LLVM  9.0.0svn
ExternalFunctions.cpp
Go to the documentation of this file.
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains both code to deal with invoking "external" functions, but
10 // also contains code that implements "exported" external functions.
11 //
12 // There are currently two mechanisms for handling external functions in the
13 // Interpreter. The first is to implement lle_* wrapper functions that are
14 // specific to well-known library functions which manually translate the
15 // arguments from GenericValues and make the call. If such a wrapper does
16 // not exist, and libffi is available, then the Interpreter will attempt to
17 // invoke the function using libffi, after finding its address.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "Interpreter.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/Config/config.h" // Detect libffi
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Mutex.h"
37 #include <cassert>
38 #include <cmath>
39 #include <csignal>
40 #include <cstdint>
41 #include <cstdio>
42 #include <cstring>
43 #include <map>
44 #include <string>
45 #include <utility>
46 #include <vector>
47 
48 #ifdef HAVE_FFI_CALL
49 #ifdef HAVE_FFI_H
50 #include <ffi.h>
51 #define USE_LIBFFI
52 #elif HAVE_FFI_FFI_H
53 #include <ffi/ffi.h>
54 #define USE_LIBFFI
55 #endif
56 #endif
57 
58 using namespace llvm;
59 
61 
65 
66 #ifdef USE_LIBFFI
67 typedef void (*RawFunc)();
69 #endif
70 
72 
73 static char getTypeID(Type *Ty) {
74  switch (Ty->getTypeID()) {
75  case Type::VoidTyID: return 'V';
76  case Type::IntegerTyID:
77  switch (cast<IntegerType>(Ty)->getBitWidth()) {
78  case 1: return 'o';
79  case 8: return 'B';
80  case 16: return 'S';
81  case 32: return 'I';
82  case 64: return 'L';
83  default: return 'N';
84  }
85  case Type::FloatTyID: return 'F';
86  case Type::DoubleTyID: return 'D';
87  case Type::PointerTyID: return 'P';
88  case Type::FunctionTyID:return 'M';
89  case Type::StructTyID: return 'T';
90  case Type::ArrayTyID: return 'A';
91  default: return 'U';
92  }
93 }
94 
95 // Try to find address of external function given a Function object.
96 // Please note, that interpreter doesn't know how to assemble a
97 // real call in general case (this is JIT job), that's why it assumes,
98 // that all external functions has the same (and pretty "general") signature.
99 // The typical example of such functions are "lle_X_" ones.
100 static ExFunc lookupFunction(const Function *F) {
101  // Function not found, look it up... start by figuring out what the
102  // composite function name should be.
103  std::string ExtName = "lle_";
104  FunctionType *FT = F->getFunctionType();
105  ExtName += getTypeID(FT->getReturnType());
106  for (Type *T : FT->params())
107  ExtName += getTypeID(T);
108  ExtName += ("_" + F->getName()).str();
109 
110  sys::ScopedLock Writer(*FunctionsLock);
111  ExFunc FnPtr = (*FuncNames)[ExtName];
112  if (!FnPtr)
113  FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
114  if (!FnPtr) // Try calling a generic function... if it exists...
116  ("lle_X_" + F->getName()).str());
117  if (FnPtr)
118  ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
119  return FnPtr;
120 }
121 
122 #ifdef USE_LIBFFI
123 static ffi_type *ffiTypeFor(Type *Ty) {
124  switch (Ty->getTypeID()) {
125  case Type::VoidTyID: return &ffi_type_void;
126  case Type::IntegerTyID:
127  switch (cast<IntegerType>(Ty)->getBitWidth()) {
128  case 8: return &ffi_type_sint8;
129  case 16: return &ffi_type_sint16;
130  case 32: return &ffi_type_sint32;
131  case 64: return &ffi_type_sint64;
132  }
133  case Type::FloatTyID: return &ffi_type_float;
134  case Type::DoubleTyID: return &ffi_type_double;
135  case Type::PointerTyID: return &ffi_type_pointer;
136  default: break;
137  }
138  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
139  report_fatal_error("Type could not be mapped for use with libffi.");
140  return NULL;
141 }
142 
143 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
144  void *ArgDataPtr) {
145  switch (Ty->getTypeID()) {
146  case Type::IntegerTyID:
147  switch (cast<IntegerType>(Ty)->getBitWidth()) {
148  case 8: {
149  int8_t *I8Ptr = (int8_t *) ArgDataPtr;
150  *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
151  return ArgDataPtr;
152  }
153  case 16: {
154  int16_t *I16Ptr = (int16_t *) ArgDataPtr;
155  *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
156  return ArgDataPtr;
157  }
158  case 32: {
159  int32_t *I32Ptr = (int32_t *) ArgDataPtr;
160  *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
161  return ArgDataPtr;
162  }
163  case 64: {
164  int64_t *I64Ptr = (int64_t *) ArgDataPtr;
165  *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
166  return ArgDataPtr;
167  }
168  }
169  case Type::FloatTyID: {
170  float *FloatPtr = (float *) ArgDataPtr;
171  *FloatPtr = AV.FloatVal;
172  return ArgDataPtr;
173  }
174  case Type::DoubleTyID: {
175  double *DoublePtr = (double *) ArgDataPtr;
176  *DoublePtr = AV.DoubleVal;
177  return ArgDataPtr;
178  }
179  case Type::PointerTyID: {
180  void **PtrPtr = (void **) ArgDataPtr;
181  *PtrPtr = GVTOP(AV);
182  return ArgDataPtr;
183  }
184  default: break;
185  }
186  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
187  report_fatal_error("Type value could not be mapped for use with libffi.");
188  return NULL;
189 }
190 
191 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
192  const DataLayout &TD, GenericValue &Result) {
193  ffi_cif cif;
194  FunctionType *FTy = F->getFunctionType();
195  const unsigned NumArgs = F->arg_size();
196 
197  // TODO: We don't have type information about the remaining arguments, because
198  // this information is never passed into ExecutionEngine::runFunction().
199  if (ArgVals.size() > NumArgs && F->isVarArg()) {
200  report_fatal_error("Calling external var arg function '" + F->getName()
201  + "' is not supported by the Interpreter.");
202  }
203 
204  unsigned ArgBytes = 0;
205 
206  std::vector<ffi_type*> args(NumArgs);
207  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
208  A != E; ++A) {
209  const unsigned ArgNo = A->getArgNo();
210  Type *ArgTy = FTy->getParamType(ArgNo);
211  args[ArgNo] = ffiTypeFor(ArgTy);
212  ArgBytes += TD.getTypeStoreSize(ArgTy);
213  }
214 
216  ArgData.resize(ArgBytes);
217  uint8_t *ArgDataPtr = ArgData.data();
219  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
220  A != E; ++A) {
221  const unsigned ArgNo = A->getArgNo();
222  Type *ArgTy = FTy->getParamType(ArgNo);
223  values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
224  ArgDataPtr += TD.getTypeStoreSize(ArgTy);
225  }
226 
227  Type *RetTy = FTy->getReturnType();
228  ffi_type *rtype = ffiTypeFor(RetTy);
229 
230  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
231  FFI_OK) {
233  if (RetTy->getTypeID() != Type::VoidTyID)
234  ret.resize(TD.getTypeStoreSize(RetTy));
235  ffi_call(&cif, Fn, ret.data(), values.data());
236  switch (RetTy->getTypeID()) {
237  case Type::IntegerTyID:
238  switch (cast<IntegerType>(RetTy)->getBitWidth()) {
239  case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
240  case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
241  case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
242  case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
243  }
244  break;
245  case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
246  case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
247  case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
248  default: break;
249  }
250  return true;
251  }
252 
253  return false;
254 }
255 #endif // USE_LIBFFI
256 
258  ArrayRef<GenericValue> ArgVals) {
259  TheInterpreter = this;
260 
261  unique_lock<sys::Mutex> Guard(*FunctionsLock);
262 
263  // Do a lookup to see if the function is in our cache... this should just be a
264  // deferred annotation!
265  std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
266  if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
267  : FI->second) {
268  Guard.unlock();
269  return Fn(F->getFunctionType(), ArgVals);
270  }
271 
272 #ifdef USE_LIBFFI
273  std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
274  RawFunc RawFn;
275  if (RF == RawFunctions->end()) {
276  RawFn = (RawFunc)(intptr_t)
278  if (!RawFn)
279  RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
280  if (RawFn != 0)
281  RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
282  } else {
283  RawFn = RF->second;
284  }
285 
286  Guard.unlock();
287 
288  GenericValue Result;
289  if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
290  return Result;
291 #endif // USE_LIBFFI
292 
293  if (F->getName() == "__main")
294  errs() << "Tried to execute an unknown external function: "
295  << *F->getType() << " __main\n";
296  else
297  report_fatal_error("Tried to execute an unknown external function: " +
298  F->getName());
299 #ifndef USE_LIBFFI
300  errs() << "Recompiling LLVM with --enable-libffi might help.\n";
301 #endif
302  return GenericValue();
303 }
304 
305 //===----------------------------------------------------------------------===//
306 // Functions "exported" to the running application...
307 //
308 
309 // void atexit(Function*)
312  assert(Args.size() == 1);
313  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
314  GenericValue GV;
315  GV.IntVal = 0;
316  return GV;
317 }
318 
319 // void exit(int)
321  TheInterpreter->exitCalled(Args[0]);
322  return GenericValue();
323 }
324 
325 // void abort(void)
327  //FIXME: should we report or raise here?
328  //report_fatal_error("Interpreted program raised SIGABRT");
329  raise (SIGABRT);
330  return GenericValue();
331 }
332 
333 // int sprintf(char *, const char *, ...) - a very rough implementation to make
334 // output useful.
337  char *OutputBuffer = (char *)GVTOP(Args[0]);
338  const char *FmtStr = (const char *)GVTOP(Args[1]);
339  unsigned ArgNo = 2;
340 
341  // printf should return # chars printed. This is completely incorrect, but
342  // close enough for now.
343  GenericValue GV;
344  GV.IntVal = APInt(32, strlen(FmtStr));
345  while (true) {
346  switch (*FmtStr) {
347  case 0: return GV; // Null terminator...
348  default: // Normal nonspecial character
349  sprintf(OutputBuffer++, "%c", *FmtStr++);
350  break;
351  case '\\': { // Handle escape codes
352  sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
353  FmtStr += 2; OutputBuffer += 2;
354  break;
355  }
356  case '%': { // Handle format specifiers
357  char FmtBuf[100] = "", Buffer[1000] = "";
358  char *FB = FmtBuf;
359  *FB++ = *FmtStr++;
360  char Last = *FB++ = *FmtStr++;
361  unsigned HowLong = 0;
362  while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
363  Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
364  Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
365  Last != 'p' && Last != 's' && Last != '%') {
366  if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
367  Last = *FB++ = *FmtStr++;
368  }
369  *FB = 0;
370 
371  switch (Last) {
372  case '%':
373  memcpy(Buffer, "%", 2); break;
374  case 'c':
375  sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
376  break;
377  case 'd': case 'i':
378  case 'u': case 'o':
379  case 'x': case 'X':
380  if (HowLong >= 1) {
381  if (HowLong == 1 &&
382  TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
383  sizeof(long) < sizeof(int64_t)) {
384  // Make sure we use %lld with a 64 bit argument because we might be
385  // compiling LLI on a 32 bit compiler.
386  unsigned Size = strlen(FmtBuf);
387  FmtBuf[Size] = FmtBuf[Size-1];
388  FmtBuf[Size+1] = 0;
389  FmtBuf[Size-1] = 'l';
390  }
391  sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
392  } else
393  sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
394  break;
395  case 'e': case 'E': case 'g': case 'G': case 'f':
396  sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
397  case 'p':
398  sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
399  case 's':
400  sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
401  default:
402  errs() << "<unknown printf code '" << *FmtStr << "'!>";
403  ArgNo++; break;
404  }
405  size_t Len = strlen(Buffer);
406  memcpy(OutputBuffer, Buffer, Len + 1);
407  OutputBuffer += Len;
408  }
409  break;
410  }
411  }
412  return GV;
413 }
414 
415 // int printf(const char *, ...) - a very rough implementation to make output
416 // useful.
419  char Buffer[10000];
420  std::vector<GenericValue> NewArgs;
421  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
422  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
423  GenericValue GV = lle_X_sprintf(FT, NewArgs);
424  outs() << Buffer;
425  return GV;
426 }
427 
428 // int sscanf(const char *format, ...);
430  ArrayRef<GenericValue> args) {
431  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
432 
433  char *Args[10];
434  for (unsigned i = 0; i < args.size(); ++i)
435  Args[i] = (char*)GVTOP(args[i]);
436 
437  GenericValue GV;
438  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
439  Args[5], Args[6], Args[7], Args[8], Args[9]));
440  return GV;
441 }
442 
443 // int scanf(const char *format, ...);
445  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
446 
447  char *Args[10];
448  for (unsigned i = 0; i < args.size(); ++i)
449  Args[i] = (char*)GVTOP(args[i]);
450 
451  GenericValue GV;
452  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
453  Args[5], Args[6], Args[7], Args[8], Args[9]));
454  return GV;
455 }
456 
457 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
458 // output useful.
461  assert(Args.size() >= 2);
462  char Buffer[10000];
463  std::vector<GenericValue> NewArgs;
464  NewArgs.push_back(PTOGV(Buffer));
465  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
466  GenericValue GV = lle_X_sprintf(FT, NewArgs);
467 
468  fputs(Buffer, (FILE *) GVTOP(Args[0]));
469  return GV;
470 }
471 
474  int val = (int)Args[1].IntVal.getSExtValue();
475  size_t len = (size_t)Args[2].IntVal.getZExtValue();
476  memset((void *)GVTOP(Args[0]), val, len);
477  // llvm.memset.* returns void, lle_X_* returns GenericValue,
478  // so here we return GenericValue with IntVal set to zero
479  GenericValue GV;
480  GV.IntVal = 0;
481  return GV;
482 }
483 
486  memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
487  (size_t)(Args[2].IntVal.getLimitedValue()));
488 
489  // llvm.memcpy* returns void, lle_X_* returns GenericValue,
490  // so here we return GenericValue with IntVal set to zero
491  GenericValue GV;
492  GV.IntVal = 0;
493  return GV;
494 }
495 
496 void Interpreter::initializeExternalFunctions() {
497  sys::ScopedLock Writer(*FunctionsLock);
498  (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
499  (*FuncNames)["lle_X_exit"] = lle_X_exit;
500  (*FuncNames)["lle_X_abort"] = lle_X_abort;
501 
502  (*FuncNames)["lle_X_printf"] = lle_X_printf;
503  (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
504  (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
505  (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
506  (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
507  (*FuncNames)["lle_X_memset"] = lle_X_memset;
508  (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
509 }
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:176
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:110
PointerTy PointerVal
Definition: GenericValue.h:31
static void * SearchForAddressOfSymbol(const char *symbolName)
This function will search through all previously loaded dynamic libraries for the symbol symbolName...
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1562
This class represents an incoming formal argument to a Function.
Definition: Argument.h:29
static Interpreter * TheInterpreter
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:139
This class represents lattice values for constants.
Definition: AllocatorList.h:23
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:134
static GenericValue lle_X_atexit(FunctionType *FT, ArrayRef< GenericValue > Args)
iterator begin() const
Definition: ArrayRef.h:136
2: 32-bit floating point type
Definition: Type.h:58
void * getPointerToGlobalIfAvailable(StringRef S)
getPointerToGlobalIfAvailable - This returns the address of the specified global value if it is has a...
static GenericValue lle_X_exit(FunctionType *FT, ArrayRef< GenericValue > Args)
arg_iterator arg_end()
Definition: Function.h:685
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:388
13: Structures
Definition: Type.h:72
F(f)
const DataLayout & getDataLayout() const
static GenericValue lle_X_sprintf(FunctionType *FT, ArrayRef< GenericValue > Args)
15: Pointers
Definition: Type.h:74
12: Functions
Definition: Type.h:71
static ExFunc lookupFunction(const Function *F)
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:137
static GenericValue lle_X_sscanf(FunctionType *FT, ArrayRef< GenericValue > args)
This file implements a class to represent arbitrary precision integral constant values and operations...
Class to represent function types.
Definition: DerivedTypes.h:102
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:32
11: Arbitrary bit width integers
Definition: Type.h:70
raw_ostream & outs()
This returns a reference to a raw_ostream for standard output.
0: type with no size
Definition: Type.h:56
static ManagedStatic< sys::Mutex > FunctionsLock
static GenericValue lle_X_memcpy(FunctionType *FT, ArrayRef< GenericValue > Args)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
static ManagedStatic< std::map< const Function *, ExFunc > > ExportedFunctions
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:148
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:652
static ManagedStatic< std::map< std::string, ExFunc > > FuncNames
GenericValue(* ExFunc)(FunctionType *, ArrayRef< GenericValue >)
ArrayRef< Type * > params() const
Definition: DerivedTypes.h:129
A pared-down imitation of std::unique_lock from C++11.
Definition: UniqueLock.h:28
void exitCalled(GenericValue GV)
Definition: Execution.cpp:819
size_t arg_size() const
Definition: Function.h:703
arg_iterator arg_begin()
Definition: Function.h:676
static GenericValue lle_X_abort(FunctionType *FT, ArrayRef< GenericValue > Args)
void * GVTOP(const GenericValue &GV)
Definition: GenericValue.h:50
14: Arrays
Definition: Type.h:73
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:841
iterator end() const
Definition: ArrayRef.h:137
Type * getReturnType() const
Definition: DerivedTypes.h:123
static GenericValue lle_X_fprintf(FunctionType *FT, ArrayRef< GenericValue > Args)
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:163
GenericValue PTOGV(void *P)
Definition: GenericValue.h:49
Class for arbitrary precision integers.
Definition: APInt.h:69
static char getTypeID(Type *Ty)
pointer data()
Return a pointer to the vector&#39;s buffer, even if empty().
Definition: SmallVector.h:144
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
uint32_t Size
Definition: Profile.cpp:46
3: 64-bit floating point type
Definition: Type.h:59
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static GenericValue lle_X_memset(FunctionType *FT, ArrayRef< GenericValue > Args)
static GenericValue lle_X_printf(FunctionType *FT, ArrayRef< GenericValue > Args)
uint64_t getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type...
Definition: DataLayout.h:444
void addAtExitHandler(Function *F)
Definition: Interpreter.h:178
GenericValue callExternalFunction(Function *F, ArrayRef< GenericValue > ArgVals)
static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef< GenericValue > args)
ManagedStatic - This transparently changes the behavior of global statics to be lazily constructed on...
Definition: ManagedStatic.h:83
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:273
void resize(size_type N)
Definition: SmallVector.h:344