LLVM  9.0.0svn
LLParser.cpp
Go to the documentation of this file.
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57  std::string Result;
58  raw_string_ostream Tmp(Result);
59  Tmp << *T;
60  return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65  // Prime the lexer.
66  Lex.Lex();
67 
68  if (Context.shouldDiscardValueNames())
69  return Error(
70  Lex.getLoc(),
71  "Can't read textual IR with a Context that discards named Values");
72 
73  return ParseTopLevelEntities() || ValidateEndOfModule() ||
74  ValidateEndOfIndex();
75 }
76 
78  const SlotMapping *Slots) {
79  restoreParsingState(Slots);
80  Lex.Lex();
81 
82  Type *Ty = nullptr;
83  if (ParseType(Ty) || parseConstantValue(Ty, C))
84  return true;
85  if (Lex.getKind() != lltok::Eof)
86  return Error(Lex.getLoc(), "expected end of string");
87  return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91  const SlotMapping *Slots) {
92  restoreParsingState(Slots);
93  Lex.Lex();
94 
95  Read = 0;
96  SMLoc Start = Lex.getLoc();
97  Ty = nullptr;
98  if (ParseType(Ty))
99  return true;
100  SMLoc End = Lex.getLoc();
101  Read = End.getPointer() - Start.getPointer();
102 
103  return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107  if (!Slots)
108  return;
109  NumberedVals = Slots->GlobalValues;
110  NumberedMetadata = Slots->MetadataNodes;
111  for (const auto &I : Slots->NamedTypes)
112  NamedTypes.insert(
113  std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114  for (const auto &I : Slots->Types)
115  NumberedTypes.insert(
116  std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122  if (!M)
123  return false;
124  // Handle any function attribute group forward references.
125  for (const auto &RAG : ForwardRefAttrGroups) {
126  Value *V = RAG.first;
127  const std::vector<unsigned> &Attrs = RAG.second;
128  AttrBuilder B;
129 
130  for (const auto &Attr : Attrs)
131  B.merge(NumberedAttrBuilders[Attr]);
132 
133  if (Function *Fn = dyn_cast<Function>(V)) {
134  AttributeList AS = Fn->getAttributes();
135  AttrBuilder FnAttrs(AS.getFnAttributes());
137 
138  FnAttrs.merge(B);
139 
140  // If the alignment was parsed as an attribute, move to the alignment
141  // field.
142  if (FnAttrs.hasAlignmentAttr()) {
143  Fn->setAlignment(FnAttrs.getAlignment());
144  FnAttrs.removeAttribute(Attribute::Alignment);
145  }
146 
148  AttributeSet::get(Context, FnAttrs));
149  Fn->setAttributes(AS);
150  } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151  AttributeList AS = CI->getAttributes();
152  AttrBuilder FnAttrs(AS.getFnAttributes());
154  FnAttrs.merge(B);
156  AttributeSet::get(Context, FnAttrs));
157  CI->setAttributes(AS);
158  } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159  AttributeList AS = II->getAttributes();
160  AttrBuilder FnAttrs(AS.getFnAttributes());
162  FnAttrs.merge(B);
164  AttributeSet::get(Context, FnAttrs));
165  II->setAttributes(AS);
166  } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167  AttributeList AS = CBI->getAttributes();
168  AttrBuilder FnAttrs(AS.getFnAttributes());
170  FnAttrs.merge(B);
172  AttributeSet::get(Context, FnAttrs));
173  CBI->setAttributes(AS);
174  } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175  AttrBuilder Attrs(GV->getAttributes());
176  Attrs.merge(B);
177  GV->setAttributes(AttributeSet::get(Context,Attrs));
178  } else {
179  llvm_unreachable("invalid object with forward attribute group reference");
180  }
181  }
182 
183  // If there are entries in ForwardRefBlockAddresses at this point, the
184  // function was never defined.
185  if (!ForwardRefBlockAddresses.empty())
186  return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187  "expected function name in blockaddress");
188 
189  for (const auto &NT : NumberedTypes)
190  if (NT.second.second.isValid())
191  return Error(NT.second.second,
192  "use of undefined type '%" + Twine(NT.first) + "'");
193 
194  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195  NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196  if (I->second.second.isValid())
197  return Error(I->second.second,
198  "use of undefined type named '" + I->getKey() + "'");
199 
200  if (!ForwardRefComdats.empty())
201  return Error(ForwardRefComdats.begin()->second,
202  "use of undefined comdat '$" +
203  ForwardRefComdats.begin()->first + "'");
204 
205  if (!ForwardRefVals.empty())
206  return Error(ForwardRefVals.begin()->second.second,
207  "use of undefined value '@" + ForwardRefVals.begin()->first +
208  "'");
209 
210  if (!ForwardRefValIDs.empty())
211  return Error(ForwardRefValIDs.begin()->second.second,
212  "use of undefined value '@" +
213  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215  if (!ForwardRefMDNodes.empty())
216  return Error(ForwardRefMDNodes.begin()->second.second,
217  "use of undefined metadata '!" +
218  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220  // Resolve metadata cycles.
221  for (auto &N : NumberedMetadata) {
222  if (N.second && !N.second->isResolved())
223  N.second->resolveCycles();
224  }
225 
226  for (auto *Inst : InstsWithTBAATag) {
227  MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228  assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229  auto *UpgradedMD = UpgradeTBAANode(*MD);
230  if (MD != UpgradedMD)
231  Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232  }
233 
234  // Look for intrinsic functions and CallInst that need to be upgraded
235  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236  UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238  // Some types could be renamed during loading if several modules are
239  // loaded in the same LLVMContext (LTO scenario). In this case we should
240  // remangle intrinsics names as well.
241  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242  Function *F = &*FI++;
243  if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244  F->replaceAllUsesWith(Remangled.getValue());
245  F->eraseFromParent();
246  }
247  }
248 
249  if (UpgradeDebugInfo)
251 
252  UpgradeModuleFlags(*M);
254 
255  if (!Slots)
256  return false;
257  // Initialize the slot mapping.
258  // Because by this point we've parsed and validated everything, we can "steal"
259  // the mapping from LLParser as it doesn't need it anymore.
260  Slots->GlobalValues = std::move(NumberedVals);
261  Slots->MetadataNodes = std::move(NumberedMetadata);
262  for (const auto &I : NamedTypes)
263  Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264  for (const auto &I : NumberedTypes)
265  Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267  return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272  if (!Index)
273  return false;
274 
275  if (!ForwardRefValueInfos.empty())
276  return Error(ForwardRefValueInfos.begin()->second.front().second,
277  "use of undefined summary '^" +
278  Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280  if (!ForwardRefAliasees.empty())
281  return Error(ForwardRefAliasees.begin()->second.front().second,
282  "use of undefined summary '^" +
283  Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285  if (!ForwardRefTypeIds.empty())
286  return Error(ForwardRefTypeIds.begin()->second.front().second,
287  "use of undefined type id summary '^" +
288  Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290  return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298  // If there is no Module, then parse just the summary index entries.
299  if (!M) {
300  while (true) {
301  switch (Lex.getKind()) {
302  case lltok::Eof:
303  return false;
304  case lltok::SummaryID:
305  if (ParseSummaryEntry())
306  return true;
307  break;
309  if (ParseSourceFileName())
310  return true;
311  break;
312  default:
313  // Skip everything else
314  Lex.Lex();
315  }
316  }
317  }
318  while (true) {
319  switch (Lex.getKind()) {
320  default: return TokError("expected top-level entity");
321  case lltok::Eof: return false;
322  case lltok::kw_declare: if (ParseDeclare()) return true; break;
323  case lltok::kw_define: if (ParseDefine()) return true; break;
324  case lltok::kw_module: if (ParseModuleAsm()) return true; break;
325  case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
327  if (ParseSourceFileName())
328  return true;
329  break;
330  case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331  case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332  case lltok::LocalVar: if (ParseNamedType()) return true; break;
333  case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
334  case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
335  case lltok::ComdatVar: if (parseComdat()) return true; break;
336  case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
337  case lltok::SummaryID:
338  if (ParseSummaryEntry())
339  return true;
340  break;
341  case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342  case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343  case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
345  if (ParseUseListOrderBB())
346  return true;
347  break;
348  }
349  }
350 }
351 
352 /// toplevelentity
353 /// ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355  assert(Lex.getKind() == lltok::kw_module);
356  Lex.Lex();
357 
358  std::string AsmStr;
359  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360  ParseStringConstant(AsmStr)) return true;
361 
362  M->appendModuleInlineAsm(AsmStr);
363  return false;
364 }
365 
366 /// toplevelentity
367 /// ::= 'target' 'triple' '=' STRINGCONSTANT
368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370  assert(Lex.getKind() == lltok::kw_target);
371  std::string Str;
372  switch (Lex.Lex()) {
373  default: return TokError("unknown target property");
374  case lltok::kw_triple:
375  Lex.Lex();
376  if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377  ParseStringConstant(Str))
378  return true;
379  M->setTargetTriple(Str);
380  return false;
382  Lex.Lex();
383  if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384  ParseStringConstant(Str))
385  return true;
386  if (DataLayoutStr.empty())
387  M->setDataLayout(Str);
388  return false;
389  }
390 }
391 
392 /// toplevelentity
393 /// ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
396  Lex.Lex();
397  if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398  ParseStringConstant(SourceFileName))
399  return true;
400  if (M)
401  M->setSourceFileName(SourceFileName);
402  return false;
403 }
404 
405 /// toplevelentity
406 /// ::= 'deplibs' '=' '[' ']'
407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410  assert(Lex.getKind() == lltok::kw_deplibs);
411  Lex.Lex();
412  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413  ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414  return true;
415 
416  if (EatIfPresent(lltok::rsquare))
417  return false;
418 
419  do {
420  std::string Str;
421  if (ParseStringConstant(Str)) return true;
422  } while (EatIfPresent(lltok::comma));
423 
424  return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 /// ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430  LocTy TypeLoc = Lex.getLoc();
431  unsigned TypeID = Lex.getUIntVal();
432  Lex.Lex(); // eat LocalVarID;
433 
434  if (ParseToken(lltok::equal, "expected '=' after name") ||
435  ParseToken(lltok::kw_type, "expected 'type' after '='"))
436  return true;
437 
438  Type *Result = nullptr;
439  if (ParseStructDefinition(TypeLoc, "",
440  NumberedTypes[TypeID], Result)) return true;
441 
442  if (!isa<StructType>(Result)) {
443  std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444  if (Entry.first)
445  return Error(TypeLoc, "non-struct types may not be recursive");
446  Entry.first = Result;
447  Entry.second = SMLoc();
448  }
449 
450  return false;
451 }
452 
453 /// toplevelentity
454 /// ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456  std::string Name = Lex.getStrVal();
457  LocTy NameLoc = Lex.getLoc();
458  Lex.Lex(); // eat LocalVar.
459 
460  if (ParseToken(lltok::equal, "expected '=' after name") ||
461  ParseToken(lltok::kw_type, "expected 'type' after name"))
462  return true;
463 
464  Type *Result = nullptr;
465  if (ParseStructDefinition(NameLoc, Name,
466  NamedTypes[Name], Result)) return true;
467 
468  if (!isa<StructType>(Result)) {
469  std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470  if (Entry.first)
471  return Error(NameLoc, "non-struct types may not be recursive");
472  Entry.first = Result;
473  Entry.second = SMLoc();
474  }
475 
476  return false;
477 }
478 
479 /// toplevelentity
480 /// ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482  assert(Lex.getKind() == lltok::kw_declare);
483  Lex.Lex();
484 
485  std::vector<std::pair<unsigned, MDNode *>> MDs;
486  while (Lex.getKind() == lltok::MetadataVar) {
487  unsigned MDK;
488  MDNode *N;
489  if (ParseMetadataAttachment(MDK, N))
490  return true;
491  MDs.push_back({MDK, N});
492  }
493 
494  Function *F;
495  if (ParseFunctionHeader(F, false))
496  return true;
497  for (auto &MD : MDs)
498  F->addMetadata(MD.first, *MD.second);
499  return false;
500 }
501 
502 /// toplevelentity
503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505  assert(Lex.getKind() == lltok::kw_define);
506  Lex.Lex();
507 
508  Function *F;
509  return ParseFunctionHeader(F, true) ||
510  ParseOptionalFunctionMetadata(*F) ||
511  ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 /// ::= 'constant'
516 /// ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518  if (Lex.getKind() == lltok::kw_constant)
519  IsConstant = true;
520  else if (Lex.getKind() == lltok::kw_global)
521  IsConstant = false;
522  else {
523  IsConstant = false;
524  return TokError("expected 'global' or 'constant'");
525  }
526  Lex.Lex();
527  return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531  GlobalVariable::UnnamedAddr &UnnamedAddr) {
532  if (EatIfPresent(lltok::kw_unnamed_addr))
533  UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534  else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535  UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536  else
537  UnnamedAddr = GlobalValue::UnnamedAddr::None;
538  return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 /// OptionalVisibility (ALIAS | IFUNC) ...
543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 /// OptionalDLLStorageClass
545 /// ... -> global variable
546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 /// OptionalDLLStorageClass
549 /// ... -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551  unsigned VarID = NumberedVals.size();
552  std::string Name;
553  LocTy NameLoc = Lex.getLoc();
554 
555  // Handle the GlobalID form.
556  if (Lex.getKind() == lltok::GlobalID) {
557  if (Lex.getUIntVal() != VarID)
558  return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559  Twine(VarID) + "'");
560  Lex.Lex(); // eat GlobalID;
561 
562  if (ParseToken(lltok::equal, "expected '=' after name"))
563  return true;
564  }
565 
566  bool HasLinkage;
567  unsigned Linkage, Visibility, DLLStorageClass;
568  bool DSOLocal;
570  GlobalVariable::UnnamedAddr UnnamedAddr;
571  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572  DSOLocal) ||
573  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574  return true;
575 
576  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 /// OptionalVisibility OptionalDLLStorageClass
588 /// ... -> global variable
589 bool LLParser::ParseNamedGlobal() {
590  assert(Lex.getKind() == lltok::GlobalVar);
591  LocTy NameLoc = Lex.getLoc();
592  std::string Name = Lex.getStrVal();
593  Lex.Lex();
594 
595  bool HasLinkage;
596  unsigned Linkage, Visibility, DLLStorageClass;
597  bool DSOLocal;
599  GlobalVariable::UnnamedAddr UnnamedAddr;
600  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601  ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602  DSOLocal) ||
603  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604  return true;
605 
606  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615  assert(Lex.getKind() == lltok::ComdatVar);
616  std::string Name = Lex.getStrVal();
617  LocTy NameLoc = Lex.getLoc();
618  Lex.Lex();
619 
620  if (ParseToken(lltok::equal, "expected '=' here"))
621  return true;
622 
623  if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624  return TokError("expected comdat type");
625 
627  switch (Lex.getKind()) {
628  default:
629  return TokError("unknown selection kind");
630  case lltok::kw_any:
631  SK = Comdat::Any;
632  break;
634  SK = Comdat::ExactMatch;
635  break;
636  case lltok::kw_largest:
637  SK = Comdat::Largest;
638  break;
641  break;
642  case lltok::kw_samesize:
643  SK = Comdat::SameSize;
644  break;
645  }
646  Lex.Lex();
647 
648  // See if the comdat was forward referenced, if so, use the comdat.
649  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651  if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652  return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654  Comdat *C;
655  if (I != ComdatSymTab.end())
656  C = &I->second;
657  else
658  C = M->getOrInsertComdat(Name);
659  C->setSelectionKind(SK);
660 
661  return false;
662 }
663 
664 // MDString:
665 // ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667  std::string Str;
668  if (ParseStringConstant(Str)) return true;
669  Result = MDString::get(Context, Str);
670  return false;
671 }
672 
673 // MDNode:
674 // ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676  // !{ ..., !42, ... }
677  LocTy IDLoc = Lex.getLoc();
678  unsigned MID = 0;
679  if (ParseUInt32(MID))
680  return true;
681 
682  // If not a forward reference, just return it now.
683  if (NumberedMetadata.count(MID)) {
684  Result = NumberedMetadata[MID];
685  return false;
686  }
687 
688  // Otherwise, create MDNode forward reference.
689  auto &FwdRef = ForwardRefMDNodes[MID];
690  FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692  Result = FwdRef.first.get();
693  NumberedMetadata[MID].reset(Result);
694  return false;
695 }
696 
697 /// ParseNamedMetadata:
698 /// !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
701  std::string Name = Lex.getStrVal();
702  Lex.Lex();
703 
704  if (ParseToken(lltok::equal, "expected '=' here") ||
705  ParseToken(lltok::exclaim, "Expected '!' here") ||
706  ParseToken(lltok::lbrace, "Expected '{' here"))
707  return true;
708 
709  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710  if (Lex.getKind() != lltok::rbrace)
711  do {
712  MDNode *N = nullptr;
713  // Parse DIExpressions inline as a special case. They are still MDNodes,
714  // so they can still appear in named metadata. Remove this logic if they
715  // become plain Metadata.
716  if (Lex.getKind() == lltok::MetadataVar &&
717  Lex.getStrVal() == "DIExpression") {
718  if (ParseDIExpression(N, /*IsDistinct=*/false))
719  return true;
720  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721  ParseMDNodeID(N)) {
722  return true;
723  }
724  NMD->addOperand(N);
725  } while (EatIfPresent(lltok::comma));
726 
727  return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 /// !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733  assert(Lex.getKind() == lltok::exclaim);
734  Lex.Lex();
735  unsigned MetadataID = 0;
736 
737  MDNode *Init;
738  if (ParseUInt32(MetadataID) ||
739  ParseToken(lltok::equal, "expected '=' here"))
740  return true;
741 
742  // Detect common error, from old metadata syntax.
743  if (Lex.getKind() == lltok::Type)
744  return TokError("unexpected type in metadata definition");
745 
746  bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747  if (Lex.getKind() == lltok::MetadataVar) {
748  if (ParseSpecializedMDNode(Init, IsDistinct))
749  return true;
750  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751  ParseMDTuple(Init, IsDistinct))
752  return true;
753 
754  // See if this was forward referenced, if so, handle it.
755  auto FI = ForwardRefMDNodes.find(MetadataID);
756  if (FI != ForwardRefMDNodes.end()) {
757  FI->second.first->replaceAllUsesWith(Init);
758  ForwardRefMDNodes.erase(FI);
759 
760  assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761  } else {
762  if (NumberedMetadata.count(MetadataID))
763  return TokError("Metadata id is already used");
764  NumberedMetadata[MetadataID].reset(Init);
765  }
766 
767  return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772  // Each module summary entry consists of a tag for the entry
773  // type, followed by a colon, then the fields surrounded by nested sets of
774  // parentheses. The "tag:" looks like a Label. Once parsing support is
775  // in place we will look for the tokens corresponding to the expected tags.
776  if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777  Lex.getKind() != lltok::kw_typeid)
778  return TokError(
779  "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780  Lex.Lex();
781  if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782  ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783  return true;
784  // Now walk through the parenthesized entry, until the number of open
785  // parentheses goes back down to 0 (the first '(' was parsed above).
786  unsigned NumOpenParen = 1;
787  do {
788  switch (Lex.getKind()) {
789  case lltok::lparen:
790  NumOpenParen++;
791  break;
792  case lltok::rparen:
793  NumOpenParen--;
794  break;
795  case lltok::Eof:
796  return TokError("found end of file while parsing summary entry");
797  default:
798  // Skip everything in between parentheses.
799  break;
800  }
801  Lex.Lex();
802  } while (NumOpenParen > 0);
803  return false;
804 }
805 
806 /// SummaryEntry
807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809  assert(Lex.getKind() == lltok::SummaryID);
810  unsigned SummaryID = Lex.getUIntVal();
811 
812  // For summary entries, colons should be treated as distinct tokens,
813  // not an indication of the end of a label token.
814  Lex.setIgnoreColonInIdentifiers(true);
815 
816  Lex.Lex();
817  if (ParseToken(lltok::equal, "expected '=' here"))
818  return true;
819 
820  // If we don't have an index object, skip the summary entry.
821  if (!Index)
822  return SkipModuleSummaryEntry();
823 
824  switch (Lex.getKind()) {
825  case lltok::kw_gv:
826  return ParseGVEntry(SummaryID);
827  case lltok::kw_module:
828  return ParseModuleEntry(SummaryID);
829  case lltok::kw_typeid:
830  return ParseTypeIdEntry(SummaryID);
831  break;
832  default:
833  return Error(Lex.getLoc(), "unexpected summary kind");
834  }
835  Lex.setIgnoreColonInIdentifiers(false);
836  return false;
837 }
838 
839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
842 }
843 
844 // If there was an explicit dso_local, update GV. In the absence of an explicit
845 // dso_local we keep the default value.
846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
847  if (DSOLocal)
848  GV.setDSOLocal(true);
849 }
850 
851 /// parseIndirectSymbol:
852 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
853 /// OptionalVisibility OptionalDLLStorageClass
854 /// OptionalThreadLocal OptionalUnnamedAddr
855 // 'alias|ifunc' IndirectSymbol
856 ///
857 /// IndirectSymbol
858 /// ::= TypeAndValue
859 ///
860 /// Everything through OptionalUnnamedAddr has already been parsed.
861 ///
862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
863  unsigned L, unsigned Visibility,
864  unsigned DLLStorageClass, bool DSOLocal,
866  GlobalVariable::UnnamedAddr UnnamedAddr) {
867  bool IsAlias;
868  if (Lex.getKind() == lltok::kw_alias)
869  IsAlias = true;
870  else if (Lex.getKind() == lltok::kw_ifunc)
871  IsAlias = false;
872  else
873  llvm_unreachable("Not an alias or ifunc!");
874  Lex.Lex();
875 
877 
878  if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
879  return Error(NameLoc, "invalid linkage type for alias");
880 
881  if (!isValidVisibilityForLinkage(Visibility, L))
882  return Error(NameLoc,
883  "symbol with local linkage must have default visibility");
884 
885  Type *Ty;
886  LocTy ExplicitTypeLoc = Lex.getLoc();
887  if (ParseType(Ty) ||
888  ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
889  return true;
890 
891  Constant *Aliasee;
892  LocTy AliaseeLoc = Lex.getLoc();
893  if (Lex.getKind() != lltok::kw_bitcast &&
894  Lex.getKind() != lltok::kw_getelementptr &&
895  Lex.getKind() != lltok::kw_addrspacecast &&
896  Lex.getKind() != lltok::kw_inttoptr) {
897  if (ParseGlobalTypeAndValue(Aliasee))
898  return true;
899  } else {
900  // The bitcast dest type is not present, it is implied by the dest type.
901  ValID ID;
902  if (ParseValID(ID))
903  return true;
904  if (ID.Kind != ValID::t_Constant)
905  return Error(AliaseeLoc, "invalid aliasee");
906  Aliasee = ID.ConstantVal;
907  }
908 
909  Type *AliaseeType = Aliasee->getType();
910  auto *PTy = dyn_cast<PointerType>(AliaseeType);
911  if (!PTy)
912  return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
913  unsigned AddrSpace = PTy->getAddressSpace();
914 
915  if (IsAlias && Ty != PTy->getElementType())
916  return Error(
917  ExplicitTypeLoc,
918  "explicit pointee type doesn't match operand's pointee type");
919 
920  if (!IsAlias && !PTy->getElementType()->isFunctionTy())
921  return Error(
922  ExplicitTypeLoc,
923  "explicit pointee type should be a function type");
924 
925  GlobalValue *GVal = nullptr;
926 
927  // See if the alias was forward referenced, if so, prepare to replace the
928  // forward reference.
929  if (!Name.empty()) {
930  GVal = M->getNamedValue(Name);
931  if (GVal) {
932  if (!ForwardRefVals.erase(Name))
933  return Error(NameLoc, "redefinition of global '@" + Name + "'");
934  }
935  } else {
936  auto I = ForwardRefValIDs.find(NumberedVals.size());
937  if (I != ForwardRefValIDs.end()) {
938  GVal = I->second.first;
939  ForwardRefValIDs.erase(I);
940  }
941  }
942 
943  // Okay, create the alias but do not insert it into the module yet.
944  std::unique_ptr<GlobalIndirectSymbol> GA;
945  if (IsAlias)
946  GA.reset(GlobalAlias::create(Ty, AddrSpace,
948  Aliasee, /*Parent*/ nullptr));
949  else
950  GA.reset(GlobalIFunc::create(Ty, AddrSpace,
952  Aliasee, /*Parent*/ nullptr));
953  GA->setThreadLocalMode(TLM);
954  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955  GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956  GA->setUnnamedAddr(UnnamedAddr);
957  maybeSetDSOLocal(DSOLocal, *GA);
958 
959  if (Name.empty())
960  NumberedVals.push_back(GA.get());
961 
962  if (GVal) {
963  // Verify that types agree.
964  if (GVal->getType() != GA->getType())
965  return Error(
966  ExplicitTypeLoc,
967  "forward reference and definition of alias have different types");
968 
969  // If they agree, just RAUW the old value with the alias and remove the
970  // forward ref info.
971  GVal->replaceAllUsesWith(GA.get());
972  GVal->eraseFromParent();
973  }
974 
975  // Insert into the module, we know its name won't collide now.
976  if (IsAlias)
977  M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
978  else
979  M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
980  assert(GA->getName() == Name && "Should not be a name conflict!");
981 
982  // The module owns this now
983  GA.release();
984 
985  return false;
986 }
987 
988 /// ParseGlobal
989 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
990 /// OptionalVisibility OptionalDLLStorageClass
991 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
992 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
993 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
994 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
995 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
996 /// Const OptionalAttrs
997 ///
998 /// Everything up to and including OptionalUnnamedAddr has been parsed
999 /// already.
1000 ///
1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1002  unsigned Linkage, bool HasLinkage,
1003  unsigned Visibility, unsigned DLLStorageClass,
1004  bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1005  GlobalVariable::UnnamedAddr UnnamedAddr) {
1006  if (!isValidVisibilityForLinkage(Visibility, Linkage))
1007  return Error(NameLoc,
1008  "symbol with local linkage must have default visibility");
1009 
1010  unsigned AddrSpace;
1011  bool IsConstant, IsExternallyInitialized;
1012  LocTy IsExternallyInitializedLoc;
1013  LocTy TyLoc;
1014 
1015  Type *Ty = nullptr;
1016  if (ParseOptionalAddrSpace(AddrSpace) ||
1017  ParseOptionalToken(lltok::kw_externally_initialized,
1018  IsExternallyInitialized,
1019  &IsExternallyInitializedLoc) ||
1020  ParseGlobalType(IsConstant) ||
1021  ParseType(Ty, TyLoc))
1022  return true;
1023 
1024  // If the linkage is specified and is external, then no initializer is
1025  // present.
1026  Constant *Init = nullptr;
1027  if (!HasLinkage ||
1029  (GlobalValue::LinkageTypes)Linkage)) {
1030  if (ParseGlobalValue(Ty, Init))
1031  return true;
1032  }
1033 
1035  return Error(TyLoc, "invalid type for global variable");
1036 
1037  GlobalValue *GVal = nullptr;
1038 
1039  // See if the global was forward referenced, if so, use the global.
1040  if (!Name.empty()) {
1041  GVal = M->getNamedValue(Name);
1042  if (GVal) {
1043  if (!ForwardRefVals.erase(Name))
1044  return Error(NameLoc, "redefinition of global '@" + Name + "'");
1045  }
1046  } else {
1047  auto I = ForwardRefValIDs.find(NumberedVals.size());
1048  if (I != ForwardRefValIDs.end()) {
1049  GVal = I->second.first;
1050  ForwardRefValIDs.erase(I);
1051  }
1052  }
1053 
1054  GlobalVariable *GV;
1055  if (!GVal) {
1056  GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1058  AddrSpace);
1059  } else {
1060  if (GVal->getValueType() != Ty)
1061  return Error(TyLoc,
1062  "forward reference and definition of global have different types");
1063 
1064  GV = cast<GlobalVariable>(GVal);
1065 
1066  // Move the forward-reference to the correct spot in the module.
1067  M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1068  }
1069 
1070  if (Name.empty())
1071  NumberedVals.push_back(GV);
1072 
1073  // Set the parsed properties on the global.
1074  if (Init)
1075  GV->setInitializer(Init);
1076  GV->setConstant(IsConstant);
1077  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1078  maybeSetDSOLocal(DSOLocal, *GV);
1081  GV->setExternallyInitialized(IsExternallyInitialized);
1082  GV->setThreadLocalMode(TLM);
1083  GV->setUnnamedAddr(UnnamedAddr);
1084 
1085  // Parse attributes on the global.
1086  while (Lex.getKind() == lltok::comma) {
1087  Lex.Lex();
1088 
1089  if (Lex.getKind() == lltok::kw_section) {
1090  Lex.Lex();
1091  GV->setSection(Lex.getStrVal());
1092  if (ParseToken(lltok::StringConstant, "expected global section string"))
1093  return true;
1094  } else if (Lex.getKind() == lltok::kw_align) {
1095  unsigned Alignment;
1096  if (ParseOptionalAlignment(Alignment)) return true;
1097  GV->setAlignment(Alignment);
1098  } else if (Lex.getKind() == lltok::MetadataVar) {
1099  if (ParseGlobalObjectMetadataAttachment(*GV))
1100  return true;
1101  } else {
1102  Comdat *C;
1103  if (parseOptionalComdat(Name, C))
1104  return true;
1105  if (C)
1106  GV->setComdat(C);
1107  else
1108  return TokError("unknown global variable property!");
1109  }
1110  }
1111 
1113  LocTy BuiltinLoc;
1114  std::vector<unsigned> FwdRefAttrGrps;
1115  if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1116  return true;
1117  if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1118  GV->setAttributes(AttributeSet::get(Context, Attrs));
1119  ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1120  }
1121 
1122  return false;
1123 }
1124 
1125 /// ParseUnnamedAttrGrp
1126 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1127 bool LLParser::ParseUnnamedAttrGrp() {
1129  LocTy AttrGrpLoc = Lex.getLoc();
1130  Lex.Lex();
1131 
1132  if (Lex.getKind() != lltok::AttrGrpID)
1133  return TokError("expected attribute group id");
1134 
1135  unsigned VarID = Lex.getUIntVal();
1136  std::vector<unsigned> unused;
1137  LocTy BuiltinLoc;
1138  Lex.Lex();
1139 
1140  if (ParseToken(lltok::equal, "expected '=' here") ||
1141  ParseToken(lltok::lbrace, "expected '{' here") ||
1142  ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1143  BuiltinLoc) ||
1144  ParseToken(lltok::rbrace, "expected end of attribute group"))
1145  return true;
1146 
1147  if (!NumberedAttrBuilders[VarID].hasAttributes())
1148  return Error(AttrGrpLoc, "attribute group has no attributes");
1149 
1150  return false;
1151 }
1152 
1153 /// ParseFnAttributeValuePairs
1154 /// ::= <attr> | <attr> '=' <value>
1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1156  std::vector<unsigned> &FwdRefAttrGrps,
1157  bool inAttrGrp, LocTy &BuiltinLoc) {
1158  bool HaveError = false;
1159 
1160  B.clear();
1161 
1162  while (true) {
1163  lltok::Kind Token = Lex.getKind();
1164  if (Token == lltok::kw_builtin)
1165  BuiltinLoc = Lex.getLoc();
1166  switch (Token) {
1167  default:
1168  if (!inAttrGrp) return HaveError;
1169  return Error(Lex.getLoc(), "unterminated attribute group");
1170  case lltok::rbrace:
1171  // Finished.
1172  return false;
1173 
1174  case lltok::AttrGrpID: {
1175  // Allow a function to reference an attribute group:
1176  //
1177  // define void @foo() #1 { ... }
1178  if (inAttrGrp)
1179  HaveError |=
1180  Error(Lex.getLoc(),
1181  "cannot have an attribute group reference in an attribute group");
1182 
1183  unsigned AttrGrpNum = Lex.getUIntVal();
1184  if (inAttrGrp) break;
1185 
1186  // Save the reference to the attribute group. We'll fill it in later.
1187  FwdRefAttrGrps.push_back(AttrGrpNum);
1188  break;
1189  }
1190  // Target-dependent attributes:
1191  case lltok::StringConstant: {
1192  if (ParseStringAttribute(B))
1193  return true;
1194  continue;
1195  }
1196 
1197  // Target-independent attributes:
1198  case lltok::kw_align: {
1199  // As a hack, we allow function alignment to be initially parsed as an
1200  // attribute on a function declaration/definition or added to an attribute
1201  // group and later moved to the alignment field.
1202  unsigned Alignment;
1203  if (inAttrGrp) {
1204  Lex.Lex();
1205  if (ParseToken(lltok::equal, "expected '=' here") ||
1206  ParseUInt32(Alignment))
1207  return true;
1208  } else {
1209  if (ParseOptionalAlignment(Alignment))
1210  return true;
1211  }
1212  B.addAlignmentAttr(Alignment);
1213  continue;
1214  }
1215  case lltok::kw_alignstack: {
1216  unsigned Alignment;
1217  if (inAttrGrp) {
1218  Lex.Lex();
1219  if (ParseToken(lltok::equal, "expected '=' here") ||
1220  ParseUInt32(Alignment))
1221  return true;
1222  } else {
1223  if (ParseOptionalStackAlignment(Alignment))
1224  return true;
1225  }
1226  B.addStackAlignmentAttr(Alignment);
1227  continue;
1228  }
1229  case lltok::kw_allocsize: {
1230  unsigned ElemSizeArg;
1231  Optional<unsigned> NumElemsArg;
1232  // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1233  if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1234  return true;
1235  B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1236  continue;
1237  }
1238  case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1239  case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1240  case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1244  B.addAttribute(Attribute::InaccessibleMemOnly); break;
1246  B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1247  case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1249  case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1250  case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1251  case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1252  case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1254  B.addAttribute(Attribute::NoImplicitFloat); break;
1255  case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1256  case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1257  case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1258  case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1259  case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1260  case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1261  case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1263  B.addAttribute(Attribute::OptForFuzzing); break;
1264  case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1265  case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1266  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1267  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1269  B.addAttribute(Attribute::ReturnsTwice); break;
1270  case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1271  case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1272  case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1273  case lltok::kw_sspstrong:
1274  B.addAttribute(Attribute::StackProtectStrong); break;
1275  case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1277  B.addAttribute(Attribute::ShadowCallStack); break;
1279  B.addAttribute(Attribute::SanitizeAddress); break;
1281  B.addAttribute(Attribute::SanitizeHWAddress); break;
1283  B.addAttribute(Attribute::SanitizeThread); break;
1285  B.addAttribute(Attribute::SanitizeMemory); break;
1287  B.addAttribute(Attribute::SpeculativeLoadHardening);
1288  break;
1289  case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1290  case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1291  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1292 
1293  // Error handling.
1294  case lltok::kw_inreg:
1295  case lltok::kw_signext:
1296  case lltok::kw_zeroext:
1297  HaveError |=
1298  Error(Lex.getLoc(),
1299  "invalid use of attribute on a function");
1300  break;
1301  case lltok::kw_byval:
1304  case lltok::kw_inalloca:
1305  case lltok::kw_nest:
1306  case lltok::kw_noalias:
1307  case lltok::kw_nocapture:
1308  case lltok::kw_nonnull:
1309  case lltok::kw_returned:
1310  case lltok::kw_sret:
1311  case lltok::kw_swifterror:
1312  case lltok::kw_swiftself:
1313  case lltok::kw_immarg:
1314  HaveError |=
1315  Error(Lex.getLoc(),
1316  "invalid use of parameter-only attribute on a function");
1317  break;
1318  }
1319 
1320  Lex.Lex();
1321  }
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 // GlobalValue Reference/Resolution Routines.
1326 //===----------------------------------------------------------------------===//
1327 
1329  const std::string &Name) {
1330  if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1332  PTy->getAddressSpace(), Name, M);
1333  else
1334  return new GlobalVariable(*M, PTy->getElementType(), false,
1337  PTy->getAddressSpace());
1338 }
1339 
1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1341  Value *Val, bool IsCall) {
1342  if (Val->getType() == Ty)
1343  return Val;
1344  // For calls we also accept variables in the program address space.
1345  Type *SuggestedTy = Ty;
1346  if (IsCall && isa<PointerType>(Ty)) {
1347  Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1349  SuggestedTy = TyInProgAS;
1350  if (Val->getType() == TyInProgAS)
1351  return Val;
1352  }
1353  if (Ty->isLabelTy())
1354  Error(Loc, "'" + Name + "' is not a basic block");
1355  else
1356  Error(Loc, "'" + Name + "' defined with type '" +
1357  getTypeString(Val->getType()) + "' but expected '" +
1358  getTypeString(SuggestedTy) + "'");
1359  return nullptr;
1360 }
1361 
1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1363 /// forward reference record if needed. This can return null if the value
1364 /// exists but does not have the right type.
1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1366  LocTy Loc, bool IsCall) {
1367  PointerType *PTy = dyn_cast<PointerType>(Ty);
1368  if (!PTy) {
1369  Error(Loc, "global variable reference must have pointer type");
1370  return nullptr;
1371  }
1372 
1373  // Look this name up in the normal function symbol table.
1374  GlobalValue *Val =
1375  cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1376 
1377  // If this is a forward reference for the value, see if we already created a
1378  // forward ref record.
1379  if (!Val) {
1380  auto I = ForwardRefVals.find(Name);
1381  if (I != ForwardRefVals.end())
1382  Val = I->second.first;
1383  }
1384 
1385  // If we have the value in the symbol table or fwd-ref table, return it.
1386  if (Val)
1387  return cast_or_null<GlobalValue>(
1388  checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1389 
1390  // Otherwise, create a new forward reference for this value and remember it.
1391  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1392  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1393  return FwdVal;
1394 }
1395 
1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1397  bool IsCall) {
1398  PointerType *PTy = dyn_cast<PointerType>(Ty);
1399  if (!PTy) {
1400  Error(Loc, "global variable reference must have pointer type");
1401  return nullptr;
1402  }
1403 
1404  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1405 
1406  // If this is a forward reference for the value, see if we already created a
1407  // forward ref record.
1408  if (!Val) {
1409  auto I = ForwardRefValIDs.find(ID);
1410  if (I != ForwardRefValIDs.end())
1411  Val = I->second.first;
1412  }
1413 
1414  // If we have the value in the symbol table or fwd-ref table, return it.
1415  if (Val)
1416  return cast_or_null<GlobalValue>(
1417  checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1418 
1419  // Otherwise, create a new forward reference for this value and remember it.
1420  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1421  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1422  return FwdVal;
1423 }
1424 
1425 //===----------------------------------------------------------------------===//
1426 // Comdat Reference/Resolution Routines.
1427 //===----------------------------------------------------------------------===//
1428 
1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1430  // Look this name up in the comdat symbol table.
1431  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1432  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1433  if (I != ComdatSymTab.end())
1434  return &I->second;
1435 
1436  // Otherwise, create a new forward reference for this value and remember it.
1437  Comdat *C = M->getOrInsertComdat(Name);
1438  ForwardRefComdats[Name] = Loc;
1439  return C;
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 // Helper Routines.
1444 //===----------------------------------------------------------------------===//
1445 
1446 /// ParseToken - If the current token has the specified kind, eat it and return
1447 /// success. Otherwise, emit the specified error and return failure.
1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1449  if (Lex.getKind() != T)
1450  return TokError(ErrMsg);
1451  Lex.Lex();
1452  return false;
1453 }
1454 
1455 /// ParseStringConstant
1456 /// ::= StringConstant
1457 bool LLParser::ParseStringConstant(std::string &Result) {
1458  if (Lex.getKind() != lltok::StringConstant)
1459  return TokError("expected string constant");
1460  Result = Lex.getStrVal();
1461  Lex.Lex();
1462  return false;
1463 }
1464 
1465 /// ParseUInt32
1466 /// ::= uint32
1467 bool LLParser::ParseUInt32(uint32_t &Val) {
1468  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1469  return TokError("expected integer");
1470  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1471  if (Val64 != unsigned(Val64))
1472  return TokError("expected 32-bit integer (too large)");
1473  Val = Val64;
1474  Lex.Lex();
1475  return false;
1476 }
1477 
1478 /// ParseUInt64
1479 /// ::= uint64
1480 bool LLParser::ParseUInt64(uint64_t &Val) {
1481  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1482  return TokError("expected integer");
1483  Val = Lex.getAPSIntVal().getLimitedValue();
1484  Lex.Lex();
1485  return false;
1486 }
1487 
1488 /// ParseTLSModel
1489 /// := 'localdynamic'
1490 /// := 'initialexec'
1491 /// := 'localexec'
1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1493  switch (Lex.getKind()) {
1494  default:
1495  return TokError("expected localdynamic, initialexec or localexec");
1498  break;
1499  case lltok::kw_initialexec:
1501  break;
1502  case lltok::kw_localexec:
1504  break;
1505  }
1506 
1507  Lex.Lex();
1508  return false;
1509 }
1510 
1511 /// ParseOptionalThreadLocal
1512 /// := /*empty*/
1513 /// := 'thread_local'
1514 /// := 'thread_local' '(' tlsmodel ')'
1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1517  if (!EatIfPresent(lltok::kw_thread_local))
1518  return false;
1519 
1521  if (Lex.getKind() == lltok::lparen) {
1522  Lex.Lex();
1523  return ParseTLSModel(TLM) ||
1524  ParseToken(lltok::rparen, "expected ')' after thread local model");
1525  }
1526  return false;
1527 }
1528 
1529 /// ParseOptionalAddrSpace
1530 /// := /*empty*/
1531 /// := 'addrspace' '(' uint32 ')'
1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1533  AddrSpace = DefaultAS;
1534  if (!EatIfPresent(lltok::kw_addrspace))
1535  return false;
1536  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1537  ParseUInt32(AddrSpace) ||
1538  ParseToken(lltok::rparen, "expected ')' in address space");
1539 }
1540 
1541 /// ParseStringAttribute
1542 /// := StringConstant
1543 /// := StringConstant '=' StringConstant
1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1545  std::string Attr = Lex.getStrVal();
1546  Lex.Lex();
1547  std::string Val;
1548  if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1549  return true;
1550  B.addAttribute(Attr, Val);
1551  return false;
1552 }
1553 
1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1556  bool HaveError = false;
1557 
1558  B.clear();
1559 
1560  while (true) {
1561  lltok::Kind Token = Lex.getKind();
1562  switch (Token) {
1563  default: // End of attributes.
1564  return HaveError;
1565  case lltok::StringConstant: {
1566  if (ParseStringAttribute(B))
1567  return true;
1568  continue;
1569  }
1570  case lltok::kw_align: {
1571  unsigned Alignment;
1572  if (ParseOptionalAlignment(Alignment))
1573  return true;
1574  B.addAlignmentAttr(Alignment);
1575  continue;
1576  }
1577  case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1579  uint64_t Bytes;
1580  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1581  return true;
1582  B.addDereferenceableAttr(Bytes);
1583  continue;
1584  }
1586  uint64_t Bytes;
1587  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1588  return true;
1590  continue;
1591  }
1592  case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1593  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1594  case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1596  case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1597  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1598  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1599  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1600  case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1601  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1602  case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1603  case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1604  case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1605  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1606  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1607  case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break;
1608 
1609  case lltok::kw_alignstack:
1611  case lltok::kw_argmemonly:
1612  case lltok::kw_builtin:
1613  case lltok::kw_inlinehint:
1614  case lltok::kw_jumptable:
1615  case lltok::kw_minsize:
1616  case lltok::kw_naked:
1617  case lltok::kw_nobuiltin:
1618  case lltok::kw_noduplicate:
1620  case lltok::kw_noinline:
1621  case lltok::kw_nonlazybind:
1622  case lltok::kw_noredzone:
1623  case lltok::kw_noreturn:
1624  case lltok::kw_nocf_check:
1625  case lltok::kw_nounwind:
1627  case lltok::kw_optnone:
1628  case lltok::kw_optsize:
1635  case lltok::kw_ssp:
1636  case lltok::kw_sspreq:
1637  case lltok::kw_sspstrong:
1638  case lltok::kw_safestack:
1640  case lltok::kw_strictfp:
1641  case lltok::kw_uwtable:
1642  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1643  break;
1644  }
1645 
1646  Lex.Lex();
1647  }
1648 }
1649 
1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1652  bool HaveError = false;
1653 
1654  B.clear();
1655 
1656  while (true) {
1657  lltok::Kind Token = Lex.getKind();
1658  switch (Token) {
1659  default: // End of attributes.
1660  return HaveError;
1661  case lltok::StringConstant: {
1662  if (ParseStringAttribute(B))
1663  return true;
1664  continue;
1665  }
1667  uint64_t Bytes;
1668  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1669  return true;
1670  B.addDereferenceableAttr(Bytes);
1671  continue;
1672  }
1674  uint64_t Bytes;
1675  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1676  return true;
1678  continue;
1679  }
1680  case lltok::kw_align: {
1681  unsigned Alignment;
1682  if (ParseOptionalAlignment(Alignment))
1683  return true;
1684  B.addAlignmentAttr(Alignment);
1685  continue;
1686  }
1687  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1689  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1690  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1691  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1692 
1693  // Error handling.
1694  case lltok::kw_byval:
1695  case lltok::kw_inalloca:
1696  case lltok::kw_nest:
1697  case lltok::kw_nocapture:
1698  case lltok::kw_returned:
1699  case lltok::kw_sret:
1700  case lltok::kw_swifterror:
1701  case lltok::kw_swiftself:
1702  case lltok::kw_immarg:
1703  HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1704  break;
1705 
1706  case lltok::kw_alignstack:
1708  case lltok::kw_argmemonly:
1709  case lltok::kw_builtin:
1710  case lltok::kw_cold:
1711  case lltok::kw_inlinehint:
1712  case lltok::kw_jumptable:
1713  case lltok::kw_minsize:
1714  case lltok::kw_naked:
1715  case lltok::kw_nobuiltin:
1716  case lltok::kw_noduplicate:
1718  case lltok::kw_noinline:
1719  case lltok::kw_nonlazybind:
1720  case lltok::kw_noredzone:
1721  case lltok::kw_noreturn:
1722  case lltok::kw_nocf_check:
1723  case lltok::kw_nounwind:
1725  case lltok::kw_optnone:
1726  case lltok::kw_optsize:
1733  case lltok::kw_ssp:
1734  case lltok::kw_sspreq:
1735  case lltok::kw_sspstrong:
1736  case lltok::kw_safestack:
1738  case lltok::kw_strictfp:
1739  case lltok::kw_uwtable:
1740  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1741  break;
1742 
1743  case lltok::kw_readnone:
1744  case lltok::kw_readonly:
1745  HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1746  }
1747 
1748  Lex.Lex();
1749  }
1750 }
1751 
1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1753  HasLinkage = true;
1754  switch (Kind) {
1755  default:
1756  HasLinkage = false;
1758  case lltok::kw_private:
1760  case lltok::kw_internal:
1762  case lltok::kw_weak:
1764  case lltok::kw_weak_odr:
1766  case lltok::kw_linkonce:
1772  case lltok::kw_appending:
1774  case lltok::kw_common:
1776  case lltok::kw_extern_weak:
1778  case lltok::kw_external:
1780  }
1781 }
1782 
1783 /// ParseOptionalLinkage
1784 /// ::= /*empty*/
1785 /// ::= 'private'
1786 /// ::= 'internal'
1787 /// ::= 'weak'
1788 /// ::= 'weak_odr'
1789 /// ::= 'linkonce'
1790 /// ::= 'linkonce_odr'
1791 /// ::= 'available_externally'
1792 /// ::= 'appending'
1793 /// ::= 'common'
1794 /// ::= 'extern_weak'
1795 /// ::= 'external'
1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1797  unsigned &Visibility,
1798  unsigned &DLLStorageClass,
1799  bool &DSOLocal) {
1800  Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1801  if (HasLinkage)
1802  Lex.Lex();
1803  ParseOptionalDSOLocal(DSOLocal);
1804  ParseOptionalVisibility(Visibility);
1805  ParseOptionalDLLStorageClass(DLLStorageClass);
1806 
1807  if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1808  return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1809  }
1810 
1811  return false;
1812 }
1813 
1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1815  switch (Lex.getKind()) {
1816  default:
1817  DSOLocal = false;
1818  break;
1819  case lltok::kw_dso_local:
1820  DSOLocal = true;
1821  Lex.Lex();
1822  break;
1824  DSOLocal = false;
1825  Lex.Lex();
1826  break;
1827  }
1828 }
1829 
1830 /// ParseOptionalVisibility
1831 /// ::= /*empty*/
1832 /// ::= 'default'
1833 /// ::= 'hidden'
1834 /// ::= 'protected'
1835 ///
1836 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1837  switch (Lex.getKind()) {
1838  default:
1840  return;
1841  case lltok::kw_default:
1843  break;
1844  case lltok::kw_hidden:
1846  break;
1847  case lltok::kw_protected:
1849  break;
1850  }
1851  Lex.Lex();
1852 }
1853 
1854 /// ParseOptionalDLLStorageClass
1855 /// ::= /*empty*/
1856 /// ::= 'dllimport'
1857 /// ::= 'dllexport'
1858 ///
1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1860  switch (Lex.getKind()) {
1861  default:
1863  return;
1864  case lltok::kw_dllimport:
1866  break;
1867  case lltok::kw_dllexport:
1869  break;
1870  }
1871  Lex.Lex();
1872 }
1873 
1874 /// ParseOptionalCallingConv
1875 /// ::= /*empty*/
1876 /// ::= 'ccc'
1877 /// ::= 'fastcc'
1878 /// ::= 'intel_ocl_bicc'
1879 /// ::= 'coldcc'
1880 /// ::= 'x86_stdcallcc'
1881 /// ::= 'x86_fastcallcc'
1882 /// ::= 'x86_thiscallcc'
1883 /// ::= 'x86_vectorcallcc'
1884 /// ::= 'arm_apcscc'
1885 /// ::= 'arm_aapcscc'
1886 /// ::= 'arm_aapcs_vfpcc'
1887 /// ::= 'aarch64_vector_pcs'
1888 /// ::= 'msp430_intrcc'
1889 /// ::= 'avr_intrcc'
1890 /// ::= 'avr_signalcc'
1891 /// ::= 'ptx_kernel'
1892 /// ::= 'ptx_device'
1893 /// ::= 'spir_func'
1894 /// ::= 'spir_kernel'
1895 /// ::= 'x86_64_sysvcc'
1896 /// ::= 'win64cc'
1897 /// ::= 'webkit_jscc'
1898 /// ::= 'anyregcc'
1899 /// ::= 'preserve_mostcc'
1900 /// ::= 'preserve_allcc'
1901 /// ::= 'ghccc'
1902 /// ::= 'swiftcc'
1903 /// ::= 'x86_intrcc'
1904 /// ::= 'hhvmcc'
1905 /// ::= 'hhvm_ccc'
1906 /// ::= 'cxx_fast_tlscc'
1907 /// ::= 'amdgpu_vs'
1908 /// ::= 'amdgpu_ls'
1909 /// ::= 'amdgpu_hs'
1910 /// ::= 'amdgpu_es'
1911 /// ::= 'amdgpu_gs'
1912 /// ::= 'amdgpu_ps'
1913 /// ::= 'amdgpu_cs'
1914 /// ::= 'amdgpu_kernel'
1915 /// ::= 'cc' UINT
1916 ///
1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1918  switch (Lex.getKind()) {
1919  default: CC = CallingConv::C; return false;
1920  case lltok::kw_ccc: CC = CallingConv::C; break;
1921  case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1922  case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1928  case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1933  case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1938  case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1941  case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1943  case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1946  case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1947  case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1948  case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1949  case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1950  case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1952  case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1953  case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1954  case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1955  case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1956  case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1957  case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1958  case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1960  case lltok::kw_cc: {
1961  Lex.Lex();
1962  return ParseUInt32(CC);
1963  }
1964  }
1965 
1966  Lex.Lex();
1967  return false;
1968 }
1969 
1970 /// ParseMetadataAttachment
1971 /// ::= !dbg !42
1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1973  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1974 
1975  std::string Name = Lex.getStrVal();
1976  Kind = M->getMDKindID(Name);
1977  Lex.Lex();
1978 
1979  return ParseMDNode(MD);
1980 }
1981 
1982 /// ParseInstructionMetadata
1983 /// ::= !dbg !42 (',' !dbg !57)*
1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1985  do {
1986  if (Lex.getKind() != lltok::MetadataVar)
1987  return TokError("expected metadata after comma");
1988 
1989  unsigned MDK;
1990  MDNode *N;
1991  if (ParseMetadataAttachment(MDK, N))
1992  return true;
1993 
1994  Inst.setMetadata(MDK, N);
1995  if (MDK == LLVMContext::MD_tbaa)
1996  InstsWithTBAATag.push_back(&Inst);
1997 
1998  // If this is the end of the list, we're done.
1999  } while (EatIfPresent(lltok::comma));
2000  return false;
2001 }
2002 
2003 /// ParseGlobalObjectMetadataAttachment
2004 /// ::= !dbg !57
2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2006  unsigned MDK;
2007  MDNode *N;
2008  if (ParseMetadataAttachment(MDK, N))
2009  return true;
2010 
2011  GO.addMetadata(MDK, *N);
2012  return false;
2013 }
2014 
2015 /// ParseOptionalFunctionMetadata
2016 /// ::= (!dbg !57)*
2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2018  while (Lex.getKind() == lltok::MetadataVar)
2019  if (ParseGlobalObjectMetadataAttachment(F))
2020  return true;
2021  return false;
2022 }
2023 
2024 /// ParseOptionalAlignment
2025 /// ::= /* empty */
2026 /// ::= 'align' 4
2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2028  Alignment = 0;
2029  if (!EatIfPresent(lltok::kw_align))
2030  return false;
2031  LocTy AlignLoc = Lex.getLoc();
2032  if (ParseUInt32(Alignment)) return true;
2033  if (!isPowerOf2_32(Alignment))
2034  return Error(AlignLoc, "alignment is not a power of two");
2035  if (Alignment > Value::MaximumAlignment)
2036  return Error(AlignLoc, "huge alignments are not supported yet");
2037  return false;
2038 }
2039 
2040 /// ParseOptionalDerefAttrBytes
2041 /// ::= /* empty */
2042 /// ::= AttrKind '(' 4 ')'
2043 ///
2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2046  uint64_t &Bytes) {
2047  assert((AttrKind == lltok::kw_dereferenceable ||
2048  AttrKind == lltok::kw_dereferenceable_or_null) &&
2049  "contract!");
2050 
2051  Bytes = 0;
2052  if (!EatIfPresent(AttrKind))
2053  return false;
2054  LocTy ParenLoc = Lex.getLoc();
2055  if (!EatIfPresent(lltok::lparen))
2056  return Error(ParenLoc, "expected '('");
2057  LocTy DerefLoc = Lex.getLoc();
2058  if (ParseUInt64(Bytes)) return true;
2059  ParenLoc = Lex.getLoc();
2060  if (!EatIfPresent(lltok::rparen))
2061  return Error(ParenLoc, "expected ')'");
2062  if (!Bytes)
2063  return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2064  return false;
2065 }
2066 
2067 /// ParseOptionalCommaAlign
2068 /// ::=
2069 /// ::= ',' align 4
2070 ///
2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2072 /// end.
2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2074  bool &AteExtraComma) {
2075  AteExtraComma = false;
2076  while (EatIfPresent(lltok::comma)) {
2077  // Metadata at the end is an early exit.
2078  if (Lex.getKind() == lltok::MetadataVar) {
2079  AteExtraComma = true;
2080  return false;
2081  }
2082 
2083  if (Lex.getKind() != lltok::kw_align)
2084  return Error(Lex.getLoc(), "expected metadata or 'align'");
2085 
2086  if (ParseOptionalAlignment(Alignment)) return true;
2087  }
2088 
2089  return false;
2090 }
2091 
2092 /// ParseOptionalCommaAddrSpace
2093 /// ::=
2094 /// ::= ',' addrspace(1)
2095 ///
2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2097 /// end.
2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2099  LocTy &Loc,
2100  bool &AteExtraComma) {
2101  AteExtraComma = false;
2102  while (EatIfPresent(lltok::comma)) {
2103  // Metadata at the end is an early exit.
2104  if (Lex.getKind() == lltok::MetadataVar) {
2105  AteExtraComma = true;
2106  return false;
2107  }
2108 
2109  Loc = Lex.getLoc();
2110  if (Lex.getKind() != lltok::kw_addrspace)
2111  return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2112 
2113  if (ParseOptionalAddrSpace(AddrSpace))
2114  return true;
2115  }
2116 
2117  return false;
2118 }
2119 
2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2121  Optional<unsigned> &HowManyArg) {
2122  Lex.Lex();
2123 
2124  auto StartParen = Lex.getLoc();
2125  if (!EatIfPresent(lltok::lparen))
2126  return Error(StartParen, "expected '('");
2127 
2128  if (ParseUInt32(BaseSizeArg))
2129  return true;
2130 
2131  if (EatIfPresent(lltok::comma)) {
2132  auto HowManyAt = Lex.getLoc();
2133  unsigned HowMany;
2134  if (ParseUInt32(HowMany))
2135  return true;
2136  if (HowMany == BaseSizeArg)
2137  return Error(HowManyAt,
2138  "'allocsize' indices can't refer to the same parameter");
2139  HowManyArg = HowMany;
2140  } else
2141  HowManyArg = None;
2142 
2143  auto EndParen = Lex.getLoc();
2144  if (!EatIfPresent(lltok::rparen))
2145  return Error(EndParen, "expected ')'");
2146  return false;
2147 }
2148 
2149 /// ParseScopeAndOrdering
2150 /// if isAtomic: ::= SyncScope? AtomicOrdering
2151 /// else: ::=
2152 ///
2153 /// This sets Scope and Ordering to the parsed values.
2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2155  AtomicOrdering &Ordering) {
2156  if (!isAtomic)
2157  return false;
2158 
2159  return ParseScope(SSID) || ParseOrdering(Ordering);
2160 }
2161 
2162 /// ParseScope
2163 /// ::= syncscope("singlethread" | "<target scope>")?
2164 ///
2165 /// This sets synchronization scope ID to the ID of the parsed value.
2166 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2167  SSID = SyncScope::System;
2168  if (EatIfPresent(lltok::kw_syncscope)) {
2169  auto StartParenAt = Lex.getLoc();
2170  if (!EatIfPresent(lltok::lparen))
2171  return Error(StartParenAt, "Expected '(' in syncscope");
2172 
2173  std::string SSN;
2174  auto SSNAt = Lex.getLoc();
2175  if (ParseStringConstant(SSN))
2176  return Error(SSNAt, "Expected synchronization scope name");
2177 
2178  auto EndParenAt = Lex.getLoc();
2179  if (!EatIfPresent(lltok::rparen))
2180  return Error(EndParenAt, "Expected ')' in syncscope");
2181 
2182  SSID = Context.getOrInsertSyncScopeID(SSN);
2183  }
2184 
2185  return false;
2186 }
2187 
2188 /// ParseOrdering
2189 /// ::= AtomicOrdering
2190 ///
2191 /// This sets Ordering to the parsed value.
2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2193  switch (Lex.getKind()) {
2194  default: return TokError("Expected ordering on atomic instruction");
2195  case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2196  case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2197  // Not specified yet:
2198  // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2199  case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2200  case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2201  case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2202  case lltok::kw_seq_cst:
2204  break;
2205  }
2206  Lex.Lex();
2207  return false;
2208 }
2209 
2210 /// ParseOptionalStackAlignment
2211 /// ::= /* empty */
2212 /// ::= 'alignstack' '(' 4 ')'
2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2214  Alignment = 0;
2215  if (!EatIfPresent(lltok::kw_alignstack))
2216  return false;
2217  LocTy ParenLoc = Lex.getLoc();
2218  if (!EatIfPresent(lltok::lparen))
2219  return Error(ParenLoc, "expected '('");
2220  LocTy AlignLoc = Lex.getLoc();
2221  if (ParseUInt32(Alignment)) return true;
2222  ParenLoc = Lex.getLoc();
2223  if (!EatIfPresent(lltok::rparen))
2224  return Error(ParenLoc, "expected ')'");
2225  if (!isPowerOf2_32(Alignment))
2226  return Error(AlignLoc, "stack alignment is not a power of two");
2227  return false;
2228 }
2229 
2230 /// ParseIndexList - This parses the index list for an insert/extractvalue
2231 /// instruction. This sets AteExtraComma in the case where we eat an extra
2232 /// comma at the end of the line and find that it is followed by metadata.
2233 /// Clients that don't allow metadata can call the version of this function that
2234 /// only takes one argument.
2235 ///
2236 /// ParseIndexList
2237 /// ::= (',' uint32)+
2238 ///
2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2240  bool &AteExtraComma) {
2241  AteExtraComma = false;
2242 
2243  if (Lex.getKind() != lltok::comma)
2244  return TokError("expected ',' as start of index list");
2245 
2246  while (EatIfPresent(lltok::comma)) {
2247  if (Lex.getKind() == lltok::MetadataVar) {
2248  if (Indices.empty()) return TokError("expected index");
2249  AteExtraComma = true;
2250  return false;
2251  }
2252  unsigned Idx = 0;
2253  if (ParseUInt32(Idx)) return true;
2254  Indices.push_back(Idx);
2255  }
2256 
2257  return false;
2258 }
2259 
2260 //===----------------------------------------------------------------------===//
2261 // Type Parsing.
2262 //===----------------------------------------------------------------------===//
2263 
2264 /// ParseType - Parse a type.
2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2266  SMLoc TypeLoc = Lex.getLoc();
2267  switch (Lex.getKind()) {
2268  default:
2269  return TokError(Msg);
2270  case lltok::Type:
2271  // Type ::= 'float' | 'void' (etc)
2272  Result = Lex.getTyVal();
2273  Lex.Lex();
2274  break;
2275  case lltok::lbrace:
2276  // Type ::= StructType
2277  if (ParseAnonStructType(Result, false))
2278  return true;
2279  break;
2280  case lltok::lsquare:
2281  // Type ::= '[' ... ']'
2282  Lex.Lex(); // eat the lsquare.
2283  if (ParseArrayVectorType(Result, false))
2284  return true;
2285  break;
2286  case lltok::less: // Either vector or packed struct.
2287  // Type ::= '<' ... '>'
2288  Lex.Lex();
2289  if (Lex.getKind() == lltok::lbrace) {
2290  if (ParseAnonStructType(Result, true) ||
2291  ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2292  return true;
2293  } else if (ParseArrayVectorType(Result, true))
2294  return true;
2295  break;
2296  case lltok::LocalVar: {
2297  // Type ::= %foo
2298  std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2299 
2300  // If the type hasn't been defined yet, create a forward definition and
2301  // remember where that forward def'n was seen (in case it never is defined).
2302  if (!Entry.first) {
2303  Entry.first = StructType::create(Context, Lex.getStrVal());
2304  Entry.second = Lex.getLoc();
2305  }
2306  Result = Entry.first;
2307  Lex.Lex();
2308  break;
2309  }
2310 
2311  case lltok::LocalVarID: {
2312  // Type ::= %4
2313  std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2314 
2315  // If the type hasn't been defined yet, create a forward definition and
2316  // remember where that forward def'n was seen (in case it never is defined).
2317  if (!Entry.first) {
2318  Entry.first = StructType::create(Context);
2319  Entry.second = Lex.getLoc();
2320  }
2321  Result = Entry.first;
2322  Lex.Lex();
2323  break;
2324  }
2325  }
2326 
2327  // Parse the type suffixes.
2328  while (true) {
2329  switch (Lex.getKind()) {
2330  // End of type.
2331  default:
2332  if (!AllowVoid && Result->isVoidTy())
2333  return Error(TypeLoc, "void type only allowed for function results");
2334  return false;
2335 
2336  // Type ::= Type '*'
2337  case lltok::star:
2338  if (Result->isLabelTy())
2339  return TokError("basic block pointers are invalid");
2340  if (Result->isVoidTy())
2341  return TokError("pointers to void are invalid - use i8* instead");
2342  if (!PointerType::isValidElementType(Result))
2343  return TokError("pointer to this type is invalid");
2344  Result = PointerType::getUnqual(Result);
2345  Lex.Lex();
2346  break;
2347 
2348  // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2349  case lltok::kw_addrspace: {
2350  if (Result->isLabelTy())
2351  return TokError("basic block pointers are invalid");
2352  if (Result->isVoidTy())
2353  return TokError("pointers to void are invalid; use i8* instead");
2354  if (!PointerType::isValidElementType(Result))
2355  return TokError("pointer to this type is invalid");
2356  unsigned AddrSpace;
2357  if (ParseOptionalAddrSpace(AddrSpace) ||
2358  ParseToken(lltok::star, "expected '*' in address space"))
2359  return true;
2360 
2361  Result = PointerType::get(Result, AddrSpace);
2362  break;
2363  }
2364 
2365  /// Types '(' ArgTypeListI ')' OptFuncAttrs
2366  case lltok::lparen:
2367  if (ParseFunctionType(Result))
2368  return true;
2369  break;
2370  }
2371  }
2372 }
2373 
2374 /// ParseParameterList
2375 /// ::= '(' ')'
2376 /// ::= '(' Arg (',' Arg)* ')'
2377 /// Arg
2378 /// ::= Type OptionalAttributes Value OptionalAttributes
2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2380  PerFunctionState &PFS, bool IsMustTailCall,
2381  bool InVarArgsFunc) {
2382  if (ParseToken(lltok::lparen, "expected '(' in call"))
2383  return true;
2384 
2385  while (Lex.getKind() != lltok::rparen) {
2386  // If this isn't the first argument, we need a comma.
2387  if (!ArgList.empty() &&
2388  ParseToken(lltok::comma, "expected ',' in argument list"))
2389  return true;
2390 
2391  // Parse an ellipsis if this is a musttail call in a variadic function.
2392  if (Lex.getKind() == lltok::dotdotdot) {
2393  const char *Msg = "unexpected ellipsis in argument list for ";
2394  if (!IsMustTailCall)
2395  return TokError(Twine(Msg) + "non-musttail call");
2396  if (!InVarArgsFunc)
2397  return TokError(Twine(Msg) + "musttail call in non-varargs function");
2398  Lex.Lex(); // Lex the '...', it is purely for readability.
2399  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2400  }
2401 
2402  // Parse the argument.
2403  LocTy ArgLoc;
2404  Type *ArgTy = nullptr;
2405  AttrBuilder ArgAttrs;
2406  Value *V;
2407  if (ParseType(ArgTy, ArgLoc))
2408  return true;
2409 
2410  if (ArgTy->isMetadataTy()) {
2411  if (ParseMetadataAsValue(V, PFS))
2412  return true;
2413  } else {
2414  // Otherwise, handle normal operands.
2415  if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2416  return true;
2417  }
2418  ArgList.push_back(ParamInfo(
2419  ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2420  }
2421 
2422  if (IsMustTailCall && InVarArgsFunc)
2423  return TokError("expected '...' at end of argument list for musttail call "
2424  "in varargs function");
2425 
2426  Lex.Lex(); // Lex the ')'.
2427  return false;
2428 }
2429 
2430 /// ParseOptionalOperandBundles
2431 /// ::= /*empty*/
2432 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2433 ///
2434 /// OperandBundle
2435 /// ::= bundle-tag '(' ')'
2436 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2437 ///
2438 /// bundle-tag ::= String Constant
2439 bool LLParser::ParseOptionalOperandBundles(
2440  SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2441  LocTy BeginLoc = Lex.getLoc();
2442  if (!EatIfPresent(lltok::lsquare))
2443  return false;
2444 
2445  while (Lex.getKind() != lltok::rsquare) {
2446  // If this isn't the first operand bundle, we need a comma.
2447  if (!BundleList.empty() &&
2448  ParseToken(lltok::comma, "expected ',' in input list"))
2449  return true;
2450 
2451  std::string Tag;
2452  if (ParseStringConstant(Tag))
2453  return true;
2454 
2455  if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2456  return true;
2457 
2458  std::vector<Value *> Inputs;
2459  while (Lex.getKind() != lltok::rparen) {
2460  // If this isn't the first input, we need a comma.
2461  if (!Inputs.empty() &&
2462  ParseToken(lltok::comma, "expected ',' in input list"))
2463  return true;
2464 
2465  Type *Ty = nullptr;
2466  Value *Input = nullptr;
2467  if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2468  return true;
2469  Inputs.push_back(Input);
2470  }
2471 
2472  BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2473 
2474  Lex.Lex(); // Lex the ')'.
2475  }
2476 
2477  if (BundleList.empty())
2478  return Error(BeginLoc, "operand bundle set must not be empty");
2479 
2480  Lex.Lex(); // Lex the ']'.
2481  return false;
2482 }
2483 
2484 /// ParseArgumentList - Parse the argument list for a function type or function
2485 /// prototype.
2486 /// ::= '(' ArgTypeListI ')'
2487 /// ArgTypeListI
2488 /// ::= /*empty*/
2489 /// ::= '...'
2490 /// ::= ArgTypeList ',' '...'
2491 /// ::= ArgType (',' ArgType)*
2492 ///
2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2494  bool &isVarArg){
2495  isVarArg = false;
2496  assert(Lex.getKind() == lltok::lparen);
2497  Lex.Lex(); // eat the (.
2498 
2499  if (Lex.getKind() == lltok::rparen) {
2500  // empty
2501  } else if (Lex.getKind() == lltok::dotdotdot) {
2502  isVarArg = true;
2503  Lex.Lex();
2504  } else {
2505  LocTy TypeLoc = Lex.getLoc();
2506  Type *ArgTy = nullptr;
2508  std::string Name;
2509 
2510  if (ParseType(ArgTy) ||
2511  ParseOptionalParamAttrs(Attrs)) return true;
2512 
2513  if (ArgTy->isVoidTy())
2514  return Error(TypeLoc, "argument can not have void type");
2515 
2516  if (Lex.getKind() == lltok::LocalVar) {
2517  Name = Lex.getStrVal();
2518  Lex.Lex();
2519  }
2520 
2522  return Error(TypeLoc, "invalid type for function argument");
2523 
2524  ArgList.emplace_back(TypeLoc, ArgTy,
2525  AttributeSet::get(ArgTy->getContext(), Attrs),
2526  std::move(Name));
2527 
2528  while (EatIfPresent(lltok::comma)) {
2529  // Handle ... at end of arg list.
2530  if (EatIfPresent(lltok::dotdotdot)) {
2531  isVarArg = true;
2532  break;
2533  }
2534 
2535  // Otherwise must be an argument type.
2536  TypeLoc = Lex.getLoc();
2537  if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2538 
2539  if (ArgTy->isVoidTy())
2540  return Error(TypeLoc, "argument can not have void type");
2541 
2542  if (Lex.getKind() == lltok::LocalVar) {
2543  Name = Lex.getStrVal();
2544  Lex.Lex();
2545  } else {
2546  Name = "";
2547  }
2548 
2549  if (!ArgTy->isFirstClassType())
2550  return Error(TypeLoc, "invalid type for function argument");
2551 
2552  ArgList.emplace_back(TypeLoc, ArgTy,
2553  AttributeSet::get(ArgTy->getContext(), Attrs),
2554  std::move(Name));
2555  }
2556  }
2557 
2558  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2559 }
2560 
2561 /// ParseFunctionType
2562 /// ::= Type ArgumentList OptionalAttrs
2563 bool LLParser::ParseFunctionType(Type *&Result) {
2564  assert(Lex.getKind() == lltok::lparen);
2565 
2566  if (!FunctionType::isValidReturnType(Result))
2567  return TokError("invalid function return type");
2568 
2569  SmallVector<ArgInfo, 8> ArgList;
2570  bool isVarArg;
2571  if (ParseArgumentList(ArgList, isVarArg))
2572  return true;
2573 
2574  // Reject names on the arguments lists.
2575  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2576  if (!ArgList[i].Name.empty())
2577  return Error(ArgList[i].Loc, "argument name invalid in function type");
2578  if (ArgList[i].Attrs.hasAttributes())
2579  return Error(ArgList[i].Loc,
2580  "argument attributes invalid in function type");
2581  }
2582 
2583  SmallVector<Type*, 16> ArgListTy;
2584  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2585  ArgListTy.push_back(ArgList[i].Ty);
2586 
2587  Result = FunctionType::get(Result, ArgListTy, isVarArg);
2588  return false;
2589 }
2590 
2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2592 /// other structs.
2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2594  SmallVector<Type*, 8> Elts;
2595  if (ParseStructBody(Elts)) return true;
2596 
2597  Result = StructType::get(Context, Elts, Packed);
2598  return false;
2599 }
2600 
2601 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603  std::pair<Type*, LocTy> &Entry,
2604  Type *&ResultTy) {
2605  // If the type was already defined, diagnose the redefinition.
2606  if (Entry.first && !Entry.second.isValid())
2607  return Error(TypeLoc, "redefinition of type");
2608 
2609  // If we have opaque, just return without filling in the definition for the
2610  // struct. This counts as a definition as far as the .ll file goes.
2611  if (EatIfPresent(lltok::kw_opaque)) {
2612  // This type is being defined, so clear the location to indicate this.
2613  Entry.second = SMLoc();
2614 
2615  // If this type number has never been uttered, create it.
2616  if (!Entry.first)
2617  Entry.first = StructType::create(Context, Name);
2618  ResultTy = Entry.first;
2619  return false;
2620  }
2621 
2622  // If the type starts with '<', then it is either a packed struct or a vector.
2623  bool isPacked = EatIfPresent(lltok::less);
2624 
2625  // If we don't have a struct, then we have a random type alias, which we
2626  // accept for compatibility with old files. These types are not allowed to be
2627  // forward referenced and not allowed to be recursive.
2628  if (Lex.getKind() != lltok::lbrace) {
2629  if (Entry.first)
2630  return Error(TypeLoc, "forward references to non-struct type");
2631 
2632  ResultTy = nullptr;
2633  if (isPacked)
2634  return ParseArrayVectorType(ResultTy, true);
2635  return ParseType(ResultTy);
2636  }
2637 
2638  // This type is being defined, so clear the location to indicate this.
2639  Entry.second = SMLoc();
2640 
2641  // If this type number has never been uttered, create it.
2642  if (!Entry.first)
2643  Entry.first = StructType::create(Context, Name);
2644 
2645  StructType *STy = cast<StructType>(Entry.first);
2646 
2647  SmallVector<Type*, 8> Body;
2648  if (ParseStructBody(Body) ||
2649  (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2650  return true;
2651 
2652  STy->setBody(Body, isPacked);
2653  ResultTy = STy;
2654  return false;
2655 }
2656 
2657 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2658 /// StructType
2659 /// ::= '{' '}'
2660 /// ::= '{' Type (',' Type)* '}'
2661 /// ::= '<' '{' '}' '>'
2662 /// ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2664  assert(Lex.getKind() == lltok::lbrace);
2665  Lex.Lex(); // Consume the '{'
2666 
2667  // Handle the empty struct.
2668  if (EatIfPresent(lltok::rbrace))
2669  return false;
2670 
2671  LocTy EltTyLoc = Lex.getLoc();
2672  Type *Ty = nullptr;
2673  if (ParseType(Ty)) return true;
2674  Body.push_back(Ty);
2675 
2677  return Error(EltTyLoc, "invalid element type for struct");
2678 
2679  while (EatIfPresent(lltok::comma)) {
2680  EltTyLoc = Lex.getLoc();
2681  if (ParseType(Ty)) return true;
2682 
2684  return Error(EltTyLoc, "invalid element type for struct");
2685 
2686  Body.push_back(Ty);
2687  }
2688 
2689  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2690 }
2691 
2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2693 /// token has already been consumed.
2694 /// Type
2695 /// ::= '[' APSINTVAL 'x' Types ']'
2696 /// ::= '<' APSINTVAL 'x' Types '>'
2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2698  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2699  Lex.getAPSIntVal().getBitWidth() > 64)
2700  return TokError("expected number in address space");
2701 
2702  LocTy SizeLoc = Lex.getLoc();
2703  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2704  Lex.Lex();
2705 
2706  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2707  return true;
2708 
2709  LocTy TypeLoc = Lex.getLoc();
2710  Type *EltTy = nullptr;
2711  if (ParseType(EltTy)) return true;
2712 
2713  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2714  "expected end of sequential type"))
2715  return true;
2716 
2717  if (isVector) {
2718  if (Size == 0)
2719  return Error(SizeLoc, "zero element vector is illegal");
2720  if ((unsigned)Size != Size)
2721  return Error(SizeLoc, "size too large for vector");
2722  if (!VectorType::isValidElementType(EltTy))
2723  return Error(TypeLoc, "invalid vector element type");
2724  Result = VectorType::get(EltTy, unsigned(Size));
2725  } else {
2726  if (!ArrayType::isValidElementType(EltTy))
2727  return Error(TypeLoc, "invalid array element type");
2728  Result = ArrayType::get(EltTy, Size);
2729  }
2730  return false;
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // Function Semantic Analysis.
2735 //===----------------------------------------------------------------------===//
2736 
2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2738  int functionNumber)
2739  : P(p), F(f), FunctionNumber(functionNumber) {
2740 
2741  // Insert unnamed arguments into the NumberedVals list.
2742  for (Argument &A : F.args())
2743  if (!A.hasName())
2744  NumberedVals.push_back(&A);
2745 }
2746 
2747 LLParser::PerFunctionState::~PerFunctionState() {
2748  // If there were any forward referenced non-basicblock values, delete them.
2749 
2750  for (const auto &P : ForwardRefVals) {
2751  if (isa<BasicBlock>(P.second.first))
2752  continue;
2753  P.second.first->replaceAllUsesWith(
2754  UndefValue::get(P.second.first->getType()));
2755  P.second.first->deleteValue();
2756  }
2757 
2758  for (const auto &P : ForwardRefValIDs) {
2759  if (isa<BasicBlock>(P.second.first))
2760  continue;
2761  P.second.first->replaceAllUsesWith(
2762  UndefValue::get(P.second.first->getType()));
2763  P.second.first->deleteValue();
2764  }
2765 }
2766 
2767 bool LLParser::PerFunctionState::FinishFunction() {
2768  if (!ForwardRefVals.empty())
2769  return P.Error(ForwardRefVals.begin()->second.second,
2770  "use of undefined value '%" + ForwardRefVals.begin()->first +
2771  "'");
2772  if (!ForwardRefValIDs.empty())
2773  return P.Error(ForwardRefValIDs.begin()->second.second,
2774  "use of undefined value '%" +
2775  Twine(ForwardRefValIDs.begin()->first) + "'");
2776  return false;
2777 }
2778 
2779 /// GetVal - Get a value with the specified name or ID, creating a
2780 /// forward reference record if needed. This can return null if the value
2781 /// exists but does not have the right type.
2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2783  LocTy Loc, bool IsCall) {
2784  // Look this name up in the normal function symbol table.
2785  Value *Val = F.getValueSymbolTable()->lookup(Name);
2786 
2787  // If this is a forward reference for the value, see if we already created a
2788  // forward ref record.
2789  if (!Val) {
2790  auto I = ForwardRefVals.find(Name);
2791  if (I != ForwardRefVals.end())
2792  Val = I->second.first;
2793  }
2794 
2795  // If we have the value in the symbol table or fwd-ref table, return it.
2796  if (Val)
2797  return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2798 
2799  // Don't make placeholders with invalid type.
2800  if (!Ty->isFirstClassType()) {
2801  P.Error(Loc, "invalid use of a non-first-class type");
2802  return nullptr;
2803  }
2804 
2805  // Otherwise, create a new forward reference for this value and remember it.
2806  Value *FwdVal;
2807  if (Ty->isLabelTy()) {
2808  FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2809  } else {
2810  FwdVal = new Argument(Ty, Name);
2811  }
2812 
2813  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2814  return FwdVal;
2815 }
2816 
2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2818  bool IsCall) {
2819  // Look this name up in the normal function symbol table.
2820  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2821 
2822  // If this is a forward reference for the value, see if we already created a
2823  // forward ref record.
2824  if (!Val) {
2825  auto I = ForwardRefValIDs.find(ID);
2826  if (I != ForwardRefValIDs.end())
2827  Val = I->second.first;
2828  }
2829 
2830  // If we have the value in the symbol table or fwd-ref table, return it.
2831  if (Val)
2832  return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2833 
2834  if (!Ty->isFirstClassType()) {
2835  P.Error(Loc, "invalid use of a non-first-class type");
2836  return nullptr;
2837  }
2838 
2839  // Otherwise, create a new forward reference for this value and remember it.
2840  Value *FwdVal;
2841  if (Ty->isLabelTy()) {
2842  FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2843  } else {
2844  FwdVal = new Argument(Ty);
2845  }
2846 
2847  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2848  return FwdVal;
2849 }
2850 
2851 /// SetInstName - After an instruction is parsed and inserted into its
2852 /// basic block, this installs its name.
2853 bool LLParser::PerFunctionState::SetInstName(int NameID,
2854  const std::string &NameStr,
2855  LocTy NameLoc, Instruction *Inst) {
2856  // If this instruction has void type, it cannot have a name or ID specified.
2857  if (Inst->getType()->isVoidTy()) {
2858  if (NameID != -1 || !NameStr.empty())
2859  return P.Error(NameLoc, "instructions returning void cannot have a name");
2860  return false;
2861  }
2862 
2863  // If this was a numbered instruction, verify that the instruction is the
2864  // expected value and resolve any forward references.
2865  if (NameStr.empty()) {
2866  // If neither a name nor an ID was specified, just use the next ID.
2867  if (NameID == -1)
2868  NameID = NumberedVals.size();
2869 
2870  if (unsigned(NameID) != NumberedVals.size())
2871  return P.Error(NameLoc, "instruction expected to be numbered '%" +
2872  Twine(NumberedVals.size()) + "'");
2873 
2874  auto FI = ForwardRefValIDs.find(NameID);
2875  if (FI != ForwardRefValIDs.end()) {
2876  Value *Sentinel = FI->second.first;
2877  if (Sentinel->getType() != Inst->getType())
2878  return P.Error(NameLoc, "instruction forward referenced with type '" +
2879  getTypeString(FI->second.first->getType()) + "'");
2880 
2881  Sentinel->replaceAllUsesWith(Inst);
2882  Sentinel->deleteValue();
2883  ForwardRefValIDs.erase(FI);
2884  }
2885 
2886  NumberedVals.push_back(Inst);
2887  return false;
2888  }
2889 
2890  // Otherwise, the instruction had a name. Resolve forward refs and set it.
2891  auto FI = ForwardRefVals.find(NameStr);
2892  if (FI != ForwardRefVals.end()) {
2893  Value *Sentinel = FI->second.first;
2894  if (Sentinel->getType() != Inst->getType())
2895  return P.Error(NameLoc, "instruction forward referenced with type '" +
2896  getTypeString(FI->second.first->getType()) + "'");
2897 
2898  Sentinel->replaceAllUsesWith(Inst);
2899  Sentinel->deleteValue();
2900  ForwardRefVals.erase(FI);
2901  }
2902 
2903  // Set the name on the instruction.
2904  Inst->setName(NameStr);
2905 
2906  if (Inst->getName() != NameStr)
2907  return P.Error(NameLoc, "multiple definition of local value named '" +
2908  NameStr + "'");
2909  return false;
2910 }
2911 
2912 /// GetBB - Get a basic block with the specified name or ID, creating a
2913 /// forward reference record if needed.
2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2915  LocTy Loc) {
2916  return dyn_cast_or_null<BasicBlock>(
2917  GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2918 }
2919 
2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2921  return dyn_cast_or_null<BasicBlock>(
2922  GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2923 }
2924 
2925 /// DefineBB - Define the specified basic block, which is either named or
2926 /// unnamed. If there is an error, this returns null otherwise it returns
2927 /// the block being defined.
2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2929  LocTy Loc) {
2930  BasicBlock *BB;
2931  if (Name.empty())
2932  BB = GetBB(NumberedVals.size(), Loc);
2933  else
2934  BB = GetBB(Name, Loc);
2935  if (!BB) return nullptr; // Already diagnosed error.
2936 
2937  // Move the block to the end of the function. Forward ref'd blocks are
2938  // inserted wherever they happen to be referenced.
2939  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2940 
2941  // Remove the block from forward ref sets.
2942  if (Name.empty()) {
2943  ForwardRefValIDs.erase(NumberedVals.size());
2944  NumberedVals.push_back(BB);
2945  } else {
2946  // BB forward references are already in the function symbol table.
2947  ForwardRefVals.erase(Name);
2948  }
2949 
2950  return BB;
2951 }
2952 
2953 //===----------------------------------------------------------------------===//
2954 // Constants.
2955 //===----------------------------------------------------------------------===//
2956 
2957 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2958 /// type implied. For example, if we parse "4" we don't know what integer type
2959 /// it has. The value will later be combined with its type and checked for
2960 /// sanity. PFS is used to convert function-local operands of metadata (since
2961 /// metadata operands are not just parsed here but also converted to values).
2962 /// PFS can be null when we are not parsing metadata values inside a function.
2963 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2964  ID.Loc = Lex.getLoc();
2965  switch (Lex.getKind()) {
2966  default: return TokError("expected value token");
2967  case lltok::GlobalID: // @42
2968  ID.UIntVal = Lex.getUIntVal();
2969  ID.Kind = ValID::t_GlobalID;
2970  break;
2971  case lltok::GlobalVar: // @foo
2972  ID.StrVal = Lex.getStrVal();
2974  break;
2975  case lltok::LocalVarID: // %42
2976  ID.UIntVal = Lex.getUIntVal();
2977  ID.Kind = ValID::t_LocalID;
2978  break;
2979  case lltok::LocalVar: // %foo
2980  ID.StrVal = Lex.getStrVal();
2981  ID.Kind = ValID::t_LocalName;
2982  break;
2983  case lltok::APSInt:
2984  ID.APSIntVal = Lex.getAPSIntVal();
2985  ID.Kind = ValID::t_APSInt;
2986  break;
2987  case lltok::APFloat:
2988  ID.APFloatVal = Lex.getAPFloatVal();
2989  ID.Kind = ValID::t_APFloat;
2990  break;
2991  case lltok::kw_true:
2992  ID.ConstantVal = ConstantInt::getTrue(Context);
2993  ID.Kind = ValID::t_Constant;
2994  break;
2995  case lltok::kw_false:
2996  ID.ConstantVal = ConstantInt::getFalse(Context);
2997  ID.Kind = ValID::t_Constant;
2998  break;
2999  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3000  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3001  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3002  case lltok::kw_none: ID.Kind = ValID::t_None; break;
3003 
3004  case lltok::lbrace: {
3005  // ValID ::= '{' ConstVector '}'
3006  Lex.Lex();
3008  if (ParseGlobalValueVector(Elts) ||
3009  ParseToken(lltok::rbrace, "expected end of struct constant"))
3010  return true;
3011 
3012  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3013  ID.UIntVal = Elts.size();
3014  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3015  Elts.size() * sizeof(Elts[0]));
3017  return false;
3018  }
3019  case lltok::less: {
3020  // ValID ::= '<' ConstVector '>' --> Vector.
3021  // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3022  Lex.Lex();
3023  bool isPackedStruct = EatIfPresent(lltok::lbrace);
3024 
3026  LocTy FirstEltLoc = Lex.getLoc();
3027  if (ParseGlobalValueVector(Elts) ||
3028  (isPackedStruct &&
3029  ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3030  ParseToken(lltok::greater, "expected end of constant"))
3031  return true;
3032 
3033  if (isPackedStruct) {
3034  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3035  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3036  Elts.size() * sizeof(Elts[0]));
3037  ID.UIntVal = Elts.size();
3039  return false;
3040  }
3041 
3042  if (Elts.empty())
3043  return Error(ID.Loc, "constant vector must not be empty");
3044 
3045  if (!Elts[0]->getType()->isIntegerTy() &&
3046  !Elts[0]->getType()->isFloatingPointTy() &&
3047  !Elts[0]->getType()->isPointerTy())
3048  return Error(FirstEltLoc,
3049  "vector elements must have integer, pointer or floating point type");
3050 
3051  // Verify that all the vector elements have the same type.
3052  for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3053  if (Elts[i]->getType() != Elts[0]->getType())
3054  return Error(FirstEltLoc,
3055  "vector element #" + Twine(i) +
3056  " is not of type '" + getTypeString(Elts[0]->getType()));
3057 
3058  ID.ConstantVal = ConstantVector::get(Elts);
3059  ID.Kind = ValID::t_Constant;
3060  return false;
3061  }
3062  case lltok::lsquare: { // Array Constant
3063  Lex.Lex();
3065  LocTy FirstEltLoc = Lex.getLoc();
3066  if (ParseGlobalValueVector(Elts) ||
3067  ParseToken(lltok::rsquare, "expected end of array constant"))
3068  return true;
3069 
3070  // Handle empty element.
3071  if (Elts.empty()) {
3072  // Use undef instead of an array because it's inconvenient to determine
3073  // the element type at this point, there being no elements to examine.
3075  return false;
3076  }
3077 
3078  if (!Elts[0]->getType()->isFirstClassType())
3079  return Error(FirstEltLoc, "invalid array element type: " +
3080  getTypeString(Elts[0]->getType()));
3081 
3082  ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3083 
3084  // Verify all elements are correct type!
3085  for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3086  if (Elts[i]->getType() != Elts[0]->getType())
3087  return Error(FirstEltLoc,
3088  "array element #" + Twine(i) +
3089  " is not of type '" + getTypeString(Elts[0]->getType()));
3090  }
3091 
3092  ID.ConstantVal = ConstantArray::get(ATy, Elts);
3093  ID.Kind = ValID::t_Constant;
3094  return false;
3095  }
3096  case lltok::kw_c: // c "foo"
3097  Lex.Lex();
3099  false);
3100  if (ParseToken(lltok::StringConstant, "expected string")) return true;
3101  ID.Kind = ValID::t_Constant;
3102  return false;
3103 
3104  case lltok::kw_asm: {
3105  // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3106  // STRINGCONSTANT
3107  bool HasSideEffect, AlignStack, AsmDialect;
3108  Lex.Lex();
3109  if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3110  ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3111  ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3112  ParseStringConstant(ID.StrVal) ||
3113  ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3114  ParseToken(lltok::StringConstant, "expected constraint string"))
3115  return true;
3116  ID.StrVal2 = Lex.getStrVal();
3117  ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3118  (unsigned(AsmDialect)<<2);
3119  ID.Kind = ValID::t_InlineAsm;
3120  return false;
3121  }
3122 
3123  case lltok::kw_blockaddress: {
3124  // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3125  Lex.Lex();
3126 
3127  ValID Fn, Label;
3128 
3129  if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3130  ParseValID(Fn) ||
3131  ParseToken(lltok::comma, "expected comma in block address expression")||
3132  ParseValID(Label) ||
3133  ParseToken(lltok::rparen, "expected ')' in block address expression"))
3134  return true;
3135 
3136  if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3137  return Error(Fn.Loc, "expected function name in blockaddress");
3138  if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3139  return Error(Label.Loc, "expected basic block name in blockaddress");
3140 
3141  // Try to find the function (but skip it if it's forward-referenced).
3142  GlobalValue *GV = nullptr;
3143  if (Fn.Kind == ValID::t_GlobalID) {
3144  if (Fn.UIntVal < NumberedVals.size())
3145  GV = NumberedVals[Fn.UIntVal];
3146  } else if (!ForwardRefVals.count(Fn.StrVal)) {
3147  GV = M->getNamedValue(Fn.StrVal);
3148  }
3149  Function *F = nullptr;
3150  if (GV) {
3151  // Confirm that it's actually a function with a definition.
3152  if (!isa<Function>(GV))
3153  return Error(Fn.Loc, "expected function name in blockaddress");
3154  F = cast<Function>(GV);
3155  if (F->isDeclaration())
3156  return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3157  }
3158 
3159  if (!F) {
3160  // Make a global variable as a placeholder for this reference.
3161  GlobalValue *&FwdRef =
3162  ForwardRefBlockAddresses.insert(std::make_pair(
3163  std::move(Fn),
3164  std::map<ValID, GlobalValue *>()))
3165  .first->second.insert(std::make_pair(std::move(Label), nullptr))
3166  .first->second;
3167  if (!FwdRef)
3168  FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3169  GlobalValue::InternalLinkage, nullptr, "");
3170  ID.ConstantVal = FwdRef;
3171  ID.Kind = ValID::t_Constant;
3172  return false;
3173  }
3174 
3175  // We found the function; now find the basic block. Don't use PFS, since we
3176  // might be inside a constant expression.
3177  BasicBlock *BB;
3178  if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3179  if (Label.Kind == ValID::t_LocalID)
3180  BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3181  else
3182  BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3183  if (!BB)
3184  return Error(Label.Loc, "referenced value is not a basic block");
3185  } else {
3186  if (Label.Kind == ValID::t_LocalID)
3187  return Error(Label.Loc, "cannot take address of numeric label after "
3188  "the function is defined");
3189  BB = dyn_cast_or_null<BasicBlock>(
3190  F->getValueSymbolTable()->lookup(Label.StrVal));
3191  if (!BB)
3192  return Error(Label.Loc, "referenced value is not a basic block");
3193  }
3194 
3195  ID.ConstantVal = BlockAddress::get(F, BB);
3196  ID.Kind = ValID::t_Constant;
3197  return false;
3198  }
3199 
3200  case lltok::kw_trunc:
3201  case lltok::kw_zext:
3202  case lltok::kw_sext:
3203  case lltok::kw_fptrunc:
3204  case lltok::kw_fpext:
3205  case lltok::kw_bitcast:
3207  case lltok::kw_uitofp:
3208  case lltok::kw_sitofp:
3209  case lltok::kw_fptoui:
3210  case lltok::kw_fptosi:
3211  case lltok::kw_inttoptr:
3212  case lltok::kw_ptrtoint: {
3213  unsigned Opc = Lex.getUIntVal();
3214  Type *DestTy = nullptr;
3215  Constant *SrcVal;
3216  Lex.Lex();
3217  if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3218  ParseGlobalTypeAndValue(SrcVal) ||
3219  ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3220  ParseType(DestTy) ||
3221  ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3222  return true;
3223  if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3224  return Error(ID.Loc, "invalid cast opcode for cast from '" +
3225  getTypeString(SrcVal->getType()) + "' to '" +
3226  getTypeString(DestTy) + "'");
3228  SrcVal, DestTy);
3229  ID.Kind = ValID::t_Constant;
3230  return false;
3231  }
3232  case lltok::kw_extractvalue: {
3233  Lex.Lex();
3234  Constant *Val;
3235  SmallVector<unsigned, 4> Indices;
3236  if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3237  ParseGlobalTypeAndValue(Val) ||
3238  ParseIndexList(Indices) ||
3239  ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3240  return true;
3241 
3242  if (!Val->getType()->isAggregateType())
3243  return Error(ID.Loc, "extractvalue operand must be aggregate type");
3244  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3245  return Error(ID.Loc, "invalid indices for extractvalue");
3246  ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3247  ID.Kind = ValID::t_Constant;
3248  return false;
3249  }
3250  case lltok::kw_insertvalue: {
3251  Lex.Lex();
3252  Constant *Val0, *Val1;
3253  SmallVector<unsigned, 4> Indices;
3254  if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3255  ParseGlobalTypeAndValue(Val0) ||
3256  ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3257  ParseGlobalTypeAndValue(Val1) ||
3258  ParseIndexList(Indices) ||
3259  ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3260  return true;
3261  if (!Val0->getType()->isAggregateType())
3262  return Error(ID.Loc, "insertvalue operand must be aggregate type");
3263  Type *IndexedType =
3264  ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3265  if (!IndexedType)
3266  return Error(ID.Loc, "invalid indices for insertvalue");
3267  if (IndexedType != Val1->getType())
3268  return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3269  getTypeString(Val1->getType()) +
3270  "' instead of '" + getTypeString(IndexedType) +
3271  "'");
3272  ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3273  ID.Kind = ValID::t_Constant;
3274  return false;
3275  }
3276  case lltok::kw_icmp:
3277  case lltok::kw_fcmp: {
3278  unsigned PredVal, Opc = Lex.getUIntVal();
3279  Constant *Val0, *Val1;
3280  Lex.Lex();
3281  if (ParseCmpPredicate(PredVal, Opc) ||
3282  ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3283  ParseGlobalTypeAndValue(Val0) ||
3284  ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3285  ParseGlobalTypeAndValue(Val1) ||
3286  ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3287  return true;
3288 
3289  if (Val0->getType() != Val1->getType())
3290  return Error(ID.Loc, "compare operands must have the same type");
3291 
3292  CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3293 
3294  if (Opc == Instruction::FCmp) {
3295  if (!Val0->getType()->isFPOrFPVectorTy())
3296  return Error(ID.Loc, "fcmp requires floating point operands");
3297  ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3298  } else {
3299  assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3300  if (!Val0->getType()->isIntOrIntVectorTy() &&
3301  !Val0->getType()->isPtrOrPtrVectorTy())
3302  return Error(ID.Loc, "icmp requires pointer or integer operands");
3303  ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3304  }
3305  ID.Kind = ValID::t_Constant;
3306  return false;
3307  }
3308 
3309  // Unary Operators.
3310  case lltok::kw_fneg: {
3311  unsigned Opc = Lex.getUIntVal();
3312  Constant *Val;
3313  Lex.Lex();
3314  if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3315  ParseGlobalTypeAndValue(Val) ||
3316  ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3317  return true;
3318 
3319  // Check that the type is valid for the operator.
3320  switch (Opc) {
3321  case Instruction::FNeg:
3322  if (!Val->getType()->isFPOrFPVectorTy())
3323  return Error(ID.Loc, "constexpr requires fp operands");
3324  break;
3325  default: llvm_unreachable("Unknown unary operator!");
3326  }
3327  unsigned Flags = 0;
3328  Constant *C = ConstantExpr::get(Opc, Val, Flags);
3329  ID.ConstantVal = C;
3330  ID.Kind = ValID::t_Constant;
3331  return false;
3332  }
3333  // Binary Operators.
3334  case lltok::kw_add:
3335  case lltok::kw_fadd:
3336  case lltok::kw_sub:
3337  case lltok::kw_fsub:
3338  case lltok::kw_mul:
3339  case lltok::kw_fmul:
3340  case lltok::kw_udiv:
3341  case lltok::kw_sdiv:
3342  case lltok::kw_fdiv:
3343  case lltok::kw_urem:
3344  case lltok::kw_srem:
3345  case lltok::kw_frem:
3346  case lltok::kw_shl:
3347  case lltok::kw_lshr:
3348  case lltok::kw_ashr: {
3349  bool NUW = false;
3350  bool NSW = false;
3351  bool Exact = false;
3352  unsigned Opc = Lex.getUIntVal();
3353  Constant *Val0, *Val1;
3354  Lex.Lex();
3355  LocTy ModifierLoc = Lex.getLoc();
3356  if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3357  Opc == Instruction::Mul || Opc == Instruction::Shl) {
3358  if (EatIfPresent(lltok::kw_nuw))
3359  NUW = true;
3360  if (EatIfPresent(lltok::kw_nsw)) {
3361  NSW = true;
3362  if (EatIfPresent(lltok::kw_nuw))
3363  NUW = true;
3364  }
3365  } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3366  Opc == Instruction::LShr || Opc == Instruction::AShr) {
3367  if (EatIfPresent(lltok::kw_exact))
3368  Exact = true;
3369  }
3370  if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3371  ParseGlobalTypeAndValue(Val0) ||
3372  ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3373  ParseGlobalTypeAndValue(Val1) ||
3374  ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3375  return true;
3376  if (Val0->getType() != Val1->getType())
3377  return Error(ID.Loc, "operands of constexpr must have same type");
3378  if (!Val0->getType()->isIntOrIntVectorTy()) {
3379  if (NUW)
3380  return Error(ModifierLoc, "nuw only applies to integer operations");
3381  if (NSW)
3382  return Error(ModifierLoc, "nsw only applies to integer operations");
3383  }
3384  // Check that the type is valid for the operator.
3385  switch (Opc) {
3386  case Instruction::Add:
3387  case Instruction::Sub:
3388  case Instruction::Mul:
3389  case Instruction::UDiv:
3390  case Instruction::SDiv:
3391  case Instruction::URem:
3392  case Instruction::SRem:
3393  case Instruction::Shl:
3394  case Instruction::AShr:
3395  case Instruction::LShr:
3396  if (!Val0->getType()->isIntOrIntVectorTy())
3397  return Error(ID.Loc, "constexpr requires integer operands");
3398  break;
3399  case Instruction::FAdd:
3400  case Instruction::FSub:
3401  case Instruction::FMul:
3402  case Instruction::FDiv:
3403  case Instruction::FRem:
3404  if (!Val0->getType()->isFPOrFPVectorTy())
3405  return Error(ID.Loc, "constexpr requires fp operands");
3406  break;
3407  default: llvm_unreachable("Unknown binary operator!");
3408  }
3409  unsigned Flags = 0;
3411  if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3412  if (Exact) Flags |= PossiblyExactOperator::IsExact;
3413  Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3414  ID.ConstantVal = C;
3415  ID.Kind = ValID::t_Constant;
3416  return false;
3417  }
3418 
3419  // Logical Operations
3420  case lltok::kw_and:
3421  case lltok::kw_or:
3422  case lltok::kw_xor: {
3423  unsigned Opc = Lex.getUIntVal();
3424  Constant *Val0, *Val1;
3425  Lex.Lex();
3426  if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3427  ParseGlobalTypeAndValue(Val0) ||
3428  ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3429  ParseGlobalTypeAndValue(Val1) ||
3430  ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3431  return true;
3432  if (Val0->getType() != Val1->getType())
3433  return Error(ID.Loc, "operands of constexpr must have same type");
3434  if (!Val0->getType()->isIntOrIntVectorTy())
3435  return Error(ID.Loc,
3436  "constexpr requires integer or integer vector operands");
3437  ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3438  ID.Kind = ValID::t_Constant;
3439  return false;
3440  }
3441 
3446  case lltok::kw_select: {
3447  unsigned Opc = Lex.getUIntVal();
3449  bool InBounds = false;
3450  Type *Ty;
3451  Lex.Lex();
3452 
3453  if (Opc == Instruction::GetElementPtr)
3454  InBounds = EatIfPresent(lltok::kw_inbounds);
3455 
3456  if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3457  return true;
3458 
3459  LocTy ExplicitTypeLoc = Lex.getLoc();
3460  if (Opc == Instruction::GetElementPtr) {
3461  if (ParseType(Ty) ||
3462  ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3463  return true;
3464  }
3465 
3466  Optional<unsigned> InRangeOp;
3467  if (ParseGlobalValueVector(
3468  Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3469  ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3470  return true;
3471 
3472  if (Opc == Instruction::GetElementPtr) {
3473  if (Elts.size() == 0 ||
3474  !Elts[0]->getType()->isPtrOrPtrVectorTy())
3475  return Error(ID.Loc, "base of getelementptr must be a pointer");
3476 
3477  Type *BaseType = Elts[0]->getType();
3478  auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3479  if (Ty != BasePointerType->getElementType())
3480  return Error(
3481  ExplicitTypeLoc,
3482  "explicit pointee type doesn't match operand's pointee type");
3483 
3484  unsigned GEPWidth =
3485  BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3486 
3487  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3488  for (Constant *Val : Indices) {
3489  Type *ValTy = Val->getType();
3490  if (!ValTy->isIntOrIntVectorTy())
3491  return Error(ID.Loc, "getelementptr index must be an integer");
3492  if (ValTy->isVectorTy()) {
3493  unsigned ValNumEl = ValTy->getVectorNumElements();
3494  if (GEPWidth && (ValNumEl != GEPWidth))
3495  return Error(
3496  ID.Loc,
3497  "getelementptr vector index has a wrong number of elements");
3498  // GEPWidth may have been unknown because the base is a scalar,
3499  // but it is known now.
3500  GEPWidth = ValNumEl;
3501  }
3502  }
3503 
3504  SmallPtrSet<Type*, 4> Visited;
3505  if (!Indices.empty() && !Ty->isSized(&Visited))
3506  return Error(ID.Loc, "base element of getelementptr must be sized");
3507 
3508  if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3509  return Error(ID.Loc, "invalid getelementptr indices");
3510 
3511  if (InRangeOp) {
3512  if (*InRangeOp == 0)
3513  return Error(ID.Loc,
3514  "inrange keyword may not appear on pointer operand");
3515  --*InRangeOp;
3516  }
3517 
3518  ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3519  InBounds, InRangeOp);
3520  } else if (Opc == Instruction::Select) {
3521  if (Elts.size() != 3)
3522  return Error(ID.Loc, "expected three operands to select");
3523  if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3524  Elts[2]))
3525  return Error(ID.Loc, Reason);
3526  ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3527  } else if (Opc == Instruction::ShuffleVector) {
3528  if (Elts.size() != 3)
3529  return Error(ID.Loc, "expected three operands to shufflevector");
3530  if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3531  return Error(ID.Loc, "invalid operands to shufflevector");
3532  ID.ConstantVal =
3533  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3534  } else if (Opc == Instruction::ExtractElement) {
3535  if (Elts.size() != 2)
3536  return Error(ID.Loc, "expected two operands to extractelement");
3537  if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3538  return Error(ID.Loc, "invalid extractelement operands");
3539  ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3540  } else {
3541  assert(Opc == Instruction::InsertElement && "Unknown opcode");
3542  if (Elts.size() != 3)
3543  return Error(ID.Loc, "expected three operands to insertelement");
3544  if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3545  return Error(ID.Loc, "invalid insertelement operands");
3546  ID.ConstantVal =
3547  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3548  }
3549 
3550  ID.Kind = ValID::t_Constant;
3551  return false;
3552  }
3553  }
3554 
3555  Lex.Lex();
3556  return false;
3557 }
3558 
3559 /// ParseGlobalValue - Parse a global value with the specified type.
3560 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3561  C = nullptr;
3562  ValID ID;
3563  Value *V = nullptr;
3564  bool Parsed = ParseValID(ID) ||
3565  ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3566  if (V && !(C = dyn_cast<Constant>(V)))
3567  return Error(ID.Loc, "global values must be constants");
3568  return Parsed;
3569 }
3570 
3571 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3572  Type *Ty = nullptr;
3573  return ParseType(Ty) ||
3574  ParseGlobalValue(Ty, V);
3575 }
3576 
3577 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3578  C = nullptr;
3579 
3580  LocTy KwLoc = Lex.getLoc();
3581  if (!EatIfPresent(lltok::kw_comdat))
3582  return false;
3583 
3584  if (EatIfPresent(lltok::lparen)) {
3585  if (Lex.getKind() != lltok::ComdatVar)
3586  return TokError("expected comdat variable");
3587  C = getComdat(Lex.getStrVal(), Lex.getLoc());
3588  Lex.Lex();
3589  if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3590  return true;
3591  } else {
3592  if (GlobalName.empty())
3593  return TokError("comdat cannot be unnamed");
3594  C = getComdat(GlobalName, KwLoc);
3595  }
3596 
3597  return false;
3598 }
3599 
3600 /// ParseGlobalValueVector
3601 /// ::= /*empty*/
3602 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3603 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3604  Optional<unsigned> *InRangeOp) {
3605  // Empty list.
3606  if (Lex.getKind() == lltok::rbrace ||
3607  Lex.getKind() == lltok::rsquare ||
3608  Lex.getKind() == lltok::greater ||
3609  Lex.getKind() == lltok::rparen)
3610  return false;
3611 
3612  do {
3613  if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3614  *InRangeOp = Elts.size();
3615 
3616  Constant *C;
3617  if (ParseGlobalTypeAndValue(C)) return true;
3618  Elts.push_back(C);
3619  } while (EatIfPresent(lltok::comma));
3620 
3621  return false;
3622 }
3623 
3624 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3626  if (ParseMDNodeVector(Elts))
3627  return true;
3628 
3629  MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3630  return false;
3631 }
3632 
3633 /// MDNode:
3634 /// ::= !{ ... }
3635 /// ::= !7
3636 /// ::= !DILocation(...)
3637 bool LLParser::ParseMDNode(MDNode *&N) {
3638  if (Lex.getKind() == lltok::MetadataVar)
3639  return ParseSpecializedMDNode(N);
3640 
3641  return ParseToken(lltok::exclaim, "expected '!' here") ||
3642  ParseMDNodeTail(N);
3643 }
3644 
3645 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3646  // !{ ... }
3647  if (Lex.getKind() == lltok::lbrace)
3648  return ParseMDTuple(N);
3649 
3650  // !42
3651  return ParseMDNodeID(N);
3652 }
3653 
3654 namespace {
3655 
3656 /// Structure to represent an optional metadata field.
3657 template <class FieldTy> struct MDFieldImpl {
3658  typedef MDFieldImpl ImplTy;
3659  FieldTy Val;
3660  bool Seen;
3661 
3662  void assign(FieldTy Val) {
3663  Seen = true;
3664  this->Val = std::move(Val);
3665  }
3666 
3667  explicit MDFieldImpl(FieldTy Default)
3668  : Val(std::move(Default)), Seen(false) {}
3669 };
3670 
3671 /// Structure to represent an optional metadata field that
3672 /// can be of either type (A or B) and encapsulates the
3673 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3674 /// to reimplement the specifics for representing each Field.
3675 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3676  typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3677  FieldTypeA A;
3678  FieldTypeB B;
3679  bool Seen;
3680 
3681  enum {
3682  IsInvalid = 0,
3683  IsTypeA = 1,
3684  IsTypeB = 2
3685  } WhatIs;
3686 
3687  void assign(FieldTypeA A) {
3688  Seen = true;
3689  this->A = std::move(A);
3690  WhatIs = IsTypeA;
3691  }
3692 
3693  void assign(FieldTypeB B) {
3694  Seen = true;
3695  this->B = std::move(B);
3696  WhatIs = IsTypeB;
3697  }
3698 
3699  explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3700  : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3701  WhatIs(IsInvalid) {}
3702 };
3703 
3704 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3705  uint64_t Max;
3706 
3707  MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3708  : ImplTy(Default), Max(Max) {}
3709 };
3710 
3711 struct LineField : public MDUnsignedField {
3712  LineField() : MDUnsignedField(0, UINT32_MAX) {}
3713 };
3714 
3715 struct ColumnField : public MDUnsignedField {
3716  ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3717 };
3718 
3719 struct DwarfTagField : public MDUnsignedField {
3720  DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3721  DwarfTagField(dwarf::Tag DefaultTag)
3722  : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3723 };
3724 
3725 struct DwarfMacinfoTypeField : public MDUnsignedField {
3726  DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3727  DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3728  : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3729 };
3730 
3731 struct DwarfAttEncodingField : public MDUnsignedField {
3732  DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3733 };
3734 
3735 struct DwarfVirtualityField : public MDUnsignedField {
3736  DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3737 };
3738 
3739 struct DwarfLangField : public MDUnsignedField {
3740  DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3741 };
3742 
3743 struct DwarfCCField : public MDUnsignedField {
3744  DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3745 };
3746 
3747 struct EmissionKindField : public MDUnsignedField {
3748  EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3749 };
3750 
3751 struct NameTableKindField : public MDUnsignedField {
3752  NameTableKindField()
3753  : MDUnsignedField(
3754  0, (unsigned)
3756 };
3757 
3758 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3759  DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3760 };
3761 
3762 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3763  DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3764 };
3765 
3766 struct MDSignedField : public MDFieldImpl<int64_t> {
3767  int64_t Min;
3768  int64_t Max;
3769 
3770  MDSignedField(int64_t Default = 0)
3771  : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3772  MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3773  : ImplTy(Default), Min(Min), Max(Max) {}
3774 };
3775 
3776 struct MDBoolField : public MDFieldImpl<bool> {
3777  MDBoolField(bool Default = false) : ImplTy(Default) {}
3778 };
3779 
3780 struct MDField : public MDFieldImpl<Metadata *> {
3781  bool AllowNull;
3782 
3783  MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3784 };
3785 
3786 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3787  MDConstant() : ImplTy(nullptr) {}
3788 };
3789 
3790 struct MDStringField : public MDFieldImpl<MDString *> {
3791  bool AllowEmpty;
3792  MDStringField(bool AllowEmpty = true)
3793  : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3794 };
3795 
3796 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3797  MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3798 };
3799 
3800 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3801  ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3802 };
3803 
3804 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3805  MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3806  : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3807 
3808  MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3809  bool AllowNull = true)
3810  : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3811 
3812  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3813  bool isMDField() const { return WhatIs == IsTypeB; }
3814  int64_t getMDSignedValue() const {
3815  assert(isMDSignedField() && "Wrong field type");
3816  return A.Val;
3817  }
3818  Metadata *getMDFieldValue() const {
3819  assert(isMDField() && "Wrong field type");
3820  return B.Val;
3821  }
3822 };
3823 
3824 struct MDSignedOrUnsignedField
3825  : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3826  MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3827 
3828  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3829  bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3830  int64_t getMDSignedValue() const {
3831  assert(isMDSignedField() && "Wrong field type");
3832  return A.Val;
3833  }
3834  uint64_t getMDUnsignedValue() const {
3835  assert(isMDUnsignedField() && "Wrong field type");
3836  return B.Val;
3837  }
3838 };
3839 
3840 } // end anonymous namespace
3841 
3842 namespace llvm {
3843 
3844 template <>
3845 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3846  MDUnsignedField &Result) {
3847  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3848  return TokError("expected unsigned integer");
3849 
3850  auto &U = Lex.getAPSIntVal();
3851  if (U.ugt(Result.Max))
3852  return TokError("value for '" + Name + "' too large, limit is " +
3853  Twine(Result.Max));
3854  Result.assign(U.getZExtValue());
3855  assert(Result.Val <= Result.Max && "Expected value in range");
3856  Lex.Lex();
3857  return false;
3858 }
3859 
3860 template <>
3861 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3862  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3863 }
3864 template <>
3865 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3866  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3867 }
3868 
3869 template <>
3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3871  if (Lex.getKind() == lltok::APSInt)
3872  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3873 
3874  if (Lex.getKind() != lltok::DwarfTag)
3875  return TokError("expected DWARF tag");
3876 
3877  unsigned Tag = dwarf::getTag(Lex.getStrVal());
3878  if (Tag == dwarf::DW_TAG_invalid)
3879  return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3880  assert(Tag <= Result.Max && "Expected valid DWARF tag");
3881 
3882  Result.assign(Tag);
3883  Lex.Lex();
3884  return false;
3885 }
3886 
3887 template <>
3888 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3889  DwarfMacinfoTypeField &Result) {
3890  if (Lex.getKind() == lltok::APSInt)
3891  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3892 
3893  if (Lex.getKind() != lltok::DwarfMacinfo)
3894  return TokError("expected DWARF macinfo type");
3895 
3896  unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3897  if (Macinfo == dwarf::DW_MACINFO_invalid)
3898  return TokError(
3899  "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3900  assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3901 
3902  Result.assign(Macinfo);
3903  Lex.Lex();
3904  return false;
3905 }
3906 
3907 template <>
3908 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3909  DwarfVirtualityField &Result) {
3910  if (Lex.getKind() == lltok::APSInt)
3911  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3912 
3913  if (Lex.getKind() != lltok::DwarfVirtuality)
3914  return TokError("expected DWARF virtuality code");
3915 
3916  unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3917  if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3918  return TokError("invalid DWARF virtuality code" + Twine(" '") +
3919  Lex.getStrVal() + "'");
3920  assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3921  Result.assign(Virtuality);
3922  Lex.Lex();
3923  return false;
3924 }
3925 
3926 template <>
3927 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3928  if (Lex.getKind() == lltok::APSInt)
3929  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3930 
3931  if (Lex.getKind() != lltok::DwarfLang)
3932  return TokError("expected DWARF language");
3933 
3934  unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3935  if (!Lang)
3936  return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3937  "'");
3938  assert(Lang <= Result.Max && "Expected valid DWARF language");
3939  Result.assign(Lang);
3940  Lex.Lex();
3941  return false;
3942 }
3943 
3944 template <>
3945 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3946  if (Lex.getKind() == lltok::APSInt)
3947  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3948 
3949  if (Lex.getKind() != lltok::DwarfCC)
3950  return TokError("expected DWARF calling convention");
3951 
3952  unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3953  if (!CC)
3954  return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3955  "'");
3956  assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3957  Result.assign(CC);
3958  Lex.Lex();
3959  return false;
3960 }
3961 
3962 template <>
3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3964  if (Lex.getKind() == lltok::APSInt)
3965  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3966 
3967  if (Lex.getKind() != lltok::EmissionKind)
3968  return TokError("expected emission kind");
3969 
3970  auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3971  if (!Kind)
3972  return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3973  "'");
3974  assert(*Kind <= Result.Max && "Expected valid emission kind");
3975  Result.assign(*Kind);
3976  Lex.Lex();
3977  return false;
3978 }
3979 
3980 template <>
3981 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3982  NameTableKindField &Result) {
3983  if (Lex.getKind() == lltok::APSInt)
3984  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3985 
3986  if (Lex.getKind() != lltok::NameTableKind)
3987  return TokError("expected nameTable kind");
3988 
3989  auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3990  if (!Kind)
3991  return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3992  "'");
3993  assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3994  Result.assign((unsigned)*Kind);
3995  Lex.Lex();
3996  return false;
3997 }
3998 
3999 template <>
4000 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4001  DwarfAttEncodingField &Result) {
4002  if (Lex.getKind() == lltok::APSInt)
4003  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4004 
4005  if (Lex.getKind() != lltok::DwarfAttEncoding)
4006  return TokError("expected DWARF type attribute encoding");
4007 
4008  unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4009  if (!Encoding)
4010  return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4011  Lex.getStrVal() + "'");
4012  assert(Encoding <= Result.Max && "Expected valid DWARF language");
4013  Result.assign(Encoding);
4014  Lex.Lex();
4015  return false;
4016 }
4017 
4018 /// DIFlagField
4019 /// ::= uint32
4020 /// ::= DIFlagVector
4021 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4022 template <>
4023 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4024 
4025  // Parser for a single flag.
4026  auto parseFlag = [&](DINode::DIFlags &Val) {
4027  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4028  uint32_t TempVal = static_cast<uint32_t>(Val);
4029  bool Res = ParseUInt32(TempVal);
4030  Val = static_cast<DINode::DIFlags>(TempVal);
4031  return Res;
4032  }
4033 
4034  if (Lex.getKind() != lltok::DIFlag)
4035  return TokError("expected debug info flag");
4036 
4037  Val = DINode::getFlag(Lex.getStrVal());
4038  if (!Val)
4039  return TokError(Twine("invalid debug info flag flag '") +
4040  Lex.getStrVal() + "'");
4041  Lex.Lex();
4042  return false;
4043  };
4044 
4045  // Parse the flags and combine them together.
4046  DINode::DIFlags Combined = DINode::FlagZero;
4047  do {
4048  DINode::DIFlags Val;
4049  if (parseFlag(Val))
4050  return true;
4051  Combined |= Val;
4052  } while (EatIfPresent(lltok::bar));
4053 
4054  Result.assign(Combined);
4055  return false;
4056 }
4057 
4058 /// DISPFlagField
4059 /// ::= uint32
4060 /// ::= DISPFlagVector
4061 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4062 template <>
4063 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4064 
4065  // Parser for a single flag.
4066  auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4067  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4068  uint32_t TempVal = static_cast<uint32_t>(Val);
4069  bool Res = ParseUInt32(TempVal);
4070  Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4071  return Res;
4072  }
4073 
4074  if (Lex.getKind() != lltok::DISPFlag)
4075  return TokError("expected debug info flag");
4076 
4077  Val = DISubprogram::getFlag(Lex.getStrVal());
4078  if (!Val)
4079  return TokError(Twine("invalid subprogram debug info flag '") +
4080  Lex.getStrVal() + "'");
4081  Lex.Lex();
4082  return false;
4083  };
4084 
4085  // Parse the flags and combine them together.
4086  DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4087  do {
4089  if (parseFlag(Val))
4090  return true;
4091  Combined |= Val;
4092  } while (EatIfPresent(lltok::bar));
4093 
4094  Result.assign(Combined);
4095  return false;
4096 }
4097 
4098 template <>
4099 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4100  MDSignedField &Result) {
4101  if (Lex.getKind() != lltok::APSInt)
4102  return TokError("expected signed integer");
4103 
4104  auto &S = Lex.getAPSIntVal();
4105  if (S < Result.Min)
4106  return TokError("value for '" + Name + "' too small, limit is " +
4107  Twine(Result.Min));
4108  if (S > Result.Max)
4109  return TokError("value for '" + Name + "' too large, limit is " +
4110  Twine(Result.Max));
4111  Result.assign(S.getExtValue());
4112  assert(Result.Val >= Result.Min && "Expected value in range");
4113  assert(Result.Val <= Result.Max && "Expected value in range");
4114  Lex.Lex();
4115  return false;
4116 }
4117 
4118 template <>
4119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4120  switch (Lex.getKind()) {
4121  default:
4122  return TokError("expected 'true' or 'false'");
4123  case lltok::kw_true:
4124  Result.assign(true);
4125  break;
4126  case lltok::kw_false:
4127  Result.assign(false);
4128  break;
4129  }
4130  Lex.Lex();
4131  return false;
4132 }
4133 
4134 template <>
4135 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4136  if (Lex.getKind() == lltok::kw_null) {
4137  if (!Result.AllowNull)
4138  return TokError("'" + Name + "' cannot be null");
4139  Lex.Lex();
4140  Result.assign(nullptr);
4141  return false;
4142  }
4143 
4144  Metadata *MD;
4145  if (ParseMetadata(MD, nullptr))
4146  return true;
4147 
4148  Result.assign(MD);
4149  return false;
4150 }
4151 
4152 template <>
4153 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4154  MDSignedOrMDField &Result) {
4155  // Try to parse a signed int.
4156  if (Lex.getKind() == lltok::APSInt) {
4157  MDSignedField Res = Result.A;
4158  if (!ParseMDField(Loc, Name, Res)) {
4159  Result.assign(Res);
4160  return false;
4161  }
4162  return true;
4163  }
4164 
4165  // Otherwise, try to parse as an MDField.
4166  MDField Res = Result.B;
4167  if (!ParseMDField(Loc, Name, Res)) {
4168  Result.assign(Res);
4169  return false;
4170  }
4171 
4172  return true;
4173 }
4174 
4175 template <>
4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4177  MDSignedOrUnsignedField &Result) {
4178  if (Lex.getKind() != lltok::APSInt)
4179  return false;
4180 
4181  if (Lex.getAPSIntVal().isSigned()) {
4182  MDSignedField Res = Result.A;
4183  if (ParseMDField(Loc, Name, Res))
4184  return true;
4185  Result.assign(Res);
4186  return false;
4187  }
4188 
4189  MDUnsignedField Res = Result.B;
4190  if (ParseMDField(Loc, Name, Res))
4191  return true;
4192  Result.assign(Res);
4193  return false;
4194 }
4195 
4196 template <>
4197 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4198  LocTy ValueLoc = Lex.getLoc();
4199  std::string S;
4200  if (ParseStringConstant(S))
4201  return true;
4202 
4203  if (!Result.AllowEmpty && S.empty())
4204  return Error(ValueLoc, "'" + Name + "' cannot be empty");
4205 
4206  Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4207  return false;
4208 }
4209 
4210 template <>
4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4213  if (ParseMDNodeVector(MDs))
4214  return true;
4215 
4216  Result.assign(std::move(MDs));
4217  return false;
4218 }
4219 
4220 template <>
4221 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4222  ChecksumKindField &Result) {
4224  DIFile::getChecksumKind(Lex.getStrVal());
4225 
4226  if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4227  return TokError(
4228  "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4229 
4230  Result.assign(*CSKind);
4231  Lex.Lex();
4232  return false;
4233 }
4234 
4235 } // end namespace llvm
4236 
4237 template <class ParserTy>
4238 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4239  do {
4240  if (Lex.getKind() != lltok::LabelStr)
4241  return TokError("expected field label here");
4242 
4243  if (parseField())
4244  return true;
4245  } while (EatIfPresent(lltok::comma));
4246 
4247  return false;
4248 }
4249 
4250 template <class ParserTy>
4251 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4252  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4253  Lex.Lex();
4254 
4255  if (ParseToken(lltok::lparen, "expected '(' here"))
4256  return true;
4257  if (Lex.getKind() != lltok::rparen)
4258  if (ParseMDFieldsImplBody(parseField))
4259  return true;
4260 
4261  ClosingLoc = Lex.getLoc();
4262  return ParseToken(lltok::rparen, "expected ')' here");
4263 }
4264 
4265 template <class FieldTy>
4266 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4267  if (Result.Seen)
4268  return TokError("field '" + Name + "' cannot be specified more than once");
4269 
4270  LocTy Loc = Lex.getLoc();
4271  Lex.Lex();
4272  return ParseMDField(Loc, Name, Result);
4273 }
4274 
4275 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4276  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4277 
4278 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4279  if (Lex.getStrVal() == #CLASS) \
4280  return Parse##CLASS(N, IsDistinct);
4281 #include "llvm/IR/Metadata.def"
4282 
4283  return TokError("expected metadata type");
4284 }
4285 
4286 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4287 #define NOP_FIELD(NAME, TYPE, INIT)
4288 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4289  if (!NAME.Seen) \
4290  return Error(ClosingLoc, "missing required field '" #NAME "'");
4291 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4292  if (Lex.getStrVal() == #NAME) \
4293  return ParseMDField(#NAME, NAME);
4294 #define PARSE_MD_FIELDS() \
4295  VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4296  do { \
4297  LocTy ClosingLoc; \
4298  if (ParseMDFieldsImpl([&]() -> bool { \
4299  VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4300  return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4301  }, ClosingLoc)) \
4302  return true; \
4303  VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4304  } while (false)
4305 #define GET_OR_DISTINCT(CLASS, ARGS) \
4306  (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4307 
4308 /// ParseDILocationFields:
4309 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4310 /// isImplicitCode: true)
4311 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4312 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4313  OPTIONAL(line, LineField, ); \
4314  OPTIONAL(column, ColumnField, ); \
4315  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4316  OPTIONAL(inlinedAt, MDField, ); \
4317  OPTIONAL(isImplicitCode, MDBoolField, (false));
4318  PARSE_MD_FIELDS();
4319 #undef VISIT_MD_FIELDS
4320 
4321  Result =
4322  GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4323  inlinedAt.Val, isImplicitCode.Val));
4324  return false;
4325 }
4326 
4327 /// ParseGenericDINode:
4328 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4329 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4330 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4331  REQUIRED(tag, DwarfTagField, ); \
4332  OPTIONAL(header, MDStringField, ); \
4333  OPTIONAL(operands, MDFieldList, );
4334  PARSE_MD_FIELDS();
4335 #undef VISIT_MD_FIELDS
4336 
4337  Result = GET_OR_DISTINCT(GenericDINode,
4338  (Context, tag.Val, header.Val, operands.Val));
4339  return false;
4340 }
4341 
4342 /// ParseDISubrange:
4343 /// ::= !DISubrange(count: 30, lowerBound: 2)
4344 /// ::= !DISubrange(count: !node, lowerBound: 2)
4345 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4346 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4347  REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4348  OPTIONAL(lowerBound, MDSignedField, );
4349  PARSE_MD_FIELDS();
4350 #undef VISIT_MD_FIELDS
4351 
4352  if (count.isMDSignedField())
4353  Result = GET_OR_DISTINCT(
4354  DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4355  else if (count.isMDField())
4356  Result = GET_OR_DISTINCT(
4357  DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4358  else
4359  return true;
4360 
4361  return false;
4362 }
4363 
4364 /// ParseDIEnumerator:
4365 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4366 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4368  REQUIRED(name, MDStringField, ); \
4369  REQUIRED(value, MDSignedOrUnsignedField, ); \
4370  OPTIONAL(isUnsigned, MDBoolField, (false));
4371  PARSE_MD_FIELDS();
4372 #undef VISIT_MD_FIELDS
4373 
4374  if (isUnsigned.Val && value.isMDSignedField())
4375  return TokError("unsigned enumerator with negative value");
4376 
4377  int64_t Value = value.isMDSignedField()
4378  ? value.getMDSignedValue()
4379  : static_cast<int64_t>(value.getMDUnsignedValue());
4380  Result =
4381  GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4382 
4383  return false;
4384 }
4385 
4386 /// ParseDIBasicType:
4387 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4388 /// encoding: DW_ATE_encoding, flags: 0)
4389 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4390 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4391  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4392  OPTIONAL(name, MDStringField, ); \
4393  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4394  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4395  OPTIONAL(encoding, DwarfAttEncodingField, ); \
4396  OPTIONAL(flags, DIFlagField, );
4397  PARSE_MD_FIELDS();
4398 #undef VISIT_MD_FIELDS
4399 
4400  Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4401  align.Val, encoding.Val, flags.Val));
4402  return false;
4403 }
4404 
4405 /// ParseDIDerivedType:
4406 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4407 /// line: 7, scope: !1, baseType: !2, size: 32,
4408 /// align: 32, offset: 0, flags: 0, extraData: !3,
4409 /// dwarfAddressSpace: 3)
4410 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4411 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4412  REQUIRED(tag, DwarfTagField, ); \
4413  OPTIONAL(name, MDStringField, ); \
4414  OPTIONAL(file, MDField, ); \
4415  OPTIONAL(line, LineField, ); \
4416  OPTIONAL(scope, MDField, ); \
4417  REQUIRED(baseType, MDField, ); \
4418  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4419  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4420  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4421  OPTIONAL(flags, DIFlagField, ); \
4422  OPTIONAL(extraData, MDField, ); \
4423  OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4424  PARSE_MD_FIELDS();
4425 #undef VISIT_MD_FIELDS
4426 
4427  Optional<unsigned> DWARFAddressSpace;
4428  if (dwarfAddressSpace.Val != UINT32_MAX)
4429  DWARFAddressSpace = dwarfAddressSpace.Val;
4430 
4431  Result = GET_OR_DISTINCT(DIDerivedType,
4432  (Context, tag.Val, name.Val, file.Val, line.Val,
4433  scope.Val, baseType.Val, size.Val, align.Val,
4434  offset.Val, DWARFAddressSpace, flags.Val,
4435  extraData.Val));
4436  return false;
4437 }
4438 
4439 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4440 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4441  REQUIRED(tag, DwarfTagField, ); \
4442  OPTIONAL(name, MDStringField, ); \
4443  OPTIONAL(file, MDField, ); \
4444  OPTIONAL(line, LineField, ); \
4445  OPTIONAL(scope, MDField, ); \
4446  OPTIONAL(baseType, MDField, ); \
4447  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4448  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4449  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4450  OPTIONAL(flags, DIFlagField, ); \
4451  OPTIONAL(elements, MDField, ); \
4452  OPTIONAL(runtimeLang, DwarfLangField, ); \
4453  OPTIONAL(vtableHolder, MDField, ); \
4454  OPTIONAL(templateParams, MDField, ); \
4455  OPTIONAL(identifier, MDStringField, ); \
4456  OPTIONAL(discriminator, MDField, );
4457  PARSE_MD_FIELDS();
4458 #undef VISIT_MD_FIELDS
4459 
4460  // If this has an identifier try to build an ODR type.
4461  if (identifier.Val)
4462  if (auto *CT = DICompositeType::buildODRType(
4463  Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4464  scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4465  elements.Val, runtimeLang.Val, vtableHolder.Val,
4466  templateParams.Val, discriminator.Val)) {
4467  Result = CT;
4468  return false;
4469  }
4470 
4471  // Create a new node, and save it in the context if it belongs in the type
4472  // map.
4473  Result = GET_OR_DISTINCT(
4475  (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4476  size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4477  runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4478  discriminator.Val));
4479  return false;
4480 }
4481 
4482 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4484  OPTIONAL(flags, DIFlagField, ); \
4485  OPTIONAL(cc, DwarfCCField, ); \
4486  REQUIRED(types, MDField, );
4487  PARSE_MD_FIELDS();
4488 #undef VISIT_MD_FIELDS
4489 
4491  (Context, flags.Val, cc.Val, types.Val));
4492  return false;
4493 }
4494 
4495 /// ParseDIFileType:
4496 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4497 /// checksumkind: CSK_MD5,
4498 /// checksum: "000102030405060708090a0b0c0d0e0f",
4499 /// source: "source file contents")
4500 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4501  // The default constructed value for checksumkind is required, but will never
4502  // be used, as the parser checks if the field was actually Seen before using
4503  // the Val.
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4505  REQUIRED(filename, MDStringField, ); \
4506  REQUIRED(directory, MDStringField, ); \
4507  OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4508  OPTIONAL(checksum, MDStringField, ); \
4509  OPTIONAL(source, MDStringField, );
4510  PARSE_MD_FIELDS();
4511 #undef VISIT_MD_FIELDS
4512 
4514  if (checksumkind.Seen && checksum.Seen)
4515  OptChecksum.emplace(checksumkind.Val, checksum.Val);
4516  else if (checksumkind.Seen || checksum.Seen)
4517  return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4518 
4519  Optional<MDString *> OptSource;
4520  if (source.Seen)
4521  OptSource = source.Val;
4522  Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4523  OptChecksum, OptSource));
4524  return false;
4525 }
4526 
4527 /// ParseDICompileUnit:
4528 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4529 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4530 /// splitDebugFilename: "abc.debug",
4531 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4532 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4533 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4534  if (!IsDistinct)
4535  return Lex.Error("missing 'distinct', required for !DICompileUnit");
4536 
4537 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4538  REQUIRED(language, DwarfLangField, ); \
4539  REQUIRED(file, MDField, (/* AllowNull */ false)); \
4540  OPTIONAL(producer, MDStringField, ); \
4541  OPTIONAL(isOptimized, MDBoolField, ); \
4542  OPTIONAL(flags, MDStringField, ); \
4543  OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4544  OPTIONAL(splitDebugFilename, MDStringField, ); \
4545  OPTIONAL(emissionKind, EmissionKindField, ); \
4546  OPTIONAL(enums, MDField, ); \
4547  OPTIONAL(retainedTypes, MDField, ); \
4548  OPTIONAL(globals, MDField, ); \
4549  OPTIONAL(imports, MDField, ); \
4550  OPTIONAL(macros, MDField, ); \
4551  OPTIONAL(dwoId, MDUnsignedField, ); \
4552  OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4553  OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4554  OPTIONAL(nameTableKind, NameTableKindField, ); \
4555  OPTIONAL(debugBaseAddress, MDBoolField, = false);
4556  PARSE_MD_FIELDS();
4557 #undef VISIT_MD_FIELDS
4558 
4559  Result = DICompileUnit::getDistinct(
4560  Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4561  runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4562  retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4563  splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4564  debugBaseAddress.Val);
4565  return false;
4566 }
4567 
4568 /// ParseDISubprogram:
4569 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4570 /// file: !1, line: 7, type: !2, isLocal: false,
4571 /// isDefinition: true, scopeLine: 8, containingType: !3,
4572 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4573 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4574 /// spFlags: 10, isOptimized: false, templateParams: !4,
4575 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4576 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4577  auto Loc = Lex.getLoc();
4578 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4579  OPTIONAL(scope, MDField, ); \
4580  OPTIONAL(name, MDStringField, ); \
4581  OPTIONAL(linkageName, MDStringField, ); \
4582  OPTIONAL(file, MDField, ); \
4583  OPTIONAL(line, LineField, ); \
4584  OPTIONAL(type, MDField, ); \
4585  OPTIONAL(isLocal, MDBoolField, ); \
4586  OPTIONAL(isDefinition, MDBoolField, (true)); \
4587  OPTIONAL(scopeLine, LineField, ); \
4588  OPTIONAL(containingType, MDField, ); \
4589  OPTIONAL(virtuality, DwarfVirtualityField, ); \
4590  OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4591  OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4592  OPTIONAL(flags, DIFlagField, ); \
4593  OPTIONAL(spFlags, DISPFlagField, ); \
4594  OPTIONAL(isOptimized, MDBoolField, ); \
4595  OPTIONAL(unit, MDField, ); \
4596  OPTIONAL(templateParams, MDField, ); \
4597  OPTIONAL(declaration, MDField, ); \
4598  OPTIONAL(retainedNodes, MDField, ); \
4599  OPTIONAL(thrownTypes, MDField, );
4600  PARSE_MD_FIELDS();
4601 #undef VISIT_MD_FIELDS
4602 
4603  // An explicit spFlags field takes precedence over individual fields in
4604  // older IR versions.
4605  DISubprogram::DISPFlags SPFlags =
4606  spFlags.Seen ? spFlags.Val
4607  : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4608  isOptimized.Val, virtuality.Val);
4609  if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4610  return Lex.Error(
4611  Loc,
4612  "missing 'distinct', required for !DISubprogram that is a Definition");
4613  Result = GET_OR_DISTINCT(
4614  DISubprogram,
4615  (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4616  type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4617  thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4618  declaration.Val, retainedNodes.Val, thrownTypes.Val));
4619  return false;
4620 }
4621 
4622 /// ParseDILexicalBlock:
4623 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4624 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4625 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4626  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4627  OPTIONAL(file, MDField, ); \
4628  OPTIONAL(line, LineField, ); \
4629  OPTIONAL(column, ColumnField, );
4630  PARSE_MD_FIELDS();
4631 #undef VISIT_MD_FIELDS
4632 
4633  Result = GET_OR_DISTINCT(
4634  DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4635  return false;
4636 }
4637 
4638 /// ParseDILexicalBlockFile:
4639 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4640 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4642  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4643  OPTIONAL(file, MDField, ); \
4644  REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4645  PARSE_MD_FIELDS();
4646 #undef VISIT_MD_FIELDS
4647 
4649  (Context, scope.Val, file.Val, discriminator.Val));
4650  return false;
4651 }
4652 
4653 /// ParseDINamespace:
4654 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4655 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4656 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4657  REQUIRED(scope, MDField, ); \
4658  OPTIONAL(name, MDStringField, ); \
4659  OPTIONAL(exportSymbols, MDBoolField, );
4660  PARSE_MD_FIELDS();
4661 #undef VISIT_MD_FIELDS
4662 
4663  Result = GET_OR_DISTINCT(DINamespace,
4664  (Context, scope.Val, name.Val, exportSymbols.Val));
4665  return false;
4666 }
4667 
4668 /// ParseDIMacro:
4669 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4670 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4672  REQUIRED(type, DwarfMacinfoTypeField, ); \
4673  OPTIONAL(line, LineField, ); \
4674  REQUIRED(name, MDStringField, ); \
4675  OPTIONAL(value, MDStringField, );
4676  PARSE_MD_FIELDS();
4677 #undef VISIT_MD_FIELDS
4678 
4679  Result = GET_OR_DISTINCT(DIMacro,
4680  (Context, type.Val, line.Val, name.Val, value.Val));
4681  return false;
4682 }
4683 
4684 /// ParseDIMacroFile:
4685 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4686 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4688  OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4689  OPTIONAL(line, LineField, ); \
4690  REQUIRED(file, MDField, ); \
4691  OPTIONAL(nodes, MDField, );
4692  PARSE_MD_FIELDS();
4693 #undef VISIT_MD_FIELDS
4694 
4695  Result = GET_OR_DISTINCT(DIMacroFile,
4696  (Context, type.Val, line.Val, file.Val, nodes.Val));
4697  return false;
4698 }
4699 
4700 /// ParseDIModule:
4701 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4702 /// includePath: "/usr/include", isysroot: "/")
4703 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4705  REQUIRED(scope, MDField, ); \
4706  REQUIRED(name, MDStringField, ); \
4707  OPTIONAL(configMacros, MDStringField, ); \
4708  OPTIONAL(includePath, MDStringField, ); \
4709  OPTIONAL(isysroot, MDStringField, );
4710  PARSE_MD_FIELDS();
4711 #undef VISIT_MD_FIELDS
4712 
4713  Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4714  configMacros.Val, includePath.Val, isysroot.Val));
4715  return false;
4716 }
4717 
4718 /// ParseDITemplateTypeParameter:
4719 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4720 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4721 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4722  OPTIONAL(name, MDStringField, ); \
4723  REQUIRED(type, MDField, );
4724  PARSE_MD_FIELDS();
4725 #undef VISIT_MD_FIELDS
4726 
4727  Result =
4729  return false;
4730 }
4731 
4732 /// ParseDITemplateValueParameter:
4733 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4734 /// name: "V", type: !1, value: i32 7)
4735 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4737  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4738  OPTIONAL(name, MDStringField, ); \
4739  OPTIONAL(type, MDField, ); \
4740  REQUIRED(value, MDField, );
4741  PARSE_MD_FIELDS();
4742 #undef VISIT_MD_FIELDS
4743 
4745  (Context, tag.Val, name.Val, type.Val, value.Val));
4746  return false;
4747 }
4748 
4749 /// ParseDIGlobalVariable:
4750 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4751 /// file: !1, line: 7, type: !2, isLocal: false,
4752 /// isDefinition: true, templateParams: !3,
4753 /// declaration: !4, align: 8)
4754 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4756  REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4757  OPTIONAL(scope, MDField, ); \
4758  OPTIONAL(linkageName, MDStringField, ); \
4759  OPTIONAL(file, MDField, ); \
4760  OPTIONAL(line, LineField, ); \
4761  OPTIONAL(type, MDField, ); \
4762  OPTIONAL(isLocal, MDBoolField, ); \
4763  OPTIONAL(isDefinition, MDBoolField, (true)); \
4764  OPTIONAL(templateParams, MDField, ); \
4765  OPTIONAL(declaration, MDField, ); \
4766  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4767  PARSE_MD_FIELDS();
4768 #undef VISIT_MD_FIELDS
4769 
4770  Result =
4772  (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4773  line.Val, type.Val, isLocal.Val, isDefinition.Val,
4774  declaration.Val, templateParams.Val, align.Val));
4775  return false;
4776 }
4777 
4778 /// ParseDILocalVariable:
4779 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4780 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4781 /// align: 8)
4782 /// ::= !DILocalVariable(scope: !0, name: "foo",
4783 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4784 /// align: 8)
4785 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4787  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4788  OPTIONAL(name, MDStringField, ); \
4789  OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4790  OPTIONAL(file, MDField, ); \
4791  OPTIONAL(line, LineField, ); \
4792  OPTIONAL(type, MDField, ); \
4793  OPTIONAL(flags, DIFlagField, ); \
4794  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4795  PARSE_MD_FIELDS();
4796 #undef VISIT_MD_FIELDS
4797 
4799  (Context, scope.Val, name.Val, file.Val, line.Val,
4800  type.Val, arg.Val, flags.Val, align.Val));
4801  return false;
4802 }
4803 
4804 /// ParseDILabel:
4805 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4806 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4807 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4808  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4809  REQUIRED(name, MDStringField, ); \
4810  REQUIRED(file, MDField, ); \
4811  REQUIRED(line, LineField, );
4812  PARSE_MD_FIELDS();
4813 #undef VISIT_MD_FIELDS
4814 
4815  Result = GET_OR_DISTINCT(DILabel,
4816  (Context, scope.Val, name.Val, file.Val, line.Val));
4817  return false;
4818 }
4819 
4820 /// ParseDIExpression:
4821 /// ::= !DIExpression(0, 7, -1)
4822 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4823  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4824  Lex.Lex();
4825 
4826  if (ParseToken(lltok::lparen, "expected '(' here"))
4827  return true;
4828 
4829  SmallVector<uint64_t, 8> Elements;
4830  if (Lex.getKind() != lltok::rparen)
4831  do {
4832  if (Lex.getKind() == lltok::DwarfOp) {
4833  if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4834  Lex.Lex();
4835  Elements.push_back(Op);
4836  continue;
4837  }
4838  return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4839  }
4840 
4841  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4842  return TokError("expected unsigned integer");
4843 
4844  auto &U = Lex.getAPSIntVal();
4845  if (U.ugt(UINT64_MAX))
4846  return TokError("element too large, limit is " + Twine(UINT64_MAX));
4847  Elements.push_back(U.getZExtValue());
4848  Lex.Lex();
4849  } while (EatIfPresent(lltok::comma));
4850 
4851  if (ParseToken(lltok::rparen, "expected ')' here"))
4852  return true;
4853 
4854  Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4855  return false;
4856 }
4857 
4858 /// ParseDIGlobalVariableExpression:
4859 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4860 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4861  bool IsDistinct) {
4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4863  REQUIRED(var, MDField, ); \
4864  REQUIRED(expr, MDField, );
4865  PARSE_MD_FIELDS();
4866 #undef VISIT_MD_FIELDS
4867 
4868  Result =
4869  GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4870  return false;
4871 }
4872 
4873 /// ParseDIObjCProperty:
4874 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4875 /// getter: "getFoo", attributes: 7, type: !2)
4876 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4878  OPTIONAL(name, MDStringField, ); \
4879  OPTIONAL(file, MDField, ); \
4880  OPTIONAL(line, LineField, ); \
4881  OPTIONAL(setter, MDStringField, ); \
4882  OPTIONAL(getter, MDStringField, ); \
4883  OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4884  OPTIONAL(type, MDField, );
4885  PARSE_MD_FIELDS();
4886 #undef VISIT_MD_FIELDS
4887 
4889  (Context, name.Val, file.Val, line.Val, setter.Val,
4890  getter.Val, attributes.Val, type.Val));
4891  return false;
4892 }
4893 
4894 /// ParseDIImportedEntity:
4895 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4896 /// line: 7, name: "foo")
4897 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4899  REQUIRED(tag, DwarfTagField, ); \
4900  REQUIRED(scope, MDField, ); \
4901  OPTIONAL(entity, MDField, ); \
4902  OPTIONAL(file, MDField, ); \
4903  OPTIONAL(line, LineField, ); \
4904  OPTIONAL(name, MDStringField, );
4905  PARSE_MD_FIELDS();
4906 #undef VISIT_MD_FIELDS
4907 
4908  Result = GET_OR_DISTINCT(
4910  (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4911  return false;
4912 }
4913 
4914 #undef PARSE_MD_FIELD
4915 #undef NOP_FIELD
4916 #undef REQUIRE_FIELD
4917 #undef DECLARE_FIELD
4918 
4919 /// ParseMetadataAsValue
4920 /// ::= metadata i32 %local
4921 /// ::= metadata i32 @global
4922 /// ::= metadata i32 7
4923 /// ::= metadata !0
4924 /// ::= metadata !{...}
4925 /// ::= metadata !"string"
4926 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4927  // Note: the type 'metadata' has already been parsed.
4928  Metadata *MD;
4929  if (ParseMetadata(MD, &PFS))
4930  return true;
4931 
4932  V = MetadataAsValue::get(Context, MD);
4933  return false;
4934 }
4935 
4936 /// ParseValueAsMetadata
4937 /// ::= i32 %local
4938 /// ::= i32 @global
4939 /// ::= i32 7
4940 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4941  PerFunctionState *PFS) {
4942  Type *Ty;
4943  LocTy Loc;
4944  if (ParseType(Ty, TypeMsg, Loc))
4945  return true;
4946  if (Ty->isMetadataTy())
4947  return Error(Loc, "invalid metadata-value-metadata roundtrip");
4948 
4949  Value *V;
4950  if (ParseValue(Ty, V, PFS))
4951  return true;
4952 
4953  MD = ValueAsMetadata::get(V);
4954  return false;
4955 }
4956 
4957 /// ParseMetadata
4958 /// ::= i32 %local
4959 /// ::= i32 @global
4960 /// ::= i32 7
4961 /// ::= !42
4962 /// ::= !{...}
4963 /// ::= !"string"
4964 /// ::= !DILocation(...)
4965 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4966  if (Lex.getKind() == lltok::MetadataVar) {
4967  MDNode *N;
4968  if (ParseSpecializedMDNode(N))
4969  return true;
4970  MD = N;
4971  return false;
4972  }
4973 
4974  // ValueAsMetadata:
4975  // <type> <value>
4976  if (Lex.getKind() != lltok::exclaim)
4977  return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4978 
4979  // '!'.
4980  assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4981  Lex.Lex();
4982 
4983  // MDString:
4984  // ::= '!' STRINGCONSTANT
4985  if (Lex.getKind() == lltok::StringConstant) {
4986  MDString *S;
4987  if (ParseMDString(S))
4988  return true;
4989  MD = S;
4990  return false;
4991  }
4992 
4993  // MDNode:
4994  // !{ ... }
4995  // !7
4996  MDNode *N;
4997  if (ParseMDNodeTail(N))
4998  return true;
4999  MD = N;
5000  return false;
5001 }
5002 
5003 //===----------------------------------------------------------------------===//
5004 // Function Parsing.
5005 //===----------------------------------------------------------------------===//
5006 
5007 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5008  PerFunctionState *PFS, bool IsCall) {
5009  if (Ty->isFunctionTy())
5010  return Error(ID.Loc, "functions are not values, refer to them as pointers");
5011 
5012  switch (ID.Kind) {
5013  case ValID::t_LocalID:
5014  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5015  V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5016  return V == nullptr;
5017  case ValID::t_LocalName:
5018  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5019  V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5020  return V == nullptr;
5021  case ValID::t_InlineAsm: {
5022  if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5023  return Error(ID.Loc, "invalid type for inline asm constraint string");
5024  V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5025  (ID.UIntVal >> 1) & 1,
5026  (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5027  return false;
5028  }
5029  case ValID::t_GlobalName:
5030  V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5031  return V == nullptr;
5032  case ValID::t_GlobalID:
5033  V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5034  return V == nullptr;
5035  case ValID::t_APSInt:
5036  if (!Ty->isIntegerTy())
5037  return Error(ID.Loc, "integer constant must have integer type");
5040  return false;
5041  case ValID::t_APFloat:
5042  if (!Ty->isFloatingPointTy() ||
5044  return Error(ID.Loc, "floating point constant invalid for type");
5045 
5046  // The lexer has no type info, so builds all half, float, and double FP
5047  // constants as double. Fix this here. Long double does not need this.
5048  if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5049  bool Ignored;
5050  if (Ty->isHalfTy())
5052  &Ignored);
5053  else if (Ty->isFloatTy())
5055  &Ignored);
5056  }
5058 
5059  if (V->getType() != Ty)
5060  return Error(ID.Loc, "floating point constant does not have type '" +
5061  getTypeString(Ty) + "'");
5062 
5063  return false;
5064  case ValID::t_Null:
5065  if (!Ty->isPointerTy())
5066  return Error(ID.Loc, "null must be a pointer type");
5067  V = ConstantPointerNull::get(cast<PointerType>(Ty));
5068  return false;
5069  case ValID::t_Undef:
5070  // FIXME: LabelTy should not be a first-class type.
5071  if (!Ty->isFirstClassType() || Ty->isLabelTy())
5072  return Error(ID.Loc, "invalid type for undef constant");
5073  V = UndefValue::get(Ty);
5074  return false;
5075  case ValID::t_EmptyArray:
5076  if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5077  return Error(ID.Loc, "invalid empty array initializer");
5078  V = UndefValue::get(Ty);
5079  return false;
5080  case ValID::t_Zero:
5081  // FIXME: LabelTy should not be a first-class type.
5082  if (!Ty->isFirstClassType() || Ty->isLabelTy())
5083  return Error(ID.Loc, "invalid type for null constant");
5084  V = Constant::getNullValue(Ty);
5085  return false;
5086  case ValID::t_None:
5087  if (!Ty->isTokenTy())
5088  return Error(ID.Loc, "invalid type for none constant");
5089  V = Constant::getNullValue(Ty);
5090  return false;
5091  case ValID::t_Constant:
5092  if (ID.ConstantVal->getType() != Ty)
5093  return Error(ID.Loc, "constant expression type mismatch");
5094 
5095  V = ID.ConstantVal;
5096  return false;
5099  if (StructType *ST = dyn_cast<StructType>(Ty)) {
5100  if (ST->getNumElements() != ID.UIntVal)
5101  return Error(ID.Loc,
5102  "initializer with struct type has wrong # elements");
5103  if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5104  return Error(ID.Loc, "packed'ness of initializer and type don't match");
5105 
5106  // Verify that the elements are compatible with the structtype.
5107  for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5108  if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5109  return Error(ID.Loc, "element " + Twine(i) +
5110  " of struct initializer doesn't match struct element type");
5111 
5112  V = ConstantStruct::get(
5113  ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5114  } else
5115  return Error(ID.Loc, "constant expression type mismatch");
5116  return false;
5117  }
5118  llvm_unreachable("Invalid ValID");
5119 }
5120 
5121 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5122  C = nullptr;
5123  ValID ID;
5124  auto Loc = Lex.getLoc();
5125  if (ParseValID(ID, /*PFS=*/nullptr))
5126  return true;
5127  switch (ID.Kind) {
5128  case ValID::t_APSInt:
5129  case ValID::t_APFloat:
5130  case ValID::t_Undef:
5131  case ValID::t_Constant:
5134  Value *V;
5135  if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5136  return true;
5137  assert(isa<Constant>(V) && "Expected a constant value");
5138  C = cast<Constant>(V);
5139  return false;
5140  }
5141  case ValID::t_Null:
5142  C = Constant::getNullValue(Ty);
5143  return false;
5144  default:
5145  return Error(Loc, "expected a constant value");
5146  }
5147 }
5148 
5149 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5150  V = nullptr;
5151  ValID ID;
5152  return ParseValID(ID, PFS) ||
5153  ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5154 }
5155 
5156 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5157  Type *Ty = nullptr;
5158  return ParseType(Ty) ||
5159  ParseValue(Ty, V, PFS);
5160 }
5161 
5162 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5163  PerFunctionState &PFS) {
5164  Value *V;
5165  Loc = Lex.getLoc();
5166  if (ParseTypeAndValue(V, PFS)) return true;
5167  if (!isa<BasicBlock>(V))
5168  return Error(Loc, "expected a basic block");
5169  BB = cast<BasicBlock>(V);
5170  return false;
5171 }
5172 
5173 /// FunctionHeader
5174 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5175 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5176 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5177 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5178 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5179  // Parse the linkage.
5180  LocTy LinkageLoc = Lex.getLoc();
5181  unsigned Linkage;
5182  unsigned Visibility;
5183  unsigned DLLStorageClass;
5184  bool DSOLocal;
5185  AttrBuilder RetAttrs;
5186  unsigned CC;
5187  bool HasLinkage;
5188  Type *RetType = nullptr;
5189  LocTy RetTypeLoc = Lex.getLoc();
5190  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5191  DSOLocal) ||
5192  ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5193  ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5194  return true;
5195 
5196  // Verify that the linkage is ok.
5197  switch ((GlobalValue::LinkageTypes)Linkage) {
5199  break; // always ok.
5201  if (isDefine)
5202  return Error(LinkageLoc, "invalid linkage for function definition");
5203  break;
5211  if (!isDefine)
5212  return Error(LinkageLoc, "invalid linkage for function declaration");
5213  break;
5216  return Error(LinkageLoc, "invalid function linkage type");
5217  }
5218 
5219  if (!isValidVisibilityForLinkage(Visibility, Linkage))
5220  return Error(LinkageLoc,
5221  "symbol with local linkage must have default visibility");
5222 
5223  if (!FunctionType::isValidReturnType(RetType))
5224  return Error(RetTypeLoc, "invalid function return type");
5225 
5226  LocTy NameLoc = Lex.getLoc();
5227 
5228  std::string FunctionName;
5229  if (Lex.getKind() == lltok::GlobalVar) {
5230  FunctionName = Lex.getStrVal();
5231  } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5232  unsigned NameID = Lex.getUIntVal();
5233 
5234  if (NameID != NumberedVals.size())
5235  return TokError("function expected to be numbered '%" +
5236  Twine(NumberedVals.size()) + "'");
5237  } else {
5238  return TokError("expected function name");
5239  }
5240 
5241  Lex.Lex();
5242 
5243  if (Lex.getKind() != lltok::lparen)
5244  return TokError("expected '(' in function argument list");
5245 
5246  SmallVector<ArgInfo, 8> ArgList;
5247  bool isVarArg;
5248  AttrBuilder FuncAttrs;
5249  std::vector<unsigned> FwdRefAttrGrps;
5250  LocTy BuiltinLoc;
5251  std::string Section;
5252  unsigned Alignment;
5253  std::string GC;
5255  unsigned AddrSpace = 0;
5256  Constant *Prefix = nullptr;
5257  Constant *Prologue = nullptr;
5258  Constant *PersonalityFn = nullptr;
5259  Comdat *C;
5260 
5261  if (ParseArgumentList(ArgList, isVarArg) ||
5262  ParseOptionalUnnamedAddr(UnnamedAddr) ||
5263  ParseOptionalProgramAddrSpace(AddrSpace) ||
5264  ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5265  BuiltinLoc) ||
5266  (EatIfPresent(lltok::kw_section) &&
5267  ParseStringConstant(Section)) ||
5268  parseOptionalComdat(FunctionName, C) ||
5269  ParseOptionalAlignment(Alignment) ||
5270  (EatIfPresent(lltok::kw_gc) &&
5271  ParseStringConstant(GC)) ||
5272  (EatIfPresent(lltok::kw_prefix) &&
5273  ParseGlobalTypeAndValue(Prefix)) ||
5274  (EatIfPresent(lltok::kw_prologue) &&
5275  ParseGlobalTypeAndValue(Prologue)) ||
5276  (EatIfPresent(lltok::kw_personality) &&
5277  ParseGlobalTypeAndValue(PersonalityFn)))
5278  return true;
5279 
5280  if (FuncAttrs.contains(Attribute::Builtin))
5281  return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5282 
5283  // If the alignment was parsed as an attribute, move to the alignment field.
5284  if (FuncAttrs.hasAlignmentAttr()) {
5285  Alignment = FuncAttrs.getAlignment();
5286  FuncAttrs.removeAttribute(Attribute::Alignment);
5287  }
5288 
5289  // Okay, if we got here, the function is syntactically valid. Convert types
5290  // and do semantic checks.
5291  std::vector<Type*> ParamTypeList;
5293 
5294  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5295  ParamTypeList.push_back(ArgList[i].Ty);
5296  Attrs.push_back(ArgList[i].Attrs);
5297  }
5298 
5299  AttributeList PAL =
5301  AttributeSet::get(Context, RetAttrs), Attrs);
5302 
5303  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5304  return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5305 
5306  FunctionType *FT =
5307  FunctionType::get(RetType, ParamTypeList, isVarArg);
5308  PointerType *PFT = PointerType::get(FT, AddrSpace);
5309 
5310  Fn = nullptr;
5311  if (!FunctionName.empty()) {
5312  // If this was a definition of a forward reference, remove the definition
5313  // from the forward reference table and fill in the forward ref.
5314  auto FRVI = ForwardRefVals.find(FunctionName);
5315  if (FRVI != ForwardRefVals.end()) {
5316  Fn = M->getFunction(FunctionName);
5317  if (!Fn)
5318  return Error(FRVI->second.second, "invalid forward reference to "
5319  "function as global value!");
5320  if (Fn->getType() != PFT)
5321  return Error(FRVI->second.second, "invalid forward reference to "
5322  "function '" + FunctionName + "' with wrong type: "
5323  "expected '" + getTypeString(PFT) + "' but was '" +
5324  getTypeString(Fn->getType()) + "'");
5325  ForwardRefVals.erase(FRVI);
5326  } else if ((Fn = M->getFunction(FunctionName))) {
5327  // Reject redefinitions.
5328  return Error(NameLoc, "invalid redefinition of function '" +
5329  FunctionName + "'");
5330  } else if (M->getNamedValue(FunctionName)) {
5331  return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5332  }
5333 
5334  } else {
5335  // If this is a definition of a forward referenced function, make sure the
5336  // types agree.
5337  auto I = ForwardRefValIDs.find(NumberedVals.size());
5338  if (I != ForwardRefValIDs.end()) {
5339  Fn = cast<Function>(I->second.first);
5340  if (Fn->getType() != PFT)
5341  return Error(NameLoc, "type of definition and forward reference of '@" +
5342  Twine(NumberedVals.size()) + "' disagree: "
5343  "expected '" + getTypeString(PFT) + "' but was '" +
5344  getTypeString(Fn->getType()) + "'");
5345  ForwardRefValIDs.erase(I);
5346  }
5347  }
5348 
5349  if (!Fn)
5350  Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5351  FunctionName, M);