
Switching a Linux
distribution’s main toolchain

to LLVM/Clang
Bernhard “Bero” Rosenkränzer, OpenMandriva/LinDev

EuroLLVM 2019

When and why did we do it?
● Made the decision and started the transition around the time of the clang 3.5

release - when clang started being competitive in terms of completeness and
performance. First build with cc -> clang symlink was a pre-3.5 snapshot (svn rev
209634, May 29, 2014). The first release with clang as default compiler happened
5 months later, Oct 26, 2014.

● Most important reasons for making the switch:
○ Better compile times (for resulting binaries with very similar performance)
○ Less pain with crosscompilers
○ Sanitizers
○ Maybe most importantly: More readable code

Woof! I am Chwido, OpenMandriva's mascot. Don't believeanything my 2-legged pet says about this! In reality, we choseclang because I heard about Pavlov's dog, and I associate theclang sound with yummy dog food!

Benefits discovered later
● Usually less breakage even when using snapshots (important to us: There’s

not much of a point in developing against an older version of a toolchain when
we already know our final release will be using a newer one. We know our 4.1
release will use clang 9 or 10, so we’ll switch our development tree to a 9
snapshot as soon as our 4.0 release (which uses clang 8) is done).
This helps find potential bugs early, but lots of Internal Compiler Errors can
slow down other work.

And pain points...
• Biggest problem right now: Missing RISC-V support.

Our newest target is RISC-V Linux (rv64imafdc) -- presently not
supported at all in LLVM/Clang master, only partial patches
available.

• Temporary workaround: Use gcc on RISC-V, clang on all other
architectures (x86_64, aarch64, i686, armv7hnl, znver1)

And pain points...
● Many projects (still) never test building with anything but gcc - don’t notice

when code relies on gcc extensions (VLAIS, nested functions, asm
goto, …)

● Projects are quick to blame the compiler for their undefined behavior code
that gcc happens to compile as expected

● Some upstream projects (elfutils, to name the biggest one) are downright
hostile to "make it build with clang" style patches

● Missed optimizations because of #if statements● #ifdef __GNUC__do_something_sane();#elseassume_the_compiler_sucks();#endif

And pain points...
● Or worse:#if defined(__GNUC__) && !defined(__clang__)do_something_sane();#else// based on trying clang 3.0 and never// looking at current versions...assume_the_compiler_sucks();#endif

And pain points...
● Or worse:#if __GNUC__ >= 5do_something_sane();#elseassume_the_compiler_sucks();#endif

Even clang master pretends to be gcc 4.x in terms of
__GNUC__ defines

Increasing __GNUC__
● In terms of standard compliance etc., current clang is much closer to gcc 8.x

than 4.x, so increasing the values for GNUC and friends makes sense…
… except clang doesn’t have some gcc 8.x extension, triggering new compile
failures in e.g. gnulib’s builtin_mul_overflow_p use if “gcc” is new
enough

● Projects should really use has_builtin/ has_attribute instead of#if __GNUC__ to determine what features are available (but not all projects
care -- and it breaks support for old compilers).

● We’re using clang with increased __GNUC__ now -- better to trigger a
compile failure (that will be fixed) than a missed optimization nobody will
notice. Should that patch go upstream?

export CC=gcc; export CXX=g++
● We don’t hate gcc -- so “export CC=gcc”/”export CXX=g++” is an

acceptable workaround that doesn’t make developers jump at the package
when there’s more important problems -- without more contributors, we’re
likely to stick with this workaround in some packages for a while…
(Yes, consider this a call for volunteers ;))

● Currently:
● 20330 packages total
● 139 have clang related patches
● 327 use gcc/g++ (some only on a specific CPU architecture)
● over 2000 related patches upstreamed

I preferexport DOGS=fed

export CC=gcc; export CXX=g++
● various packages -- clang generates calls to __muloti4 and similar

functions that are provided by compiler-rt, but not libgcc. Workarounds
are either CC=gcc or --rtlib=compiler-rt.
Either workaround "solves" the problem, but linking libraries built with --rtlib=compiler-rt into applications built with libgcc may cause hard
to trace issues

● gnu-efi and other parts of the UEFI stack -- Makefiles hardcode compiler
flags not currently available in clang, e.g. -maccumulate-outgoing-args

export CC=gcc; export CXX=g++
● glibc -- relies on numerous gcc and GNU binutils specific features
● Linux kernel -- asm goto is the primary remaining pain point here
● mesa on x86_64 -- compiles fine with clang, works well on newer

hardware, but crashes at runtime on older x86_64 hardware when built
with clang (AVX instructions somehow getting run on processors that
don’t have them). Clang-built mesa on aarch64, armv7hnl, i686 seems to
be ok.
Needs debugging, probably mesa uses hand-written asm code and CPU
feature detection goes wrong.

● blender -- implicit float to bool conversions, and SSE and OpenMP
support available only with gcc, should be fixable

export CC=gcc; export CXX=g++
● gcc -- doesn’t like being compiled with anything but itself (sadly, would be

nice to not have circular dependencies. Build gcc with clang and clang
with gcc).

● grub2 -- inline asm constructs (.addrsig etc.)
● autoconf -- hardcodes filenames for known compilers [but not

clang/clang++] in its AC_PROG_CC and AC_PROG_CXX macros. This
has been fixed for a while, but there hasn't been a release for years.

● openjdk on 32-bit x86 -- makes ABI assumptions that work only with
versions of glibc that don't use SSE, unless compiled with (gcc specific)-mincoming-stack-boundary=2 flag
https://bugs.openjdk.java.net/browse/JDK-8199936

● gpm - heavy use of nested functions

Qt issue with -reduce-relocations
● Qt -- signal/slot connections to lambdas fail at runtime if Qt is built with

clang and -reduce-relocations -- [update: dropped -reduce-relocations
instead of using gcc]
A similar problem seems to exist with ICC:
https://bugreports.qt.io/browse/QTBUG-52439.

● Needs further debugging.

LLVM components we aren’t using yet
● LLD -- not yet feature complete to a point where it could fully replace gold and

BFD ld, will keep checking it out as we move to newer major releases
Currently mostly missing support for linker script constructs used in many
packages

● as -- partially used through clang inline assembly, but /usr/bin/as is still GNU
(binutils) as, mostly because of projects using pre-unified ARM32 asm code
(and some extensions), and command line compatibility (gcc makes
assumptions about as)

● strip, objdump -- rpm’s separate debug package feature is currently tied to the
elfutils implementations of strip and binutils objdump

nm and friends...
● llvm-nm and friends can't handle object files generated with gcc -flto -- binutils

nm and friends can't handle object files generated with clang -flto...
So we need a different handler. This should really be fixed upstream -- but...
Which upstream? Current "solution":REAL_NM=binutils-nmPARENT="$(readlink /proc/$PPID/exe)"WRAPPED=falseif [-z "$PARENT"]; thenWRAPPED=trueelif echo "$PARENT" |grep -qE -- '-nm$'; thenWRAPPED=trueelif echo "$PARENT" |grep -qE -- 'qemu'; thenif grep -qE -- '-nm' /proc/$PPID/cmdline; thenWRAPPED=truefifi

nm and friends...
if ! "$WRAPPED"; thenfor i in "$@"; do["$(echo $i |cut -b1)" = '-'] && continueif echo "$i" |grep -qE '\.(o|a)$' && [-e "$i"]; thenif LANG=C gcc-nm "$i" 2>&1 |grep -qi "file format not recognized"; thenwhich llvm-nm &>/dev/null && REAL_NM=llvm-nmbreakfifidoneif ["$REAL_NM" = 'binutils-nm'] && which gcc-nm &>/dev/null; thenREAL_NM=gcc-nmfifiexec "$REAL_NM" "$@"

LLVM components we aren’t using yet (and might
never use)
● libc++ -- Binary compatibility issues: If we build e.g. Qt with libc++ and a user

tries to install a binary that uses Qt and was built on any other Linux
distribution, it’s going to fail. Can’t do this while people insist on using
binary-only software.
We might start using it on architectures where binary-only components don’t
matter [yet], such as RISC-V

● compiler-rt -- similar issue - a library linked to compiler-rt doesn’t always work
with binaries built with libgcc. Also, gcc (which we still rely on for some
packages) can’t use compiler-rt

Questions? Comments? Or dog food?

Ask here, or email
bero@lindev.ch
http://openmandriva.org/
http://lindev.ch/

