 v2 @2.5 GHz 

For each point p:
§ Count intersections of ray starting at p with 

polygon

§ Even number: outside
§ Odd number: inside

Points-in-polygon

0

2

4

6

8

10

12

14

16

R
un

tim
e 

in
 m

s
Cuda C++ Prototype GPU Prototype CPU



19PUBLIC© 2019 SAP SE or an SAP affiliate company. All rights reserved.  ǀ

Main concepts of our programming model
§ Worker / kernel function like in CUDA / OpenCL
§ Context object for multiple kernel calls (“Stream”); comparable to CUDA stream
§ Object for kernel invocation configuration
§ Object to handle explicit GPU transfer for an existing variable on CPU
§ Execution phases to avoid explicit locks
§ GPU and CPU backend with GPU focus

Summary



Contact information:

Matthias Liedtke
matthias.Liedtke@sap.com

Thank you.

mailto:Matthias.Liedtke@sap.com

