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Handling massive concurrency
Development of a programming model for
GPU and CPU
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Llang compiler
§ Just in time compiler in existing server environment using the LLVM backend
§ Llang à internal language with little performance overhead compared to C++

Context of the programming model
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Ease-of-Use

Achieve comparable performance to CUDA

Write once

Supportability

Our requirements for the programming model
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OpenMP

§ Sequential program

§ Added pre-processor directives for parallelization

àLimited expressiveness as parallelization is „on top“ of programming language

Existing GPU programming models
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CUDA
§ Strong support for hardware capabilities
§ Many libraries for special needs
§ C-style interface, little abstraction
àLimited to Nvidia GPUs, no CPU execution possible

Existing GPU programming models
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OpenCL

§ Platform independent programming of highly parallel kernels

§ Hardware abstraction

§ Mature (but complex) interface, also in C++

àVery close to what we need

àNo integration into existing environment

Existing GPU programming models



The programming model
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_acc_kernel Void multiply(acc::GridInfo& gi, ForeignArray<Int32>& data) {

Size index = gi.getThreadIdX() + gi.getBlockIdX() * gi.getThreadCountX();

data[index] = data[index] * Int32(index);

}

export Void testMain() {

Size blockCount = 32z;

Size threadCount = 32z;

ForeignArray<Int64> array = /*...*/;

acc::GridConfig config(blockCount, threadCount);

acc::gridInvoke(config, _bind(multiply, array));

}

Example usage of the programming model
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_acc_kernel Void multiply(acc::GridInfo& gi, ForeignArray<Int32>& data) { }

§ Keyword _acc_kernel
§ Function will be compiled for the CPU and GPU backend

acc::GridConfig config(blockCount, threadCount);

acc::gridInvoke(config, _bind(multiply, array));

§ GridConfig to set number of threads and thread groups
§ Kernel function bound with arguments

Programming model – Kernel invocation
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acc::gridInvoke(config, _bind(multiply, array));

Data transfer handled by invoke mechanism

Programming model – Data transfer
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_acc_kernel Void multiply(acc::GridInfo& gi, ForeignArray<Int32>& data) {

}

export Void testMain() {

Size blockCount = 32z;

Size threadCount = 32z;

ForeignArray<Int32> array = /*...*/;

acc::Stream stream;

{

acc::GridConfig config(blockCount, threadCount);

acc::Transfer arrayTransfer(array, stream);

acc::gridInvoke(config, _bind(multiply, array), stream);

acc::gridInvoke(config, _bind(multiply, array), stream);

} // end of lifetime of transfer object triggers transfer

}

Programming model – Explicit data transfers
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Aggregating multiple results into one, e.g. sum

_reduce(gridInfo, COMPLETE_GRID, partialResult, add, &result);

Programming model – Reduction

10
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Aim: Avoid self defined locks and dead locks

Concept: Have phases that are handled “sequentially”

_acc_kernel Void kernel(acc::GridInfo& gi, ForeignArray<Int32> in, ForeignArray<Int32>& out) {

_acc_shared ForeignArray<Int32> inShared;

_acc_shared ForeignArray<Int32> outShared;

_phased_execution "load" {

// load data from in to inShared

}

_phased_execution "process" {

// execution operation reading data from inShared and storing results in outShared

}

_phased_execution "aggregate" {

// aggregate results in outShared

}

}

Programming model – Execution phases



Results
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Kernel runtime
with 5’000 points and 10’000 edges
GPU: Nvidia Tesla P100
CPU: 4 x Intel Xeon  E7-8880 v2 @2.5 GHz 

For each point p:
§ Count intersections of ray starting at p with 

polygon

§ Even number: outside
§ Odd number: inside

Points-in-polygon
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Main concepts of our programming model
§ Worker / kernel function like in CUDA / OpenCL
§ Context object for multiple kernel calls (“Stream”); comparable to CUDA stream
§ Object for kernel invocation configuration
§ Object to handle explicit GPU transfer for an existing variable on CPU
§ Execution phases to avoid explicit locks
§ GPU and CPU backend with GPU focus

Summary
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