LLVM  9.0.0svn
CoroFrame.cpp
Go to the documentation of this file.
1 //===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file contains classes used to discover if for a particular value
9 // there from sue to definition that crosses a suspend block.
10 //
11 // Using the information discovered we form a Coroutine Frame structure to
12 // contain those values. All uses of those values are replaced with appropriate
13 // GEP + load from the coroutine frame. At the point of the definition we spill
14 // the value into the coroutine frame.
15 //
16 // TODO: pack values tightly using liveness info.
17 //===----------------------------------------------------------------------===//
18 
19 #include "CoroInternal.h"
20 #include "llvm/ADT/BitVector.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/InstIterator.h"
27 #include "llvm/Support/Debug.h"
31 
32 using namespace llvm;
33 
34 // The "coro-suspend-crossing" flag is very noisy. There is another debug type,
35 // "coro-frame", which results in leaner debug spew.
36 #define DEBUG_TYPE "coro-suspend-crossing"
37 
38 enum { SmallVectorThreshold = 32 };
39 
40 // Provides two way mapping between the blocks and numbers.
41 namespace {
42 class BlockToIndexMapping {
44 
45 public:
46  size_t size() const { return V.size(); }
47 
48  BlockToIndexMapping(Function &F) {
49  for (BasicBlock &BB : F)
50  V.push_back(&BB);
51  llvm::sort(V);
52  }
53 
54  size_t blockToIndex(BasicBlock *BB) const {
55  auto *I = std::lower_bound(V.begin(), V.end(), BB);
56  assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
57  return I - V.begin();
58  }
59 
60  BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
61 };
62 } // end anonymous namespace
63 
64 // The SuspendCrossingInfo maintains data that allows to answer a question
65 // whether given two BasicBlocks A and B there is a path from A to B that
66 // passes through a suspend point.
67 //
68 // For every basic block 'i' it maintains a BlockData that consists of:
69 // Consumes: a bit vector which contains a set of indices of blocks that can
70 // reach block 'i'
71 // Kills: a bit vector which contains a set of indices of blocks that can
72 // reach block 'i', but one of the path will cross a suspend point
73 // Suspend: a boolean indicating whether block 'i' contains a suspend point.
74 // End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
75 //
76 namespace {
77 struct SuspendCrossingInfo {
78  BlockToIndexMapping Mapping;
79 
80  struct BlockData {
81  BitVector Consumes;
82  BitVector Kills;
83  bool Suspend = false;
84  bool End = false;
85  };
87 
89  BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
90  return llvm::successors(BB);
91  }
92 
93  BlockData &getBlockData(BasicBlock *BB) {
94  return Block[Mapping.blockToIndex(BB)];
95  }
96 
97  void dump() const;
98  void dump(StringRef Label, BitVector const &BV) const;
99 
100  SuspendCrossingInfo(Function &F, coro::Shape &Shape);
101 
102  bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
103  size_t const DefIndex = Mapping.blockToIndex(DefBB);
104  size_t const UseIndex = Mapping.blockToIndex(UseBB);
105 
106  assert(Block[UseIndex].Consumes[DefIndex] && "use must consume def");
107  bool const Result = Block[UseIndex].Kills[DefIndex];
108  LLVM_DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
109  << " answer is " << Result << "\n");
110  return Result;
111  }
112 
113  bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
114  auto *I = cast<Instruction>(U);
115 
116  // We rewrote PHINodes, so that only the ones with exactly one incoming
117  // value need to be analyzed.
118  if (auto *PN = dyn_cast<PHINode>(I))
119  if (PN->getNumIncomingValues() > 1)
120  return false;
121 
122  BasicBlock *UseBB = I->getParent();
123  return hasPathCrossingSuspendPoint(DefBB, UseBB);
124  }
125 
126  bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
127  return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
128  }
129 
130  bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
131  return isDefinitionAcrossSuspend(I.getParent(), U);
132  }
133 };
134 } // end anonymous namespace
135 
136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
138  BitVector const &BV) const {
139  dbgs() << Label << ":";
140  for (size_t I = 0, N = BV.size(); I < N; ++I)
141  if (BV[I])
142  dbgs() << " " << Mapping.indexToBlock(I)->getName();
143  dbgs() << "\n";
144 }
145 
147  for (size_t I = 0, N = Block.size(); I < N; ++I) {
148  BasicBlock *const B = Mapping.indexToBlock(I);
149  dbgs() << B->getName() << ":\n";
150  dump(" Consumes", Block[I].Consumes);
151  dump(" Kills", Block[I].Kills);
152  }
153  dbgs() << "\n";
154 }
155 #endif
156 
157 SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
158  : Mapping(F) {
159  const size_t N = Mapping.size();
160  Block.resize(N);
161 
162  // Initialize every block so that it consumes itself
163  for (size_t I = 0; I < N; ++I) {
164  auto &B = Block[I];
165  B.Consumes.resize(N);
166  B.Kills.resize(N);
167  B.Consumes.set(I);
168  }
169 
170  // Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
171  // the code beyond coro.end is reachable during initial invocation of the
172  // coroutine.
173  for (auto *CE : Shape.CoroEnds)
174  getBlockData(CE->getParent()).End = true;
175 
176  // Mark all suspend blocks and indicate that they kill everything they
177  // consume. Note, that crossing coro.save also requires a spill, as any code
178  // between coro.save and coro.suspend may resume the coroutine and all of the
179  // state needs to be saved by that time.
180  auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
181  BasicBlock *SuspendBlock = BarrierInst->getParent();
182  auto &B = getBlockData(SuspendBlock);
183  B.Suspend = true;
184  B.Kills |= B.Consumes;
185  };
186  for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
187  markSuspendBlock(CSI);
188  markSuspendBlock(CSI->getCoroSave());
189  }
190 
191  // Iterate propagating consumes and kills until they stop changing.
192  int Iteration = 0;
193  (void)Iteration;
194 
195  bool Changed;
196  do {
197  LLVM_DEBUG(dbgs() << "iteration " << ++Iteration);
198  LLVM_DEBUG(dbgs() << "==============\n");
199 
200  Changed = false;
201  for (size_t I = 0; I < N; ++I) {
202  auto &B = Block[I];
203  for (BasicBlock *SI : successors(B)) {
204 
205  auto SuccNo = Mapping.blockToIndex(SI);
206 
207  // Saved Consumes and Kills bitsets so that it is easy to see
208  // if anything changed after propagation.
209  auto &S = Block[SuccNo];
210  auto SavedConsumes = S.Consumes;
211  auto SavedKills = S.Kills;
212 
213  // Propagate Kills and Consumes from block B into its successor S.
214  S.Consumes |= B.Consumes;
215  S.Kills |= B.Kills;
216 
217  // If block B is a suspend block, it should propagate kills into the
218  // its successor for every block B consumes.
219  if (B.Suspend) {
220  S.Kills |= B.Consumes;
221  }
222  if (S.Suspend) {
223  // If block S is a suspend block, it should kill all of the blocks it
224  // consumes.
225  S.Kills |= S.Consumes;
226  } else if (S.End) {
227  // If block S is an end block, it should not propagate kills as the
228  // blocks following coro.end() are reached during initial invocation
229  // of the coroutine while all the data are still available on the
230  // stack or in the registers.
231  S.Kills.reset();
232  } else {
233  // This is reached when S block it not Suspend nor coro.end and it
234  // need to make sure that it is not in the kill set.
235  S.Kills.reset(SuccNo);
236  }
237 
238  // See if anything changed.
239  Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
240 
241  if (S.Kills != SavedKills) {
242  LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
243  << "\n");
244  LLVM_DEBUG(dump("S.Kills", S.Kills));
245  LLVM_DEBUG(dump("SavedKills", SavedKills));
246  }
247  if (S.Consumes != SavedConsumes) {
248  LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
249  LLVM_DEBUG(dump("S.Consume", S.Consumes));
250  LLVM_DEBUG(dump("SavedCons", SavedConsumes));
251  }
252  }
253  }
254  } while (Changed);
255  LLVM_DEBUG(dump());
256 }
257 
258 #undef DEBUG_TYPE // "coro-suspend-crossing"
259 #define DEBUG_TYPE "coro-frame"
260 
261 // We build up the list of spills for every case where a use is separated
262 // from the definition by a suspend point.
263 
264 namespace {
265 class Spill {
266  Value *Def = nullptr;
267  Instruction *User = nullptr;
268  unsigned FieldNo = 0;
269 
270 public:
271  Spill(Value *Def, llvm::User *U) : Def(Def), User(cast<Instruction>(U)) {}
272 
273  Value *def() const { return Def; }
274  Instruction *user() const { return User; }
275  BasicBlock *userBlock() const { return User->getParent(); }
276 
277  // Note that field index is stored in the first SpillEntry for a particular
278  // definition. Subsequent mentions of a defintion do not have fieldNo
279  // assigned. This works out fine as the users of Spills capture the info about
280  // the definition the first time they encounter it. Consider refactoring
281  // SpillInfo into two arrays to normalize the spill representation.
282  unsigned fieldIndex() const {
283  assert(FieldNo && "Accessing unassigned field");
284  return FieldNo;
285  }
286  void setFieldIndex(unsigned FieldNumber) {
287  assert(!FieldNo && "Reassigning field number");
288  FieldNo = FieldNumber;
289  }
290 };
291 } // namespace
292 
293 // Note that there may be more than one record with the same value of Def in
294 // the SpillInfo vector.
296 
297 #ifndef NDEBUG
298 static void dump(StringRef Title, SpillInfo const &Spills) {
299  dbgs() << "------------- " << Title << "--------------\n";
300  Value *CurrentValue = nullptr;
301  for (auto const &E : Spills) {
302  if (CurrentValue != E.def()) {
303  CurrentValue = E.def();
304  CurrentValue->dump();
305  }
306  dbgs() << " user: ";
307  E.user()->dump();
308  }
309 }
310 #endif
311 
312 namespace {
313 // We cannot rely solely on natural alignment of a type when building a
314 // coroutine frame and if the alignment specified on the Alloca instruction
315 // differs from the natural alignment of the alloca type we will need to insert
316 // padding.
317 struct PaddingCalculator {
318  const DataLayout &DL;
320  unsigned StructSize = 0;
321 
322  PaddingCalculator(LLVMContext &Context, DataLayout const &DL)
323  : DL(DL), Context(Context) {}
324 
325  // Replicate the logic from IR/DataLayout.cpp to match field offset
326  // computation for LLVM structs.
327  void addType(Type *Ty) {
328  unsigned TyAlign = DL.getABITypeAlignment(Ty);
329  if ((StructSize & (TyAlign - 1)) != 0)
330  StructSize = alignTo(StructSize, TyAlign);
331 
332  StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item.
333  }
334 
335  void addTypes(SmallVectorImpl<Type *> const &Types) {
336  for (auto *Ty : Types)
337  addType(Ty);
338  }
339 
340  unsigned computePadding(Type *Ty, unsigned ForcedAlignment) {
341  unsigned TyAlign = DL.getABITypeAlignment(Ty);
342  auto Natural = alignTo(StructSize, TyAlign);
343  auto Forced = alignTo(StructSize, ForcedAlignment);
344 
345  // Return how many bytes of padding we need to insert.
346  if (Natural != Forced)
347  return std::max(Natural, Forced) - StructSize;
348 
349  // Rely on natural alignment.
350  return 0;
351  }
352 
353  // If padding required, return the padding field type to insert.
354  ArrayType *getPaddingType(Type *Ty, unsigned ForcedAlignment) {
355  if (auto Padding = computePadding(Ty, ForcedAlignment))
356  return ArrayType::get(Type::getInt8Ty(Context), Padding);
357 
358  return nullptr;
359  }
360 };
361 } // namespace
362 
363 // Build a struct that will keep state for an active coroutine.
364 // struct f.frame {
365 // ResumeFnTy ResumeFnAddr;
366 // ResumeFnTy DestroyFnAddr;
367 // int ResumeIndex;
368 // ... promise (if present) ...
369 // ... spills ...
370 // };
372  SpillInfo &Spills) {
373  LLVMContext &C = F.getContext();
374  const DataLayout &DL = F.getParent()->getDataLayout();
375  PaddingCalculator Padder(C, DL);
377  Name.append(".Frame");
378  StructType *FrameTy = StructType::create(C, Name);
379  auto *FramePtrTy = FrameTy->getPointerTo();
380  auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
381  /*IsVarArgs=*/false);
382  auto *FnPtrTy = FnTy->getPointerTo();
383 
384  // Figure out how wide should be an integer type storing the suspend index.
385  unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
386  Type *PromiseType = Shape.PromiseAlloca
387  ? Shape.PromiseAlloca->getType()->getElementType()
388  : Type::getInt1Ty(C);
389  SmallVector<Type *, 8> Types{FnPtrTy, FnPtrTy, PromiseType,
390  Type::getIntNTy(C, IndexBits)};
391  Value *CurrentDef = nullptr;
392 
393  Padder.addTypes(Types);
394 
395  // Create an entry for every spilled value.
396  for (auto &S : Spills) {
397  if (CurrentDef == S.def())
398  continue;
399 
400  CurrentDef = S.def();
401  // PromiseAlloca was already added to Types array earlier.
402  if (CurrentDef == Shape.PromiseAlloca)
403  continue;
404 
405  Type *Ty = nullptr;
406  if (auto *AI = dyn_cast<AllocaInst>(CurrentDef)) {
407  Ty = AI->getAllocatedType();
408  if (unsigned AllocaAlignment = AI->getAlignment()) {
409  // If alignment is specified in alloca, see if we need to insert extra
410  // padding.
411  if (auto PaddingTy = Padder.getPaddingType(Ty, AllocaAlignment)) {
412  Types.push_back(PaddingTy);
413  Padder.addType(PaddingTy);
414  }
415  }
416  } else {
417  Ty = CurrentDef->getType();
418  }
419  S.setFieldIndex(Types.size());
420  Types.push_back(Ty);
421  Padder.addType(Ty);
422  }
423  FrameTy->setBody(Types);
424 
425  return FrameTy;
426 }
427 
428 // We need to make room to insert a spill after initial PHIs, but before
429 // catchswitch instruction. Placing it before violates the requirement that
430 // catchswitch, like all other EHPads must be the first nonPHI in a block.
431 //
432 // Split away catchswitch into a separate block and insert in its place:
433 //
434 // cleanuppad <InsertPt> cleanupret.
435 //
436 // cleanupret instruction will act as an insert point for the spill.
438  BasicBlock *CurrentBlock = CatchSwitch->getParent();
439  BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
440  CurrentBlock->getTerminator()->eraseFromParent();
441 
442  auto *CleanupPad =
443  CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
444  auto *CleanupRet =
445  CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
446  return CleanupRet;
447 }
448 
449 // Replace all alloca and SSA values that are accessed across suspend points
450 // with GetElementPointer from coroutine frame + loads and stores. Create an
451 // AllocaSpillBB that will become the new entry block for the resume parts of
452 // the coroutine:
453 //
454 // %hdl = coro.begin(...)
455 // whatever
456 //
457 // becomes:
458 //
459 // %hdl = coro.begin(...)
460 // %FramePtr = bitcast i8* hdl to %f.frame*
461 // br label %AllocaSpillBB
462 //
463 // AllocaSpillBB:
464 // ; geps corresponding to allocas that were moved to coroutine frame
465 // br label PostSpill
466 //
467 // PostSpill:
468 // whatever
469 //
470 //
471 static Instruction *insertSpills(SpillInfo &Spills, coro::Shape &Shape) {
472  auto *CB = Shape.CoroBegin;
473  IRBuilder<> Builder(CB->getNextNode());
474  StructType *FrameTy = Shape.FrameTy;
475  PointerType *FramePtrTy = FrameTy->getPointerTo();
476  auto *FramePtr =
477  cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
478 
479  Value *CurrentValue = nullptr;
480  BasicBlock *CurrentBlock = nullptr;
481  Value *CurrentReload = nullptr;
482  unsigned Index = 0; // Proper field number will be read from field definition.
483 
484  // We need to keep track of any allocas that need "spilling"
485  // since they will live in the coroutine frame now, all access to them
486  // need to be changed, not just the access across suspend points
487  // we remember allocas and their indices to be handled once we processed
488  // all the spills.
490  // Promise alloca (if present) has a fixed field number (Shape::PromiseField)
491  if (Shape.PromiseAlloca)
493 
494  // Create a load instruction to reload the spilled value from the coroutine
495  // frame.
496  auto CreateReload = [&](Instruction *InsertBefore) {
497  assert(Index && "accessing unassigned field number");
498  Builder.SetInsertPoint(InsertBefore);
499  auto *G = Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, Index,
500  CurrentValue->getName() +
501  Twine(".reload.addr"));
502  return isa<AllocaInst>(CurrentValue)
503  ? G
504  : Builder.CreateLoad(FrameTy->getElementType(Index), G,
505  CurrentValue->getName() + Twine(".reload"));
506  };
507 
508  for (auto const &E : Spills) {
509  // If we have not seen the value, generate a spill.
510  if (CurrentValue != E.def()) {
511  CurrentValue = E.def();
512  CurrentBlock = nullptr;
513  CurrentReload = nullptr;
514 
515  Index = E.fieldIndex();
516 
517  if (auto *AI = dyn_cast<AllocaInst>(CurrentValue)) {
518  // Spilled AllocaInst will be replaced with GEP from the coroutine frame
519  // there is no spill required.
520  Allocas.emplace_back(AI, Index);
521  if (!AI->isStaticAlloca())
522  report_fatal_error("Coroutines cannot handle non static allocas yet");
523  } else {
524  // Otherwise, create a store instruction storing the value into the
525  // coroutine frame.
526 
527  Instruction *InsertPt = nullptr;
528  if (isa<Argument>(CurrentValue)) {
529  // For arguments, we will place the store instruction right after
530  // the coroutine frame pointer instruction, i.e. bitcast of
531  // coro.begin from i8* to %f.frame*.
532  InsertPt = FramePtr->getNextNode();
533  } else if (auto *II = dyn_cast<InvokeInst>(CurrentValue)) {
534  // If we are spilling the result of the invoke instruction, split the
535  // normal edge and insert the spill in the new block.
536  auto NewBB = SplitEdge(II->getParent(), II->getNormalDest());
537  InsertPt = NewBB->getTerminator();
538  } else if (dyn_cast<PHINode>(CurrentValue)) {
539  // Skip the PHINodes and EH pads instructions.
540  BasicBlock *DefBlock = cast<Instruction>(E.def())->getParent();
541  if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
542  InsertPt = splitBeforeCatchSwitch(CSI);
543  else
544  InsertPt = &*DefBlock->getFirstInsertionPt();
545  } else {
546  // For all other values, the spill is placed immediately after
547  // the definition.
548  assert(!cast<Instruction>(E.def())->isTerminator() &&
549  "unexpected terminator");
550  InsertPt = cast<Instruction>(E.def())->getNextNode();
551  }
552 
553  Builder.SetInsertPoint(InsertPt);
554  auto *G = Builder.CreateConstInBoundsGEP2_32(
555  FrameTy, FramePtr, 0, Index,
556  CurrentValue->getName() + Twine(".spill.addr"));
557  Builder.CreateStore(CurrentValue, G);
558  }
559  }
560 
561  // If we have not seen the use block, generate a reload in it.
562  if (CurrentBlock != E.userBlock()) {
563  CurrentBlock = E.userBlock();
564  CurrentReload = CreateReload(&*CurrentBlock->getFirstInsertionPt());
565  }
566 
567  // If we have a single edge PHINode, remove it and replace it with a reload
568  // from the coroutine frame. (We already took care of multi edge PHINodes
569  // by rewriting them in the rewritePHIs function).
570  if (auto *PN = dyn_cast<PHINode>(E.user())) {
571  assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
572  "values in the PHINode");
573  PN->replaceAllUsesWith(CurrentReload);
574  PN->eraseFromParent();
575  continue;
576  }
577 
578  // Replace all uses of CurrentValue in the current instruction with reload.
579  E.user()->replaceUsesOfWith(CurrentValue, CurrentReload);
580  }
581 
582  BasicBlock *FramePtrBB = FramePtr->getParent();
583  Shape.AllocaSpillBlock =
584  FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");
586  "PostSpill");
587 
588  Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
589  // If we found any allocas, replace all of their remaining uses with Geps.
590  for (auto &P : Allocas) {
591  auto *G =
592  Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, P.second);
593  // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G)) here,
594  // as we are changing location of the instruction.
595  G->takeName(P.first);
596  P.first->replaceAllUsesWith(G);
597  P.first->eraseFromParent();
598  }
599  return FramePtr;
600 }
601 
602 // Sets the unwind edge of an instruction to a particular successor.
603 static void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
604  if (auto *II = dyn_cast<InvokeInst>(TI))
605  II->setUnwindDest(Succ);
606  else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
607  CS->setUnwindDest(Succ);
608  else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
609  CR->setUnwindDest(Succ);
610  else
611  llvm_unreachable("unexpected terminator instruction");
612 }
613 
614 // Replaces all uses of OldPred with the NewPred block in all PHINodes in a
615 // block.
616 static void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
617  BasicBlock *NewPred,
618  PHINode *LandingPadReplacement) {
619  unsigned BBIdx = 0;
620  for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
621  PHINode *PN = cast<PHINode>(I);
622 
623  // We manually update the LandingPadReplacement PHINode and it is the last
624  // PHI Node. So, if we find it, we are done.
625  if (LandingPadReplacement == PN)
626  break;
627 
628  // Reuse the previous value of BBIdx if it lines up. In cases where we
629  // have multiple phi nodes with *lots* of predecessors, this is a speed
630  // win because we don't have to scan the PHI looking for TIBB. This
631  // happens because the BB list of PHI nodes are usually in the same
632  // order.
633  if (PN->getIncomingBlock(BBIdx) != OldPred)
634  BBIdx = PN->getBasicBlockIndex(OldPred);
635 
636  assert(BBIdx != (unsigned)-1 && "Invalid PHI Index!");
637  PN->setIncomingBlock(BBIdx, NewPred);
638  }
639 }
640 
641 // Uses SplitEdge unless the successor block is an EHPad, in which case do EH
642 // specific handling.
644  LandingPadInst *OriginalPad,
645  PHINode *LandingPadReplacement) {
646  auto *PadInst = Succ->getFirstNonPHI();
647  if (!LandingPadReplacement && !PadInst->isEHPad())
648  return SplitEdge(BB, Succ);
649 
650  auto *NewBB = BasicBlock::Create(BB->getContext(), "", BB->getParent(), Succ);
651  setUnwindEdgeTo(BB->getTerminator(), NewBB);
652  updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
653 
654  if (LandingPadReplacement) {
655  auto *NewLP = OriginalPad->clone();
656  auto *Terminator = BranchInst::Create(Succ, NewBB);
657  NewLP->insertBefore(Terminator);
658  LandingPadReplacement->addIncoming(NewLP, NewBB);
659  return NewBB;
660  }
661  Value *ParentPad = nullptr;
662  if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
663  ParentPad = FuncletPad->getParentPad();
664  else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
665  ParentPad = CatchSwitch->getParentPad();
666  else
667  llvm_unreachable("handling for other EHPads not implemented yet");
668 
669  auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, "", NewBB);
670  CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
671  return NewBB;
672 }
673 
674 static void rewritePHIs(BasicBlock &BB) {
675  // For every incoming edge we will create a block holding all
676  // incoming values in a single PHI nodes.
677  //
678  // loop:
679  // %n.val = phi i32[%n, %entry], [%inc, %loop]
680  //
681  // It will create:
682  //
683  // loop.from.entry:
684  // %n.loop.pre = phi i32 [%n, %entry]
685  // br %label loop
686  // loop.from.loop:
687  // %inc.loop.pre = phi i32 [%inc, %loop]
688  // br %label loop
689  //
690  // After this rewrite, further analysis will ignore any phi nodes with more
691  // than one incoming edge.
692 
693  // TODO: Simplify PHINodes in the basic block to remove duplicate
694  // predecessors.
695 
696  LandingPadInst *LandingPad = nullptr;
697  PHINode *ReplPHI = nullptr;
698  if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) {
699  // ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
700  // We replace the original landing pad with a PHINode that will collect the
701  // results from all of them.
702  ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad);
703  ReplPHI->takeName(LandingPad);
704  LandingPad->replaceAllUsesWith(ReplPHI);
705  // We will erase the original landing pad at the end of this function after
706  // ehAwareSplitEdge cloned it in the transition blocks.
707  }
708 
710  for (BasicBlock *Pred : Preds) {
711  auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
712  IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
713  auto *PN = cast<PHINode>(&BB.front());
714  do {
715  int Index = PN->getBasicBlockIndex(IncomingBB);
716  Value *V = PN->getIncomingValue(Index);
717  PHINode *InputV = PHINode::Create(
718  V->getType(), 1, V->getName() + Twine(".") + BB.getName(),
719  &IncomingBB->front());
720  InputV->addIncoming(V, Pred);
721  PN->setIncomingValue(Index, InputV);
722  PN = dyn_cast<PHINode>(PN->getNextNode());
723  } while (PN != ReplPHI); // ReplPHI is either null or the PHI that replaced
724  // the landing pad.
725  }
726 
727  if (LandingPad) {
728  // Calls to ehAwareSplitEdge function cloned the original lading pad.
729  // No longer need it.
730  LandingPad->eraseFromParent();
731  }
732 }
733 
734 static void rewritePHIs(Function &F) {
736 
737  for (BasicBlock &BB : F)
738  if (auto *PN = dyn_cast<PHINode>(&BB.front()))
739  if (PN->getNumIncomingValues() > 1)
740  WorkList.push_back(&BB);
741 
742  for (BasicBlock *BB : WorkList)
743  rewritePHIs(*BB);
744 }
745 
746 // Check for instructions that we can recreate on resume as opposed to spill
747 // the result into a coroutine frame.
748 static bool materializable(Instruction &V) {
749  return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
750  isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
751 }
752 
753 // Check for structural coroutine intrinsics that should not be spilled into
754 // the coroutine frame.
756  return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
757  isa<CoroSuspendInst>(&I);
758 }
759 
760 // For every use of the value that is across suspend point, recreate that value
761 // after a suspend point.
763  SpillInfo const &Spills) {
764  BasicBlock *CurrentBlock = nullptr;
765  Instruction *CurrentMaterialization = nullptr;
766  Instruction *CurrentDef = nullptr;
767 
768  for (auto const &E : Spills) {
769  // If it is a new definition, update CurrentXXX variables.
770  if (CurrentDef != E.def()) {
771  CurrentDef = cast<Instruction>(E.def());
772  CurrentBlock = nullptr;
773  CurrentMaterialization = nullptr;
774  }
775 
776  // If we have not seen this block, materialize the value.
777  if (CurrentBlock != E.userBlock()) {
778  CurrentBlock = E.userBlock();
779  CurrentMaterialization = cast<Instruction>(CurrentDef)->clone();
780  CurrentMaterialization->setName(CurrentDef->getName());
781  CurrentMaterialization->insertBefore(
782  &*CurrentBlock->getFirstInsertionPt());
783  }
784 
785  if (auto *PN = dyn_cast<PHINode>(E.user())) {
786  assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
787  "values in the PHINode");
788  PN->replaceAllUsesWith(CurrentMaterialization);
789  PN->eraseFromParent();
790  continue;
791  }
792 
793  // Replace all uses of CurrentDef in the current instruction with the
794  // CurrentMaterialization for the block.
795  E.user()->replaceUsesOfWith(CurrentDef, CurrentMaterialization);
796  }
797 }
798 
799 // Move early uses of spilled variable after CoroBegin.
800 // For example, if a parameter had address taken, we may end up with the code
801 // like:
802 // define @f(i32 %n) {
803 // %n.addr = alloca i32
804 // store %n, %n.addr
805 // ...
806 // call @coro.begin
807 // we need to move the store after coro.begin
808 static void moveSpillUsesAfterCoroBegin(Function &F, SpillInfo const &Spills,
809  CoroBeginInst *CoroBegin) {
810  DominatorTree DT(F);
811  SmallVector<Instruction *, 8> NeedsMoving;
812 
813  Value *CurrentValue = nullptr;
814 
815  for (auto const &E : Spills) {
816  if (CurrentValue == E.def())
817  continue;
818 
819  CurrentValue = E.def();
820 
821  for (User *U : CurrentValue->users()) {
822  Instruction *I = cast<Instruction>(U);
823  if (!DT.dominates(CoroBegin, I)) {
824  LLVM_DEBUG(dbgs() << "will move: " << *I << "\n");
825 
826  // TODO: Make this more robust. Currently if we run into a situation
827  // where simple instruction move won't work we panic and
828  // report_fatal_error.
829  for (User *UI : I->users()) {
830  if (!DT.dominates(CoroBegin, cast<Instruction>(UI)))
831  report_fatal_error("cannot move instruction since its users are not"
832  " dominated by CoroBegin");
833  }
834 
835  NeedsMoving.push_back(I);
836  }
837  }
838  }
839 
840  Instruction *InsertPt = CoroBegin->getNextNode();
841  for (Instruction *I : NeedsMoving)
842  I->moveBefore(InsertPt);
843 }
844 
845 // Splits the block at a particular instruction unless it is the first
846 // instruction in the block with a single predecessor.
848  auto *BB = I->getParent();
849  if (&BB->front() == I) {
850  if (BB->getSinglePredecessor()) {
851  BB->setName(Name);
852  return BB;
853  }
854  }
855  return BB->splitBasicBlock(I, Name);
856 }
857 
858 // Split above and below a particular instruction so that it
859 // will be all alone by itself in a block.
860 static void splitAround(Instruction *I, const Twine &Name) {
861  splitBlockIfNotFirst(I, Name);
862  splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
863 }
864 
865 void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
866  // Lower coro.dbg.declare to coro.dbg.value, since we are going to rewrite
867  // access to local variables.
868  LowerDbgDeclare(F);
869 
870  Shape.PromiseAlloca = Shape.CoroBegin->getId()->getPromise();
871  if (Shape.PromiseAlloca) {
872  Shape.CoroBegin->getId()->clearPromise();
873  }
874 
875  // Make sure that all coro.save, coro.suspend and the fallthrough coro.end
876  // intrinsics are in their own blocks to simplify the logic of building up
877  // SuspendCrossing data.
878  for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
879  splitAround(CSI->getCoroSave(), "CoroSave");
880  splitAround(CSI, "CoroSuspend");
881  }
882 
883  // Put CoroEnds into their own blocks.
884  for (CoroEndInst *CE : Shape.CoroEnds)
885  splitAround(CE, "CoroEnd");
886 
887  // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
888  // never has its definition separated from the PHI by the suspend point.
889  rewritePHIs(F);
890 
891  // Build suspend crossing info.
892  SuspendCrossingInfo Checker(F, Shape);
893 
894  IRBuilder<> Builder(F.getContext());
895  SpillInfo Spills;
896 
897  for (int Repeat = 0; Repeat < 4; ++Repeat) {
898  // See if there are materializable instructions across suspend points.
899  for (Instruction &I : instructions(F))
900  if (materializable(I))
901  for (User *U : I.users())
902  if (Checker.isDefinitionAcrossSuspend(I, U))
903  Spills.emplace_back(&I, U);
904 
905  if (Spills.empty())
906  break;
907 
908  // Rewrite materializable instructions to be materialized at the use point.
909  LLVM_DEBUG(dump("Materializations", Spills));
910  rewriteMaterializableInstructions(Builder, Spills);
911  Spills.clear();
912  }
913 
914  // Collect the spills for arguments and other not-materializable values.
915  for (Argument &A : F.args())
916  for (User *U : A.users())
917  if (Checker.isDefinitionAcrossSuspend(A, U))
918  Spills.emplace_back(&A, U);
919 
920  for (Instruction &I : instructions(F)) {
921  // Values returned from coroutine structure intrinsics should not be part
922  // of the Coroutine Frame.
923  if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
924  continue;
925  // The Coroutine Promise always included into coroutine frame, no need to
926  // check for suspend crossing.
927  if (Shape.PromiseAlloca == &I)
928  continue;
929 
930  for (User *U : I.users())
931  if (Checker.isDefinitionAcrossSuspend(I, U)) {
932  // We cannot spill a token.
933  if (I.getType()->isTokenTy())
935  "token definition is separated from the use by a suspend point");
936  Spills.emplace_back(&I, U);
937  }
938  }
939  LLVM_DEBUG(dump("Spills", Spills));
940  moveSpillUsesAfterCoroBegin(F, Spills, Shape.CoroBegin);
941  Shape.FrameTy = buildFrameType(F, Shape, Spills);
942  Shape.FramePtr = insertSpills(Spills, Shape);
943 }
auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1281
uint64_t CallInst * C
static Instruction * splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch)
Definition: CoroFrame.cpp:437
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:67
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:110
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:645
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:172
Instruction * FramePtr
Definition: CoroInternal.h:81
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents an incoming formal argument to a Function.
Definition: Argument.h:29
LLVMContext & Context
CoroBeginInst * CoroBegin
Definition: CoroInternal.h:67
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:288
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:139
This class represents lattice values for constants.
Definition: AllocatorList.h:23
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds...
Definition: Compiler.h:473
amdgpu Simplify well known AMD library false FunctionCallee Value const Twine & Name
static void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *LandingPadReplacement)
Definition: CoroFrame.cpp:616
static void rewritePHIs(BasicBlock &BB)
Definition: CoroFrame.cpp:674
static void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ)
Definition: CoroFrame.cpp:603
static void dump(StringRef Title, SpillInfo const &Spills)
Definition: CoroFrame.cpp:298
F(f)
uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew=0)
Returns the next integer (mod 2**64) that is greater than or equal to Value and is a multiple of Alig...
Definition: MathExtras.h:684
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:137
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:32
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:268
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Split the edge connecting specified block.
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:4361
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:369
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:80
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:96
Class to represent struct types.
Definition: DerivedTypes.h:232
static bool materializable(Instruction &V)
Definition: CoroFrame.cpp:748
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:651
This represents the llvm.coro.suspend instruction.
Definition: CoroInstr.h:265
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:41
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:742
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:285
AllocaInst * getPromise() const
Definition: CoroInstr.h:100
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:244
Class to represent array types.
Definition: DerivedTypes.h:400
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
Value * getParentPad() const
SmallVector< CoroSuspendInst *, 4 > CoroSuspends
Definition: CoroInternal.h:70
void setBody(ArrayRef< Type *> Elements, bool isPacked=false)
Specify a body for an opaque identified type.
Definition: Type.cpp:368
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:144
Class to represent pointers.
Definition: DerivedTypes.h:498
const BasicBlock & getEntryBlock() const
Definition: Function.h:642
#define P(N)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:189
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
static void moveSpillUsesAfterCoroBegin(Function &F, SpillInfo const &Spills, CoroBeginInst *CoroBegin)
Definition: CoroFrame.cpp:808
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:216
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction...
Definition: Instruction.cpp:73
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:64
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
const Instruction & front() const
Definition: BasicBlock.h:280
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:112
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:160
This represents the llvm.coro.end instruction.
Definition: CoroInstr.h:302
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:296
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:115
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:99
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:192
size_t size() const
Definition: SmallVector.h:52
bool LowerDbgDeclare(Function &F)
Lowers llvm.dbg.declare intrinsics into appropriate set of llvm.dbg.value intrinsics.
Definition: Local.cpp:1385
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static bool isCoroutineStructureIntrinsic(Instruction &I)
Definition: CoroFrame.cpp:755
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1115
Iterator for intrusive lists based on ilist_node.
StructType * FrameTy
Definition: CoroInternal.h:80
auto size(R &&Range, typename std::enable_if< std::is_same< typename std::iterator_traits< decltype(Range.begin())>::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr) -> decltype(std::distance(Range.begin(), Range.end()))
Get the size of a range.
Definition: STLExtras.h:1166
void setIncomingBlock(unsigned i, BasicBlock *BB)
static CleanupPadInst * Create(Value *ParentPad, ArrayRef< Value *> Args=None, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:841
bool dominates(const Instruction *Def, const Use &U) const
Return true if Def dominates a use in User.
Definition: Dominators.cpp:248
unsigned getABITypeAlignment(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
Definition: DataLayout.cpp:749
const DataFlowGraph & G
Definition: RDFGraph.cpp:202
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition: Type.cpp:179
void buildCoroutineFrame(Function &F, Shape &Shape)
Definition: CoroFrame.cpp:865
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
Definition: MathExtras.h:557
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
This class represents the llvm.coro.begin instruction.
Definition: CoroInstr.h:214
A range adaptor for a pair of iterators.
iterator_range< user_iterator > users()
Definition: Value.h:399
static BasicBlock * splitBlockIfNotFirst(Instruction *I, const Twine &Name)
Definition: CoroFrame.cpp:847
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:461
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
void clearPromise()
Definition: CoroInstr.h:107
static void rewriteMaterializableInstructions(IRBuilder<> &IRB, SpillInfo const &Spills)
Definition: CoroFrame.cpp:762
const Function * getParent() const
Definition: Argument.h:41
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:106
static Instruction * insertSpills(SpillInfo &Spills, coro::Shape &Shape)
Definition: CoroFrame.cpp:471
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:580
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
size_type size() const
size - Returns the number of bits in this bitvector.
Definition: BitVector.h:169
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:407
CoroIdInst * getId() const
Definition: CoroInstr.h:218
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SmallVector< CoroEndInst *, 4 > CoroEnds
Definition: CoroInternal.h:68
LLVM_NODISCARD char front() const
front - Get the first character in the string.
Definition: StringRef.h:134
AllocaInst * PromiseAlloca
Definition: CoroInternal.h:84
static BasicBlock * ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad, PHINode *LandingPadReplacement)
Definition: CoroFrame.cpp:643
static StructType * buildFrameType(Function &F, coro::Shape &Shape, SpillInfo &Spills)
Definition: CoroFrame.cpp:371
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:565
LLVM Value Representation.
Definition: Value.h:72
succ_range successors(Instruction *I)
Definition: CFG.h:259
static StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:436
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, Instruction *InsertBefore=nullptr)
static const Function * getParent(const Value *V)
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
Definition: Instruction.h:583
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:48
inst_range instructions(Function *F)
Definition: InstIterator.h:133
BasicBlock * AllocaSpillBlock
Definition: CoroInternal.h:82
#define LLVM_DEBUG(X)
Definition: Debug.h:122
static void splitAround(Instruction *I, const Twine &Name)
Definition: CoroFrame.cpp:860
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:173
CoroSaveInst * getCoroSave() const
Definition: CoroInstr.h:269
Type * getElementType() const
Definition: DerivedTypes.h:517
iterator_range< arg_iterator > args()
Definition: Function.h:691
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:43
const BasicBlock * getParent() const
Definition: Instruction.h:66