/\ ®¢======
' i 6= EIEI%%%I%I IR
DAY\ i

g pa e £E2

Handling massive concurrency

Development of a programming model for
GPU and CPU

ttttttttttttttttt

PPPPPP



Agenda

Our requirements and related concepts
The programming model

Results

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC



Our requirements and related concepts



Context of the programming model

Llang compiler

Just in time compiler in existing server environment using the LLVM backend
Llang - internal language with little performance overhead compared to C++

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC



Our requirements for the programming model

Ease-of-Use
Achieve comparable performance to CUDA
Write once

Supportability

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC



Existing GPU programming models

OpenMP

Sequential program
Added pre-processor directives for parallelization
Limited expressiveness as parallelization is ,,on top“ of programming language

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC



Existing GPU programming models

CUDA
Strong support for hardware capabilities
Many libraries for special needs
C-style interface, little abstraction
Limited to Nvidia GPUs, no CPU execution possible

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC



Existing GPU programming models

OpenCL
Platform independent programming of highly parallel kernels
Hardware abstraction
Mature (but complex) interface, also in C++
Very close to what we need
No integration into existing environment

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC



The programming model



Example usage of the programming model

acc_kernel void multiply(acc::Gridinfo& gi, ForeignArray<Int32>& data) 1

export void testMain() {

acc::Gridconfig config(blockCount, threadCount);
acc::gridinvoke(config, _bind(multiply, array));

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

10



Programming model — Kernel invocation

acc_kernel void multiply(acc::Gridinfo& gi, ForeignArray<Int32>& data) { }

Keyword _acc_kernel
Function will be compiled for the CPU and GPU backend

acc::Gridconfig config(blockCount, threadCount);
acc::gridinvoke(config, _bind(multiply, array));

GridConfig to set number of threads and thread groups
Kernel function bound with arguments

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

1"



Programming model — Data transfer

acc::gridinvoke(config, _bind(multiply, array

Data transfer handled by invoke mechanism

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

12



Programming model — Explicit data transfers

ForeignArray<Int32> array = /*...%/;
acc::Stream stream;
{

acc::Transfer arrayTransfer(array, stream);

acc::gridinvoke(config, _bind(multiply, array), stream);
acc::gridinvoke(config, _bind(multiply, array), stream);
} // end of 1lifetime of transfer object triggers transfer

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

13



Programming model — Reduction

Aggregating multiple results into one, e.g. sum

_reduce(gridInfo,

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

, partialResult, add, &result);

15



Programming model — Execution phases

Aim: Avoid self defined locks and dead locks

Concept: Have phases that are handled “sequentially”

_acc_kernel void kernel(acc::GridInfo& gi, ForeignArray<Int32> in, ForeignArray<Int32>& out) {
_acc_shared ForeignArray<Int32> inShared;
_acc_shared ForeignArray<Int32> outShared;
_phased_execution "load" {
// load data from in to inShared
}
_phased_execution "process" {
// execution operation reading data from inShared and storing results in outShared
}
_phased_execution "aggregate" {
// aggregate results in outShared

}

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

16



Results



Points-in-polygon

For each point p: Kernel runtime
Count intersections of ray starting at p with with 5°000 points and 10°000 edges
polygon GPU: Nvidia Tesla P100
Even number: outside CPU: 4 x Intel Xeon E7-8880 v2 @2.5 GHz
Odd number: inside 16
14
12
N
2 8
\ : .

: ]

Cuda C++ mPrototype GPU mPrototype CPU

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC 18



Summary

Main concepts of our programming model
Worker / kernel function like in CUDA / OpenCL
Context object for multiple kernel calls (“Stream”); comparable to CUDA stream
Object for kernel invocation configuration
Object to handle explicit GPU transfer for an existing variable on CPU
Execution phases to avoid explicit locks
GPU and CPU backend with GPU focus

© 2019 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

19



Thank you.

Contact information:

Matthias Liedtke
matthias.Liedtke@sap.com

THE BEST RUN '


mailto:Matthias.Liedtke@sap.com

