LLVM  9.0.0svn
InferAddressSpaces.cpp
Go to the documentation of this file.
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 // __shared__ float a[10];
27 // float v = a[i];
28 // to
29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 // %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 // CUDA: Compiling and optimizing for a GPU platform
48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 // ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 // %generic.input = addrspacecast float addrspace(3)* %input to float*
59 // loop:
60 // %y = phi [ %generic.input, %y2 ]
61 // %y2 = getelementptr %y, 1
62 // %v = load %y2
63 // br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 // uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 // %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 // %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 // %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/ADT/ArrayRef.h"
92 #include "llvm/ADT/DenseMap.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/None.h"
95 #include "llvm/ADT/Optional.h"
96 #include "llvm/ADT/SetVector.h"
97 #include "llvm/ADT/SmallVector.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Function.h"
104 #include "llvm/IR/IRBuilder.h"
105 #include "llvm/IR/InstIterator.h"
106 #include "llvm/IR/Instruction.h"
107 #include "llvm/IR/Instructions.h"
108 #include "llvm/IR/IntrinsicInst.h"
109 #include "llvm/IR/Intrinsics.h"
110 #include "llvm/IR/LLVMContext.h"
111 #include "llvm/IR/Operator.h"
112 #include "llvm/IR/Type.h"
113 #include "llvm/IR/Use.h"
114 #include "llvm/IR/User.h"
115 #include "llvm/IR/Value.h"
116 #include "llvm/IR/ValueHandle.h"
117 #include "llvm/Pass.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
123 #include "llvm/Transforms/Scalar.h"
125 #include <cassert>
126 #include <iterator>
127 #include <limits>
128 #include <utility>
129 #include <vector>
130 
131 #define DEBUG_TYPE "infer-address-spaces"
132 
133 using namespace llvm;
134 
135 static const unsigned UninitializedAddressSpace =
137 
138 namespace {
139 
140 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
141 
142 /// InferAddressSpaces
143 class InferAddressSpaces : public FunctionPass {
144  /// Target specific address space which uses of should be replaced if
145  /// possible.
146  unsigned FlatAddrSpace;
147 
148 public:
149  static char ID;
150 
151  InferAddressSpaces() :
152  FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
153  InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}
154 
155  void getAnalysisUsage(AnalysisUsage &AU) const override {
156  AU.setPreservesCFG();
158  }
159 
160  bool runOnFunction(Function &F) override;
161 
162 private:
163  // Returns the new address space of V if updated; otherwise, returns None.
165  updateAddressSpace(const Value &V,
166  const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
167 
168  // Tries to infer the specific address space of each address expression in
169  // Postorder.
170  void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
171  ValueToAddrSpaceMapTy *InferredAddrSpace) const;
172 
173  bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
174 
175  // Changes the flat address expressions in function F to point to specific
176  // address spaces if InferredAddrSpace says so. Postorder is the postorder of
177  // all flat expressions in the use-def graph of function F.
178  bool rewriteWithNewAddressSpaces(
179  const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
180  const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
181 
182  void appendsFlatAddressExpressionToPostorderStack(
183  Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
184  DenseSet<Value *> &Visited) const;
185 
186  bool rewriteIntrinsicOperands(IntrinsicInst *II,
187  Value *OldV, Value *NewV) const;
188  void collectRewritableIntrinsicOperands(
189  IntrinsicInst *II,
190  std::vector<std::pair<Value *, bool>> &PostorderStack,
191  DenseSet<Value *> &Visited) const;
192 
193  std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
194 
195  Value *cloneValueWithNewAddressSpace(
196  Value *V, unsigned NewAddrSpace,
197  const ValueToValueMapTy &ValueWithNewAddrSpace,
198  SmallVectorImpl<const Use *> *UndefUsesToFix) const;
199  unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
200 };
201 
202 } // end anonymous namespace
203 
204 char InferAddressSpaces::ID = 0;
205 
206 namespace llvm {
207 
209 
210 } // end namespace llvm
211 
212 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
213  false, false)
214 
215 // Returns true if V is an address expression.
216 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
217 // getelementptr operators.
218 static bool isAddressExpression(const Value &V) {
219  if (!isa<Operator>(V))
220  return false;
221 
222  const Operator &Op = cast<Operator>(V);
223  switch (Op.getOpcode()) {
224  case Instruction::PHI:
225  assert(Op.getType()->isPointerTy());
226  return true;
227  case Instruction::BitCast:
228  case Instruction::AddrSpaceCast:
229  case Instruction::GetElementPtr:
230  return true;
231  case Instruction::Select:
232  return Op.getType()->isPointerTy();
233  default:
234  return false;
235  }
236 }
237 
238 // Returns the pointer operands of V.
239 //
240 // Precondition: V is an address expression.
242  const Operator &Op = cast<Operator>(V);
243  switch (Op.getOpcode()) {
244  case Instruction::PHI: {
245  auto IncomingValues = cast<PHINode>(Op).incoming_values();
246  return SmallVector<Value *, 2>(IncomingValues.begin(),
247  IncomingValues.end());
248  }
249  case Instruction::BitCast:
250  case Instruction::AddrSpaceCast:
251  case Instruction::GetElementPtr:
252  return {Op.getOperand(0)};
253  case Instruction::Select:
254  return {Op.getOperand(1), Op.getOperand(2)};
255  default:
256  llvm_unreachable("Unexpected instruction type.");
257  }
258 }
259 
260 // TODO: Move logic to TTI?
261 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
262  Value *OldV,
263  Value *NewV) const {
264  Module *M = II->getParent()->getParent()->getParent();
265 
266  switch (II->getIntrinsicID()) {
267  case Intrinsic::amdgcn_atomic_inc:
268  case Intrinsic::amdgcn_atomic_dec:
269  case Intrinsic::amdgcn_ds_fadd:
270  case Intrinsic::amdgcn_ds_fmin:
271  case Intrinsic::amdgcn_ds_fmax: {
273  if (!IsVolatile || !IsVolatile->isZero())
274  return false;
275 
277  }
278  case Intrinsic::objectsize: {
279  Type *DestTy = II->getType();
280  Type *SrcTy = NewV->getType();
281  Function *NewDecl =
282  Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
283  II->setArgOperand(0, NewV);
284  II->setCalledFunction(NewDecl);
285  return true;
286  }
287  default:
288  return false;
289  }
290 }
291 
292 // TODO: Move logic to TTI?
293 void InferAddressSpaces::collectRewritableIntrinsicOperands(
294  IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
295  DenseSet<Value *> &Visited) const {
296  switch (II->getIntrinsicID()) {
297  case Intrinsic::objectsize:
298  case Intrinsic::amdgcn_atomic_inc:
299  case Intrinsic::amdgcn_atomic_dec:
300  case Intrinsic::amdgcn_ds_fadd:
301  case Intrinsic::amdgcn_ds_fmin:
302  case Intrinsic::amdgcn_ds_fmax:
303  appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
304  PostorderStack, Visited);
305  break;
306  default:
307  break;
308  }
309 }
310 
311 // Returns all flat address expressions in function F. The elements are
312 // If V is an unvisited flat address expression, appends V to PostorderStack
313 // and marks it as visited.
314 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
315  Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
316  DenseSet<Value *> &Visited) const {
317  assert(V->getType()->isPointerTy());
318 
319  // Generic addressing expressions may be hidden in nested constant
320  // expressions.
321  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
322  // TODO: Look in non-address parts, like icmp operands.
323  if (isAddressExpression(*CE) && Visited.insert(CE).second)
324  PostorderStack.push_back(std::make_pair(CE, false));
325 
326  return;
327  }
328 
329  if (isAddressExpression(*V) &&
330  V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
331  if (Visited.insert(V).second) {
332  PostorderStack.push_back(std::make_pair(V, false));
333 
334  Operator *Op = cast<Operator>(V);
335  for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
336  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
337  if (isAddressExpression(*CE) && Visited.insert(CE).second)
338  PostorderStack.emplace_back(CE, false);
339  }
340  }
341  }
342  }
343 }
344 
345 // Returns all flat address expressions in function F. The elements are ordered
346 // ordered in postorder.
347 std::vector<WeakTrackingVH>
348 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
349  // This function implements a non-recursive postorder traversal of a partial
350  // use-def graph of function F.
351  std::vector<std::pair<Value *, bool>> PostorderStack;
352  // The set of visited expressions.
353  DenseSet<Value *> Visited;
354 
355  auto PushPtrOperand = [&](Value *Ptr) {
356  appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
357  Visited);
358  };
359 
360  // Look at operations that may be interesting accelerate by moving to a known
361  // address space. We aim at generating after loads and stores, but pure
362  // addressing calculations may also be faster.
363  for (Instruction &I : instructions(F)) {
364  if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
365  if (!GEP->getType()->isVectorTy())
366  PushPtrOperand(GEP->getPointerOperand());
367  } else if (auto *LI = dyn_cast<LoadInst>(&I))
368  PushPtrOperand(LI->getPointerOperand());
369  else if (auto *SI = dyn_cast<StoreInst>(&I))
370  PushPtrOperand(SI->getPointerOperand());
371  else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
372  PushPtrOperand(RMW->getPointerOperand());
373  else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
374  PushPtrOperand(CmpX->getPointerOperand());
375  else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
376  // For memset/memcpy/memmove, any pointer operand can be replaced.
377  PushPtrOperand(MI->getRawDest());
378 
379  // Handle 2nd operand for memcpy/memmove.
380  if (auto *MTI = dyn_cast<MemTransferInst>(MI))
381  PushPtrOperand(MTI->getRawSource());
382  } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
383  collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
384  else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
385  // FIXME: Handle vectors of pointers
386  if (Cmp->getOperand(0)->getType()->isPointerTy()) {
387  PushPtrOperand(Cmp->getOperand(0));
388  PushPtrOperand(Cmp->getOperand(1));
389  }
390  } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
391  if (!ASC->getType()->isVectorTy())
392  PushPtrOperand(ASC->getPointerOperand());
393  }
394  }
395 
396  std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
397  while (!PostorderStack.empty()) {
398  Value *TopVal = PostorderStack.back().first;
399  // If the operands of the expression on the top are already explored,
400  // adds that expression to the resultant postorder.
401  if (PostorderStack.back().second) {
402  if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
403  Postorder.push_back(TopVal);
404  PostorderStack.pop_back();
405  continue;
406  }
407  // Otherwise, adds its operands to the stack and explores them.
408  PostorderStack.back().second = true;
409  for (Value *PtrOperand : getPointerOperands(*TopVal)) {
410  appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
411  Visited);
412  }
413  }
414  return Postorder;
415 }
416 
417 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
418 // of OperandUse.get() in the new address space. If the clone is not ready yet,
419 // returns an undef in the new address space as a placeholder.
421  const Use &OperandUse, unsigned NewAddrSpace,
422  const ValueToValueMapTy &ValueWithNewAddrSpace,
423  SmallVectorImpl<const Use *> *UndefUsesToFix) {
424  Value *Operand = OperandUse.get();
425 
426  Type *NewPtrTy =
427  Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
428 
429  if (Constant *C = dyn_cast<Constant>(Operand))
430  return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
431 
432  if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
433  return NewOperand;
434 
435  UndefUsesToFix->push_back(&OperandUse);
436  return UndefValue::get(NewPtrTy);
437 }
438 
439 // Returns a clone of `I` with its operands converted to those specified in
440 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
441 // operand whose address space needs to be modified might not exist in
442 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
443 // adds that operand use to UndefUsesToFix so that caller can fix them later.
444 //
445 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
446 // from a pointer whose type already matches. Therefore, this function returns a
447 // Value* instead of an Instruction*.
449  Instruction *I, unsigned NewAddrSpace,
450  const ValueToValueMapTy &ValueWithNewAddrSpace,
451  SmallVectorImpl<const Use *> *UndefUsesToFix) {
452  Type *NewPtrType =
453  I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
454 
455  if (I->getOpcode() == Instruction::AddrSpaceCast) {
456  Value *Src = I->getOperand(0);
457  // Because `I` is flat, the source address space must be specific.
458  // Therefore, the inferred address space must be the source space, according
459  // to our algorithm.
460  assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
461  if (Src->getType() != NewPtrType)
462  return new BitCastInst(Src, NewPtrType);
463  return Src;
464  }
465 
466  // Computes the converted pointer operands.
467  SmallVector<Value *, 4> NewPointerOperands;
468  for (const Use &OperandUse : I->operands()) {
469  if (!OperandUse.get()->getType()->isPointerTy())
470  NewPointerOperands.push_back(nullptr);
471  else
473  OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
474  }
475 
476  switch (I->getOpcode()) {
477  case Instruction::BitCast:
478  return new BitCastInst(NewPointerOperands[0], NewPtrType);
479  case Instruction::PHI: {
480  assert(I->getType()->isPointerTy());
481  PHINode *PHI = cast<PHINode>(I);
482  PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
483  for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
484  unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
485  NewPHI->addIncoming(NewPointerOperands[OperandNo],
486  PHI->getIncomingBlock(Index));
487  }
488  return NewPHI;
489  }
490  case Instruction::GetElementPtr: {
491  GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
493  GEP->getSourceElementType(), NewPointerOperands[0],
494  SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
495  NewGEP->setIsInBounds(GEP->isInBounds());
496  return NewGEP;
497  }
498  case Instruction::Select:
499  assert(I->getType()->isPointerTy());
500  return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
501  NewPointerOperands[2], "", nullptr, I);
502  default:
503  llvm_unreachable("Unexpected opcode");
504  }
505 }
506 
507 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
508 // constant expression `CE` with its operands replaced as specified in
509 // ValueWithNewAddrSpace.
511  ConstantExpr *CE, unsigned NewAddrSpace,
512  const ValueToValueMapTy &ValueWithNewAddrSpace) {
513  Type *TargetType =
514  CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
515 
516  if (CE->getOpcode() == Instruction::AddrSpaceCast) {
517  // Because CE is flat, the source address space must be specific.
518  // Therefore, the inferred address space must be the source space according
519  // to our algorithm.
521  NewAddrSpace);
522  return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
523  }
524 
525  if (CE->getOpcode() == Instruction::BitCast) {
526  if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
527  return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
528  return ConstantExpr::getAddrSpaceCast(CE, TargetType);
529  }
530 
531  if (CE->getOpcode() == Instruction::Select) {
532  Constant *Src0 = CE->getOperand(1);
533  Constant *Src1 = CE->getOperand(2);
534  if (Src0->getType()->getPointerAddressSpace() ==
535  Src1->getType()->getPointerAddressSpace()) {
536 
538  CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
539  ConstantExpr::getAddrSpaceCast(Src1, TargetType));
540  }
541  }
542 
543  // Computes the operands of the new constant expression.
544  bool IsNew = false;
545  SmallVector<Constant *, 4> NewOperands;
546  for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
547  Constant *Operand = CE->getOperand(Index);
548  // If the address space of `Operand` needs to be modified, the new operand
549  // with the new address space should already be in ValueWithNewAddrSpace
550  // because (1) the constant expressions we consider (i.e. addrspacecast,
551  // bitcast, and getelementptr) do not incur cycles in the data flow graph
552  // and (2) this function is called on constant expressions in postorder.
553  if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
554  IsNew = true;
555  NewOperands.push_back(cast<Constant>(NewOperand));
556  continue;
557  }
558  if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
560  CExpr, NewAddrSpace, ValueWithNewAddrSpace)) {
561  IsNew = true;
562  NewOperands.push_back(cast<Constant>(NewOperand));
563  continue;
564  }
565  // Otherwise, reuses the old operand.
566  NewOperands.push_back(Operand);
567  }
568 
569  // If !IsNew, we will replace the Value with itself. However, replaced values
570  // are assumed to wrapped in a addrspace cast later so drop it now.
571  if (!IsNew)
572  return nullptr;
573 
574  if (CE->getOpcode() == Instruction::GetElementPtr) {
575  // Needs to specify the source type while constructing a getelementptr
576  // constant expression.
577  return CE->getWithOperands(
578  NewOperands, TargetType, /*OnlyIfReduced=*/false,
579  NewOperands[0]->getType()->getPointerElementType());
580  }
581 
582  return CE->getWithOperands(NewOperands, TargetType);
583 }
584 
585 // Returns a clone of the value `V`, with its operands replaced as specified in
586 // ValueWithNewAddrSpace. This function is called on every flat address
587 // expression whose address space needs to be modified, in postorder.
588 //
589 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
590 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
591  Value *V, unsigned NewAddrSpace,
592  const ValueToValueMapTy &ValueWithNewAddrSpace,
593  SmallVectorImpl<const Use *> *UndefUsesToFix) const {
594  // All values in Postorder are flat address expressions.
595  assert(isAddressExpression(*V) &&
596  V->getType()->getPointerAddressSpace() == FlatAddrSpace);
597 
598  if (Instruction *I = dyn_cast<Instruction>(V)) {
600  I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
601  if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
602  if (NewI->getParent() == nullptr) {
603  NewI->insertBefore(I);
604  NewI->takeName(I);
605  }
606  }
607  return NewV;
608  }
609 
611  cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
612 }
613 
614 // Defines the join operation on the address space lattice (see the file header
615 // comments).
616 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
617  unsigned AS2) const {
618  if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
619  return FlatAddrSpace;
620 
621  if (AS1 == UninitializedAddressSpace)
622  return AS2;
623  if (AS2 == UninitializedAddressSpace)
624  return AS1;
625 
626  // The join of two different specific address spaces is flat.
627  return (AS1 == AS2) ? AS1 : FlatAddrSpace;
628 }
629 
631  if (skipFunction(F))
632  return false;
633 
634  const TargetTransformInfo &TTI =
635  getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
636 
637  if (FlatAddrSpace == UninitializedAddressSpace) {
638  FlatAddrSpace = TTI.getFlatAddressSpace();
639  if (FlatAddrSpace == UninitializedAddressSpace)
640  return false;
641  }
642 
643  // Collects all flat address expressions in postorder.
644  std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
645 
646  // Runs a data-flow analysis to refine the address spaces of every expression
647  // in Postorder.
648  ValueToAddrSpaceMapTy InferredAddrSpace;
649  inferAddressSpaces(Postorder, &InferredAddrSpace);
650 
651  // Changes the address spaces of the flat address expressions who are inferred
652  // to point to a specific address space.
653  return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
654 }
655 
656 // Constants need to be tracked through RAUW to handle cases with nested
657 // constant expressions, so wrap values in WeakTrackingVH.
658 void InferAddressSpaces::inferAddressSpaces(
659  ArrayRef<WeakTrackingVH> Postorder,
660  ValueToAddrSpaceMapTy *InferredAddrSpace) const {
661  SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
662  // Initially, all expressions are in the uninitialized address space.
663  for (Value *V : Postorder)
664  (*InferredAddrSpace)[V] = UninitializedAddressSpace;
665 
666  while (!Worklist.empty()) {
667  Value *V = Worklist.pop_back_val();
668 
669  // Tries to update the address space of the stack top according to the
670  // address spaces of its operands.
671  LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
672  Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
673  if (!NewAS.hasValue())
674  continue;
675  // If any updates are made, grabs its users to the worklist because
676  // their address spaces can also be possibly updated.
677  LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
678  (*InferredAddrSpace)[V] = NewAS.getValue();
679 
680  for (Value *User : V->users()) {
681  // Skip if User is already in the worklist.
682  if (Worklist.count(User))
683  continue;
684 
685  auto Pos = InferredAddrSpace->find(User);
686  // Our algorithm only updates the address spaces of flat address
687  // expressions, which are those in InferredAddrSpace.
688  if (Pos == InferredAddrSpace->end())
689  continue;
690 
691  // Function updateAddressSpace moves the address space down a lattice
692  // path. Therefore, nothing to do if User is already inferred as flat (the
693  // bottom element in the lattice).
694  if (Pos->second == FlatAddrSpace)
695  continue;
696 
697  Worklist.insert(User);
698  }
699  }
700 }
701 
702 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
703  const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
704  assert(InferredAddrSpace.count(&V));
705 
706  // The new inferred address space equals the join of the address spaces
707  // of all its pointer operands.
708  unsigned NewAS = UninitializedAddressSpace;
709 
710  const Operator &Op = cast<Operator>(V);
711  if (Op.getOpcode() == Instruction::Select) {
712  Value *Src0 = Op.getOperand(1);
713  Value *Src1 = Op.getOperand(2);
714 
715  auto I = InferredAddrSpace.find(Src0);
716  unsigned Src0AS = (I != InferredAddrSpace.end()) ?
717  I->second : Src0->getType()->getPointerAddressSpace();
718 
719  auto J = InferredAddrSpace.find(Src1);
720  unsigned Src1AS = (J != InferredAddrSpace.end()) ?
721  J->second : Src1->getType()->getPointerAddressSpace();
722 
723  auto *C0 = dyn_cast<Constant>(Src0);
724  auto *C1 = dyn_cast<Constant>(Src1);
725 
726  // If one of the inputs is a constant, we may be able to do a constant
727  // addrspacecast of it. Defer inferring the address space until the input
728  // address space is known.
729  if ((C1 && Src0AS == UninitializedAddressSpace) ||
730  (C0 && Src1AS == UninitializedAddressSpace))
731  return None;
732 
733  if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
734  NewAS = Src1AS;
735  else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
736  NewAS = Src0AS;
737  else
738  NewAS = joinAddressSpaces(Src0AS, Src1AS);
739  } else {
740  for (Value *PtrOperand : getPointerOperands(V)) {
741  auto I = InferredAddrSpace.find(PtrOperand);
742  unsigned OperandAS = I != InferredAddrSpace.end() ?
743  I->second : PtrOperand->getType()->getPointerAddressSpace();
744 
745  // join(flat, *) = flat. So we can break if NewAS is already flat.
746  NewAS = joinAddressSpaces(NewAS, OperandAS);
747  if (NewAS == FlatAddrSpace)
748  break;
749  }
750  }
751 
752  unsigned OldAS = InferredAddrSpace.lookup(&V);
753  assert(OldAS != FlatAddrSpace);
754  if (OldAS == NewAS)
755  return None;
756  return NewAS;
757 }
758 
759 /// \p returns true if \p U is the pointer operand of a memory instruction with
760 /// a single pointer operand that can have its address space changed by simply
761 /// mutating the use to a new value. If the memory instruction is volatile,
762 /// return true only if the target allows the memory instruction to be volatile
763 /// in the new address space.
765  Use &U, unsigned AddrSpace) {
766  User *Inst = U.getUser();
767  unsigned OpNo = U.getOperandNo();
768  bool VolatileIsAllowed = false;
769  if (auto *I = dyn_cast<Instruction>(Inst))
770  VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
771 
772  if (auto *LI = dyn_cast<LoadInst>(Inst))
773  return OpNo == LoadInst::getPointerOperandIndex() &&
774  (VolatileIsAllowed || !LI->isVolatile());
775 
776  if (auto *SI = dyn_cast<StoreInst>(Inst))
777  return OpNo == StoreInst::getPointerOperandIndex() &&
778  (VolatileIsAllowed || !SI->isVolatile());
779 
780  if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
781  return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
782  (VolatileIsAllowed || !RMW->isVolatile());
783 
784  if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
786  (VolatileIsAllowed || !CmpX->isVolatile());
787 
788  return false;
789 }
790 
791 /// Update memory intrinsic uses that require more complex processing than
792 /// simple memory instructions. Thse require re-mangling and may have multiple
793 /// pointer operands.
795  Value *NewV) {
796  IRBuilder<> B(MI);
799  MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
800 
801  if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
802  B.CreateMemSet(NewV, MSI->getValue(),
803  MSI->getLength(), MSI->getDestAlignment(),
804  false, // isVolatile
805  TBAA, ScopeMD, NoAliasMD);
806  } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
807  Value *Src = MTI->getRawSource();
808  Value *Dest = MTI->getRawDest();
809 
810  // Be careful in case this is a self-to-self copy.
811  if (Src == OldV)
812  Src = NewV;
813 
814  if (Dest == OldV)
815  Dest = NewV;
816 
817  if (isa<MemCpyInst>(MTI)) {
818  MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
819  B.CreateMemCpy(Dest, MTI->getDestAlignment(),
820  Src, MTI->getSourceAlignment(),
821  MTI->getLength(),
822  false, // isVolatile
823  TBAA, TBAAStruct, ScopeMD, NoAliasMD);
824  } else {
825  assert(isa<MemMoveInst>(MTI));
826  B.CreateMemMove(Dest, MTI->getDestAlignment(),
827  Src, MTI->getSourceAlignment(),
828  MTI->getLength(),
829  false, // isVolatile
830  TBAA, ScopeMD, NoAliasMD);
831  }
832  } else
833  llvm_unreachable("unhandled MemIntrinsic");
834 
835  MI->eraseFromParent();
836  return true;
837 }
838 
839 // \p returns true if it is OK to change the address space of constant \p C with
840 // a ConstantExpr addrspacecast.
841 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
842  assert(NewAS != UninitializedAddressSpace);
843 
844  unsigned SrcAS = C->getType()->getPointerAddressSpace();
845  if (SrcAS == NewAS || isa<UndefValue>(C))
846  return true;
847 
848  // Prevent illegal casts between different non-flat address spaces.
849  if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
850  return false;
851 
852  if (isa<ConstantPointerNull>(C))
853  return true;
854 
855  if (auto *Op = dyn_cast<Operator>(C)) {
856  // If we already have a constant addrspacecast, it should be safe to cast it
857  // off.
858  if (Op->getOpcode() == Instruction::AddrSpaceCast)
859  return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
860 
861  if (Op->getOpcode() == Instruction::IntToPtr &&
862  Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
863  return true;
864  }
865 
866  return false;
867 }
868 
870  Value::use_iterator End) {
871  User *CurUser = I->getUser();
872  ++I;
873 
874  while (I != End && I->getUser() == CurUser)
875  ++I;
876 
877  return I;
878 }
879 
880 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
881  const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
882  const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
883  // For each address expression to be modified, creates a clone of it with its
884  // pointer operands converted to the new address space. Since the pointer
885  // operands are converted, the clone is naturally in the new address space by
886  // construction.
887  ValueToValueMapTy ValueWithNewAddrSpace;
888  SmallVector<const Use *, 32> UndefUsesToFix;
889  for (Value* V : Postorder) {
890  unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
891  if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
892  ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
893  V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
894  }
895  }
896 
897  if (ValueWithNewAddrSpace.empty())
898  return false;
899 
900  // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
901  for (const Use *UndefUse : UndefUsesToFix) {
902  User *V = UndefUse->getUser();
903  User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
904  unsigned OperandNo = UndefUse->getOperandNo();
905  assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
906  NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
907  }
908 
909  SmallVector<Instruction *, 16> DeadInstructions;
910 
911  // Replaces the uses of the old address expressions with the new ones.
912  for (const WeakTrackingVH &WVH : Postorder) {
913  assert(WVH && "value was unexpectedly deleted");
914  Value *V = WVH;
915  Value *NewV = ValueWithNewAddrSpace.lookup(V);
916  if (NewV == nullptr)
917  continue;
918 
919  LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
920  << *NewV << '\n');
921 
922  if (Constant *C = dyn_cast<Constant>(V)) {
923  Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
924  C->getType());
925  if (C != Replace) {
926  LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
927  << ": " << *Replace << '\n');
928  C->replaceAllUsesWith(Replace);
929  V = Replace;
930  }
931  }
932 
933  Value::use_iterator I, E, Next;
934  for (I = V->use_begin(), E = V->use_end(); I != E; ) {
935  Use &U = *I;
936 
937  // Some users may see the same pointer operand in multiple operands. Skip
938  // to the next instruction.
939  I = skipToNextUser(I, E);
940 
942  TTI, U, V->getType()->getPointerAddressSpace())) {
943  // If V is used as the pointer operand of a compatible memory operation,
944  // sets the pointer operand to NewV. This replacement does not change
945  // the element type, so the resultant load/store is still valid.
946  U.set(NewV);
947  continue;
948  }
949 
950  User *CurUser = U.getUser();
951  // Handle more complex cases like intrinsic that need to be remangled.
952  if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
953  if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
954  continue;
955  }
956 
957  if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
958  if (rewriteIntrinsicOperands(II, V, NewV))
959  continue;
960  }
961 
962  if (isa<Instruction>(CurUser)) {
963  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
964  // If we can infer that both pointers are in the same addrspace,
965  // transform e.g.
966  // %cmp = icmp eq float* %p, %q
967  // into
968  // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
969 
970  unsigned NewAS = NewV->getType()->getPointerAddressSpace();
971  int SrcIdx = U.getOperandNo();
972  int OtherIdx = (SrcIdx == 0) ? 1 : 0;
973  Value *OtherSrc = Cmp->getOperand(OtherIdx);
974 
975  if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
976  if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
977  Cmp->setOperand(OtherIdx, OtherNewV);
978  Cmp->setOperand(SrcIdx, NewV);
979  continue;
980  }
981  }
982 
983  // Even if the type mismatches, we can cast the constant.
984  if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
985  if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
986  Cmp->setOperand(SrcIdx, NewV);
987  Cmp->setOperand(OtherIdx,
988  ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
989  continue;
990  }
991  }
992  }
993 
994  if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
995  unsigned NewAS = NewV->getType()->getPointerAddressSpace();
996  if (ASC->getDestAddressSpace() == NewAS) {
997  if (ASC->getType()->getPointerElementType() !=
998  NewV->getType()->getPointerElementType()) {
999  NewV = CastInst::Create(Instruction::BitCast, NewV,
1000  ASC->getType(), "", ASC);
1001  }
1002  ASC->replaceAllUsesWith(NewV);
1003  DeadInstructions.push_back(ASC);
1004  continue;
1005  }
1006  }
1007 
1008  // Otherwise, replaces the use with flat(NewV).
1009  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
1010  // Don't create a copy of the original addrspacecast.
1011  if (U == V && isa<AddrSpaceCastInst>(V))
1012  continue;
1013 
1014  BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
1015  while (isa<PHINode>(InsertPos))
1016  ++InsertPos;
1017  U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1018  } else {
1019  U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1020  V->getType()));
1021  }
1022  }
1023  }
1024 
1025  if (V->use_empty()) {
1026  if (Instruction *I = dyn_cast<Instruction>(V))
1027  DeadInstructions.push_back(I);
1028  }
1029  }
1030 
1031  for (Instruction *I : DeadInstructions)
1033 
1034  return true;
1035 }
1036 
1038  return new InferAddressSpaces(AddressSpace);
1039 }
uint64_t CallInst * C
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, Value *NewV)
Update memory intrinsic uses that require more complex processing than simple memory instructions...
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:67
use_iterator use_end()
Definition: Value.h:346
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1209
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
This class represents lattice values for constants.
Definition: AllocatorList.h:23
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
iterator begin() const
Definition: ArrayRef.h:136
constexpr char IsVolatile[]
Key for Kernel::Arg::Metadata::mIsVolatile.
static Constant * getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1794
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Definition: Instructions.h:901
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1246
Metadata node.
Definition: Metadata.h:863
F(f)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:580
CallInst * CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memset to the specified pointer and the specified value.
Definition: IRBuilder.h:440
Hexagon Common GEP
This defines the Use class.
Value * get() const
Definition: Use.h:107
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1241
static unsigned getOperandNumForIncomingValue(unsigned i)
AnalysisUsage & addRequired()
This class represents a conversion between pointers from one address space to another.
Type * getPointerElementType() const
Definition: Type.h:376
A Use represents the edge between a Value definition and its users.
Definition: Use.h:55
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:654
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:41
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:779
CallInst * CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memmove between the specified pointers.
Definition: IRBuilder.h:530
Type * getSourceElementType() const
Definition: Instructions.h:972
User * getUser() const LLVM_READONLY
Returns the User that contains this Use.
Definition: Use.cpp:40
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:888
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:244
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:181
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1323
const T & getValue() const LLVM_LVALUE_FUNCTION
Definition: Optional.h:255
static Constant * getSelect(Constant *C, Constant *V1, Constant *V2, Type *OnlyIfReducedTy=nullptr)
Select constant expr.
Definition: Constants.cpp:1968
This class represents a no-op cast from one type to another.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:234
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:32
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
unsigned getOperandNo() const
Return the operand # of this use in its User.
Definition: Use.cpp:47
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:170
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1043
Value * getOperand(unsigned i) const
Definition: User.h:169
use_iterator_impl< Use > use_iterator
Definition: Value.h:331
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1782
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:875
FunctionPass * createInferAddressSpacesPass(unsigned AddressSpace=~0u)
static bool runOnFunction(Function &F, bool PostInlining)
static unsigned getPointerOperandIndex()
Definition: Instructions.h:621
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Wrapper pass for TargetTransformInfo.
void set(Value *Val)
Definition: Value.h:710
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
static unsigned getPointerOperandIndex()
Definition: Instructions.h:414
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:41
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:223
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:187
Represent the analysis usage information of a pass.
This instruction compares its operands according to the predicate given to the constructor.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:284
op_range operands()
Definition: User.h:237
void initializeInferAddressSpacesPass(PassRegistry &)
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:434
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1424
static wasm::ValType getType(const TargetRegisterClass *RC)
Constant * getWithOperands(ArrayRef< Constant *> Ops) const
This returns the current constant expression with the operands replaced with the specified values...
Definition: Constants.h:1229
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:50
static Value * cloneConstantExprWithNewAddressSpace(ConstantExpr *CE, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace)
This is the common base class for memset/memcpy/memmove.
#define DEBUG_TYPE
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:191
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition: Operator.h:30
AddressSpace
Definition: NVPTXBaseInfo.h:21
static Value * cloneInstructionWithNewAddressSpace(Instruction *I, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl< const Use *> *UndefUsesToFix)
iterator end() const
Definition: ArrayRef.h:137
bool empty() const
Definition: ValueMap.h:145
CallInst * CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile=false, MDNode *TBAATag=nullptr, MDNode *TBAAStructTag=nullptr, MDNode *ScopeTag=nullptr, MDNode *NoAliasTag=nullptr)
Create and insert a memcpy between the specified pointers.
Definition: IRBuilder.h:482
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:301
static const unsigned UninitializedAddressSpace
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
iterator_range< user_iterator > users()
Definition: Value.h:399
INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", false, false) static bool isAddressExpression(const Value &V)
use_iterator use_begin()
Definition: Value.h:338
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass&#39;s ...
bool hasValue() const
Definition: Optional.h:259
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:106
#define I(x, y, z)
Definition: MD5.cpp:58
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:192
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
static unsigned getPointerOperandIndex()
Definition: Instructions.h:815
static unsigned getPointerOperandIndex()
Definition: Instructions.h:286
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
aarch64 promote const
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:575
LLVM Value Representation.
Definition: Value.h:72
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:40
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition: Compiler.h:250
static SmallVector< Value *, 2 > getPointerOperands(const Value &V)
static Value::use_iterator skipToNextUser(Value::use_iterator I, Value::use_iterator End)
IRTranslator LLVM IR MI
inst_range instructions(Function *F)
Definition: InstIterator.h:133
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:38
This pass exposes codegen information to IR-level passes.
#define LLVM_DEBUG(X)
Definition: Debug.h:122
unsigned getFlatAddressSpace() const
Returns the address space ID for a target&#39;s &#39;flat&#39; address space.
static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, Use &U, unsigned AddrSpace)
returns true if U is the pointer operand of a memory instruction with a single pointer operand that c...
bool use_empty() const
Definition: Value.h:322
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:43
const BasicBlock * getParent() const
Definition: Instruction.h:66
static Value * operandWithNewAddressSpaceOrCreateUndef(const Use &OperandUse, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, SmallVectorImpl< const Use *> *UndefUsesToFix)