LLVM 22.0.0git
CloneFunction.cpp
Go to the documentation of this file.
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CloneFunctionInto interface, which is used as the
10// low-level function cloner. This is used by the CloneFunction and function
11// inliner to do the dirty work of copying the body of a function around.
12//
13//===----------------------------------------------------------------------===//
14
16#include "llvm/ADT/Statistic.h"
22#include "llvm/IR/CFG.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DebugInfo.h"
26#include "llvm/IR/Function.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/MDBuilder.h"
32#include "llvm/IR/Metadata.h"
33#include "llvm/IR/Module.h"
38#include <map>
39#include <optional>
40using namespace llvm;
41
42#define DEBUG_TYPE "clone-function"
43
44STATISTIC(RemappedAtomMax, "Highest global NextAtomGroup (after mapping)");
45
47 auto CurGroup = DL->getAtomGroup();
48 if (!CurGroup)
49 return;
50
51 // Try inserting a new entry. If there's already a mapping for this atom
52 // then there's nothing to do.
53 auto [It, Inserted] = VMap.AtomMap.insert({{DL.getInlinedAt(), CurGroup}, 0});
54 if (!Inserted)
55 return;
56
57 // Map entry to a new atom group.
58 uint64_t NewGroup = DL->getContext().incNextDILocationAtomGroup();
59 assert(NewGroup > CurGroup && "Next should always be greater than current");
60 It->second = NewGroup;
61
62 RemappedAtomMax = std::max<uint64_t>(NewGroup, RemappedAtomMax);
63}
64
65namespace {
66void collectDebugInfoFromInstructions(const Function &F,
67 DebugInfoFinder &DIFinder) {
68 const Module *M = F.getParent();
69 if (M) {
70 // Inspect instructions to process e.g. DILexicalBlocks of inlined functions
71 for (const auto &I : instructions(F))
72 DIFinder.processInstruction(*M, I);
73 }
74}
75
76// Create a predicate that matches the metadata that should be identity mapped
77// during function cloning.
78MetadataPredicate createIdentityMDPredicate(const Function &F,
81 return [](const Metadata *MD) { return false; };
82
83 DISubprogram *SPClonedWithinModule = F.getSubprogram();
84
85 // Don't clone inlined subprograms.
86 auto ShouldKeep = [SPClonedWithinModule](const DISubprogram *SP) -> bool {
87 return SP != SPClonedWithinModule;
88 };
89
90 return [=](const Metadata *MD) {
91 // Avoid cloning types, compile units, and (other) subprograms.
92 if (isa<DICompileUnit>(MD) || isa<DIType>(MD))
93 return true;
94
95 if (auto *SP = dyn_cast<DISubprogram>(MD))
96 return ShouldKeep(SP);
97
98 // If a subprogram isn't going to be cloned skip its lexical blocks as well.
99 if (auto *LScope = dyn_cast<DILocalScope>(MD))
100 return ShouldKeep(LScope->getSubprogram());
101
102 // Avoid cloning local variables of subprograms that won't be cloned.
103 if (auto *DV = dyn_cast<DILocalVariable>(MD))
104 if (auto *S = dyn_cast_or_null<DILocalScope>(DV->getScope()))
105 return ShouldKeep(S->getSubprogram());
106
107 return false;
108 };
109}
110} // namespace
111
112/// See comments in Cloning.h.
114 const Twine &NameSuffix, Function *F,
115 ClonedCodeInfo *CodeInfo, bool MapAtoms) {
116 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
117 if (BB->hasName())
118 NewBB->setName(BB->getName() + NameSuffix);
119
120 bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
121
122 // Loop over all instructions, and copy them over.
123 for (const Instruction &I : *BB) {
124 Instruction *NewInst = I.clone();
125 if (I.hasName())
126 NewInst->setName(I.getName() + NameSuffix);
127
128 NewInst->insertBefore(*NewBB, NewBB->end());
129 NewInst->cloneDebugInfoFrom(&I);
130
131 VMap[&I] = NewInst; // Add instruction map to value.
132
133 if (MapAtoms) {
134 if (const DebugLoc &DL = NewInst->getDebugLoc())
135 mapAtomInstance(DL.get(), VMap);
136 }
137
138 if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
139 hasCalls = true;
140 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
141 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_callsite);
142 }
143 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
144 if (!AI->isStaticAlloca()) {
145 hasDynamicAllocas = true;
146 }
147 }
148 }
149
150 if (CodeInfo) {
151 CodeInfo->ContainsCalls |= hasCalls;
152 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
153 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
154 }
155 return NewBB;
156}
157
159 const Function *OldFunc,
160 ValueToValueMapTy &VMap,
161 bool ModuleLevelChanges,
162 ValueMapTypeRemapper *TypeMapper,
163 ValueMaterializer *Materializer) {
164 // Copy all attributes other than those stored in Function's AttributeList
165 // which holds e.g. parameters and return value attributes.
166 AttributeList NewAttrs = NewFunc->getAttributes();
167 NewFunc->copyAttributesFrom(OldFunc);
168 NewFunc->setAttributes(NewAttrs);
169
170 const RemapFlags FuncGlobalRefFlags =
171 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
172
173 // Fix up the personality function that got copied over.
174 if (OldFunc->hasPersonalityFn())
175 NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
176 FuncGlobalRefFlags, TypeMapper,
177 Materializer));
178
179 if (OldFunc->hasPrefixData()) {
180 NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
181 FuncGlobalRefFlags, TypeMapper,
182 Materializer));
183 }
184
185 if (OldFunc->hasPrologueData()) {
186 NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
187 FuncGlobalRefFlags, TypeMapper,
188 Materializer));
189 }
190
191 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
192 AttributeList OldAttrs = OldFunc->getAttributes();
193
194 // Clone any argument attributes that are present in the VMap.
195 for (const Argument &OldArg : OldFunc->args()) {
196 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
197 // Remap the parameter indices.
198 NewArgAttrs[NewArg->getArgNo()] =
199 OldAttrs.getParamAttrs(OldArg.getArgNo());
200 }
201 }
202
203 NewFunc->setAttributes(
204 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
205 OldAttrs.getRetAttrs(), NewArgAttrs));
206}
207
209 ValueToValueMapTy &VMap,
210 RemapFlags RemapFlag,
211 ValueMapTypeRemapper *TypeMapper,
212 ValueMaterializer *Materializer,
213 const MetadataPredicate *IdentityMD) {
215 OldFunc.getAllMetadata(MDs);
216 for (auto MD : MDs) {
217 NewFunc.addMetadata(MD.first,
218 *MapMetadata(MD.second, VMap, RemapFlag, TypeMapper,
219 Materializer, IdentityMD));
220 }
221}
222
223void llvm::CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc,
224 ValueToValueMapTy &VMap, RemapFlags RemapFlag,
226 const char *NameSuffix,
227 ClonedCodeInfo *CodeInfo,
228 ValueMapTypeRemapper *TypeMapper,
229 ValueMaterializer *Materializer,
230 const MetadataPredicate *IdentityMD) {
231 if (OldFunc.isDeclaration())
232 return;
233
234 // Loop over all of the basic blocks in the function, cloning them as
235 // appropriate. Note that we save BE this way in order to handle cloning of
236 // recursive functions into themselves.
237 for (const BasicBlock &BB : OldFunc) {
238
239 // Create a new basic block and copy instructions into it!
240 BasicBlock *CBB =
241 CloneBasicBlock(&BB, VMap, NameSuffix, &NewFunc, CodeInfo);
242
243 // Add basic block mapping.
244 VMap[&BB] = CBB;
245
246 // It is only legal to clone a function if a block address within that
247 // function is never referenced outside of the function. Given that, we
248 // want to map block addresses from the old function to block addresses in
249 // the clone. (This is different from the generic ValueMapper
250 // implementation, which generates an invalid blockaddress when
251 // cloning a function.)
252 if (BB.hasAddressTaken()) {
253 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(&OldFunc),
254 const_cast<BasicBlock *>(&BB));
255 VMap[OldBBAddr] = BlockAddress::get(&NewFunc, CBB);
256 }
257
258 // Note return instructions for the caller.
260 Returns.push_back(RI);
261 }
262
263 // Loop over all of the instructions in the new function, fixing up operand
264 // references as we go. This uses VMap to do all the hard work.
266 BB = cast<BasicBlock>(VMap[&OldFunc.front()])->getIterator(),
267 BE = NewFunc.end();
268 BB != BE; ++BB)
269 // Loop over all instructions, fixing each one as we find it, and any
270 // attached debug-info records.
271 for (Instruction &II : *BB) {
272 RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer,
273 IdentityMD);
274 RemapDbgRecordRange(II.getModule(), II.getDbgRecordRange(), VMap,
275 RemapFlag, TypeMapper, Materializer, IdentityMD);
276 }
277}
278
279// Clone OldFunc into NewFunc, transforming the old arguments into references to
280// VMap values.
281void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
282 ValueToValueMapTy &VMap,
285 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
286 ValueMapTypeRemapper *TypeMapper,
287 ValueMaterializer *Materializer) {
288 assert(NameSuffix && "NameSuffix cannot be null!");
289
290#ifndef NDEBUG
291 for (const Argument &I : OldFunc->args())
292 assert(VMap.count(&I) && "No mapping from source argument specified!");
293#endif
294
295 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
296
297 CloneFunctionAttributesInto(NewFunc, OldFunc, VMap, ModuleLevelChanges,
298 TypeMapper, Materializer);
299
300 // Everything else beyond this point deals with function instructions,
301 // so if we are dealing with a function declaration, we're done.
302 if (OldFunc->isDeclaration())
303 return;
304
306 assert((NewFunc->getParent() == nullptr ||
307 NewFunc->getParent() == OldFunc->getParent()) &&
308 "Expected NewFunc to have the same parent, or no parent");
309 } else {
310 assert((NewFunc->getParent() == nullptr ||
311 NewFunc->getParent() != OldFunc->getParent()) &&
312 "Expected NewFunc to have different parents, or no parent");
313
315 assert(NewFunc->getParent() &&
316 "Need parent of new function to maintain debug info invariants");
317 }
318 }
319
320 MetadataPredicate IdentityMD = createIdentityMDPredicate(*OldFunc, Changes);
321
322 // Cloning is always a Module level operation, since Metadata needs to be
323 // cloned.
324 const auto RemapFlag = RF_None;
325
326 CloneFunctionMetadataInto(*NewFunc, *OldFunc, VMap, RemapFlag, TypeMapper,
327 Materializer, &IdentityMD);
328
329 CloneFunctionBodyInto(*NewFunc, *OldFunc, VMap, RemapFlag, Returns,
330 NameSuffix, CodeInfo, TypeMapper, Materializer,
331 &IdentityMD);
332
333 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
334 // same module, the compile unit will already be listed (or not). When
335 // cloning a module, CloneModule() will handle creating the named metadata.
337 return;
338
339 // Update !llvm.dbg.cu with compile units added to the new module if this
340 // function is being cloned in isolation.
341 //
342 // FIXME: This is making global / module-level changes, which doesn't seem
343 // like the right encapsulation Consider dropping the requirement to update
344 // !llvm.dbg.cu (either obsoleting the node, or restricting it to
345 // non-discardable compile units) instead of discovering compile units by
346 // visiting the metadata attached to global values, which would allow this
347 // code to be deleted. Alternatively, perhaps give responsibility for this
348 // update to CloneFunctionInto's callers.
349 auto *NewModule = NewFunc->getParent();
350 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
351 // Avoid multiple insertions of the same DICompileUnit to NMD.
352 SmallPtrSet<const void *, 8> Visited(llvm::from_range, NMD->operands());
353
354 // Collect and clone all the compile units referenced from the instructions in
355 // the function (e.g. as instructions' scope).
356 DebugInfoFinder DIFinder;
357 collectDebugInfoFromInstructions(*OldFunc, DIFinder);
358 for (auto *Unit : DIFinder.compile_units()) {
359 MDNode *MappedUnit =
360 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
361 if (Visited.insert(MappedUnit).second)
362 NMD->addOperand(MappedUnit);
363 }
364}
365
366/// Return a copy of the specified function and add it to that function's
367/// module. Also, any references specified in the VMap are changed to refer to
368/// their mapped value instead of the original one. If any of the arguments to
369/// the function are in the VMap, the arguments are deleted from the resultant
370/// function. The VMap is updated to include mappings from all of the
371/// instructions and basicblocks in the function from their old to new values.
372///
374 ClonedCodeInfo *CodeInfo) {
375 std::vector<Type *> ArgTypes;
376
377 // The user might be deleting arguments to the function by specifying them in
378 // the VMap. If so, we need to not add the arguments to the arg ty vector
379 //
380 for (const Argument &I : F->args())
381 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
382 ArgTypes.push_back(I.getType());
383
384 // Create a new function type...
385 FunctionType *FTy =
386 FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
387 F->getFunctionType()->isVarArg());
388
389 // Create the new function...
390 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
391 F->getName(), F->getParent());
392
393 // Loop over the arguments, copying the names of the mapped arguments over...
394 Function::arg_iterator DestI = NewF->arg_begin();
395 for (const Argument &I : F->args())
396 if (VMap.count(&I) == 0) { // Is this argument preserved?
397 DestI->setName(I.getName()); // Copy the name over...
398 VMap[&I] = &*DestI++; // Add mapping to VMap
399 }
400
401 SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
403 Returns, "", CodeInfo);
404
405 return NewF;
406}
407
408namespace {
409/// This is a private class used to implement CloneAndPruneFunctionInto.
410struct PruningFunctionCloner {
411 Function *NewFunc;
412 const Function *OldFunc;
413 ValueToValueMapTy &VMap;
414 bool ModuleLevelChanges;
415 const char *NameSuffix;
416 ClonedCodeInfo *CodeInfo;
417 bool HostFuncIsStrictFP;
418
419 Instruction *cloneInstruction(BasicBlock::const_iterator II);
420
421public:
422 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
423 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
424 const char *nameSuffix, ClonedCodeInfo *codeInfo)
425 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
426 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
427 CodeInfo(codeInfo) {
428 HostFuncIsStrictFP =
429 newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
430 }
431
432 /// The specified block is found to be reachable, clone it and
433 /// anything that it can reach.
434 void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
435 std::vector<const BasicBlock *> &ToClone);
436};
437} // namespace
438
440PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
441 const Instruction &OldInst = *II;
442 Instruction *NewInst = nullptr;
443 if (HostFuncIsStrictFP) {
445 if (CIID != Intrinsic::not_intrinsic) {
446 // Instead of cloning the instruction, a call to constrained intrinsic
447 // should be created.
448 // Assume the first arguments of constrained intrinsics are the same as
449 // the operands of original instruction.
450
451 // Determine overloaded types of the intrinsic.
454 getIntrinsicInfoTableEntries(CIID, Descriptor);
455 for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
456 Intrinsic::IITDescriptor Operand = Descriptor[I];
457 switch (Operand.Kind) {
459 if (Operand.getArgumentKind() !=
460 Intrinsic::IITDescriptor::AK_MatchType) {
461 if (I == 0)
462 TParams.push_back(OldInst.getType());
463 else
464 TParams.push_back(OldInst.getOperand(I - 1)->getType());
465 }
466 break;
468 ++I;
469 break;
470 default:
471 break;
472 }
473 }
474
475 // Create intrinsic call.
476 LLVMContext &Ctx = NewFunc->getContext();
478 CIID, TParams);
480 unsigned NumOperands = OldInst.getNumOperands();
481 if (isa<CallInst>(OldInst))
482 --NumOperands;
483 for (unsigned I = 0; I < NumOperands; ++I) {
484 Value *Op = OldInst.getOperand(I);
485 Args.push_back(Op);
486 }
487 if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
488 FCmpInst::Predicate Pred = CmpI->getPredicate();
489 StringRef PredName = FCmpInst::getPredicateName(Pred);
490 Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
491 }
492
493 // The last arguments of a constrained intrinsic are metadata that
494 // represent rounding mode (absents in some intrinsics) and exception
495 // behavior. The inlined function uses default settings.
497 Args.push_back(
498 MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
499 Args.push_back(
500 MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
501
502 NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
503 }
504 }
505 if (!NewInst)
506 NewInst = II->clone();
507 return NewInst;
508}
509
510/// The specified block is found to be reachable, clone it and
511/// anything that it can reach.
512void PruningFunctionCloner::CloneBlock(
513 const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
514 std::vector<const BasicBlock *> &ToClone) {
515 WeakTrackingVH &BBEntry = VMap[BB];
516
517 // Have we already cloned this block?
518 if (BBEntry)
519 return;
520
521 // Nope, clone it now.
522 BasicBlock *NewBB;
523 Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : "");
524 BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc);
525
526 // It is only legal to clone a function if a block address within that
527 // function is never referenced outside of the function. Given that, we
528 // want to map block addresses from the old function to block addresses in
529 // the clone. (This is different from the generic ValueMapper
530 // implementation, which generates an invalid blockaddress when
531 // cloning a function.)
532 //
533 // Note that we don't need to fix the mapping for unreachable blocks;
534 // the default mapping there is safe.
535 if (BB->hasAddressTaken()) {
536 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
537 const_cast<BasicBlock *>(BB));
538 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
539 }
540
541 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
542 bool hasMemProfMetadata = false;
543
544 // Keep a cursor pointing at the last place we cloned debug-info records from.
545 BasicBlock::const_iterator DbgCursor = StartingInst;
546 auto CloneDbgRecordsToHere =
547 [&DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) {
548 // Clone debug-info records onto this instruction. Iterate through any
549 // source-instructions we've cloned and then subsequently optimised
550 // away, so that their debug-info doesn't go missing.
551 for (; DbgCursor != II; ++DbgCursor)
552 NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false);
553 NewInst->cloneDebugInfoFrom(&*II);
554 DbgCursor = std::next(II);
555 };
556
557 // Loop over all instructions, and copy them over, DCE'ing as we go. This
558 // loop doesn't include the terminator.
559 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
560 ++II) {
561
562 // Don't clone fake_use as it may suppress many optimizations
563 // due to inlining, especially SROA.
564 if (auto *IntrInst = dyn_cast<IntrinsicInst>(II))
565 if (IntrInst->getIntrinsicID() == Intrinsic::fake_use)
566 continue;
567
568 Instruction *NewInst = cloneInstruction(II);
569 NewInst->insertInto(NewBB, NewBB->end());
570
571 if (HostFuncIsStrictFP) {
572 // All function calls in the inlined function must get 'strictfp'
573 // attribute to prevent undesirable optimizations.
574 if (auto *Call = dyn_cast<CallInst>(NewInst))
575 Call->addFnAttr(Attribute::StrictFP);
576 }
577
578 // Eagerly remap operands to the newly cloned instruction, except for PHI
579 // nodes for which we defer processing until we update the CFG.
580 if (!isa<PHINode>(NewInst)) {
581 RemapInstruction(NewInst, VMap,
582 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
583
584 // Eagerly constant fold the newly cloned instruction. If successful, add
585 // a mapping to the new value. Non-constant operands may be incomplete at
586 // this stage, thus instruction simplification is performed after
587 // processing phi-nodes.
589 NewInst, BB->getDataLayout())) {
590 if (isInstructionTriviallyDead(NewInst)) {
591 VMap[&*II] = V;
592 NewInst->eraseFromParent();
593 continue;
594 }
595 }
596 }
597
598 if (II->hasName())
599 NewInst->setName(II->getName() + NameSuffix);
600 VMap[&*II] = NewInst; // Add instruction map to value.
601 if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
602 hasCalls = true;
603 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
604 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_callsite);
605 }
606
607 CloneDbgRecordsToHere(NewInst, II);
608
609 if (CodeInfo) {
610 CodeInfo->OrigVMap[&*II] = NewInst;
611 if (auto *CB = dyn_cast<CallBase>(&*II))
612 if (CB->hasOperandBundles())
613 CodeInfo->OperandBundleCallSites.push_back(NewInst);
614 }
615
616 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
617 if (isa<ConstantInt>(AI->getArraySize()))
618 hasStaticAllocas = true;
619 else
620 hasDynamicAllocas = true;
621 }
622 }
623
624 // Finally, clone over the terminator.
625 const Instruction *OldTI = BB->getTerminator();
626 bool TerminatorDone = false;
627 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
628 if (BI->isConditional()) {
629 // If the condition was a known constant in the callee...
630 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
631 // Or is a known constant in the caller...
632 if (!Cond) {
633 Value *V = VMap.lookup(BI->getCondition());
635 }
636
637 // Constant fold to uncond branch!
638 if (Cond) {
639 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
640 auto *NewBI = BranchInst::Create(Dest, NewBB);
641 NewBI->setDebugLoc(BI->getDebugLoc());
642 VMap[OldTI] = NewBI;
643 ToClone.push_back(Dest);
644 TerminatorDone = true;
645 }
646 }
647 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
648 // If switching on a value known constant in the caller.
649 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
650 if (!Cond) { // Or known constant after constant prop in the callee...
651 Value *V = VMap.lookup(SI->getCondition());
653 }
654 if (Cond) { // Constant fold to uncond branch!
655 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
656 BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
657 auto *NewBI = BranchInst::Create(Dest, NewBB);
658 NewBI->setDebugLoc(SI->getDebugLoc());
659 VMap[OldTI] = NewBI;
660 ToClone.push_back(Dest);
661 TerminatorDone = true;
662 }
663 }
664
665 if (!TerminatorDone) {
666 Instruction *NewInst = OldTI->clone();
667 if (OldTI->hasName())
668 NewInst->setName(OldTI->getName() + NameSuffix);
669 NewInst->insertInto(NewBB, NewBB->end());
670
671 CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
672
673 VMap[OldTI] = NewInst; // Add instruction map to value.
674
675 if (CodeInfo) {
676 CodeInfo->OrigVMap[OldTI] = NewInst;
677 if (auto *CB = dyn_cast<CallBase>(OldTI))
678 if (CB->hasOperandBundles())
679 CodeInfo->OperandBundleCallSites.push_back(NewInst);
680 }
681
682 // Recursively clone any reachable successor blocks.
683 append_range(ToClone, successors(BB->getTerminator()));
684 } else {
685 // If we didn't create a new terminator, clone DbgVariableRecords from the
686 // old terminator onto the new terminator.
687 Instruction *NewInst = NewBB->getTerminator();
688 assert(NewInst);
689
690 CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
691 }
692
693 if (CodeInfo) {
694 CodeInfo->ContainsCalls |= hasCalls;
695 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
696 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
697 CodeInfo->ContainsDynamicAllocas |=
698 hasStaticAllocas && BB != &BB->getParent()->front();
699 }
700}
701
702/// This works like CloneAndPruneFunctionInto, except that it does not clone the
703/// entire function. Instead it starts at an instruction provided by the caller
704/// and copies (and prunes) only the code reachable from that instruction.
706 const Instruction *StartingInst,
707 ValueToValueMapTy &VMap,
708 bool ModuleLevelChanges,
710 const char *NameSuffix,
711 ClonedCodeInfo *CodeInfo) {
712 assert(NameSuffix && "NameSuffix cannot be null!");
713
714 ValueMapTypeRemapper *TypeMapper = nullptr;
715 ValueMaterializer *Materializer = nullptr;
716
717#ifndef NDEBUG
718 // If the cloning starts at the beginning of the function, verify that
719 // the function arguments are mapped.
720 if (!StartingInst)
721 for (const Argument &II : OldFunc->args())
722 assert(VMap.count(&II) && "No mapping from source argument specified!");
723#endif
724
725 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
726 NameSuffix, CodeInfo);
727 const BasicBlock *StartingBB;
728 if (StartingInst)
729 StartingBB = StartingInst->getParent();
730 else {
731 StartingBB = &OldFunc->getEntryBlock();
732 StartingInst = &StartingBB->front();
733 }
734
735 // Clone the entry block, and anything recursively reachable from it.
736 std::vector<const BasicBlock *> CloneWorklist;
737 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
738 while (!CloneWorklist.empty()) {
739 const BasicBlock *BB = CloneWorklist.back();
740 CloneWorklist.pop_back();
741 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
742 }
743
744 // Loop over all of the basic blocks in the old function. If the block was
745 // reachable, we have cloned it and the old block is now in the value map:
746 // insert it into the new function in the right order. If not, ignore it.
747 //
748 // Defer PHI resolution until rest of function is resolved.
750 for (const BasicBlock &BI : *OldFunc) {
751 Value *V = VMap.lookup(&BI);
753 if (!NewBB)
754 continue; // Dead block.
755
756 // Move the new block to preserve the order in the original function.
757 NewBB->moveBefore(NewFunc->end());
758
759 // Handle PHI nodes specially, as we have to remove references to dead
760 // blocks.
761 for (const PHINode &PN : BI.phis()) {
762 // PHI nodes may have been remapped to non-PHI nodes by the caller or
763 // during the cloning process.
764 if (isa<PHINode>(VMap[&PN]))
765 PHIToResolve.push_back(&PN);
766 else
767 break;
768 }
769
770 // Finally, remap the terminator instructions, as those can't be remapped
771 // until all BBs are mapped.
772 RemapInstruction(NewBB->getTerminator(), VMap,
773 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
774 TypeMapper, Materializer);
775 }
776
777 // Defer PHI resolution until rest of function is resolved, PHI resolution
778 // requires the CFG to be up-to-date.
779 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
780 const PHINode *OPN = PHIToResolve[phino];
781 unsigned NumPreds = OPN->getNumIncomingValues();
782 const BasicBlock *OldBB = OPN->getParent();
783 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
784
785 // Map operands for blocks that are live and remove operands for blocks
786 // that are dead.
787 for (; phino != PHIToResolve.size() &&
788 PHIToResolve[phino]->getParent() == OldBB;
789 ++phino) {
790 OPN = PHIToResolve[phino];
791 PHINode *PN = cast<PHINode>(VMap[OPN]);
792 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
793 Value *V = VMap.lookup(PN->getIncomingBlock(pred));
794 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
795 Value *InVal =
796 MapValue(PN->getIncomingValue(pred), VMap,
797 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
798 assert(InVal && "Unknown input value?");
799 PN->setIncomingValue(pred, InVal);
800 PN->setIncomingBlock(pred, MappedBlock);
801 } else {
802 PN->removeIncomingValue(pred, false);
803 --pred; // Revisit the next entry.
804 --e;
805 }
806 }
807 }
808
809 // The loop above has removed PHI entries for those blocks that are dead
810 // and has updated others. However, if a block is live (i.e. copied over)
811 // but its terminator has been changed to not go to this block, then our
812 // phi nodes will have invalid entries. Update the PHI nodes in this
813 // case.
814 PHINode *PN = cast<PHINode>(NewBB->begin());
815 NumPreds = pred_size(NewBB);
816 if (NumPreds != PN->getNumIncomingValues()) {
817 assert(NumPreds < PN->getNumIncomingValues());
818 // Count how many times each predecessor comes to this block.
819 std::map<BasicBlock *, unsigned> PredCount;
820 for (BasicBlock *Pred : predecessors(NewBB))
821 --PredCount[Pred];
822
823 // Figure out how many entries to remove from each PHI.
824 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
825 ++PredCount[PN->getIncomingBlock(i)];
826
827 // At this point, the excess predecessor entries are positive in the
828 // map. Loop over all of the PHIs and remove excess predecessor
829 // entries.
830 BasicBlock::iterator I = NewBB->begin();
831 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
832 for (const auto &PCI : PredCount) {
833 BasicBlock *Pred = PCI.first;
834 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
835 PN->removeIncomingValue(Pred, false);
836 }
837 }
838 }
839
840 // If the loops above have made these phi nodes have 0 or 1 operand,
841 // replace them with poison or the input value. We must do this for
842 // correctness, because 0-operand phis are not valid.
843 PN = cast<PHINode>(NewBB->begin());
844 if (PN->getNumIncomingValues() == 0) {
845 BasicBlock::iterator I = NewBB->begin();
846 BasicBlock::const_iterator OldI = OldBB->begin();
847 while ((PN = dyn_cast<PHINode>(I++))) {
848 Value *NV = PoisonValue::get(PN->getType());
849 PN->replaceAllUsesWith(NV);
850 assert(VMap[&*OldI] == PN && "VMap mismatch");
851 VMap[&*OldI] = NV;
852 PN->eraseFromParent();
853 ++OldI;
854 }
855 }
856 }
857
858 // Drop all incompatible return attributes that cannot be applied to NewFunc
859 // during cloning, so as to allow instruction simplification to reason on the
860 // old state of the function. The original attributes are restored later.
861 AttributeList Attrs = NewFunc->getAttributes();
862 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
863 OldFunc->getReturnType(), Attrs.getRetAttrs());
864 NewFunc->removeRetAttrs(IncompatibleAttrs);
865
866 // As phi-nodes have been now remapped, allow incremental simplification of
867 // newly-cloned instructions.
868 const DataLayout &DL = NewFunc->getDataLayout();
869 for (const auto &BB : *OldFunc) {
870 for (const auto &I : BB) {
871 auto *NewI = dyn_cast_or_null<Instruction>(VMap.lookup(&I));
872 if (!NewI)
873 continue;
874
875 if (Value *V = simplifyInstruction(NewI, DL)) {
876 NewI->replaceAllUsesWith(V);
877
878 if (isInstructionTriviallyDead(NewI)) {
879 NewI->eraseFromParent();
880 } else {
881 // Did not erase it? Restore the new instruction into VMap previously
882 // dropped by `ValueIsRAUWd`.
883 VMap[&I] = NewI;
884 }
885 }
886 }
887 }
888
889 // Restore attributes.
890 NewFunc->setAttributes(Attrs);
891
892 // Remap debug records operands now that all values have been mapped.
893 // Doing this now (late) preserves use-before-defs in debug records. If
894 // we didn't do this, ValueAsMetadata(use-before-def) operands would be
895 // replaced by empty metadata. This would signal later cleanup passes to
896 // remove the debug records, potentially causing incorrect locations.
897 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
898 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) {
899 for (Instruction &I : BB) {
900 RemapDbgRecordRange(I.getModule(), I.getDbgRecordRange(), VMap,
901 ModuleLevelChanges ? RF_None
903 TypeMapper, Materializer);
904 }
905 }
906
907 // Simplify conditional branches and switches with a constant operand. We try
908 // to prune these out when cloning, but if the simplification required
909 // looking through PHI nodes, those are only available after forming the full
910 // basic block. That may leave some here, and we still want to prune the dead
911 // code as early as possible.
912 for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
914
915 // Some blocks may have become unreachable as a result. Find and delete them.
916 {
917 SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
919 Worklist.push_back(&*Begin);
920 while (!Worklist.empty()) {
921 BasicBlock *BB = Worklist.pop_back_val();
922 if (ReachableBlocks.insert(BB).second)
923 append_range(Worklist, successors(BB));
924 }
925
926 SmallVector<BasicBlock *, 16> UnreachableBlocks;
927 for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
928 if (!ReachableBlocks.contains(&BB))
929 UnreachableBlocks.push_back(&BB);
930 DeleteDeadBlocks(UnreachableBlocks);
931 }
932
933 // Now that the inlined function body has been fully constructed, go through
934 // and zap unconditional fall-through branches. This happens all the time when
935 // specializing code: code specialization turns conditional branches into
936 // uncond branches, and this code folds them.
937 Function::iterator I = Begin;
938 while (I != NewFunc->end()) {
939 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
940 if (!BI || BI->isConditional()) {
941 ++I;
942 continue;
943 }
944
945 BasicBlock *Dest = BI->getSuccessor(0);
946 if (!Dest->getSinglePredecessor() || Dest->hasAddressTaken()) {
947 ++I;
948 continue;
949 }
950
951 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
952 // above should have zapped all of them..
953 assert(!isa<PHINode>(Dest->begin()));
954
955 // We know all single-entry PHI nodes in the inlined function have been
956 // removed, so we just need to splice the blocks.
957 BI->eraseFromParent();
958
959 // Make all PHI nodes that referred to Dest now refer to I as their source.
960 Dest->replaceAllUsesWith(&*I);
961
962 // Move all the instructions in the succ to the pred.
963 I->splice(I->end(), Dest);
964
965 // Remove the dest block.
966 Dest->eraseFromParent();
967
968 // Do not increment I, iteratively merge all things this block branches to.
969 }
970
971 // Make a final pass over the basic blocks from the old function to gather
972 // any return instructions which survived folding. We have to do this here
973 // because we can iteratively remove and merge returns above.
974 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
975 E = NewFunc->end();
976 I != E; ++I)
977 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
978 Returns.push_back(RI);
979}
980
981/// This works exactly like CloneFunctionInto,
982/// except that it does some simple constant prop and DCE on the fly. The
983/// effect of this is to copy significantly less code in cases where (for
984/// example) a function call with constant arguments is inlined, and those
985/// constant arguments cause a significant amount of code in the callee to be
986/// dead. Since this doesn't produce an exact copy of the input, it can't be
987/// used for things like CloneFunction or CloneModule.
989 Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
990 bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
991 const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
992 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
993 ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
994}
995
996/// Remaps instructions in \p Blocks using the mapping in \p VMap.
998 ValueToValueMapTy &VMap) {
999 // Rewrite the code to refer to itself.
1000 for (auto *BB : Blocks) {
1001 for (auto &Inst : *BB) {
1002 RemapDbgRecordRange(Inst.getModule(), Inst.getDbgRecordRange(), VMap,
1004 RemapInstruction(&Inst, VMap,
1006 }
1007 }
1008}
1009
1010/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
1011/// Blocks.
1012///
1013/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
1014/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
1016 Loop *OrigLoop, ValueToValueMapTy &VMap,
1017 const Twine &NameSuffix, LoopInfo *LI,
1018 DominatorTree *DT,
1020 Function *F = OrigLoop->getHeader()->getParent();
1021 Loop *ParentLoop = OrigLoop->getParentLoop();
1023
1024 Loop *NewLoop = LI->AllocateLoop();
1025 LMap[OrigLoop] = NewLoop;
1026 if (ParentLoop)
1027 ParentLoop->addChildLoop(NewLoop);
1028 else
1029 LI->addTopLevelLoop(NewLoop);
1030
1031 BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
1032 assert(OrigPH && "No preheader");
1033 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
1034 // To rename the loop PHIs.
1035 VMap[OrigPH] = NewPH;
1036 Blocks.push_back(NewPH);
1037
1038 // Update LoopInfo.
1039 if (ParentLoop)
1040 ParentLoop->addBasicBlockToLoop(NewPH, *LI);
1041
1042 // Update DominatorTree.
1043 DT->addNewBlock(NewPH, LoopDomBB);
1044
1045 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
1046 Loop *&NewLoop = LMap[CurLoop];
1047 if (!NewLoop) {
1048 NewLoop = LI->AllocateLoop();
1049
1050 // Establish the parent/child relationship.
1051 Loop *OrigParent = CurLoop->getParentLoop();
1052 assert(OrigParent && "Could not find the original parent loop");
1053 Loop *NewParentLoop = LMap[OrigParent];
1054 assert(NewParentLoop && "Could not find the new parent loop");
1055
1056 NewParentLoop->addChildLoop(NewLoop);
1057 }
1058 }
1059
1060 for (BasicBlock *BB : OrigLoop->getBlocks()) {
1061 Loop *CurLoop = LI->getLoopFor(BB);
1062 Loop *&NewLoop = LMap[CurLoop];
1063 assert(NewLoop && "Expecting new loop to be allocated");
1064
1065 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
1066 VMap[BB] = NewBB;
1067
1068 // Update LoopInfo.
1069 NewLoop->addBasicBlockToLoop(NewBB, *LI);
1070
1071 // Add DominatorTree node. After seeing all blocks, update to correct
1072 // IDom.
1073 DT->addNewBlock(NewBB, NewPH);
1074
1075 Blocks.push_back(NewBB);
1076 }
1077
1078 for (BasicBlock *BB : OrigLoop->getBlocks()) {
1079 // Update loop headers.
1080 Loop *CurLoop = LI->getLoopFor(BB);
1081 if (BB == CurLoop->getHeader())
1082 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
1083
1084 // Update DominatorTree.
1085 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
1087 cast<BasicBlock>(VMap[IDomBB]));
1088 }
1089
1090 // Move them physically from the end of the block list.
1091 F->splice(Before->getIterator(), F, NewPH->getIterator());
1092 F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
1093 F->end());
1094
1095 return NewLoop;
1096}
1097
1098/// Duplicate non-Phi instructions from the beginning of block up to
1099/// StopAt instruction into a split block between BB and its predecessor.
1101 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
1102 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
1103
1104 assert(count(successors(PredBB), BB) == 1 &&
1105 "There must be a single edge between PredBB and BB!");
1106 // We are going to have to map operands from the original BB block to the new
1107 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1108 // account for entry from PredBB.
1109 BasicBlock::iterator BI = BB->begin();
1110 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1111 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1112
1113 BasicBlock *NewBB = SplitEdge(PredBB, BB);
1114 NewBB->setName(PredBB->getName() + ".split");
1115 Instruction *NewTerm = NewBB->getTerminator();
1116
1117 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
1118 // in the update set here.
1119 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
1120 {DominatorTree::Insert, PredBB, NewBB},
1121 {DominatorTree::Insert, NewBB, BB}});
1122
1123 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1124 // mapping and using it to remap operands in the cloned instructions.
1125 // Stop once we see the terminator too. This covers the case where BB's
1126 // terminator gets replaced and StopAt == BB's terminator.
1127 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
1128 Instruction *New = BI->clone();
1129 New->setName(BI->getName());
1130 New->insertBefore(NewTerm->getIterator());
1131 New->cloneDebugInfoFrom(&*BI);
1132 ValueMapping[&*BI] = New;
1133
1134 // Remap operands to patch up intra-block references.
1135 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1136 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1137 auto I = ValueMapping.find(Inst);
1138 if (I != ValueMapping.end())
1139 New->setOperand(i, I->second);
1140 }
1141
1142 // Remap debug variable operands.
1143 remapDebugVariable(ValueMapping, New);
1144 }
1145
1146 return NewBB;
1147}
1148
1150 DenseMap<MDNode *, MDNode *> &ClonedScopes,
1151 StringRef Ext, LLVMContext &Context) {
1152 MDBuilder MDB(Context);
1153
1154 for (auto *ScopeList : NoAliasDeclScopes) {
1155 for (const auto &MDOperand : ScopeList->operands()) {
1156 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
1157 AliasScopeNode SNANode(MD);
1158
1159 std::string Name;
1160 auto ScopeName = SNANode.getName();
1161 if (!ScopeName.empty())
1162 Name = (Twine(ScopeName) + ":" + Ext).str();
1163 else
1164 Name = std::string(Ext);
1165
1166 MDNode *NewScope = MDB.createAnonymousAliasScope(
1167 const_cast<MDNode *>(SNANode.getDomain()), Name);
1168 ClonedScopes.insert(std::make_pair(MD, NewScope));
1169 }
1170 }
1171 }
1172}
1173
1175 const DenseMap<MDNode *, MDNode *> &ClonedScopes,
1176 LLVMContext &Context) {
1177 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
1178 bool NeedsReplacement = false;
1179 SmallVector<Metadata *, 8> NewScopeList;
1180 for (const auto &MDOp : ScopeList->operands()) {
1181 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
1182 if (auto *NewMD = ClonedScopes.lookup(MD)) {
1183 NewScopeList.push_back(NewMD);
1184 NeedsReplacement = true;
1185 continue;
1186 }
1187 NewScopeList.push_back(MD);
1188 }
1189 }
1190 if (NeedsReplacement)
1191 return MDNode::get(Context, NewScopeList);
1192 return nullptr;
1193 };
1194
1195 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
1196 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
1197 Decl->setScopeList(NewScopeList);
1198
1199 auto replaceWhenNeeded = [&](unsigned MD_ID) {
1200 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
1201 if (auto *NewScopeList = CloneScopeList(CSNoAlias))
1202 I->setMetadata(MD_ID, NewScopeList);
1203 };
1204 replaceWhenNeeded(LLVMContext::MD_noalias);
1205 replaceWhenNeeded(LLVMContext::MD_alias_scope);
1206}
1207
1209 ArrayRef<BasicBlock *> NewBlocks,
1210 LLVMContext &Context, StringRef Ext) {
1211 if (NoAliasDeclScopes.empty())
1212 return;
1213
1214 DenseMap<MDNode *, MDNode *> ClonedScopes;
1215 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1216 << NoAliasDeclScopes.size() << " node(s)\n");
1217
1218 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1219 // Identify instructions using metadata that needs adaptation
1220 for (BasicBlock *NewBlock : NewBlocks)
1221 for (Instruction &I : *NewBlock)
1222 adaptNoAliasScopes(&I, ClonedScopes, Context);
1223}
1224
1226 Instruction *IStart, Instruction *IEnd,
1227 LLVMContext &Context, StringRef Ext) {
1228 if (NoAliasDeclScopes.empty())
1229 return;
1230
1231 DenseMap<MDNode *, MDNode *> ClonedScopes;
1232 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1233 << NoAliasDeclScopes.size() << " node(s)\n");
1234
1235 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1236 // Identify instructions using metadata that needs adaptation
1237 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1238 auto ItStart = IStart->getIterator();
1239 auto ItEnd = IEnd->getIterator();
1240 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1241 for (auto &I : llvm::make_range(ItStart, ItEnd))
1242 adaptNoAliasScopes(&I, ClonedScopes, Context);
1243}
1244
1246 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1247 for (BasicBlock *BB : BBs)
1248 for (Instruction &I : *BB)
1249 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1250 NoAliasDeclScopes.push_back(Decl->getScopeList());
1251}
1252
1255 SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1256 for (Instruction &I : make_range(Start, End))
1257 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1258 NoAliasDeclScopes.push_back(Decl->getScopeList());
1259}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static const Function * getParent(const Value *V)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file contains the declarations for metadata subclasses.
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:167
#define LLVM_DEBUG(...)
Definition Debug.h:119
This is a simple wrapper around an MDNode which provides a higher-level interface by hiding the detai...
Definition Metadata.h:1589
const MDNode * getDomain() const
Get the MDNode for this AliasScopeNode's domain.
Definition Metadata.h:1600
StringRef getName() const
Definition Metadata.h:1605
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This class stores enough information to efficiently remove some attributes from an existing AttrBuild...
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition BasicBlock.h:690
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
Definition BasicBlock.h:482
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI SymbolTableList< BasicBlock >::iterator eraseFromParent()
Unlink 'this' from the containing function and delete it.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
Definition BasicBlock.h:386
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
static LLVM_ABI BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is an important base class in LLVM.
Definition Constant.h:43
Subprogram description. Uses SubclassData1.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Utility to find all debug info in a module.
Definition DebugInfo.h:103
LLVM_ABI void processInstruction(const Module &M, const Instruction &I)
Process a single instruction and collect debug info anchors.
iterator_range< compile_unit_iterator > compile_units() const
Definition DebugInfo.h:143
A debug info location.
Definition DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:187
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:214
DomTreeNodeBase * getIDom() const
NodeT * getBlock() const
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
Class to represent function types.
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition Function.h:166
const BasicBlock & getEntryBlock() const
Definition Function.h:807
BasicBlockListType::iterator iterator
Definition Function.h:69
Argument * arg_iterator
Definition Function.h:72
void setPrefixData(Constant *PrefixData)
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition Function.cpp:363
const BasicBlock & front() const
Definition Function.h:858
iterator_range< arg_iterator > args()
Definition Function.h:890
bool hasPrefixData() const
Check whether this function has prefix data.
Definition Function.h:912
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition Function.h:903
Constant * getPrologueData() const
Get the prologue data associated with this function.
Constant * getPersonalityFn() const
Get the personality function associated with this function.
void setPersonalityFn(Constant *Fn)
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
arg_iterator arg_begin()
Definition Function.h:866
void setAttributes(AttributeList Attrs)
Set the attribute list for this Function.
Definition Function.h:355
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
size_t arg_size() const
Definition Function.h:899
void setPrologueData(Constant *PrologueData)
void removeRetAttrs(const AttributeMask &Attrs)
removes the attributes from the return value list of attributes.
Definition Function.cpp:705
Type * getReturnType() const
Returns the type of the ret val.
Definition Function.h:214
Constant * getPrefixData() const
Get the prefix data associated with this function.
iterator end()
Definition Function.h:853
bool hasPrologueData() const
Check whether this function has prologue data.
Definition Function.h:921
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition Function.cpp:856
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
LLVM_ABI void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition Globals.cpp:316
Module * getParent()
Get the module that this global value is contained inside of...
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI iterator_range< simple_ilist< DbgRecord >::iterator > cloneDebugInfoFrom(const Instruction *From, std::optional< simple_ilist< DbgRecord >::iterator > FromHere=std::nullopt, bool InsertAtHead=false)
Clone any debug-info attached to From onto this instruction.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
SmallVector< const LoopT *, 4 > getLoopsInPreorder() const
Return all loops in the loop nest rooted by the loop in preorder, with siblings in forward program or...
BlockT * getHeader() const
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
MDNode * createAnonymousAliasScope(MDNode *Domain, StringRef Name=StringRef())
Return metadata appropriate for an alias scope root node.
Definition MDBuilder.h:181
Metadata node.
Definition Metadata.h:1077
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1565
Tracking metadata reference owned by Metadata.
Definition Metadata.h:899
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:607
static LLVM_ABI MetadataAsValue * get(LLVMContext &Context, Metadata *MD)
Definition Metadata.cpp:103
Root of the metadata hierarchy.
Definition Metadata.h:63
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
NamedMDNode * getOrInsertNamedMetadata(StringRef Name)
Return the named MDNode in the module with the specified name.
Definition Module.cpp:303
void setIncomingBlock(unsigned i, BasicBlock *BB)
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Return a value (possibly void), from a function.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
CaseHandleImpl< const SwitchInst, const ConstantInt, const BasicBlock > ConstCaseHandle
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition ValueMapper.h:45
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition ValueMap.h:169
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition ValueMap.h:156
iterator find(const KeyT &Val)
Definition ValueMap.h:160
iterator end()
Definition ValueMap.h:139
DMAtomT AtomMap
Map {(InlinedAt, old atom number) -> new atom number}.
Definition ValueMap.h:123
This is a class that can be implemented by clients to materialize Values on demand.
Definition ValueMapper.h:58
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:134
CallInst * Call
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl< IITDescriptor > &T)
Return the IIT table descriptor for the specified intrinsic into an array of IITDescriptors.
LLVM_ABI bool hasConstrainedFPRoundingModeOperand(ID QID)
Returns true if the intrinsic ID is for one of the "ConstrainedFloating-Point Intrinsics" that take r...
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI void CloneFunctionAttributesInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc's attributes into NewFunc, transforming values based on the mappings in VMap.
std::function< bool(const Metadata *)> MetadataPredicate
Definition ValueMapper.h:41
LLVM_ABI bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition Local.cpp:134
static cl::opt< unsigned long > StopAt("sbvec-stop-at", cl::init(StopAtDisabled), cl::Hidden, cl::desc("Vectorize if the invocation count is < than this. 0 " "disables vectorization."))
LLVM_ABI BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, bool MapAtoms=true)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
constexpr from_range_t from_range
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2138
LLVM_ABI void remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst)
Remap the operands of the debug records attached to Inst, and the operands of Inst itself if it's a d...
Definition Local.cpp:3420
auto cast_or_null(const Y &Val)
Definition Casting.h:720
auto pred_size(const MachineBasicBlock *BB)
LLVM_ABI BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
LLVM_ABI void CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc, ValueToValueMapTy &VMap, RemapFlags RemapFlag, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Clone OldFunc's metadata into NewFunc.
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition Local.cpp:402
void RemapDbgRecordRange(Module *M, iterator_range< DbgRecordIterator > Range, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Remap the Values used in the DbgRecords Range using the value map VM.
LLVM_ABI Loop * cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl< BasicBlock * > &Blocks)
Clones a loop OrigLoop.
RemapFlags
These are flags that the value mapping APIs allow.
Definition ValueMapper.h:74
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition ValueMapper.h:98
@ RF_None
Definition ValueMapper.h:75
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition ValueMapper.h:80
LLVM_ABI void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works exactly like CloneFunctionInto, except that it does some simple constant prop and DCE on t...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void cloneNoAliasScopes(ArrayRef< MDNode * > NoAliasDeclScopes, DenseMap< MDNode *, MDNode * > &ClonedScopes, StringRef Ext, LLVMContext &Context)
Duplicate the specified list of noalias decl scopes.
LLVM_ABI Intrinsic::ID getConstrainedIntrinsicID(const Instruction &Instr)
Returns constrained intrinsic id to represent the given instruction in strictfp function.
Definition FPEnv.cpp:90
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI void CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc, ValueToValueMapTy &VMap, RemapFlags RemapFlag, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Clone OldFunc's body into NewFunc.
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition STLExtras.h:1956
LLVM_ABI void adaptNoAliasScopes(llvm::Instruction *I, const DenseMap< MDNode *, MDNode * > &ClonedScopes, LLVMContext &Context)
Adapt the metadata for the specified instruction according to the provided mapping.
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
DWARFExpression::Operation Op
LLVM_ABI void cloneAndAdaptNoAliasScopes(ArrayRef< MDNode * > NoAliasDeclScopes, ArrayRef< BasicBlock * > NewBlocks, LLVMContext &Context, StringRef Ext)
Clone the specified noalias decl scopes.
LLVM_ABI void remapInstructionsInBlocks(ArrayRef< BasicBlock * > Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.
CloneFunctionChangeType
Definition Cloning.h:155
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, CloneFunctionChangeType Changes, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Look up or compute a value in the value map.
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI void DeleteDeadBlocks(ArrayRef< BasicBlock * > BBs, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified blocks from BB.
LLVM_ABI void identifyNoAliasScopesToClone(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< MDNode * > &NoAliasDeclScopes)
Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified basic blocks and extract ...
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works like CloneAndPruneFunctionInto, except that it does not clone the entire function.
LLVM_ABI Function * CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo=nullptr)
Return a copy of the specified function and add it to that function's module.
LLVM_ABI void mapAtomInstance(const DebugLoc &DL, ValueToValueMapTy &VMap)
Mark a cloned instruction as a new instance so that its source loc can be updated when remapped.
Metadata * MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataPredicate *IdentityMD=nullptr)
Lookup or compute a mapping for a piece of metadata.
This struct can be used to capture information about code being cloned, while it is being cloned.
Definition Cloning.h:67
bool ContainsDynamicAllocas
This is set to true if the cloned code contains a 'dynamic' alloca.
Definition Cloning.h:78
bool ContainsCalls
This is set to true if the cloned code contains a normal call instruction.
Definition Cloning.h:69
bool ContainsMemProfMetadata
This is set to true if there is memprof related metadata (memprof or callsite metadata) in the cloned...
Definition Cloning.h:73
DenseMap< const Value *, const Value * > OrigVMap
Like VMap, but maps only unsimplified instructions.
Definition Cloning.h:88
std::vector< WeakTrackingVH > OperandBundleCallSites
All cloned call sites that have operand bundles attached are appended to this vector.
Definition Cloning.h:83
enum llvm::Intrinsic::IITDescriptor::IITDescriptorKind Kind
ArgKind getArgumentKind() const
Definition Intrinsics.h:189