LLVM  10.0.0svn
Execution.cpp
Go to the documentation of this file.
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the actual instruction interpreter.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Interpreter.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Statistic.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Instructions.h"
22 #include "llvm/Support/Debug.h"
26 #include <algorithm>
27 #include <cmath>
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "interpreter"
31 
32 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
33 
34 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35  cl::desc("make the interpreter print every volatile load and store"));
36 
37 //===----------------------------------------------------------------------===//
38 // Various Helper Functions
39 //===----------------------------------------------------------------------===//
40 
41 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
42  SF.Values[V] = Val;
43 }
44 
45 //===----------------------------------------------------------------------===//
46 // Unary Instruction Implementations
47 //===----------------------------------------------------------------------===//
48 
49 static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
50  switch (Ty->getTypeID()) {
51  case Type::FloatTyID:
52  Dest.FloatVal = -Src.FloatVal;
53  break;
54  case Type::DoubleTyID:
55  Dest.DoubleVal = -Src.DoubleVal;
56  break;
57  default:
58  llvm_unreachable("Unhandled type for FNeg instruction");
59  }
60 }
61 
63  ExecutionContext &SF = ECStack.back();
64  Type *Ty = I.getOperand(0)->getType();
65  GenericValue Src = getOperandValue(I.getOperand(0), SF);
66  GenericValue R; // Result
67 
68  // First process vector operation
69  if (Ty->isVectorTy()) {
70  R.AggregateVal.resize(Src.AggregateVal.size());
71 
72  switch(I.getOpcode()) {
73  default:
74  llvm_unreachable("Don't know how to handle this unary operator");
75  break;
76  case Instruction::FNeg:
77  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
78  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
79  R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
80  } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
81  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
82  R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
83  } else {
84  llvm_unreachable("Unhandled type for FNeg instruction");
85  }
86  break;
87  }
88  } else {
89  switch (I.getOpcode()) {
90  default:
91  llvm_unreachable("Don't know how to handle this unary operator");
92  break;
93  case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
94  }
95  }
96  SetValue(&I, R, SF);
97 }
98 
99 //===----------------------------------------------------------------------===//
100 // Binary Instruction Implementations
101 //===----------------------------------------------------------------------===//
102 
103 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104  case Type::TY##TyID: \
105  Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
106  break
107 
108 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
109  GenericValue Src2, Type *Ty) {
110  switch (Ty->getTypeID()) {
111  IMPLEMENT_BINARY_OPERATOR(+, Float);
112  IMPLEMENT_BINARY_OPERATOR(+, Double);
113  default:
114  dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
115  llvm_unreachable(nullptr);
116  }
117 }
118 
119 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
120  GenericValue Src2, Type *Ty) {
121  switch (Ty->getTypeID()) {
122  IMPLEMENT_BINARY_OPERATOR(-, Float);
123  IMPLEMENT_BINARY_OPERATOR(-, Double);
124  default:
125  dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
126  llvm_unreachable(nullptr);
127  }
128 }
129 
130 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
131  GenericValue Src2, Type *Ty) {
132  switch (Ty->getTypeID()) {
133  IMPLEMENT_BINARY_OPERATOR(*, Float);
134  IMPLEMENT_BINARY_OPERATOR(*, Double);
135  default:
136  dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
137  llvm_unreachable(nullptr);
138  }
139 }
140 
141 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
142  GenericValue Src2, Type *Ty) {
143  switch (Ty->getTypeID()) {
144  IMPLEMENT_BINARY_OPERATOR(/, Float);
145  IMPLEMENT_BINARY_OPERATOR(/, Double);
146  default:
147  dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
148  llvm_unreachable(nullptr);
149  }
150 }
151 
152 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
153  GenericValue Src2, Type *Ty) {
154  switch (Ty->getTypeID()) {
155  case Type::FloatTyID:
156  Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
157  break;
158  case Type::DoubleTyID:
159  Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
160  break;
161  default:
162  dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
163  llvm_unreachable(nullptr);
164  }
165 }
166 
167 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168  case Type::IntegerTyID: \
169  Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
170  break;
171 
172 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
173  case Type::VectorTyID: { \
174  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
175  Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
176  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
177  Dest.AggregateVal[_i].IntVal = APInt(1, \
178  Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
179  } break;
180 
181 // Handle pointers specially because they must be compared with only as much
182 // width as the host has. We _do not_ want to be comparing 64 bit values when
183 // running on a 32-bit target, otherwise the upper 32 bits might mess up
184 // comparisons if they contain garbage.
185 #define IMPLEMENT_POINTER_ICMP(OP) \
186  case Type::PointerTyID: \
187  Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
188  (void*)(intptr_t)Src2.PointerVal); \
189  break;
190 
192  Type *Ty) {
193  GenericValue Dest;
194  switch (Ty->getTypeID()) {
195  IMPLEMENT_INTEGER_ICMP(eq,Ty);
198  default:
199  dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
200  llvm_unreachable(nullptr);
201  }
202  return Dest;
203 }
204 
206  Type *Ty) {
207  GenericValue Dest;
208  switch (Ty->getTypeID()) {
209  IMPLEMENT_INTEGER_ICMP(ne,Ty);
212  default:
213  dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
214  llvm_unreachable(nullptr);
215  }
216  return Dest;
217 }
218 
220  Type *Ty) {
221  GenericValue Dest;
222  switch (Ty->getTypeID()) {
223  IMPLEMENT_INTEGER_ICMP(ult,Ty);
226  default:
227  dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
228  llvm_unreachable(nullptr);
229  }
230  return Dest;
231 }
232 
234  Type *Ty) {
235  GenericValue Dest;
236  switch (Ty->getTypeID()) {
237  IMPLEMENT_INTEGER_ICMP(slt,Ty);
240  default:
241  dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
242  llvm_unreachable(nullptr);
243  }
244  return Dest;
245 }
246 
248  Type *Ty) {
249  GenericValue Dest;
250  switch (Ty->getTypeID()) {
251  IMPLEMENT_INTEGER_ICMP(ugt,Ty);
254  default:
255  dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
256  llvm_unreachable(nullptr);
257  }
258  return Dest;
259 }
260 
262  Type *Ty) {
263  GenericValue Dest;
264  switch (Ty->getTypeID()) {
265  IMPLEMENT_INTEGER_ICMP(sgt,Ty);
268  default:
269  dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
270  llvm_unreachable(nullptr);
271  }
272  return Dest;
273 }
274 
276  Type *Ty) {
277  GenericValue Dest;
278  switch (Ty->getTypeID()) {
279  IMPLEMENT_INTEGER_ICMP(ule,Ty);
282  default:
283  dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
284  llvm_unreachable(nullptr);
285  }
286  return Dest;
287 }
288 
290  Type *Ty) {
291  GenericValue Dest;
292  switch (Ty->getTypeID()) {
293  IMPLEMENT_INTEGER_ICMP(sle,Ty);
296  default:
297  dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
298  llvm_unreachable(nullptr);
299  }
300  return Dest;
301 }
302 
304  Type *Ty) {
305  GenericValue Dest;
306  switch (Ty->getTypeID()) {
307  IMPLEMENT_INTEGER_ICMP(uge,Ty);
310  default:
311  dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
312  llvm_unreachable(nullptr);
313  }
314  return Dest;
315 }
316 
318  Type *Ty) {
319  GenericValue Dest;
320  switch (Ty->getTypeID()) {
321  IMPLEMENT_INTEGER_ICMP(sge,Ty);
324  default:
325  dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
326  llvm_unreachable(nullptr);
327  }
328  return Dest;
329 }
330 
332  ExecutionContext &SF = ECStack.back();
333  Type *Ty = I.getOperand(0)->getType();
334  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
335  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
336  GenericValue R; // Result
337 
338  switch (I.getPredicate()) {
339  case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
340  case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
341  case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
342  case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
343  case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
344  case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
345  case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
346  case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
347  case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
348  case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
349  default:
350  dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
351  llvm_unreachable(nullptr);
352  }
353 
354  SetValue(&I, R, SF);
355 }
356 
357 #define IMPLEMENT_FCMP(OP, TY) \
358  case Type::TY##TyID: \
359  Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
360  break
361 
362 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
363  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
364  Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
365  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
366  Dest.AggregateVal[_i].IntVal = APInt(1, \
367  Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
368  break;
369 
370 #define IMPLEMENT_VECTOR_FCMP(OP) \
371  case Type::VectorTyID: \
372  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
373  IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
374  } else { \
375  IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
376  }
377 
379  Type *Ty) {
380  GenericValue Dest;
381  switch (Ty->getTypeID()) {
382  IMPLEMENT_FCMP(==, Float);
383  IMPLEMENT_FCMP(==, Double);
385  default:
386  dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
387  llvm_unreachable(nullptr);
388  }
389  return Dest;
390 }
391 
392 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
393  if (TY->isFloatTy()) { \
394  if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
395  Dest.IntVal = APInt(1,false); \
396  return Dest; \
397  } \
398  } else { \
399  if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
400  Dest.IntVal = APInt(1,false); \
401  return Dest; \
402  } \
403  }
404 
405 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
406  assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
407  Dest.AggregateVal.resize( X.AggregateVal.size() ); \
408  for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
409  if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
410  Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
411  Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
412  else { \
413  Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
414  } \
415  }
416 
417 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
418  if (TY->isVectorTy()) { \
419  if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
420  MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
421  } else { \
422  MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
423  } \
424  } \
425 
426 
427 
429  Type *Ty)
430 {
431  GenericValue Dest;
432  // if input is scalar value and Src1 or Src2 is NaN return false
433  IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
434  // if vector input detect NaNs and fill mask
435  MASK_VECTOR_NANS(Ty, Src1, Src2, false)
436  GenericValue DestMask = Dest;
437  switch (Ty->getTypeID()) {
438  IMPLEMENT_FCMP(!=, Float);
439  IMPLEMENT_FCMP(!=, Double);
441  default:
442  dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
443  llvm_unreachable(nullptr);
444  }
445  // in vector case mask out NaN elements
446  if (Ty->isVectorTy())
447  for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
448  if (DestMask.AggregateVal[_i].IntVal == false)
449  Dest.AggregateVal[_i].IntVal = APInt(1,false);
450 
451  return Dest;
452 }
453 
455  Type *Ty) {
456  GenericValue Dest;
457  switch (Ty->getTypeID()) {
458  IMPLEMENT_FCMP(<=, Float);
459  IMPLEMENT_FCMP(<=, Double);
461  default:
462  dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
463  llvm_unreachable(nullptr);
464  }
465  return Dest;
466 }
467 
469  Type *Ty) {
470  GenericValue Dest;
471  switch (Ty->getTypeID()) {
472  IMPLEMENT_FCMP(>=, Float);
473  IMPLEMENT_FCMP(>=, Double);
475  default:
476  dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
477  llvm_unreachable(nullptr);
478  }
479  return Dest;
480 }
481 
483  Type *Ty) {
484  GenericValue Dest;
485  switch (Ty->getTypeID()) {
486  IMPLEMENT_FCMP(<, Float);
487  IMPLEMENT_FCMP(<, Double);
489  default:
490  dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
491  llvm_unreachable(nullptr);
492  }
493  return Dest;
494 }
495 
497  Type *Ty) {
498  GenericValue Dest;
499  switch (Ty->getTypeID()) {
500  IMPLEMENT_FCMP(>, Float);
501  IMPLEMENT_FCMP(>, Double);
503  default:
504  dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
505  llvm_unreachable(nullptr);
506  }
507  return Dest;
508 }
509 
510 #define IMPLEMENT_UNORDERED(TY, X,Y) \
511  if (TY->isFloatTy()) { \
512  if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
513  Dest.IntVal = APInt(1,true); \
514  return Dest; \
515  } \
516  } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
517  Dest.IntVal = APInt(1,true); \
518  return Dest; \
519  }
520 
521 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
522  if (TY->isVectorTy()) { \
523  GenericValue DestMask = Dest; \
524  Dest = FUNC(Src1, Src2, Ty); \
525  for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
526  if (DestMask.AggregateVal[_i].IntVal == true) \
527  Dest.AggregateVal[_i].IntVal = APInt(1, true); \
528  return Dest; \
529  }
530 
532  Type *Ty) {
533  GenericValue Dest;
534  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
535  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
537  return executeFCMP_OEQ(Src1, Src2, Ty);
538 
539 }
540 
542  Type *Ty) {
543  GenericValue Dest;
544  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
545  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
547  return executeFCMP_ONE(Src1, Src2, Ty);
548 }
549 
551  Type *Ty) {
552  GenericValue Dest;
553  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
554  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
556  return executeFCMP_OLE(Src1, Src2, Ty);
557 }
558 
560  Type *Ty) {
561  GenericValue Dest;
562  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
563  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
565  return executeFCMP_OGE(Src1, Src2, Ty);
566 }
567 
569  Type *Ty) {
570  GenericValue Dest;
571  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
572  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
574  return executeFCMP_OLT(Src1, Src2, Ty);
575 }
576 
578  Type *Ty) {
579  GenericValue Dest;
580  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
581  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
583  return executeFCMP_OGT(Src1, Src2, Ty);
584 }
585 
587  Type *Ty) {
588  GenericValue Dest;
589  if(Ty->isVectorTy()) {
590  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
591  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
592  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
593  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
594  Dest.AggregateVal[_i].IntVal = APInt(1,
595  ( (Src1.AggregateVal[_i].FloatVal ==
596  Src1.AggregateVal[_i].FloatVal) &&
597  (Src2.AggregateVal[_i].FloatVal ==
598  Src2.AggregateVal[_i].FloatVal)));
599  } else {
600  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
601  Dest.AggregateVal[_i].IntVal = APInt(1,
602  ( (Src1.AggregateVal[_i].DoubleVal ==
603  Src1.AggregateVal[_i].DoubleVal) &&
604  (Src2.AggregateVal[_i].DoubleVal ==
605  Src2.AggregateVal[_i].DoubleVal)));
606  }
607  } else if (Ty->isFloatTy())
608  Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
609  Src2.FloatVal == Src2.FloatVal));
610  else {
611  Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
612  Src2.DoubleVal == Src2.DoubleVal));
613  }
614  return Dest;
615 }
616 
618  Type *Ty) {
619  GenericValue Dest;
620  if(Ty->isVectorTy()) {
621  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
622  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
623  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
624  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
625  Dest.AggregateVal[_i].IntVal = APInt(1,
626  ( (Src1.AggregateVal[_i].FloatVal !=
627  Src1.AggregateVal[_i].FloatVal) ||
628  (Src2.AggregateVal[_i].FloatVal !=
629  Src2.AggregateVal[_i].FloatVal)));
630  } else {
631  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
632  Dest.AggregateVal[_i].IntVal = APInt(1,
633  ( (Src1.AggregateVal[_i].DoubleVal !=
634  Src1.AggregateVal[_i].DoubleVal) ||
635  (Src2.AggregateVal[_i].DoubleVal !=
636  Src2.AggregateVal[_i].DoubleVal)));
637  }
638  } else if (Ty->isFloatTy())
639  Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
640  Src2.FloatVal != Src2.FloatVal));
641  else {
642  Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
643  Src2.DoubleVal != Src2.DoubleVal));
644  }
645  return Dest;
646 }
647 
649  Type *Ty, const bool val) {
650  GenericValue Dest;
651  if(Ty->isVectorTy()) {
652  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
653  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
654  for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
655  Dest.AggregateVal[_i].IntVal = APInt(1,val);
656  } else {
657  Dest.IntVal = APInt(1, val);
658  }
659 
660  return Dest;
661 }
662 
664  ExecutionContext &SF = ECStack.back();
665  Type *Ty = I.getOperand(0)->getType();
666  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
667  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
668  GenericValue R; // Result
669 
670  switch (I.getPredicate()) {
671  default:
672  dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
673  llvm_unreachable(nullptr);
674  break;
675  case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
676  break;
677  case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
678  break;
679  case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
680  case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
681  case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
682  case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
683  case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
684  case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
685  case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
686  case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
687  case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
688  case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
689  case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
690  case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
691  case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
692  case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
693  }
694 
695  SetValue(&I, R, SF);
696 }
697 
698 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
699  GenericValue Src2, Type *Ty) {
700  GenericValue Result;
701  switch (predicate) {
702  case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
703  case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
704  case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
705  case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
706  case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
707  case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
708  case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
709  case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
710  case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
711  case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
712  case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
713  case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
714  case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
715  case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
716  case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
717  case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
718  case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
719  case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
720  case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
721  case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
722  case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
723  case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
724  case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
725  case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
726  case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
727  case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
728  default:
729  dbgs() << "Unhandled Cmp predicate\n";
730  llvm_unreachable(nullptr);
731  }
732 }
733 
735  ExecutionContext &SF = ECStack.back();
736  Type *Ty = I.getOperand(0)->getType();
737  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
738  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
739  GenericValue R; // Result
740 
741  // First process vector operation
742  if (Ty->isVectorTy()) {
743  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
744  R.AggregateVal.resize(Src1.AggregateVal.size());
745 
746  // Macros to execute binary operation 'OP' over integer vectors
747 #define INTEGER_VECTOR_OPERATION(OP) \
748  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
749  R.AggregateVal[i].IntVal = \
750  Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
751 
752  // Additional macros to execute binary operations udiv/sdiv/urem/srem since
753  // they have different notation.
754 #define INTEGER_VECTOR_FUNCTION(OP) \
755  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
756  R.AggregateVal[i].IntVal = \
757  Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
758 
759  // Macros to execute binary operation 'OP' over floating point type TY
760  // (float or double) vectors
761 #define FLOAT_VECTOR_FUNCTION(OP, TY) \
762  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
763  R.AggregateVal[i].TY = \
764  Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
765 
766  // Macros to choose appropriate TY: float or double and run operation
767  // execution
768 #define FLOAT_VECTOR_OP(OP) { \
769  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
770  FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
771  else { \
772  if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
773  FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
774  else { \
775  dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
776  llvm_unreachable(0); \
777  } \
778  } \
779 }
780 
781  switch(I.getOpcode()){
782  default:
783  dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
784  llvm_unreachable(nullptr);
785  break;
787  case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
788  case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
789  case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
790  case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
791  case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
792  case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
793  case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
794  case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
795  case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
796  case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
797  case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
798  case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
799  case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
800  case Instruction::FRem:
801  if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
802  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
803  R.AggregateVal[i].FloatVal =
804  fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
805  else {
806  if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
807  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
808  R.AggregateVal[i].DoubleVal =
809  fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
810  else {
811  dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
812  llvm_unreachable(nullptr);
813  }
814  }
815  break;
816  }
817  } else {
818  switch (I.getOpcode()) {
819  default:
820  dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
821  llvm_unreachable(nullptr);
822  break;
823  case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
824  case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
825  case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
826  case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
827  case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
828  case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
829  case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
830  case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
831  case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
832  case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
833  case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
834  case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
835  case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
836  case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
837  case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
838  }
839  }
840  SetValue(&I, R, SF);
841 }
842 
844  GenericValue Src3, Type *Ty) {
845  GenericValue Dest;
846  if(Ty->isVectorTy()) {
847  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
848  assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
849  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
850  for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
851  Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
852  Src3.AggregateVal[i] : Src2.AggregateVal[i];
853  } else {
854  Dest = (Src1.IntVal == 0) ? Src3 : Src2;
855  }
856  return Dest;
857 }
858 
860  ExecutionContext &SF = ECStack.back();
861  Type * Ty = I.getOperand(0)->getType();
862  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
863  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
864  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
865  GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
866  SetValue(&I, R, SF);
867 }
868 
869 //===----------------------------------------------------------------------===//
870 // Terminator Instruction Implementations
871 //===----------------------------------------------------------------------===//
872 
874  // runAtExitHandlers() assumes there are no stack frames, but
875  // if exit() was called, then it had a stack frame. Blow away
876  // the stack before interpreting atexit handlers.
877  ECStack.clear();
879  exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
880 }
881 
882 /// Pop the last stack frame off of ECStack and then copy the result
883 /// back into the result variable if we are not returning void. The
884 /// result variable may be the ExitValue, or the Value of the calling
885 /// CallInst if there was a previous stack frame. This method may
886 /// invalidate any ECStack iterators you have. This method also takes
887 /// care of switching to the normal destination BB, if we are returning
888 /// from an invoke.
889 ///
890 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
891  GenericValue Result) {
892  // Pop the current stack frame.
893  ECStack.pop_back();
894 
895  if (ECStack.empty()) { // Finished main. Put result into exit code...
896  if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
897  ExitValue = Result; // Capture the exit value of the program
898  } else {
899  memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
900  }
901  } else {
902  // If we have a previous stack frame, and we have a previous call,
903  // fill in the return value...
904  ExecutionContext &CallingSF = ECStack.back();
905  if (Instruction *I = CallingSF.Caller.getInstruction()) {
906  // Save result...
907  if (!CallingSF.Caller.getType()->isVoidTy())
908  SetValue(I, Result, CallingSF);
909  if (InvokeInst *II = dyn_cast<InvokeInst> (I))
910  SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
911  CallingSF.Caller = CallSite(); // We returned from the call...
912  }
913  }
914 }
915 
917  ExecutionContext &SF = ECStack.back();
918  Type *RetTy = Type::getVoidTy(I.getContext());
919  GenericValue Result;
920 
921  // Save away the return value... (if we are not 'ret void')
922  if (I.getNumOperands()) {
923  RetTy = I.getReturnValue()->getType();
924  Result = getOperandValue(I.getReturnValue(), SF);
925  }
926 
927  popStackAndReturnValueToCaller(RetTy, Result);
928 }
929 
931  report_fatal_error("Program executed an 'unreachable' instruction!");
932 }
933 
935  ExecutionContext &SF = ECStack.back();
936  BasicBlock *Dest;
937 
938  Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
939  if (!I.isUnconditional()) {
940  Value *Cond = I.getCondition();
941  if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
942  Dest = I.getSuccessor(1);
943  }
944  SwitchToNewBasicBlock(Dest, SF);
945 }
946 
948  ExecutionContext &SF = ECStack.back();
949  Value* Cond = I.getCondition();
950  Type *ElTy = Cond->getType();
951  GenericValue CondVal = getOperandValue(Cond, SF);
952 
953  // Check to see if any of the cases match...
954  BasicBlock *Dest = nullptr;
955  for (auto Case : I.cases()) {
956  GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
957  if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
958  Dest = cast<BasicBlock>(Case.getCaseSuccessor());
959  break;
960  }
961  }
962  if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
963  SwitchToNewBasicBlock(Dest, SF);
964 }
965 
967  ExecutionContext &SF = ECStack.back();
968  void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
969  SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
970 }
971 
972 
973 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
974 // This function handles the actual updating of block and instruction iterators
975 // as well as execution of all of the PHI nodes in the destination block.
976 //
977 // This method does this because all of the PHI nodes must be executed
978 // atomically, reading their inputs before any of the results are updated. Not
979 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
980 // their inputs. If the input PHI node is updated before it is read, incorrect
981 // results can happen. Thus we use a two phase approach.
982 //
983 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
984  BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
985  SF.CurBB = Dest; // Update CurBB to branch destination
986  SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
987 
988  if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
989 
990  // Loop over all of the PHI nodes in the current block, reading their inputs.
991  std::vector<GenericValue> ResultValues;
992 
993  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
994  // Search for the value corresponding to this previous bb...
995  int i = PN->getBasicBlockIndex(PrevBB);
996  assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
997  Value *IncomingValue = PN->getIncomingValue(i);
998 
999  // Save the incoming value for this PHI node...
1000  ResultValues.push_back(getOperandValue(IncomingValue, SF));
1001  }
1002 
1003  // Now loop over all of the PHI nodes setting their values...
1004  SF.CurInst = SF.CurBB->begin();
1005  for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
1006  PHINode *PN = cast<PHINode>(SF.CurInst);
1007  SetValue(PN, ResultValues[i], SF);
1008  }
1009 }
1010 
1011 //===----------------------------------------------------------------------===//
1012 // Memory Instruction Implementations
1013 //===----------------------------------------------------------------------===//
1014 
1016  ExecutionContext &SF = ECStack.back();
1017 
1018  Type *Ty = I.getType()->getElementType(); // Type to be allocated
1019 
1020  // Get the number of elements being allocated by the array...
1021  unsigned NumElements =
1022  getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
1023 
1024  unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
1025 
1026  // Avoid malloc-ing zero bytes, use max()...
1027  unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
1028 
1029  // Allocate enough memory to hold the type...
1030  void *Memory = safe_malloc(MemToAlloc);
1031 
1032  LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
1033  << " bytes) x " << NumElements << " (Total: " << MemToAlloc
1034  << ") at " << uintptr_t(Memory) << '\n');
1035 
1036  GenericValue Result = PTOGV(Memory);
1037  assert(Result.PointerVal && "Null pointer returned by malloc!");
1038  SetValue(&I, Result, SF);
1039 
1040  if (I.getOpcode() == Instruction::Alloca)
1041  ECStack.back().Allocas.add(Memory);
1042 }
1043 
1044 // getElementOffset - The workhorse for getelementptr.
1045 //
1046 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1048  ExecutionContext &SF) {
1049  assert(Ptr->getType()->isPointerTy() &&
1050  "Cannot getElementOffset of a nonpointer type!");
1051 
1052  uint64_t Total = 0;
1053 
1054  for (; I != E; ++I) {
1055  if (StructType *STy = I.getStructTypeOrNull()) {
1056  const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1057 
1058  const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1059  unsigned Index = unsigned(CPU->getZExtValue());
1060 
1061  Total += SLO->getElementOffset(Index);
1062  } else {
1063  // Get the index number for the array... which must be long type...
1064  GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1065 
1066  int64_t Idx;
1067  unsigned BitWidth =
1068  cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1069  if (BitWidth == 32)
1070  Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1071  else {
1072  assert(BitWidth == 64 && "Invalid index type for getelementptr");
1073  Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1074  }
1075  Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
1076  }
1077  }
1078 
1079  GenericValue Result;
1080  Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1081  LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1082  return Result;
1083 }
1084 
1086  ExecutionContext &SF = ECStack.back();
1087  SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1088  gep_type_begin(I), gep_type_end(I), SF), SF);
1089 }
1090 
1092  ExecutionContext &SF = ECStack.back();
1093  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1094  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1095  GenericValue Result;
1096  LoadValueFromMemory(Result, Ptr, I.getType());
1097  SetValue(&I, Result, SF);
1098  if (I.isVolatile() && PrintVolatile)
1099  dbgs() << "Volatile load " << I;
1100 }
1101 
1103  ExecutionContext &SF = ECStack.back();
1104  GenericValue Val = getOperandValue(I.getOperand(0), SF);
1105  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1106  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1107  I.getOperand(0)->getType());
1108  if (I.isVolatile() && PrintVolatile)
1109  dbgs() << "Volatile store: " << I;
1110 }
1111 
1112 //===----------------------------------------------------------------------===//
1113 // Miscellaneous Instruction Implementations
1114 //===----------------------------------------------------------------------===//
1115 
1117  ExecutionContext &SF = ECStack.back();
1118 
1119  // Check to see if this is an intrinsic function call...
1120  Function *F = CS.getCalledFunction();
1121  if (F && F->isDeclaration())
1122  switch (F->getIntrinsicID()) {
1124  break;
1125  case Intrinsic::vastart: { // va_start
1126  GenericValue ArgIndex;
1127  ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1128  ArgIndex.UIntPairVal.second = 0;
1129  SetValue(CS.getInstruction(), ArgIndex, SF);
1130  return;
1131  }
1132  case Intrinsic::vaend: // va_end is a noop for the interpreter
1133  return;
1134  case Intrinsic::vacopy: // va_copy: dest = src
1135  SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
1136  return;
1137  default:
1138  // If it is an unknown intrinsic function, use the intrinsic lowering
1139  // class to transform it into hopefully tasty LLVM code.
1140  //
1142  BasicBlock *Parent = CS.getInstruction()->getParent();
1143  bool atBegin(Parent->begin() == me);
1144  if (!atBegin)
1145  --me;
1146  IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
1147 
1148  // Restore the CurInst pointer to the first instruction newly inserted, if
1149  // any.
1150  if (atBegin) {
1151  SF.CurInst = Parent->begin();
1152  } else {
1153  SF.CurInst = me;
1154  ++SF.CurInst;
1155  }
1156  return;
1157  }
1158 
1159 
1160  SF.Caller = CS;
1161  std::vector<GenericValue> ArgVals;
1162  const unsigned NumArgs = SF.Caller.arg_size();
1163  ArgVals.reserve(NumArgs);
1164  uint16_t pNum = 1;
1165  for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
1166  e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
1167  Value *V = *i;
1168  ArgVals.push_back(getOperandValue(V, SF));
1169  }
1170 
1171  // To handle indirect calls, we must get the pointer value from the argument
1172  // and treat it as a function pointer.
1173  GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
1174  callFunction((Function*)GVTOP(SRC), ArgVals);
1175 }
1176 
1177 // auxiliary function for shift operations
1178 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1179  llvm::APInt valueToShift) {
1180  unsigned valueWidth = valueToShift.getBitWidth();
1181  if (orgShiftAmount < (uint64_t)valueWidth)
1182  return orgShiftAmount;
1183  // according to the llvm documentation, if orgShiftAmount > valueWidth,
1184  // the result is undfeined. but we do shift by this rule:
1185  return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1186 }
1187 
1188 
1190  ExecutionContext &SF = ECStack.back();
1191  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1192  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1193  GenericValue Dest;
1194  Type *Ty = I.getType();
1195 
1196  if (Ty->isVectorTy()) {
1197  uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1198  assert(src1Size == Src2.AggregateVal.size());
1199  for (unsigned i = 0; i < src1Size; i++) {
1200  GenericValue Result;
1201  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1202  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1203  Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1204  Dest.AggregateVal.push_back(Result);
1205  }
1206  } else {
1207  // scalar
1208  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1209  llvm::APInt valueToShift = Src1.IntVal;
1210  Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1211  }
1212 
1213  SetValue(&I, Dest, SF);
1214 }
1215 
1217  ExecutionContext &SF = ECStack.back();
1218  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1219  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1220  GenericValue Dest;
1221  Type *Ty = I.getType();
1222 
1223  if (Ty->isVectorTy()) {
1224  uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1225  assert(src1Size == Src2.AggregateVal.size());
1226  for (unsigned i = 0; i < src1Size; i++) {
1227  GenericValue Result;
1228  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1229  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1230  Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1231  Dest.AggregateVal.push_back(Result);
1232  }
1233  } else {
1234  // scalar
1235  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1236  llvm::APInt valueToShift = Src1.IntVal;
1237  Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1238  }
1239 
1240  SetValue(&I, Dest, SF);
1241 }
1242 
1244  ExecutionContext &SF = ECStack.back();
1245  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1246  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1247  GenericValue Dest;
1248  Type *Ty = I.getType();
1249 
1250  if (Ty->isVectorTy()) {
1251  size_t src1Size = Src1.AggregateVal.size();
1252  assert(src1Size == Src2.AggregateVal.size());
1253  for (unsigned i = 0; i < src1Size; i++) {
1254  GenericValue Result;
1255  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1256  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1257  Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1258  Dest.AggregateVal.push_back(Result);
1259  }
1260  } else {
1261  // scalar
1262  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1263  llvm::APInt valueToShift = Src1.IntVal;
1264  Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1265  }
1266 
1267  SetValue(&I, Dest, SF);
1268 }
1269 
1270 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1271  ExecutionContext &SF) {
1272  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1273  Type *SrcTy = SrcVal->getType();
1274  if (SrcTy->isVectorTy()) {
1275  Type *DstVecTy = DstTy->getScalarType();
1276  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1277  unsigned NumElts = Src.AggregateVal.size();
1278  // the sizes of src and dst vectors must be equal
1279  Dest.AggregateVal.resize(NumElts);
1280  for (unsigned i = 0; i < NumElts; i++)
1281  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1282  } else {
1283  IntegerType *DITy = cast<IntegerType>(DstTy);
1284  unsigned DBitWidth = DITy->getBitWidth();
1285  Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1286  }
1287  return Dest;
1288 }
1289 
1290 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1291  ExecutionContext &SF) {
1292  Type *SrcTy = SrcVal->getType();
1293  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1294  if (SrcTy->isVectorTy()) {
1295  Type *DstVecTy = DstTy->getScalarType();
1296  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1297  unsigned size = Src.AggregateVal.size();
1298  // the sizes of src and dst vectors must be equal.
1299  Dest.AggregateVal.resize(size);
1300  for (unsigned i = 0; i < size; i++)
1301  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1302  } else {
1303  auto *DITy = cast<IntegerType>(DstTy);
1304  unsigned DBitWidth = DITy->getBitWidth();
1305  Dest.IntVal = Src.IntVal.sext(DBitWidth);
1306  }
1307  return Dest;
1308 }
1309 
1310 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1311  ExecutionContext &SF) {
1312  Type *SrcTy = SrcVal->getType();
1313  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1314  if (SrcTy->isVectorTy()) {
1315  Type *DstVecTy = DstTy->getScalarType();
1316  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1317 
1318  unsigned size = Src.AggregateVal.size();
1319  // the sizes of src and dst vectors must be equal.
1320  Dest.AggregateVal.resize(size);
1321  for (unsigned i = 0; i < size; i++)
1322  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1323  } else {
1324  auto *DITy = cast<IntegerType>(DstTy);
1325  unsigned DBitWidth = DITy->getBitWidth();
1326  Dest.IntVal = Src.IntVal.zext(DBitWidth);
1327  }
1328  return Dest;
1329 }
1330 
1331 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1332  ExecutionContext &SF) {
1333  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1334 
1335  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1336  assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1337  DstTy->getScalarType()->isFloatTy() &&
1338  "Invalid FPTrunc instruction");
1339 
1340  unsigned size = Src.AggregateVal.size();
1341  // the sizes of src and dst vectors must be equal.
1342  Dest.AggregateVal.resize(size);
1343  for (unsigned i = 0; i < size; i++)
1344  Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1345  } else {
1346  assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1347  "Invalid FPTrunc instruction");
1348  Dest.FloatVal = (float)Src.DoubleVal;
1349  }
1350 
1351  return Dest;
1352 }
1353 
1354 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1355  ExecutionContext &SF) {
1356  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1357 
1358  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1359  assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1360  DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1361 
1362  unsigned size = Src.AggregateVal.size();
1363  // the sizes of src and dst vectors must be equal.
1364  Dest.AggregateVal.resize(size);
1365  for (unsigned i = 0; i < size; i++)
1366  Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1367  } else {
1368  assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1369  "Invalid FPExt instruction");
1370  Dest.DoubleVal = (double)Src.FloatVal;
1371  }
1372 
1373  return Dest;
1374 }
1375 
1376 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1377  ExecutionContext &SF) {
1378  Type *SrcTy = SrcVal->getType();
1379  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1380 
1381  if (SrcTy->getTypeID() == Type::VectorTyID) {
1382  Type *DstVecTy = DstTy->getScalarType();
1383  Type *SrcVecTy = SrcTy->getScalarType();
1384  uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1385  unsigned size = Src.AggregateVal.size();
1386  // the sizes of src and dst vectors must be equal.
1387  Dest.AggregateVal.resize(size);
1388 
1389  if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1390  assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1391  for (unsigned i = 0; i < size; i++)
1392  Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1393  Src.AggregateVal[i].FloatVal, DBitWidth);
1394  } else {
1395  for (unsigned i = 0; i < size; i++)
1396  Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1397  Src.AggregateVal[i].DoubleVal, DBitWidth);
1398  }
1399  } else {
1400  // scalar
1401  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1402  assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1403 
1404  if (SrcTy->getTypeID() == Type::FloatTyID)
1405  Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1406  else {
1407  Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1408  }
1409  }
1410 
1411  return Dest;
1412 }
1413 
1414 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1415  ExecutionContext &SF) {
1416  Type *SrcTy = SrcVal->getType();
1417  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1418 
1419  if (SrcTy->getTypeID() == Type::VectorTyID) {
1420  Type *DstVecTy = DstTy->getScalarType();
1421  Type *SrcVecTy = SrcTy->getScalarType();
1422  uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1423  unsigned size = Src.AggregateVal.size();
1424  // the sizes of src and dst vectors must be equal
1425  Dest.AggregateVal.resize(size);
1426 
1427  if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1428  assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1429  for (unsigned i = 0; i < size; i++)
1430  Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1431  Src.AggregateVal[i].FloatVal, DBitWidth);
1432  } else {
1433  for (unsigned i = 0; i < size; i++)
1434  Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1435  Src.AggregateVal[i].DoubleVal, DBitWidth);
1436  }
1437  } else {
1438  // scalar
1439  unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1440  assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1441 
1442  if (SrcTy->getTypeID() == Type::FloatTyID)
1443  Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1444  else {
1445  Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1446  }
1447  }
1448  return Dest;
1449 }
1450 
1451 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1452  ExecutionContext &SF) {
1453  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1454 
1455  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1456  Type *DstVecTy = DstTy->getScalarType();
1457  unsigned size = Src.AggregateVal.size();
1458  // the sizes of src and dst vectors must be equal
1459  Dest.AggregateVal.resize(size);
1460 
1461  if (DstVecTy->getTypeID() == Type::FloatTyID) {
1462  assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1463  for (unsigned i = 0; i < size; i++)
1464  Dest.AggregateVal[i].FloatVal =
1466  } else {
1467  for (unsigned i = 0; i < size; i++)
1468  Dest.AggregateVal[i].DoubleVal =
1470  }
1471  } else {
1472  // scalar
1473  assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1474  if (DstTy->getTypeID() == Type::FloatTyID)
1476  else {
1478  }
1479  }
1480  return Dest;
1481 }
1482 
1483 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1484  ExecutionContext &SF) {
1485  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1486 
1487  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1488  Type *DstVecTy = DstTy->getScalarType();
1489  unsigned size = Src.AggregateVal.size();
1490  // the sizes of src and dst vectors must be equal
1491  Dest.AggregateVal.resize(size);
1492 
1493  if (DstVecTy->getTypeID() == Type::FloatTyID) {
1494  assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1495  for (unsigned i = 0; i < size; i++)
1496  Dest.AggregateVal[i].FloatVal =
1498  } else {
1499  for (unsigned i = 0; i < size; i++)
1500  Dest.AggregateVal[i].DoubleVal =
1502  }
1503  } else {
1504  // scalar
1505  assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1506 
1507  if (DstTy->getTypeID() == Type::FloatTyID)
1509  else {
1511  }
1512  }
1513 
1514  return Dest;
1515 }
1516 
1517 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1518  ExecutionContext &SF) {
1519  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1520  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1521  assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1522 
1523  Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1524  return Dest;
1525 }
1526 
1527 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1528  ExecutionContext &SF) {
1529  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1530  assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1531 
1533  if (PtrSize != Src.IntVal.getBitWidth())
1534  Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1535 
1537  return Dest;
1538 }
1539 
1540 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1541  ExecutionContext &SF) {
1542 
1543  // This instruction supports bitwise conversion of vectors to integers and
1544  // to vectors of other types (as long as they have the same size)
1545  Type *SrcTy = SrcVal->getType();
1546  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1547 
1548  if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1549  (DstTy->getTypeID() == Type::VectorTyID)) {
1550  // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1551  // scalar src bitcast to vector dst
1552  bool isLittleEndian = getDataLayout().isLittleEndian();
1553  GenericValue TempDst, TempSrc, SrcVec;
1554  Type *SrcElemTy;
1555  Type *DstElemTy;
1556  unsigned SrcBitSize;
1557  unsigned DstBitSize;
1558  unsigned SrcNum;
1559  unsigned DstNum;
1560 
1561  if (SrcTy->getTypeID() == Type::VectorTyID) {
1562  SrcElemTy = SrcTy->getScalarType();
1563  SrcBitSize = SrcTy->getScalarSizeInBits();
1564  SrcNum = Src.AggregateVal.size();
1565  SrcVec = Src;
1566  } else {
1567  // if src is scalar value, make it vector <1 x type>
1568  SrcElemTy = SrcTy;
1569  SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1570  SrcNum = 1;
1571  SrcVec.AggregateVal.push_back(Src);
1572  }
1573 
1574  if (DstTy->getTypeID() == Type::VectorTyID) {
1575  DstElemTy = DstTy->getScalarType();
1576  DstBitSize = DstTy->getScalarSizeInBits();
1577  DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1578  } else {
1579  DstElemTy = DstTy;
1580  DstBitSize = DstTy->getPrimitiveSizeInBits();
1581  DstNum = 1;
1582  }
1583 
1584  if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1585  llvm_unreachable("Invalid BitCast");
1586 
1587  // If src is floating point, cast to integer first.
1588  TempSrc.AggregateVal.resize(SrcNum);
1589  if (SrcElemTy->isFloatTy()) {
1590  for (unsigned i = 0; i < SrcNum; i++)
1591  TempSrc.AggregateVal[i].IntVal =
1592  APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1593 
1594  } else if (SrcElemTy->isDoubleTy()) {
1595  for (unsigned i = 0; i < SrcNum; i++)
1596  TempSrc.AggregateVal[i].IntVal =
1597  APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1598  } else if (SrcElemTy->isIntegerTy()) {
1599  for (unsigned i = 0; i < SrcNum; i++)
1600  TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1601  } else {
1602  // Pointers are not allowed as the element type of vector.
1603  llvm_unreachable("Invalid Bitcast");
1604  }
1605 
1606  // now TempSrc is integer type vector
1607  if (DstNum < SrcNum) {
1608  // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1609  unsigned Ratio = SrcNum / DstNum;
1610  unsigned SrcElt = 0;
1611  for (unsigned i = 0; i < DstNum; i++) {
1612  GenericValue Elt;
1613  Elt.IntVal = 0;
1614  Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1615  unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1616  for (unsigned j = 0; j < Ratio; j++) {
1617  APInt Tmp;
1618  Tmp = Tmp.zext(SrcBitSize);
1619  Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1620  Tmp = Tmp.zext(DstBitSize);
1621  Tmp <<= ShiftAmt;
1622  ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1623  Elt.IntVal |= Tmp;
1624  }
1625  TempDst.AggregateVal.push_back(Elt);
1626  }
1627  } else {
1628  // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1629  unsigned Ratio = DstNum / SrcNum;
1630  for (unsigned i = 0; i < SrcNum; i++) {
1631  unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1632  for (unsigned j = 0; j < Ratio; j++) {
1633  GenericValue Elt;
1634  Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1635  Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1636  Elt.IntVal.lshrInPlace(ShiftAmt);
1637  // it could be DstBitSize == SrcBitSize, so check it
1638  if (DstBitSize < SrcBitSize)
1639  Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1640  ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1641  TempDst.AggregateVal.push_back(Elt);
1642  }
1643  }
1644  }
1645 
1646  // convert result from integer to specified type
1647  if (DstTy->getTypeID() == Type::VectorTyID) {
1648  if (DstElemTy->isDoubleTy()) {
1649  Dest.AggregateVal.resize(DstNum);
1650  for (unsigned i = 0; i < DstNum; i++)
1651  Dest.AggregateVal[i].DoubleVal =
1652  TempDst.AggregateVal[i].IntVal.bitsToDouble();
1653  } else if (DstElemTy->isFloatTy()) {
1654  Dest.AggregateVal.resize(DstNum);
1655  for (unsigned i = 0; i < DstNum; i++)
1656  Dest.AggregateVal[i].FloatVal =
1657  TempDst.AggregateVal[i].IntVal.bitsToFloat();
1658  } else {
1659  Dest = TempDst;
1660  }
1661  } else {
1662  if (DstElemTy->isDoubleTy())
1663  Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1664  else if (DstElemTy->isFloatTy()) {
1665  Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1666  } else {
1667  Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1668  }
1669  }
1670  } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1671  // (DstTy->getTypeID() == Type::VectorTyID))
1672 
1673  // scalar src bitcast to scalar dst
1674  if (DstTy->isPointerTy()) {
1675  assert(SrcTy->isPointerTy() && "Invalid BitCast");
1676  Dest.PointerVal = Src.PointerVal;
1677  } else if (DstTy->isIntegerTy()) {
1678  if (SrcTy->isFloatTy())
1679  Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1680  else if (SrcTy->isDoubleTy()) {
1681  Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1682  } else if (SrcTy->isIntegerTy()) {
1683  Dest.IntVal = Src.IntVal;
1684  } else {
1685  llvm_unreachable("Invalid BitCast");
1686  }
1687  } else if (DstTy->isFloatTy()) {
1688  if (SrcTy->isIntegerTy())
1689  Dest.FloatVal = Src.IntVal.bitsToFloat();
1690  else {
1691  Dest.FloatVal = Src.FloatVal;
1692  }
1693  } else if (DstTy->isDoubleTy()) {
1694  if (SrcTy->isIntegerTy())
1695  Dest.DoubleVal = Src.IntVal.bitsToDouble();
1696  else {
1697  Dest.DoubleVal = Src.DoubleVal;
1698  }
1699  } else {
1700  llvm_unreachable("Invalid Bitcast");
1701  }
1702  }
1703 
1704  return Dest;
1705 }
1706 
1708  ExecutionContext &SF = ECStack.back();
1709  SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1710 }
1711 
1713  ExecutionContext &SF = ECStack.back();
1714  SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1715 }
1716 
1718  ExecutionContext &SF = ECStack.back();
1719  SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1720 }
1721 
1723  ExecutionContext &SF = ECStack.back();
1724  SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1725 }
1726 
1728  ExecutionContext &SF = ECStack.back();
1729  SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1730 }
1731 
1733  ExecutionContext &SF = ECStack.back();
1734  SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1735 }
1736 
1738  ExecutionContext &SF = ECStack.back();
1739  SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1740 }
1741 
1743  ExecutionContext &SF = ECStack.back();
1744  SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1745 }
1746 
1748  ExecutionContext &SF = ECStack.back();
1749  SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1750 }
1751 
1753  ExecutionContext &SF = ECStack.back();
1754  SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1755 }
1756 
1758  ExecutionContext &SF = ECStack.back();
1759  SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1760 }
1761 
1763  ExecutionContext &SF = ECStack.back();
1764  SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1765 }
1766 
1767 #define IMPLEMENT_VAARG(TY) \
1768  case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1769 
1771  ExecutionContext &SF = ECStack.back();
1772 
1773  // Get the incoming valist parameter. LLI treats the valist as a
1774  // (ec-stack-depth var-arg-index) pair.
1775  GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1776  GenericValue Dest;
1777  GenericValue Src = ECStack[VAList.UIntPairVal.first]
1778  .VarArgs[VAList.UIntPairVal.second];
1779  Type *Ty = I.getType();
1780  switch (Ty->getTypeID()) {
1781  case Type::IntegerTyID:
1782  Dest.IntVal = Src.IntVal;
1783  break;
1784  IMPLEMENT_VAARG(Pointer);
1785  IMPLEMENT_VAARG(Float);
1786  IMPLEMENT_VAARG(Double);
1787  default:
1788  dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1789  llvm_unreachable(nullptr);
1790  }
1791 
1792  // Set the Value of this Instruction.
1793  SetValue(&I, Dest, SF);
1794 
1795  // Move the pointer to the next vararg.
1796  ++VAList.UIntPairVal.second;
1797 }
1798 
1800  ExecutionContext &SF = ECStack.back();
1801  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1802  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1803  GenericValue Dest;
1804 
1805  Type *Ty = I.getType();
1806  const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1807 
1808  if(Src1.AggregateVal.size() > indx) {
1809  switch (Ty->getTypeID()) {
1810  default:
1811  dbgs() << "Unhandled destination type for extractelement instruction: "
1812  << *Ty << "\n";
1813  llvm_unreachable(nullptr);
1814  break;
1815  case Type::IntegerTyID:
1816  Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1817  break;
1818  case Type::FloatTyID:
1819  Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1820  break;
1821  case Type::DoubleTyID:
1822  Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1823  break;
1824  }
1825  } else {
1826  dbgs() << "Invalid index in extractelement instruction\n";
1827  }
1828 
1829  SetValue(&I, Dest, SF);
1830 }
1831 
1833  ExecutionContext &SF = ECStack.back();
1834  VectorType *Ty = cast<VectorType>(I.getType());
1835 
1836  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1837  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1838  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1839  GenericValue Dest;
1840 
1841  Type *TyContained = Ty->getElementType();
1842 
1843  const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1844  Dest.AggregateVal = Src1.AggregateVal;
1845 
1846  if(Src1.AggregateVal.size() <= indx)
1847  llvm_unreachable("Invalid index in insertelement instruction");
1848  switch (TyContained->getTypeID()) {
1849  default:
1850  llvm_unreachable("Unhandled dest type for insertelement instruction");
1851  case Type::IntegerTyID:
1852  Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1853  break;
1854  case Type::FloatTyID:
1855  Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1856  break;
1857  case Type::DoubleTyID:
1858  Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1859  break;
1860  }
1861  SetValue(&I, Dest, SF);
1862 }
1863 
1865  ExecutionContext &SF = ECStack.back();
1866 
1867  VectorType *Ty = cast<VectorType>(I.getType());
1868 
1869  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1870  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1871  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1872  GenericValue Dest;
1873 
1874  // There is no need to check types of src1 and src2, because the compiled
1875  // bytecode can't contain different types for src1 and src2 for a
1876  // shufflevector instruction.
1877 
1878  Type *TyContained = Ty->getElementType();
1879  unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1880  unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1881  unsigned src3Size = (unsigned)Src3.AggregateVal.size();
1882 
1883  Dest.AggregateVal.resize(src3Size);
1884 
1885  switch (TyContained->getTypeID()) {
1886  default:
1887  llvm_unreachable("Unhandled dest type for insertelement instruction");
1888  break;
1889  case Type::IntegerTyID:
1890  for( unsigned i=0; i<src3Size; i++) {
1891  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1892  if(j < src1Size)
1893  Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1894  else if(j < src1Size + src2Size)
1895  Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1896  else
1897  // The selector may not be greater than sum of lengths of first and
1898  // second operands and llasm should not allow situation like
1899  // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1900  // <2 x i32> < i32 0, i32 5 >,
1901  // where i32 5 is invalid, but let it be additional check here:
1902  llvm_unreachable("Invalid mask in shufflevector instruction");
1903  }
1904  break;
1905  case Type::FloatTyID:
1906  for( unsigned i=0; i<src3Size; i++) {
1907  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1908  if(j < src1Size)
1909  Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1910  else if(j < src1Size + src2Size)
1911  Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1912  else
1913  llvm_unreachable("Invalid mask in shufflevector instruction");
1914  }
1915  break;
1916  case Type::DoubleTyID:
1917  for( unsigned i=0; i<src3Size; i++) {
1918  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1919  if(j < src1Size)
1920  Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1921  else if(j < src1Size + src2Size)
1922  Dest.AggregateVal[i].DoubleVal =
1923  Src2.AggregateVal[j-src1Size].DoubleVal;
1924  else
1925  llvm_unreachable("Invalid mask in shufflevector instruction");
1926  }
1927  break;
1928  }
1929  SetValue(&I, Dest, SF);
1930 }
1931 
1933  ExecutionContext &SF = ECStack.back();
1934  Value *Agg = I.getAggregateOperand();
1935  GenericValue Dest;
1936  GenericValue Src = getOperandValue(Agg, SF);
1937 
1939  unsigned Num = I.getNumIndices();
1940  GenericValue *pSrc = &Src;
1941 
1942  for (unsigned i = 0 ; i < Num; ++i) {
1943  pSrc = &pSrc->AggregateVal[*IdxBegin];
1944  ++IdxBegin;
1945  }
1946 
1947  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1948  switch (IndexedType->getTypeID()) {
1949  default:
1950  llvm_unreachable("Unhandled dest type for extractelement instruction");
1951  break;
1952  case Type::IntegerTyID:
1953  Dest.IntVal = pSrc->IntVal;
1954  break;
1955  case Type::FloatTyID:
1956  Dest.FloatVal = pSrc->FloatVal;
1957  break;
1958  case Type::DoubleTyID:
1959  Dest.DoubleVal = pSrc->DoubleVal;
1960  break;
1961  case Type::ArrayTyID:
1962  case Type::StructTyID:
1963  case Type::VectorTyID:
1964  Dest.AggregateVal = pSrc->AggregateVal;
1965  break;
1966  case Type::PointerTyID:
1967  Dest.PointerVal = pSrc->PointerVal;
1968  break;
1969  }
1970 
1971  SetValue(&I, Dest, SF);
1972 }
1973 
1975 
1976  ExecutionContext &SF = ECStack.back();
1977  Value *Agg = I.getAggregateOperand();
1978 
1979  GenericValue Src1 = getOperandValue(Agg, SF);
1980  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1981  GenericValue Dest = Src1; // Dest is a slightly changed Src1
1982 
1984  unsigned Num = I.getNumIndices();
1985 
1986  GenericValue *pDest = &Dest;
1987  for (unsigned i = 0 ; i < Num; ++i) {
1988  pDest = &pDest->AggregateVal[*IdxBegin];
1989  ++IdxBegin;
1990  }
1991  // pDest points to the target value in the Dest now
1992 
1993  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1994 
1995  switch (IndexedType->getTypeID()) {
1996  default:
1997  llvm_unreachable("Unhandled dest type for insertelement instruction");
1998  break;
1999  case Type::IntegerTyID:
2000  pDest->IntVal = Src2.IntVal;
2001  break;
2002  case Type::FloatTyID:
2003  pDest->FloatVal = Src2.FloatVal;
2004  break;
2005  case Type::DoubleTyID:
2006  pDest->DoubleVal = Src2.DoubleVal;
2007  break;
2008  case Type::ArrayTyID:
2009  case Type::StructTyID:
2010  case Type::VectorTyID:
2011  pDest->AggregateVal = Src2.AggregateVal;
2012  break;
2013  case Type::PointerTyID:
2014  pDest->PointerVal = Src2.PointerVal;
2015  break;
2016  }
2017 
2018  SetValue(&I, Dest, SF);
2019 }
2020 
2021 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
2022  ExecutionContext &SF) {
2023  switch (CE->getOpcode()) {
2024  case Instruction::Trunc:
2025  return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
2026  case Instruction::ZExt:
2027  return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
2028  case Instruction::SExt:
2029  return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
2030  case Instruction::FPTrunc:
2031  return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
2032  case Instruction::FPExt:
2033  return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
2034  case Instruction::UIToFP:
2035  return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
2036  case Instruction::SIToFP:
2037  return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
2038  case Instruction::FPToUI:
2039  return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
2040  case Instruction::FPToSI:
2041  return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
2042  case Instruction::PtrToInt:
2043  return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
2044  case Instruction::IntToPtr:
2045  return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
2046  case Instruction::BitCast:
2047  return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
2048  case Instruction::GetElementPtr:
2049  return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2050  gep_type_end(CE), SF);
2051  case Instruction::FCmp:
2052  case Instruction::ICmp:
2053  return executeCmpInst(CE->getPredicate(),
2054  getOperandValue(CE->getOperand(0), SF),
2055  getOperandValue(CE->getOperand(1), SF),
2056  CE->getOperand(0)->getType());
2057  case Instruction::Select:
2058  return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2059  getOperandValue(CE->getOperand(1), SF),
2060  getOperandValue(CE->getOperand(2), SF),
2061  CE->getOperand(0)->getType());
2062  default :
2063  break;
2064  }
2065 
2066  // The cases below here require a GenericValue parameter for the result
2067  // so we initialize one, compute it and then return it.
2068  GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2069  GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2070  GenericValue Dest;
2071  Type * Ty = CE->getOperand(0)->getType();
2072  switch (CE->getOpcode()) {
2073  case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2074  case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2075  case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2076  case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2077  case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2078  case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2079  case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2080  case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2081  case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2082  case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2083  case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2084  case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2085  case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2086  case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2087  case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2088  case Instruction::Shl:
2089  Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2090  break;
2091  case Instruction::LShr:
2092  Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2093  break;
2094  case Instruction::AShr:
2095  Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2096  break;
2097  default:
2098  dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2099  llvm_unreachable("Unhandled ConstantExpr");
2100  }
2101  return Dest;
2102 }
2103 
2104 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2105  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2106  return getConstantExprValue(CE, SF);
2107  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2108  return getConstantValue(CPV);
2109  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2110  return PTOGV(getPointerToGlobal(GV));
2111  } else {
2112  return SF.Values[V];
2113  }
2114 }
2115 
2116 //===----------------------------------------------------------------------===//
2117 // Dispatch and Execution Code
2118 //===----------------------------------------------------------------------===//
2119 
2120 //===----------------------------------------------------------------------===//
2121 // callFunction - Execute the specified function...
2122 //
2124  assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
2125  ECStack.back().Caller.arg_size() == ArgVals.size()) &&
2126  "Incorrect number of arguments passed into function call!");
2127  // Make a new stack frame... and fill it in.
2128  ECStack.emplace_back();
2129  ExecutionContext &StackFrame = ECStack.back();
2130  StackFrame.CurFunction = F;
2131 
2132  // Special handling for external functions.
2133  if (F->isDeclaration()) {
2134  GenericValue Result = callExternalFunction (F, ArgVals);
2135  // Simulate a 'ret' instruction of the appropriate type.
2136  popStackAndReturnValueToCaller (F->getReturnType (), Result);
2137  return;
2138  }
2139 
2140  // Get pointers to first LLVM BB & Instruction in function.
2141  StackFrame.CurBB = &F->front();
2142  StackFrame.CurInst = StackFrame.CurBB->begin();
2143 
2144  // Run through the function arguments and initialize their values...
2145  assert((ArgVals.size() == F->arg_size() ||
2146  (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2147  "Invalid number of values passed to function invocation!");
2148 
2149  // Handle non-varargs arguments...
2150  unsigned i = 0;
2151  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2152  AI != E; ++AI, ++i)
2153  SetValue(&*AI, ArgVals[i], StackFrame);
2154 
2155  // Handle varargs arguments...
2156  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2157 }
2158 
2159 
2161  while (!ECStack.empty()) {
2162  // Interpret a single instruction & increment the "PC".
2163  ExecutionContext &SF = ECStack.back(); // Current stack frame
2164  Instruction &I = *SF.CurInst++; // Increment before execute
2165 
2166  // Track the number of dynamic instructions executed.
2167  ++NumDynamicInsts;
2168 
2169  LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
2170  visit(I); // Dispatch to one of the visit* methods...
2171  }
2172 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
IterTy arg_end() const
Definition: CallSite.h:588
Return a value (possibly void), from a function.
void visitVAArgInst(VAArgInst &I)
Definition: Execution.cpp:1770
PointerTy PointerVal
Definition: GenericValue.h:31
std::vector< GenericValue > AggregateVal
Definition: GenericValue.h:37
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:289
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1209
This instruction extracts a struct member or array element value from an aggregate value...
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1562
APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:836
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:29
Value * getAggregateOperand()
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2134
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:568
IterTy arg_begin() const
Definition: CallSite.h:584
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:139
This class represents lattice values for constants.
Definition: AllocatorList.h:23
BinaryOps getOpcode() const
Definition: InstrTypes.h:402
void visitAllocaInst(AllocaInst &I)
Definition: Execution.cpp:1015
void visitStoreInst(StoreInst &I)
Definition: Execution.cpp:1102
void visitUnaryOperator(UnaryOperator &I)
Definition: Execution.cpp:62
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float vlalue.
Definition: APInt.h:2146
unsigned getNumIndices() const
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF)
Definition: Execution.cpp:41
iterator begin() const
Definition: ArrayRef.h:136
2: 32-bit floating point type
Definition: Type.h:58
APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1595
void visitTruncInst(TruncInst &I)
Definition: Execution.cpp:1707
void visitFPToUIInst(FPToUIInst &I)
Definition: Execution.cpp:1742
unsigned char Untyped[8]
Definition: GenericValue.h:33
static void executeFDivInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:141
This class provides various memory handling functions that manipulate MemoryBlock instances...
Definition: Memory.h:53
This class represents zero extension of integer types.
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:604
void visitGetElementPtrInst(GetElementPtrInst &I)
Definition: Execution.cpp:1085
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:860
APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1524
BasicBlock::iterator CurInst
Definition: Interpreter.h:63
#define MASK_VECTOR_NANS(TY, X, Y, FLAG)
Definition: Execution.cpp:417
Value * getCondition() const
gep_type_iterator gep_type_end(const User *GEP)
unsigned less or equal
Definition: InstrTypes.h:758
unsigned less than
Definition: InstrTypes.h:757
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:738
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:586
std::map< Value *, GenericValue > Values
Definition: Interpreter.h:66
This instruction constructs a fixed permutation of two input vectors.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:732
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:748
void visitExtractElementInst(ExtractElementInst &I)
Definition: Execution.cpp:1799
BasicBlock * getSuccessor(unsigned i) const
APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:813
void visitShl(BinaryOperator &I)
Definition: Execution.cpp:1189
arg_iterator arg_end()
Definition: Function.h:704
13: Structures
Definition: Type.h:72
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:388
STATISTIC(NumFunctions, "Total number of functions")
F(f)
This class represents a sign extension of integer types.
An instruction for reading from memory.
Definition: Instructions.h:167
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:111
const DataLayout & getDataLayout() const
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:878
Value * getCondition() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:229
#define IMPLEMENT_VECTOR_FCMP(OP)
Definition: Execution.cpp:370
15: Pointers
Definition: Type.h:74
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:482
unsigned getPredicate() const
Return the ICMP or FCMP predicate value.
Definition: Constants.cpp:1209
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1508
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:268
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:261
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:531
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:743
void visitFCmpInst(FCmpInst &I)
Definition: Execution.cpp:663
void * PointerTy
Definition: GenericValue.h:21
ArrayRef< unsigned > getIndices() const
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:562
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:742
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:231
static Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Returns the type of the element that would be extracted with an extractvalue instruction with the spe...
This class represents the LLVM &#39;select&#39; instruction.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition: APInt.h:1730
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:137
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:96
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:161
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:992
void * getPointerToGlobal(const GlobalValue *GV)
getPointerToGlobal - This returns the address of the specified global value.
Class to represent struct types.
Definition: DerivedTypes.h:233
A Use represents the edge between a Value definition and its users.
Definition: Use.h:55
ValTy * getCalledValue() const
Return the pointer to function that is being called.
Definition: CallSite.h:104
void visitSelectInst(SelectInst &I)
Definition: Execution.cpp:859
#define IMPLEMENT_BINARY_OPERATOR(OP, TY)
Definition: Execution.cpp:103
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:196
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:739
Type * getType() const
Return the type of the instruction that generated this call site.
Definition: CallSite.h:272
static cl::opt< bool > PrintVolatile("interpreter-print-volatile", cl::Hidden, cl::desc("make the interpreter print every volatile load and store"))
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:977
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:191
This file implements a class to represent arbitrary precision integral constant values and operations...
This class represents a cast from a pointer to an integer.
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)
Definition: Execution.cpp:172
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:317
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:89
InstrTy * getInstruction() const
Definition: CallSite.h:96
void visitInsertElementInst(InsertElementInst &I)
Definition: Execution.cpp:1832
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:888
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:244
void visitFPTruncInst(FPTruncInst &I)
Definition: Execution.cpp:1722
#define IMPLEMENT_SCALAR_NANS(TY, X, Y)
Definition: Execution.cpp:392
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:219
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty)
FIXME: document.
This instruction compares its operands according to the predicate given to the constructor.
bool isVarArg() const
Definition: DerivedTypes.h:123
This class represents a no-op cast from one type to another.
void callFunction(Function *F, ArrayRef< GenericValue > ArgVals)
Definition: Execution.cpp:2123
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:32
void visitInsertValueInst(InsertValueInst &I)
Definition: Execution.cpp:1974
bool isLittleEndian() const
Layout endianness...
Definition: DataLayout.h:232
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
GenericValue getConstantValue(const Constant *C)
Converts a Constant* into a GenericValue, including handling of ConstantExpr values.
An instruction for storing to memory.
Definition: Instructions.h:320
This class represents a cast from floating point to signed integer.
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2153
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:275
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:66
void visitBitCastInst(BitCastInst &I)
Definition: Execution.cpp:1762
VectorType * getType() const
Overload to return most specific vector type.
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty)
StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:303
This class represents a truncation of integer types.
Value * getOperand(unsigned i) const
Definition: User.h:169
#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC)
Definition: Execution.cpp:521
#define IMPLEMENT_VAARG(TY)
Definition: Execution.cpp:1767
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:303
11: Arbitrary bit width integers
Definition: Type.h:70
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:140
bool isFloatTy() const
Return true if this is &#39;float&#39;, a 32-bit IEEE fp type.
Definition: Type.h:146
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:875
void visitLShr(BinaryOperator &I)
Definition: Execution.cpp:1216
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:233
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.h:168
void visitICmpInst(ICmpInst &I)
Definition: Execution.cpp:331
This instruction inserts a single (scalar) element into a VectorType value.
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:577
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:148
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition: APInt.cpp:1617
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:247
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
Conditional or Unconditional Branch instruction.
void visitCallSite(CallSite CS)
Definition: Execution.cpp:1116
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:148
This function has undefined behavior.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:41
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:223
Indirect Branch Instruction.
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:541
void visitIndirectBrInst(IndirectBrInst &I)
Definition: Execution.cpp:966
unsigned getNumIndices() const
BasicBlock * getDefaultDest() const
void visitZExtInst(ZExtInst &I)
Definition: Execution.cpp:1717
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:160
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:205
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:428
void exitCalled(GenericValue GV)
Definition: Execution.cpp:873
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:454
This instruction compares its operands according to the predicate given to the constructor.
size_t arg_size() const
Definition: Function.h:722
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:741
Value * getPointerOperand()
Definition: Instructions.h:284
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:559
arg_iterator arg_begin()
Definition: Function.h:695
struct IntPair UIntPairVal
Definition: GenericValue.h:32
Class to represent integer types.
Definition: DerivedTypes.h:40
Function * CurFunction
Definition: Interpreter.h:61
BasicBlock * CurBB
Definition: Interpreter.h:62
void visitExtractValueInst(ExtractValueInst &I)
Definition: Execution.cpp:1932
This class represents a cast from an integer to a pointer.
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:749
void visitFPToSIInst(FPToSIInst &I)
Definition: Execution.cpp:1747
void visitIntToPtrInst(IntToPtrInst &I)
Definition: Execution.cpp:1757
void visitFPExtInst(FPExtInst &I)
Definition: Execution.cpp:1727
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:644
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
void visitUnreachableInst(UnreachableInst &I)
Definition: Execution.cpp:930
static void executeFAddInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:108
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:747
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:468
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:970
signed greater than
Definition: InstrTypes.h:759
void * GVTOP(const GenericValue &GV)
Definition: GenericValue.h:50
idx_iterator idx_begin() const
static void executeFRemInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:152
14: Arrays
Definition: Type.h:73
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:736
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:946
LLVM_ATTRIBUTE_RETURNS_NONNULL void * safe_malloc(size_t Sz)
Definition: MemAlloc.h:25
Iterator for intrusive lists based on ilist_node.
void visitShuffleVectorInst(ShuffleVectorInst &I)
Definition: Execution.cpp:1864
unsigned getNumOperands() const
Definition: User.h:191
std::vector< GenericValue > VarArgs
Definition: Interpreter.h:67
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
auto size(R &&Range, typename std::enable_if< std::is_same< typename std::iterator_traits< decltype(Range.begin())>::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr) -> decltype(std::distance(Range.begin(), Range.end()))
Get the size of a range.
Definition: STLExtras.h:1173
void visitReturnInst(ReturnInst &I)
Definition: Execution.cpp:916
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:75
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:129
void visitSExtInst(SExtInst &I)
Definition: Execution.cpp:1712
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:746
unsigned arg_size() const
Definition: CallSite.h:226
iterator end() const
Definition: ArrayRef.h:137
signed less than
Definition: InstrTypes.h:761
This class represents a cast from floating point to unsigned integer.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:193
static void executeFSubInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:119
static void executeFMulInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:130
static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:698
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:163
signed less or equal
Definition: InstrTypes.h:762
Class to represent vector types.
Definition: DerivedTypes.h:427
GenericValue PTOGV(void *P)
Definition: GenericValue.h:49
Class for arbitrary precision integers.
Definition: APInt.h:69
void visitPtrToIntInst(PtrToIntInst &I)
Definition: Execution.cpp:1752
void runAtExitHandlers()
runAtExitHandlers - Run any functions registered by the program&#39;s calls to atexit(3), which we intercept and store in AtExitHandlers.
Definition: Interpreter.cpp:70
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition: APInt.h:2165
void visitBranchInst(BranchInst &I)
Definition: Execution.cpp:934
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:469
#define FLOAT_VECTOR_OP(OP)
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:807
void visitAShr(BinaryOperator &I)
Definition: Execution.cpp:1243
bool isVolatile() const
Return true if this is a store to a volatile memory location.
Definition: Instructions.h:353
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3, Type *Ty)
Definition: Execution.cpp:843
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:584
void LowerIntrinsicCall(CallInst *CI)
Replace a call to the specified intrinsic function.
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:550
UnaryOps getOpcode() const
Definition: InstrTypes.h:171
unsigned greater or equal
Definition: InstrTypes.h:756
APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1687
#define I(x, y, z)
Definition: MD5.cpp:58
#define IMPLEMENT_INTEGER_ICMP(OP, TY)
Definition: Execution.cpp:167
void visitSIToFPInst(SIToFPInst &I)
Definition: Execution.cpp:1737
This class represents a cast unsigned integer to floating point.
#define INTEGER_VECTOR_OPERATION(OP)
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:740
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:617
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
idx_iterator idx_begin() const
This instruction extracts a single (scalar) element from a VectorType value.
void visitBinaryOperator(BinaryOperator &I)
Definition: Execution.cpp:734
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, Type *Ty, const bool val)
Definition: Execution.cpp:648
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
bool isUnconditional() const
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:744
void visitLoadInst(LoadInst &I)
Definition: Execution.cpp:1091
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:227
float bitsToFloat() const
Converts APInt bits to a double.
Definition: APInt.h:1722
3: 64-bit floating point type
Definition: Type.h:59
Multiway switch.
This class represents a cast from signed integer to floating point.
#define IMPLEMENT_POINTER_ICMP(OP)
Definition: Execution.cpp:185
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty)
Definition: Execution.cpp:49
const BasicBlock & front() const
Definition: Function.h:687
This class represents a truncation of floating point types.
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:114
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:735
#define IMPLEMENT_UNORDERED(TY, X, Y)
Definition: Execution.cpp:510
ArrayRef< unsigned > getIndices() const
LLVM Value Representation.
Definition: Value.h:72
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:745
void visitUIToFPInst(UIToFPInst &I)
Definition: Execution.cpp:1732
#define INTEGER_VECTOR_FUNCTION(OP)
Invoke instruction.
GenericValue callExternalFunction(Function *F, ArrayRef< GenericValue > ArgVals)
Type * getElementType() const
Definition: DerivedTypes.h:394
void visitSwitchInst(SwitchInst &I)
Definition: Execution.cpp:947
unsigned greater than
Definition: InstrTypes.h:755
static unsigned getShiftAmount(uint64_t orgShiftAmount, llvm::APInt valueToShift)
Definition: Execution.cpp:1178
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:378
#define IMPLEMENT_FCMP(OP, TY)
Definition: Execution.cpp:357
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition: APInt.cpp:717
#define LLVM_DEBUG(X)
Definition: Debug.h:122
This class represents an extension of floating point types.
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:737
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition: APInt.h:1738
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:149
double bitsToDouble() const
Converts APInt bits to a double.
Definition: APInt.h:1713
VectorType * getType() const
Overload to return most specific vector type.
Value * getPointerOperand()
Definition: Instructions.h:412
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2141
Type * getElementType() const
Definition: DerivedTypes.h:563
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:734
signed greater or equal
Definition: InstrTypes.h:760
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:496
const BasicBlock * getParent() const
Definition: Instruction.h:66
an instruction to allocate memory on the stack
Definition: Instructions.h:59
This instruction inserts a struct field of array element value into an aggregate value.
gep_type_iterator gep_type_begin(const User *GEP)