LLVM  10.0.0svn
LLParser.cpp
Go to the documentation of this file.
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57  std::string Result;
58  raw_string_ostream Tmp(Result);
59  Tmp << *T;
60  return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65  // Prime the lexer.
66  Lex.Lex();
67 
68  if (Context.shouldDiscardValueNames())
69  return Error(
70  Lex.getLoc(),
71  "Can't read textual IR with a Context that discards named Values");
72 
73  return ParseTopLevelEntities() || ValidateEndOfModule() ||
74  ValidateEndOfIndex();
75 }
76 
78  const SlotMapping *Slots) {
79  restoreParsingState(Slots);
80  Lex.Lex();
81 
82  Type *Ty = nullptr;
83  if (ParseType(Ty) || parseConstantValue(Ty, C))
84  return true;
85  if (Lex.getKind() != lltok::Eof)
86  return Error(Lex.getLoc(), "expected end of string");
87  return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91  const SlotMapping *Slots) {
92  restoreParsingState(Slots);
93  Lex.Lex();
94 
95  Read = 0;
96  SMLoc Start = Lex.getLoc();
97  Ty = nullptr;
98  if (ParseType(Ty))
99  return true;
100  SMLoc End = Lex.getLoc();
101  Read = End.getPointer() - Start.getPointer();
102 
103  return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107  if (!Slots)
108  return;
109  NumberedVals = Slots->GlobalValues;
110  NumberedMetadata = Slots->MetadataNodes;
111  for (const auto &I : Slots->NamedTypes)
112  NamedTypes.insert(
113  std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114  for (const auto &I : Slots->Types)
115  NumberedTypes.insert(
116  std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122  if (!M)
123  return false;
124  // Handle any function attribute group forward references.
125  for (const auto &RAG : ForwardRefAttrGroups) {
126  Value *V = RAG.first;
127  const std::vector<unsigned> &Attrs = RAG.second;
128  AttrBuilder B;
129 
130  for (const auto &Attr : Attrs)
131  B.merge(NumberedAttrBuilders[Attr]);
132 
133  if (Function *Fn = dyn_cast<Function>(V)) {
134  AttributeList AS = Fn->getAttributes();
135  AttrBuilder FnAttrs(AS.getFnAttributes());
137 
138  FnAttrs.merge(B);
139 
140  // If the alignment was parsed as an attribute, move to the alignment
141  // field.
142  if (FnAttrs.hasAlignmentAttr()) {
143  Fn->setAlignment(FnAttrs.getAlignment());
144  FnAttrs.removeAttribute(Attribute::Alignment);
145  }
146 
148  AttributeSet::get(Context, FnAttrs));
149  Fn->setAttributes(AS);
150  } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151  AttributeList AS = CI->getAttributes();
152  AttrBuilder FnAttrs(AS.getFnAttributes());
154  FnAttrs.merge(B);
156  AttributeSet::get(Context, FnAttrs));
157  CI->setAttributes(AS);
158  } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159  AttributeList AS = II->getAttributes();
160  AttrBuilder FnAttrs(AS.getFnAttributes());
162  FnAttrs.merge(B);
164  AttributeSet::get(Context, FnAttrs));
165  II->setAttributes(AS);
166  } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167  AttributeList AS = CBI->getAttributes();
168  AttrBuilder FnAttrs(AS.getFnAttributes());
170  FnAttrs.merge(B);
172  AttributeSet::get(Context, FnAttrs));
173  CBI->setAttributes(AS);
174  } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175  AttrBuilder Attrs(GV->getAttributes());
176  Attrs.merge(B);
177  GV->setAttributes(AttributeSet::get(Context,Attrs));
178  } else {
179  llvm_unreachable("invalid object with forward attribute group reference");
180  }
181  }
182 
183  // If there are entries in ForwardRefBlockAddresses at this point, the
184  // function was never defined.
185  if (!ForwardRefBlockAddresses.empty())
186  return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187  "expected function name in blockaddress");
188 
189  for (const auto &NT : NumberedTypes)
190  if (NT.second.second.isValid())
191  return Error(NT.second.second,
192  "use of undefined type '%" + Twine(NT.first) + "'");
193 
194  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195  NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196  if (I->second.second.isValid())
197  return Error(I->second.second,
198  "use of undefined type named '" + I->getKey() + "'");
199 
200  if (!ForwardRefComdats.empty())
201  return Error(ForwardRefComdats.begin()->second,
202  "use of undefined comdat '$" +
203  ForwardRefComdats.begin()->first + "'");
204 
205  if (!ForwardRefVals.empty())
206  return Error(ForwardRefVals.begin()->second.second,
207  "use of undefined value '@" + ForwardRefVals.begin()->first +
208  "'");
209 
210  if (!ForwardRefValIDs.empty())
211  return Error(ForwardRefValIDs.begin()->second.second,
212  "use of undefined value '@" +
213  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215  if (!ForwardRefMDNodes.empty())
216  return Error(ForwardRefMDNodes.begin()->second.second,
217  "use of undefined metadata '!" +
218  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220  // Resolve metadata cycles.
221  for (auto &N : NumberedMetadata) {
222  if (N.second && !N.second->isResolved())
223  N.second->resolveCycles();
224  }
225 
226  for (auto *Inst : InstsWithTBAATag) {
227  MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228  assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229  auto *UpgradedMD = UpgradeTBAANode(*MD);
230  if (MD != UpgradedMD)
231  Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232  }
233 
234  // Look for intrinsic functions and CallInst that need to be upgraded
235  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236  UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238  // Some types could be renamed during loading if several modules are
239  // loaded in the same LLVMContext (LTO scenario). In this case we should
240  // remangle intrinsics names as well.
241  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242  Function *F = &*FI++;
243  if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244  F->replaceAllUsesWith(Remangled.getValue());
245  F->eraseFromParent();
246  }
247  }
248 
249  if (UpgradeDebugInfo)
251 
252  UpgradeModuleFlags(*M);
254 
255  if (!Slots)
256  return false;
257  // Initialize the slot mapping.
258  // Because by this point we've parsed and validated everything, we can "steal"
259  // the mapping from LLParser as it doesn't need it anymore.
260  Slots->GlobalValues = std::move(NumberedVals);
261  Slots->MetadataNodes = std::move(NumberedMetadata);
262  for (const auto &I : NamedTypes)
263  Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264  for (const auto &I : NumberedTypes)
265  Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267  return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272  if (!Index)
273  return false;
274 
275  if (!ForwardRefValueInfos.empty())
276  return Error(ForwardRefValueInfos.begin()->second.front().second,
277  "use of undefined summary '^" +
278  Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280  if (!ForwardRefAliasees.empty())
281  return Error(ForwardRefAliasees.begin()->second.front().second,
282  "use of undefined summary '^" +
283  Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285  if (!ForwardRefTypeIds.empty())
286  return Error(ForwardRefTypeIds.begin()->second.front().second,
287  "use of undefined type id summary '^" +
288  Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290  return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298  // If there is no Module, then parse just the summary index entries.
299  if (!M) {
300  while (true) {
301  switch (Lex.getKind()) {
302  case lltok::Eof:
303  return false;
304  case lltok::SummaryID:
305  if (ParseSummaryEntry())
306  return true;
307  break;
309  if (ParseSourceFileName())
310  return true;
311  break;
312  default:
313  // Skip everything else
314  Lex.Lex();
315  }
316  }
317  }
318  while (true) {
319  switch (Lex.getKind()) {
320  default: return TokError("expected top-level entity");
321  case lltok::Eof: return false;
322  case lltok::kw_declare: if (ParseDeclare()) return true; break;
323  case lltok::kw_define: if (ParseDefine()) return true; break;
324  case lltok::kw_module: if (ParseModuleAsm()) return true; break;
325  case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
327  if (ParseSourceFileName())
328  return true;
329  break;
330  case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331  case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332  case lltok::LocalVar: if (ParseNamedType()) return true; break;
333  case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
334  case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
335  case lltok::ComdatVar: if (parseComdat()) return true; break;
336  case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
337  case lltok::SummaryID:
338  if (ParseSummaryEntry())
339  return true;
340  break;
341  case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342  case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343  case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
345  if (ParseUseListOrderBB())
346  return true;
347  break;
348  }
349  }
350 }
351 
352 /// toplevelentity
353 /// ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355  assert(Lex.getKind() == lltok::kw_module);
356  Lex.Lex();
357 
358  std::string AsmStr;
359  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360  ParseStringConstant(AsmStr)) return true;
361 
362  M->appendModuleInlineAsm(AsmStr);
363  return false;
364 }
365 
366 /// toplevelentity
367 /// ::= 'target' 'triple' '=' STRINGCONSTANT
368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370  assert(Lex.getKind() == lltok::kw_target);
371  std::string Str;
372  switch (Lex.Lex()) {
373  default: return TokError("unknown target property");
374  case lltok::kw_triple:
375  Lex.Lex();
376  if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377  ParseStringConstant(Str))
378  return true;
379  M->setTargetTriple(Str);
380  return false;
382  Lex.Lex();
383  if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384  ParseStringConstant(Str))
385  return true;
386  if (DataLayoutStr.empty())
387  M->setDataLayout(Str);
388  return false;
389  }
390 }
391 
392 /// toplevelentity
393 /// ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
396  Lex.Lex();
397  if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398  ParseStringConstant(SourceFileName))
399  return true;
400  if (M)
401  M->setSourceFileName(SourceFileName);
402  return false;
403 }
404 
405 /// toplevelentity
406 /// ::= 'deplibs' '=' '[' ']'
407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410  assert(Lex.getKind() == lltok::kw_deplibs);
411  Lex.Lex();
412  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413  ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414  return true;
415 
416  if (EatIfPresent(lltok::rsquare))
417  return false;
418 
419  do {
420  std::string Str;
421  if (ParseStringConstant(Str)) return true;
422  } while (EatIfPresent(lltok::comma));
423 
424  return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 /// ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430  LocTy TypeLoc = Lex.getLoc();
431  unsigned TypeID = Lex.getUIntVal();
432  Lex.Lex(); // eat LocalVarID;
433 
434  if (ParseToken(lltok::equal, "expected '=' after name") ||
435  ParseToken(lltok::kw_type, "expected 'type' after '='"))
436  return true;
437 
438  Type *Result = nullptr;
439  if (ParseStructDefinition(TypeLoc, "",
440  NumberedTypes[TypeID], Result)) return true;
441 
442  if (!isa<StructType>(Result)) {
443  std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444  if (Entry.first)
445  return Error(TypeLoc, "non-struct types may not be recursive");
446  Entry.first = Result;
447  Entry.second = SMLoc();
448  }
449 
450  return false;
451 }
452 
453 /// toplevelentity
454 /// ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456  std::string Name = Lex.getStrVal();
457  LocTy NameLoc = Lex.getLoc();
458  Lex.Lex(); // eat LocalVar.
459 
460  if (ParseToken(lltok::equal, "expected '=' after name") ||
461  ParseToken(lltok::kw_type, "expected 'type' after name"))
462  return true;
463 
464  Type *Result = nullptr;
465  if (ParseStructDefinition(NameLoc, Name,
466  NamedTypes[Name], Result)) return true;
467 
468  if (!isa<StructType>(Result)) {
469  std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470  if (Entry.first)
471  return Error(NameLoc, "non-struct types may not be recursive");
472  Entry.first = Result;
473  Entry.second = SMLoc();
474  }
475 
476  return false;
477 }
478 
479 /// toplevelentity
480 /// ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482  assert(Lex.getKind() == lltok::kw_declare);
483  Lex.Lex();
484 
485  std::vector<std::pair<unsigned, MDNode *>> MDs;
486  while (Lex.getKind() == lltok::MetadataVar) {
487  unsigned MDK;
488  MDNode *N;
489  if (ParseMetadataAttachment(MDK, N))
490  return true;
491  MDs.push_back({MDK, N});
492  }
493 
494  Function *F;
495  if (ParseFunctionHeader(F, false))
496  return true;
497  for (auto &MD : MDs)
498  F->addMetadata(MD.first, *MD.second);
499  return false;
500 }
501 
502 /// toplevelentity
503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505  assert(Lex.getKind() == lltok::kw_define);
506  Lex.Lex();
507 
508  Function *F;
509  return ParseFunctionHeader(F, true) ||
510  ParseOptionalFunctionMetadata(*F) ||
511  ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 /// ::= 'constant'
516 /// ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518  if (Lex.getKind() == lltok::kw_constant)
519  IsConstant = true;
520  else if (Lex.getKind() == lltok::kw_global)
521  IsConstant = false;
522  else {
523  IsConstant = false;
524  return TokError("expected 'global' or 'constant'");
525  }
526  Lex.Lex();
527  return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531  GlobalVariable::UnnamedAddr &UnnamedAddr) {
532  if (EatIfPresent(lltok::kw_unnamed_addr))
533  UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534  else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535  UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536  else
537  UnnamedAddr = GlobalValue::UnnamedAddr::None;
538  return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 /// OptionalVisibility (ALIAS | IFUNC) ...
543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 /// OptionalDLLStorageClass
545 /// ... -> global variable
546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 /// OptionalDLLStorageClass
549 /// ... -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551  unsigned VarID = NumberedVals.size();
552  std::string Name;
553  LocTy NameLoc = Lex.getLoc();
554 
555  // Handle the GlobalID form.
556  if (Lex.getKind() == lltok::GlobalID) {
557  if (Lex.getUIntVal() != VarID)
558  return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559  Twine(VarID) + "'");
560  Lex.Lex(); // eat GlobalID;
561 
562  if (ParseToken(lltok::equal, "expected '=' after name"))
563  return true;
564  }
565 
566  bool HasLinkage;
567  unsigned Linkage, Visibility, DLLStorageClass;
568  bool DSOLocal;
570  GlobalVariable::UnnamedAddr UnnamedAddr;
571  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572  DSOLocal) ||
573  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574  return true;
575 
576  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 /// OptionalVisibility OptionalDLLStorageClass
588 /// ... -> global variable
589 bool LLParser::ParseNamedGlobal() {
590  assert(Lex.getKind() == lltok::GlobalVar);
591  LocTy NameLoc = Lex.getLoc();
592  std::string Name = Lex.getStrVal();
593  Lex.Lex();
594 
595  bool HasLinkage;
596  unsigned Linkage, Visibility, DLLStorageClass;
597  bool DSOLocal;
599  GlobalVariable::UnnamedAddr UnnamedAddr;
600  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601  ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602  DSOLocal) ||
603  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604  return true;
605 
606  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615  assert(Lex.getKind() == lltok::ComdatVar);
616  std::string Name = Lex.getStrVal();
617  LocTy NameLoc = Lex.getLoc();
618  Lex.Lex();
619 
620  if (ParseToken(lltok::equal, "expected '=' here"))
621  return true;
622 
623  if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624  return TokError("expected comdat type");
625 
627  switch (Lex.getKind()) {
628  default:
629  return TokError("unknown selection kind");
630  case lltok::kw_any:
631  SK = Comdat::Any;
632  break;
634  SK = Comdat::ExactMatch;
635  break;
636  case lltok::kw_largest:
637  SK = Comdat::Largest;
638  break;
641  break;
642  case lltok::kw_samesize:
643  SK = Comdat::SameSize;
644  break;
645  }
646  Lex.Lex();
647 
648  // See if the comdat was forward referenced, if so, use the comdat.
649  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651  if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652  return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654  Comdat *C;
655  if (I != ComdatSymTab.end())
656  C = &I->second;
657  else
658  C = M->getOrInsertComdat(Name);
659  C->setSelectionKind(SK);
660 
661  return false;
662 }
663 
664 // MDString:
665 // ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667  std::string Str;
668  if (ParseStringConstant(Str)) return true;
669  Result = MDString::get(Context, Str);
670  return false;
671 }
672 
673 // MDNode:
674 // ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676  // !{ ..., !42, ... }
677  LocTy IDLoc = Lex.getLoc();
678  unsigned MID = 0;
679  if (ParseUInt32(MID))
680  return true;
681 
682  // If not a forward reference, just return it now.
683  if (NumberedMetadata.count(MID)) {
684  Result = NumberedMetadata[MID];
685  return false;
686  }
687 
688  // Otherwise, create MDNode forward reference.
689  auto &FwdRef = ForwardRefMDNodes[MID];
690  FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692  Result = FwdRef.first.get();
693  NumberedMetadata[MID].reset(Result);
694  return false;
695 }
696 
697 /// ParseNamedMetadata:
698 /// !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
701  std::string Name = Lex.getStrVal();
702  Lex.Lex();
703 
704  if (ParseToken(lltok::equal, "expected '=' here") ||
705  ParseToken(lltok::exclaim, "Expected '!' here") ||
706  ParseToken(lltok::lbrace, "Expected '{' here"))
707  return true;
708 
709  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710  if (Lex.getKind() != lltok::rbrace)
711  do {
712  MDNode *N = nullptr;
713  // Parse DIExpressions inline as a special case. They are still MDNodes,
714  // so they can still appear in named metadata. Remove this logic if they
715  // become plain Metadata.
716  if (Lex.getKind() == lltok::MetadataVar &&
717  Lex.getStrVal() == "DIExpression") {
718  if (ParseDIExpression(N, /*IsDistinct=*/false))
719  return true;
720  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721  ParseMDNodeID(N)) {
722  return true;
723  }
724  NMD->addOperand(N);
725  } while (EatIfPresent(lltok::comma));
726 
727  return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 /// !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733  assert(Lex.getKind() == lltok::exclaim);
734  Lex.Lex();
735  unsigned MetadataID = 0;
736 
737  MDNode *Init;
738  if (ParseUInt32(MetadataID) ||
739  ParseToken(lltok::equal, "expected '=' here"))
740  return true;
741 
742  // Detect common error, from old metadata syntax.
743  if (Lex.getKind() == lltok::Type)
744  return TokError("unexpected type in metadata definition");
745 
746  bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747  if (Lex.getKind() == lltok::MetadataVar) {
748  if (ParseSpecializedMDNode(Init, IsDistinct))
749  return true;
750  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751  ParseMDTuple(Init, IsDistinct))
752  return true;
753 
754  // See if this was forward referenced, if so, handle it.
755  auto FI = ForwardRefMDNodes.find(MetadataID);
756  if (FI != ForwardRefMDNodes.end()) {
757  FI->second.first->replaceAllUsesWith(Init);
758  ForwardRefMDNodes.erase(FI);
759 
760  assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761  } else {
762  if (NumberedMetadata.count(MetadataID))
763  return TokError("Metadata id is already used");
764  NumberedMetadata[MetadataID].reset(Init);
765  }
766 
767  return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772  // Each module summary entry consists of a tag for the entry
773  // type, followed by a colon, then the fields surrounded by nested sets of
774  // parentheses. The "tag:" looks like a Label. Once parsing support is
775  // in place we will look for the tokens corresponding to the expected tags.
776  if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777  Lex.getKind() != lltok::kw_typeid)
778  return TokError(
779  "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780  Lex.Lex();
781  if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782  ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783  return true;
784  // Now walk through the parenthesized entry, until the number of open
785  // parentheses goes back down to 0 (the first '(' was parsed above).
786  unsigned NumOpenParen = 1;
787  do {
788  switch (Lex.getKind()) {
789  case lltok::lparen:
790  NumOpenParen++;
791  break;
792  case lltok::rparen:
793  NumOpenParen--;
794  break;
795  case lltok::Eof:
796  return TokError("found end of file while parsing summary entry");
797  default:
798  // Skip everything in between parentheses.
799  break;
800  }
801  Lex.Lex();
802  } while (NumOpenParen > 0);
803  return false;
804 }
805 
806 /// SummaryEntry
807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809  assert(Lex.getKind() == lltok::SummaryID);
810  unsigned SummaryID = Lex.getUIntVal();
811 
812  // For summary entries, colons should be treated as distinct tokens,
813  // not an indication of the end of a label token.
814  Lex.setIgnoreColonInIdentifiers(true);
815 
816  Lex.Lex();
817  if (ParseToken(lltok::equal, "expected '=' here"))
818  return true;
819 
820  // If we don't have an index object, skip the summary entry.
821  if (!Index)
822  return SkipModuleSummaryEntry();
823 
824  bool result = false;
825  switch (Lex.getKind()) {
826  case lltok::kw_gv:
827  result = ParseGVEntry(SummaryID);
828  break;
829  case lltok::kw_module:
830  result = ParseModuleEntry(SummaryID);
831  break;
832  case lltok::kw_typeid:
833  result = ParseTypeIdEntry(SummaryID);
834  break;
836  result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837  break;
838  default:
839  result = Error(Lex.getLoc(), "unexpected summary kind");
840  break;
841  }
842  Lex.setIgnoreColonInIdentifiers(false);
843  return result;
844 }
845 
846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
849 }
850 
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
854  if (DSOLocal)
855  GV.setDSOLocal(true);
856 }
857 
858 /// parseIndirectSymbol:
859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 /// OptionalVisibility OptionalDLLStorageClass
861 /// OptionalThreadLocal OptionalUnnamedAddr
862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
863 ///
864 /// IndirectSymbol
865 /// ::= TypeAndValue
866 ///
867 /// IndirectSymbolAttr
868 /// ::= ',' 'partition' StringConstant
869 ///
870 /// Everything through OptionalUnnamedAddr has already been parsed.
871 ///
872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
873  unsigned L, unsigned Visibility,
874  unsigned DLLStorageClass, bool DSOLocal,
876  GlobalVariable::UnnamedAddr UnnamedAddr) {
877  bool IsAlias;
878  if (Lex.getKind() == lltok::kw_alias)
879  IsAlias = true;
880  else if (Lex.getKind() == lltok::kw_ifunc)
881  IsAlias = false;
882  else
883  llvm_unreachable("Not an alias or ifunc!");
884  Lex.Lex();
885 
887 
888  if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
889  return Error(NameLoc, "invalid linkage type for alias");
890 
891  if (!isValidVisibilityForLinkage(Visibility, L))
892  return Error(NameLoc,
893  "symbol with local linkage must have default visibility");
894 
895  Type *Ty;
896  LocTy ExplicitTypeLoc = Lex.getLoc();
897  if (ParseType(Ty) ||
898  ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
899  return true;
900 
901  Constant *Aliasee;
902  LocTy AliaseeLoc = Lex.getLoc();
903  if (Lex.getKind() != lltok::kw_bitcast &&
904  Lex.getKind() != lltok::kw_getelementptr &&
905  Lex.getKind() != lltok::kw_addrspacecast &&
906  Lex.getKind() != lltok::kw_inttoptr) {
907  if (ParseGlobalTypeAndValue(Aliasee))
908  return true;
909  } else {
910  // The bitcast dest type is not present, it is implied by the dest type.
911  ValID ID;
912  if (ParseValID(ID))
913  return true;
914  if (ID.Kind != ValID::t_Constant)
915  return Error(AliaseeLoc, "invalid aliasee");
916  Aliasee = ID.ConstantVal;
917  }
918 
919  Type *AliaseeType = Aliasee->getType();
920  auto *PTy = dyn_cast<PointerType>(AliaseeType);
921  if (!PTy)
922  return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
923  unsigned AddrSpace = PTy->getAddressSpace();
924 
925  if (IsAlias && Ty != PTy->getElementType())
926  return Error(
927  ExplicitTypeLoc,
928  "explicit pointee type doesn't match operand's pointee type");
929 
930  if (!IsAlias && !PTy->getElementType()->isFunctionTy())
931  return Error(
932  ExplicitTypeLoc,
933  "explicit pointee type should be a function type");
934 
935  GlobalValue *GVal = nullptr;
936 
937  // See if the alias was forward referenced, if so, prepare to replace the
938  // forward reference.
939  if (!Name.empty()) {
940  GVal = M->getNamedValue(Name);
941  if (GVal) {
942  if (!ForwardRefVals.erase(Name))
943  return Error(NameLoc, "redefinition of global '@" + Name + "'");
944  }
945  } else {
946  auto I = ForwardRefValIDs.find(NumberedVals.size());
947  if (I != ForwardRefValIDs.end()) {
948  GVal = I->second.first;
949  ForwardRefValIDs.erase(I);
950  }
951  }
952 
953  // Okay, create the alias but do not insert it into the module yet.
954  std::unique_ptr<GlobalIndirectSymbol> GA;
955  if (IsAlias)
956  GA.reset(GlobalAlias::create(Ty, AddrSpace,
958  Aliasee, /*Parent*/ nullptr));
959  else
960  GA.reset(GlobalIFunc::create(Ty, AddrSpace,
962  Aliasee, /*Parent*/ nullptr));
963  GA->setThreadLocalMode(TLM);
964  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
965  GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
966  GA->setUnnamedAddr(UnnamedAddr);
967  maybeSetDSOLocal(DSOLocal, *GA);
968 
969  // At this point we've parsed everything except for the IndirectSymbolAttrs.
970  // Now parse them if there are any.
971  while (Lex.getKind() == lltok::comma) {
972  Lex.Lex();
973 
974  if (Lex.getKind() == lltok::kw_partition) {
975  Lex.Lex();
976  GA->setPartition(Lex.getStrVal());
977  if (ParseToken(lltok::StringConstant, "expected partition string"))
978  return true;
979  } else {
980  return TokError("unknown alias or ifunc property!");
981  }
982  }
983 
984  if (Name.empty())
985  NumberedVals.push_back(GA.get());
986 
987  if (GVal) {
988  // Verify that types agree.
989  if (GVal->getType() != GA->getType())
990  return Error(
991  ExplicitTypeLoc,
992  "forward reference and definition of alias have different types");
993 
994  // If they agree, just RAUW the old value with the alias and remove the
995  // forward ref info.
996  GVal->replaceAllUsesWith(GA.get());
997  GVal->eraseFromParent();
998  }
999 
1000  // Insert into the module, we know its name won't collide now.
1001  if (IsAlias)
1002  M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1003  else
1004  M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1005  assert(GA->getName() == Name && "Should not be a name conflict!");
1006 
1007  // The module owns this now
1008  GA.release();
1009 
1010  return false;
1011 }
1012 
1013 /// ParseGlobal
1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 /// OptionalVisibility OptionalDLLStorageClass
1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 /// Const OptionalAttrs
1022 ///
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1024 /// already.
1025 ///
1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1027  unsigned Linkage, bool HasLinkage,
1028  unsigned Visibility, unsigned DLLStorageClass,
1029  bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1030  GlobalVariable::UnnamedAddr UnnamedAddr) {
1031  if (!isValidVisibilityForLinkage(Visibility, Linkage))
1032  return Error(NameLoc,
1033  "symbol with local linkage must have default visibility");
1034 
1035  unsigned AddrSpace;
1036  bool IsConstant, IsExternallyInitialized;
1037  LocTy IsExternallyInitializedLoc;
1038  LocTy TyLoc;
1039 
1040  Type *Ty = nullptr;
1041  if (ParseOptionalAddrSpace(AddrSpace) ||
1042  ParseOptionalToken(lltok::kw_externally_initialized,
1043  IsExternallyInitialized,
1044  &IsExternallyInitializedLoc) ||
1045  ParseGlobalType(IsConstant) ||
1046  ParseType(Ty, TyLoc))
1047  return true;
1048 
1049  // If the linkage is specified and is external, then no initializer is
1050  // present.
1051  Constant *Init = nullptr;
1052  if (!HasLinkage ||
1054  (GlobalValue::LinkageTypes)Linkage)) {
1055  if (ParseGlobalValue(Ty, Init))
1056  return true;
1057  }
1058 
1060  return Error(TyLoc, "invalid type for global variable");
1061 
1062  GlobalValue *GVal = nullptr;
1063 
1064  // See if the global was forward referenced, if so, use the global.
1065  if (!Name.empty()) {
1066  GVal = M->getNamedValue(Name);
1067  if (GVal) {
1068  if (!ForwardRefVals.erase(Name))
1069  return Error(NameLoc, "redefinition of global '@" + Name + "'");
1070  }
1071  } else {
1072  auto I = ForwardRefValIDs.find(NumberedVals.size());
1073  if (I != ForwardRefValIDs.end()) {
1074  GVal = I->second.first;
1075  ForwardRefValIDs.erase(I);
1076  }
1077  }
1078 
1079  GlobalVariable *GV;
1080  if (!GVal) {
1081  GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1083  AddrSpace);
1084  } else {
1085  if (GVal->getValueType() != Ty)
1086  return Error(TyLoc,
1087  "forward reference and definition of global have different types");
1088 
1089  GV = cast<GlobalVariable>(GVal);
1090 
1091  // Move the forward-reference to the correct spot in the module.
1092  M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1093  }
1094 
1095  if (Name.empty())
1096  NumberedVals.push_back(GV);
1097 
1098  // Set the parsed properties on the global.
1099  if (Init)
1100  GV->setInitializer(Init);
1101  GV->setConstant(IsConstant);
1102  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1103  maybeSetDSOLocal(DSOLocal, *GV);
1106  GV->setExternallyInitialized(IsExternallyInitialized);
1107  GV->setThreadLocalMode(TLM);
1108  GV->setUnnamedAddr(UnnamedAddr);
1109 
1110  // Parse attributes on the global.
1111  while (Lex.getKind() == lltok::comma) {
1112  Lex.Lex();
1113 
1114  if (Lex.getKind() == lltok::kw_section) {
1115  Lex.Lex();
1116  GV->setSection(Lex.getStrVal());
1117  if (ParseToken(lltok::StringConstant, "expected global section string"))
1118  return true;
1119  } else if (Lex.getKind() == lltok::kw_partition) {
1120  Lex.Lex();
1121  GV->setPartition(Lex.getStrVal());
1122  if (ParseToken(lltok::StringConstant, "expected partition string"))
1123  return true;
1124  } else if (Lex.getKind() == lltok::kw_align) {
1125  unsigned Alignment;
1126  if (ParseOptionalAlignment(Alignment)) return true;
1127  GV->setAlignment(Alignment);
1128  } else if (Lex.getKind() == lltok::MetadataVar) {
1129  if (ParseGlobalObjectMetadataAttachment(*GV))
1130  return true;
1131  } else {
1132  Comdat *C;
1133  if (parseOptionalComdat(Name, C))
1134  return true;
1135  if (C)
1136  GV->setComdat(C);
1137  else
1138  return TokError("unknown global variable property!");
1139  }
1140  }
1141 
1143  LocTy BuiltinLoc;
1144  std::vector<unsigned> FwdRefAttrGrps;
1145  if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1146  return true;
1147  if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1148  GV->setAttributes(AttributeSet::get(Context, Attrs));
1149  ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1150  }
1151 
1152  return false;
1153 }
1154 
1155 /// ParseUnnamedAttrGrp
1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1157 bool LLParser::ParseUnnamedAttrGrp() {
1159  LocTy AttrGrpLoc = Lex.getLoc();
1160  Lex.Lex();
1161 
1162  if (Lex.getKind() != lltok::AttrGrpID)
1163  return TokError("expected attribute group id");
1164 
1165  unsigned VarID = Lex.getUIntVal();
1166  std::vector<unsigned> unused;
1167  LocTy BuiltinLoc;
1168  Lex.Lex();
1169 
1170  if (ParseToken(lltok::equal, "expected '=' here") ||
1171  ParseToken(lltok::lbrace, "expected '{' here") ||
1172  ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1173  BuiltinLoc) ||
1174  ParseToken(lltok::rbrace, "expected end of attribute group"))
1175  return true;
1176 
1177  if (!NumberedAttrBuilders[VarID].hasAttributes())
1178  return Error(AttrGrpLoc, "attribute group has no attributes");
1179 
1180  return false;
1181 }
1182 
1183 /// ParseFnAttributeValuePairs
1184 /// ::= <attr> | <attr> '=' <value>
1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1186  std::vector<unsigned> &FwdRefAttrGrps,
1187  bool inAttrGrp, LocTy &BuiltinLoc) {
1188  bool HaveError = false;
1189 
1190  B.clear();
1191 
1192  while (true) {
1193  lltok::Kind Token = Lex.getKind();
1194  if (Token == lltok::kw_builtin)
1195  BuiltinLoc = Lex.getLoc();
1196  switch (Token) {
1197  default:
1198  if (!inAttrGrp) return HaveError;
1199  return Error(Lex.getLoc(), "unterminated attribute group");
1200  case lltok::rbrace:
1201  // Finished.
1202  return false;
1203 
1204  case lltok::AttrGrpID: {
1205  // Allow a function to reference an attribute group:
1206  //
1207  // define void @foo() #1 { ... }
1208  if (inAttrGrp)
1209  HaveError |=
1210  Error(Lex.getLoc(),
1211  "cannot have an attribute group reference in an attribute group");
1212 
1213  unsigned AttrGrpNum = Lex.getUIntVal();
1214  if (inAttrGrp) break;
1215 
1216  // Save the reference to the attribute group. We'll fill it in later.
1217  FwdRefAttrGrps.push_back(AttrGrpNum);
1218  break;
1219  }
1220  // Target-dependent attributes:
1221  case lltok::StringConstant: {
1222  if (ParseStringAttribute(B))
1223  return true;
1224  continue;
1225  }
1226 
1227  // Target-independent attributes:
1228  case lltok::kw_align: {
1229  // As a hack, we allow function alignment to be initially parsed as an
1230  // attribute on a function declaration/definition or added to an attribute
1231  // group and later moved to the alignment field.
1232  unsigned Alignment;
1233  if (inAttrGrp) {
1234  Lex.Lex();
1235  if (ParseToken(lltok::equal, "expected '=' here") ||
1236  ParseUInt32(Alignment))
1237  return true;
1238  } else {
1239  if (ParseOptionalAlignment(Alignment))
1240  return true;
1241  }
1242  B.addAlignmentAttr(Alignment);
1243  continue;
1244  }
1245  case lltok::kw_alignstack: {
1246  unsigned Alignment;
1247  if (inAttrGrp) {
1248  Lex.Lex();
1249  if (ParseToken(lltok::equal, "expected '=' here") ||
1250  ParseUInt32(Alignment))
1251  return true;
1252  } else {
1253  if (ParseOptionalStackAlignment(Alignment))
1254  return true;
1255  }
1256  B.addStackAlignmentAttr(Alignment);
1257  continue;
1258  }
1259  case lltok::kw_allocsize: {
1260  unsigned ElemSizeArg;
1261  Optional<unsigned> NumElemsArg;
1262  // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1263  if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1264  return true;
1265  B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1266  continue;
1267  }
1268  case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1269  case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1270  case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1274  B.addAttribute(Attribute::InaccessibleMemOnly); break;
1276  B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1277  case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1279  case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1280  case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1281  case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1282  case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1283  case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1285  B.addAttribute(Attribute::NoImplicitFloat); break;
1286  case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1287  case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1288  case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1289  case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1290  case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1291  case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1292  case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1293  case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1295  B.addAttribute(Attribute::OptForFuzzing); break;
1296  case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1297  case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1298  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1299  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1301  B.addAttribute(Attribute::ReturnsTwice); break;
1302  case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1303  case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1304  case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1305  case lltok::kw_sspstrong:
1306  B.addAttribute(Attribute::StackProtectStrong); break;
1307  case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1309  B.addAttribute(Attribute::ShadowCallStack); break;
1311  B.addAttribute(Attribute::SanitizeAddress); break;
1313  B.addAttribute(Attribute::SanitizeHWAddress); break;
1315  B.addAttribute(Attribute::SanitizeMemTag); break;
1317  B.addAttribute(Attribute::SanitizeThread); break;
1319  B.addAttribute(Attribute::SanitizeMemory); break;
1321  B.addAttribute(Attribute::SpeculativeLoadHardening);
1322  break;
1323  case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1324  case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1325  case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1326  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1327 
1328  // Error handling.
1329  case lltok::kw_inreg:
1330  case lltok::kw_signext:
1331  case lltok::kw_zeroext:
1332  HaveError |=
1333  Error(Lex.getLoc(),
1334  "invalid use of attribute on a function");
1335  break;
1336  case lltok::kw_byval:
1339  case lltok::kw_inalloca:
1340  case lltok::kw_nest:
1341  case lltok::kw_noalias:
1342  case lltok::kw_nocapture:
1343  case lltok::kw_nonnull:
1344  case lltok::kw_returned:
1345  case lltok::kw_sret:
1346  case lltok::kw_swifterror:
1347  case lltok::kw_swiftself:
1348  case lltok::kw_immarg:
1349  HaveError |=
1350  Error(Lex.getLoc(),
1351  "invalid use of parameter-only attribute on a function");
1352  break;
1353  }
1354 
1355  Lex.Lex();
1356  }
1357 }
1358 
1359 //===----------------------------------------------------------------------===//
1360 // GlobalValue Reference/Resolution Routines.
1361 //===----------------------------------------------------------------------===//
1362 
1364  const std::string &Name) {
1365  if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1367  PTy->getAddressSpace(), Name, M);
1368  else
1369  return new GlobalVariable(*M, PTy->getElementType(), false,
1372  PTy->getAddressSpace());
1373 }
1374 
1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1376  Value *Val, bool IsCall) {
1377  if (Val->getType() == Ty)
1378  return Val;
1379  // For calls we also accept variables in the program address space.
1380  Type *SuggestedTy = Ty;
1381  if (IsCall && isa<PointerType>(Ty)) {
1382  Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1384  SuggestedTy = TyInProgAS;
1385  if (Val->getType() == TyInProgAS)
1386  return Val;
1387  }
1388  if (Ty->isLabelTy())
1389  Error(Loc, "'" + Name + "' is not a basic block");
1390  else
1391  Error(Loc, "'" + Name + "' defined with type '" +
1392  getTypeString(Val->getType()) + "' but expected '" +
1393  getTypeString(SuggestedTy) + "'");
1394  return nullptr;
1395 }
1396 
1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1398 /// forward reference record if needed. This can return null if the value
1399 /// exists but does not have the right type.
1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1401  LocTy Loc, bool IsCall) {
1402  PointerType *PTy = dyn_cast<PointerType>(Ty);
1403  if (!PTy) {
1404  Error(Loc, "global variable reference must have pointer type");
1405  return nullptr;
1406  }
1407 
1408  // Look this name up in the normal function symbol table.
1409  GlobalValue *Val =
1410  cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1411 
1412  // If this is a forward reference for the value, see if we already created a
1413  // forward ref record.
1414  if (!Val) {
1415  auto I = ForwardRefVals.find(Name);
1416  if (I != ForwardRefVals.end())
1417  Val = I->second.first;
1418  }
1419 
1420  // If we have the value in the symbol table or fwd-ref table, return it.
1421  if (Val)
1422  return cast_or_null<GlobalValue>(
1423  checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1424 
1425  // Otherwise, create a new forward reference for this value and remember it.
1426  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1427  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1428  return FwdVal;
1429 }
1430 
1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1432  bool IsCall) {
1433  PointerType *PTy = dyn_cast<PointerType>(Ty);
1434  if (!PTy) {
1435  Error(Loc, "global variable reference must have pointer type");
1436  return nullptr;
1437  }
1438 
1439  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1440 
1441  // If this is a forward reference for the value, see if we already created a
1442  // forward ref record.
1443  if (!Val) {
1444  auto I = ForwardRefValIDs.find(ID);
1445  if (I != ForwardRefValIDs.end())
1446  Val = I->second.first;
1447  }
1448 
1449  // If we have the value in the symbol table or fwd-ref table, return it.
1450  if (Val)
1451  return cast_or_null<GlobalValue>(
1452  checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1453 
1454  // Otherwise, create a new forward reference for this value and remember it.
1455  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1456  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1457  return FwdVal;
1458 }
1459 
1460 //===----------------------------------------------------------------------===//
1461 // Comdat Reference/Resolution Routines.
1462 //===----------------------------------------------------------------------===//
1463 
1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1465  // Look this name up in the comdat symbol table.
1466  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1467  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1468  if (I != ComdatSymTab.end())
1469  return &I->second;
1470 
1471  // Otherwise, create a new forward reference for this value and remember it.
1472  Comdat *C = M->getOrInsertComdat(Name);
1473  ForwardRefComdats[Name] = Loc;
1474  return C;
1475 }
1476 
1477 //===----------------------------------------------------------------------===//
1478 // Helper Routines.
1479 //===----------------------------------------------------------------------===//
1480 
1481 /// ParseToken - If the current token has the specified kind, eat it and return
1482 /// success. Otherwise, emit the specified error and return failure.
1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1484  if (Lex.getKind() != T)
1485  return TokError(ErrMsg);
1486  Lex.Lex();
1487  return false;
1488 }
1489 
1490 /// ParseStringConstant
1491 /// ::= StringConstant
1492 bool LLParser::ParseStringConstant(std::string &Result) {
1493  if (Lex.getKind() != lltok::StringConstant)
1494  return TokError("expected string constant");
1495  Result = Lex.getStrVal();
1496  Lex.Lex();
1497  return false;
1498 }
1499 
1500 /// ParseUInt32
1501 /// ::= uint32
1502 bool LLParser::ParseUInt32(uint32_t &Val) {
1503  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1504  return TokError("expected integer");
1505  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1506  if (Val64 != unsigned(Val64))
1507  return TokError("expected 32-bit integer (too large)");
1508  Val = Val64;
1509  Lex.Lex();
1510  return false;
1511 }
1512 
1513 /// ParseUInt64
1514 /// ::= uint64
1515 bool LLParser::ParseUInt64(uint64_t &Val) {
1516  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1517  return TokError("expected integer");
1518  Val = Lex.getAPSIntVal().getLimitedValue();
1519  Lex.Lex();
1520  return false;
1521 }
1522 
1523 /// ParseTLSModel
1524 /// := 'localdynamic'
1525 /// := 'initialexec'
1526 /// := 'localexec'
1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1528  switch (Lex.getKind()) {
1529  default:
1530  return TokError("expected localdynamic, initialexec or localexec");
1533  break;
1534  case lltok::kw_initialexec:
1536  break;
1537  case lltok::kw_localexec:
1539  break;
1540  }
1541 
1542  Lex.Lex();
1543  return false;
1544 }
1545 
1546 /// ParseOptionalThreadLocal
1547 /// := /*empty*/
1548 /// := 'thread_local'
1549 /// := 'thread_local' '(' tlsmodel ')'
1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1552  if (!EatIfPresent(lltok::kw_thread_local))
1553  return false;
1554 
1556  if (Lex.getKind() == lltok::lparen) {
1557  Lex.Lex();
1558  return ParseTLSModel(TLM) ||
1559  ParseToken(lltok::rparen, "expected ')' after thread local model");
1560  }
1561  return false;
1562 }
1563 
1564 /// ParseOptionalAddrSpace
1565 /// := /*empty*/
1566 /// := 'addrspace' '(' uint32 ')'
1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1568  AddrSpace = DefaultAS;
1569  if (!EatIfPresent(lltok::kw_addrspace))
1570  return false;
1571  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1572  ParseUInt32(AddrSpace) ||
1573  ParseToken(lltok::rparen, "expected ')' in address space");
1574 }
1575 
1576 /// ParseStringAttribute
1577 /// := StringConstant
1578 /// := StringConstant '=' StringConstant
1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1580  std::string Attr = Lex.getStrVal();
1581  Lex.Lex();
1582  std::string Val;
1583  if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1584  return true;
1585  B.addAttribute(Attr, Val);
1586  return false;
1587 }
1588 
1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1591  bool HaveError = false;
1592 
1593  B.clear();
1594 
1595  while (true) {
1596  lltok::Kind Token = Lex.getKind();
1597  switch (Token) {
1598  default: // End of attributes.
1599  return HaveError;
1600  case lltok::StringConstant: {
1601  if (ParseStringAttribute(B))
1602  return true;
1603  continue;
1604  }
1605  case lltok::kw_align: {
1606  unsigned Alignment;
1607  if (ParseOptionalAlignment(Alignment))
1608  return true;
1609  B.addAlignmentAttr(Alignment);
1610  continue;
1611  }
1612  case lltok::kw_byval: {
1613  Type *Ty;
1614  if (ParseByValWithOptionalType(Ty))
1615  return true;
1616  B.addByValAttr(Ty);
1617  continue;
1618  }
1620  uint64_t Bytes;
1621  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1622  return true;
1623  B.addDereferenceableAttr(Bytes);
1624  continue;
1625  }
1627  uint64_t Bytes;
1628  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1629  return true;
1631  continue;
1632  }
1633  case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1634  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1635  case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1637  case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1638  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1639  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1640  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1641  case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1642  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1643  case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1644  case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1645  case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1646  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1647  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1648  case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break;
1649 
1650  case lltok::kw_alignstack:
1652  case lltok::kw_argmemonly:
1653  case lltok::kw_builtin:
1654  case lltok::kw_inlinehint:
1655  case lltok::kw_jumptable:
1656  case lltok::kw_minsize:
1657  case lltok::kw_naked:
1658  case lltok::kw_nobuiltin:
1659  case lltok::kw_noduplicate:
1661  case lltok::kw_noinline:
1662  case lltok::kw_nonlazybind:
1663  case lltok::kw_noredzone:
1664  case lltok::kw_noreturn:
1665  case lltok::kw_nocf_check:
1666  case lltok::kw_nounwind:
1668  case lltok::kw_optnone:
1669  case lltok::kw_optsize:
1677  case lltok::kw_ssp:
1678  case lltok::kw_sspreq:
1679  case lltok::kw_sspstrong:
1680  case lltok::kw_safestack:
1682  case lltok::kw_strictfp:
1683  case lltok::kw_uwtable:
1684  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1685  break;
1686  }
1687 
1688  Lex.Lex();
1689  }
1690 }
1691 
1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1694  bool HaveError = false;
1695 
1696  B.clear();
1697 
1698  while (true) {
1699  lltok::Kind Token = Lex.getKind();
1700  switch (Token) {
1701  default: // End of attributes.
1702  return HaveError;
1703  case lltok::StringConstant: {
1704  if (ParseStringAttribute(B))
1705  return true;
1706  continue;
1707  }
1709  uint64_t Bytes;
1710  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1711  return true;
1712  B.addDereferenceableAttr(Bytes);
1713  continue;
1714  }
1716  uint64_t Bytes;
1717  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1718  return true;
1720  continue;
1721  }
1722  case lltok::kw_align: {
1723  unsigned Alignment;
1724  if (ParseOptionalAlignment(Alignment))
1725  return true;
1726  B.addAlignmentAttr(Alignment);
1727  continue;
1728  }
1729  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1731  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1732  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1733  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1734 
1735  // Error handling.
1736  case lltok::kw_byval:
1737  case lltok::kw_inalloca:
1738  case lltok::kw_nest:
1739  case lltok::kw_nocapture:
1740  case lltok::kw_returned:
1741  case lltok::kw_sret:
1742  case lltok::kw_swifterror:
1743  case lltok::kw_swiftself:
1744  case lltok::kw_immarg:
1745  HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1746  break;
1747 
1748  case lltok::kw_alignstack:
1750  case lltok::kw_argmemonly:
1751  case lltok::kw_builtin:
1752  case lltok::kw_cold:
1753  case lltok::kw_inlinehint:
1754  case lltok::kw_jumptable:
1755  case lltok::kw_minsize:
1756  case lltok::kw_naked:
1757  case lltok::kw_nobuiltin:
1758  case lltok::kw_noduplicate:
1760  case lltok::kw_noinline:
1761  case lltok::kw_nonlazybind:
1762  case lltok::kw_noredzone:
1763  case lltok::kw_noreturn:
1764  case lltok::kw_nocf_check:
1765  case lltok::kw_nounwind:
1767  case lltok::kw_optnone:
1768  case lltok::kw_optsize:
1776  case lltok::kw_ssp:
1777  case lltok::kw_sspreq:
1778  case lltok::kw_sspstrong:
1779  case lltok::kw_safestack:
1781  case lltok::kw_strictfp:
1782  case lltok::kw_uwtable:
1783  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1784  break;
1785 
1786  case lltok::kw_readnone:
1787  case lltok::kw_readonly:
1788  HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1789  }
1790 
1791  Lex.Lex();
1792  }
1793 }
1794 
1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1796  HasLinkage = true;
1797  switch (Kind) {
1798  default:
1799  HasLinkage = false;
1801  case lltok::kw_private:
1803  case lltok::kw_internal:
1805  case lltok::kw_weak:
1807  case lltok::kw_weak_odr:
1809  case lltok::kw_linkonce:
1815  case lltok::kw_appending:
1817  case lltok::kw_common:
1819  case lltok::kw_extern_weak:
1821  case lltok::kw_external:
1823  }
1824 }
1825 
1826 /// ParseOptionalLinkage
1827 /// ::= /*empty*/
1828 /// ::= 'private'
1829 /// ::= 'internal'
1830 /// ::= 'weak'
1831 /// ::= 'weak_odr'
1832 /// ::= 'linkonce'
1833 /// ::= 'linkonce_odr'
1834 /// ::= 'available_externally'
1835 /// ::= 'appending'
1836 /// ::= 'common'
1837 /// ::= 'extern_weak'
1838 /// ::= 'external'
1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1840  unsigned &Visibility,
1841  unsigned &DLLStorageClass,
1842  bool &DSOLocal) {
1843  Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1844  if (HasLinkage)
1845  Lex.Lex();
1846  ParseOptionalDSOLocal(DSOLocal);
1847  ParseOptionalVisibility(Visibility);
1848  ParseOptionalDLLStorageClass(DLLStorageClass);
1849 
1850  if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1851  return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1852  }
1853 
1854  return false;
1855 }
1856 
1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1858  switch (Lex.getKind()) {
1859  default:
1860  DSOLocal = false;
1861  break;
1862  case lltok::kw_dso_local:
1863  DSOLocal = true;
1864  Lex.Lex();
1865  break;
1867  DSOLocal = false;
1868  Lex.Lex();
1869  break;
1870  }
1871 }
1872 
1873 /// ParseOptionalVisibility
1874 /// ::= /*empty*/
1875 /// ::= 'default'
1876 /// ::= 'hidden'
1877 /// ::= 'protected'
1878 ///
1879 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1880  switch (Lex.getKind()) {
1881  default:
1883  return;
1884  case lltok::kw_default:
1886  break;
1887  case lltok::kw_hidden:
1889  break;
1890  case lltok::kw_protected:
1892  break;
1893  }
1894  Lex.Lex();
1895 }
1896 
1897 /// ParseOptionalDLLStorageClass
1898 /// ::= /*empty*/
1899 /// ::= 'dllimport'
1900 /// ::= 'dllexport'
1901 ///
1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1903  switch (Lex.getKind()) {
1904  default:
1906  return;
1907  case lltok::kw_dllimport:
1909  break;
1910  case lltok::kw_dllexport:
1912  break;
1913  }
1914  Lex.Lex();
1915 }
1916 
1917 /// ParseOptionalCallingConv
1918 /// ::= /*empty*/
1919 /// ::= 'ccc'
1920 /// ::= 'fastcc'
1921 /// ::= 'intel_ocl_bicc'
1922 /// ::= 'coldcc'
1923 /// ::= 'x86_stdcallcc'
1924 /// ::= 'x86_fastcallcc'
1925 /// ::= 'x86_thiscallcc'
1926 /// ::= 'x86_vectorcallcc'
1927 /// ::= 'arm_apcscc'
1928 /// ::= 'arm_aapcscc'
1929 /// ::= 'arm_aapcs_vfpcc'
1930 /// ::= 'aarch64_vector_pcs'
1931 /// ::= 'msp430_intrcc'
1932 /// ::= 'avr_intrcc'
1933 /// ::= 'avr_signalcc'
1934 /// ::= 'ptx_kernel'
1935 /// ::= 'ptx_device'
1936 /// ::= 'spir_func'
1937 /// ::= 'spir_kernel'
1938 /// ::= 'x86_64_sysvcc'
1939 /// ::= 'win64cc'
1940 /// ::= 'webkit_jscc'
1941 /// ::= 'anyregcc'
1942 /// ::= 'preserve_mostcc'
1943 /// ::= 'preserve_allcc'
1944 /// ::= 'ghccc'
1945 /// ::= 'swiftcc'
1946 /// ::= 'x86_intrcc'
1947 /// ::= 'hhvmcc'
1948 /// ::= 'hhvm_ccc'
1949 /// ::= 'cxx_fast_tlscc'
1950 /// ::= 'amdgpu_vs'
1951 /// ::= 'amdgpu_ls'
1952 /// ::= 'amdgpu_hs'
1953 /// ::= 'amdgpu_es'
1954 /// ::= 'amdgpu_gs'
1955 /// ::= 'amdgpu_ps'
1956 /// ::= 'amdgpu_cs'
1957 /// ::= 'amdgpu_kernel'
1958 /// ::= 'cc' UINT
1959 ///
1960 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1961  switch (Lex.getKind()) {
1962  default: CC = CallingConv::C; return false;
1963  case lltok::kw_ccc: CC = CallingConv::C; break;
1964  case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1965  case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1971  case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1976  case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1981  case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1984  case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1986  case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1989  case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1990  case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1991  case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1992  case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1993  case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1995  case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1996  case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1997  case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1998  case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1999  case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2000  case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2001  case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2003  case lltok::kw_cc: {
2004  Lex.Lex();
2005  return ParseUInt32(CC);
2006  }
2007  }
2008 
2009  Lex.Lex();
2010  return false;
2011 }
2012 
2013 /// ParseMetadataAttachment
2014 /// ::= !dbg !42
2015 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2016  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2017 
2018  std::string Name = Lex.getStrVal();
2019  Kind = M->getMDKindID(Name);
2020  Lex.Lex();
2021 
2022  return ParseMDNode(MD);
2023 }
2024 
2025 /// ParseInstructionMetadata
2026 /// ::= !dbg !42 (',' !dbg !57)*
2027 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2028  do {
2029  if (Lex.getKind() != lltok::MetadataVar)
2030  return TokError("expected metadata after comma");
2031 
2032  unsigned MDK;
2033  MDNode *N;
2034  if (ParseMetadataAttachment(MDK, N))
2035  return true;
2036 
2037  Inst.setMetadata(MDK, N);
2038  if (MDK == LLVMContext::MD_tbaa)
2039  InstsWithTBAATag.push_back(&Inst);
2040 
2041  // If this is the end of the list, we're done.
2042  } while (EatIfPresent(lltok::comma));
2043  return false;
2044 }
2045 
2046 /// ParseGlobalObjectMetadataAttachment
2047 /// ::= !dbg !57
2048 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2049  unsigned MDK;
2050  MDNode *N;
2051  if (ParseMetadataAttachment(MDK, N))
2052  return true;
2053 
2054  GO.addMetadata(MDK, *N);
2055  return false;
2056 }
2057 
2058 /// ParseOptionalFunctionMetadata
2059 /// ::= (!dbg !57)*
2060 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2061  while (Lex.getKind() == lltok::MetadataVar)
2062  if (ParseGlobalObjectMetadataAttachment(F))
2063  return true;
2064  return false;
2065 }
2066 
2067 /// ParseOptionalAlignment
2068 /// ::= /* empty */
2069 /// ::= 'align' 4
2070 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2071  Alignment = 0;
2072  if (!EatIfPresent(lltok::kw_align))
2073  return false;
2074  LocTy AlignLoc = Lex.getLoc();
2075  if (ParseUInt32(Alignment)) return true;
2076  if (!isPowerOf2_32(Alignment))
2077  return Error(AlignLoc, "alignment is not a power of two");
2078  if (Alignment > Value::MaximumAlignment)
2079  return Error(AlignLoc, "huge alignments are not supported yet");
2080  return false;
2081 }
2082 
2083 /// ParseOptionalDerefAttrBytes
2084 /// ::= /* empty */
2085 /// ::= AttrKind '(' 4 ')'
2086 ///
2087 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2088 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2089  uint64_t &Bytes) {
2090  assert((AttrKind == lltok::kw_dereferenceable ||
2091  AttrKind == lltok::kw_dereferenceable_or_null) &&
2092  "contract!");
2093 
2094  Bytes = 0;
2095  if (!EatIfPresent(AttrKind))
2096  return false;
2097  LocTy ParenLoc = Lex.getLoc();
2098  if (!EatIfPresent(lltok::lparen))
2099  return Error(ParenLoc, "expected '('");
2100  LocTy DerefLoc = Lex.getLoc();
2101  if (ParseUInt64(Bytes)) return true;
2102  ParenLoc = Lex.getLoc();
2103  if (!EatIfPresent(lltok::rparen))
2104  return Error(ParenLoc, "expected ')'");
2105  if (!Bytes)
2106  return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2107  return false;
2108 }
2109 
2110 /// ParseOptionalCommaAlign
2111 /// ::=
2112 /// ::= ',' align 4
2113 ///
2114 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2115 /// end.
2116 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2117  bool &AteExtraComma) {
2118  AteExtraComma = false;
2119  while (EatIfPresent(lltok::comma)) {
2120  // Metadata at the end is an early exit.
2121  if (Lex.getKind() == lltok::MetadataVar) {
2122  AteExtraComma = true;
2123  return false;
2124  }
2125 
2126  if (Lex.getKind() != lltok::kw_align)
2127  return Error(Lex.getLoc(), "expected metadata or 'align'");
2128 
2129  if (ParseOptionalAlignment(Alignment)) return true;
2130  }
2131 
2132  return false;
2133 }
2134 
2135 /// ParseOptionalCommaAddrSpace
2136 /// ::=
2137 /// ::= ',' addrspace(1)
2138 ///
2139 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2140 /// end.
2141 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2142  LocTy &Loc,
2143  bool &AteExtraComma) {
2144  AteExtraComma = false;
2145  while (EatIfPresent(lltok::comma)) {
2146  // Metadata at the end is an early exit.
2147  if (Lex.getKind() == lltok::MetadataVar) {
2148  AteExtraComma = true;
2149  return false;
2150  }
2151 
2152  Loc = Lex.getLoc();
2153  if (Lex.getKind() != lltok::kw_addrspace)
2154  return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2155 
2156  if (ParseOptionalAddrSpace(AddrSpace))
2157  return true;
2158  }
2159 
2160  return false;
2161 }
2162 
2163 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2164  Optional<unsigned> &HowManyArg) {
2165  Lex.Lex();
2166 
2167  auto StartParen = Lex.getLoc();
2168  if (!EatIfPresent(lltok::lparen))
2169  return Error(StartParen, "expected '('");
2170 
2171  if (ParseUInt32(BaseSizeArg))
2172  return true;
2173 
2174  if (EatIfPresent(lltok::comma)) {
2175  auto HowManyAt = Lex.getLoc();
2176  unsigned HowMany;
2177  if (ParseUInt32(HowMany))
2178  return true;
2179  if (HowMany == BaseSizeArg)
2180  return Error(HowManyAt,
2181  "'allocsize' indices can't refer to the same parameter");
2182  HowManyArg = HowMany;
2183  } else
2184  HowManyArg = None;
2185 
2186  auto EndParen = Lex.getLoc();
2187  if (!EatIfPresent(lltok::rparen))
2188  return Error(EndParen, "expected ')'");
2189  return false;
2190 }
2191 
2192 /// ParseScopeAndOrdering
2193 /// if isAtomic: ::= SyncScope? AtomicOrdering
2194 /// else: ::=
2195 ///
2196 /// This sets Scope and Ordering to the parsed values.
2197 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2198  AtomicOrdering &Ordering) {
2199  if (!isAtomic)
2200  return false;
2201 
2202  return ParseScope(SSID) || ParseOrdering(Ordering);
2203 }
2204 
2205 /// ParseScope
2206 /// ::= syncscope("singlethread" | "<target scope>")?
2207 ///
2208 /// This sets synchronization scope ID to the ID of the parsed value.
2209 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2210  SSID = SyncScope::System;
2211  if (EatIfPresent(lltok::kw_syncscope)) {
2212  auto StartParenAt = Lex.getLoc();
2213  if (!EatIfPresent(lltok::lparen))
2214  return Error(StartParenAt, "Expected '(' in syncscope");
2215 
2216  std::string SSN;
2217  auto SSNAt = Lex.getLoc();
2218  if (ParseStringConstant(SSN))
2219  return Error(SSNAt, "Expected synchronization scope name");
2220 
2221  auto EndParenAt = Lex.getLoc();
2222  if (!EatIfPresent(lltok::rparen))
2223  return Error(EndParenAt, "Expected ')' in syncscope");
2224 
2225  SSID = Context.getOrInsertSyncScopeID(SSN);
2226  }
2227 
2228  return false;
2229 }
2230 
2231 /// ParseOrdering
2232 /// ::= AtomicOrdering
2233 ///
2234 /// This sets Ordering to the parsed value.
2235 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2236  switch (Lex.getKind()) {
2237  default: return TokError("Expected ordering on atomic instruction");
2238  case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2239  case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2240  // Not specified yet:
2241  // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2242  case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2243  case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2244  case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2245  case lltok::kw_seq_cst:
2247  break;
2248  }
2249  Lex.Lex();
2250  return false;
2251 }
2252 
2253 /// ParseOptionalStackAlignment
2254 /// ::= /* empty */
2255 /// ::= 'alignstack' '(' 4 ')'
2256 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2257  Alignment = 0;
2258  if (!EatIfPresent(lltok::kw_alignstack))
2259  return false;
2260  LocTy ParenLoc = Lex.getLoc();
2261  if (!EatIfPresent(lltok::lparen))
2262  return Error(ParenLoc, "expected '('");
2263  LocTy AlignLoc = Lex.getLoc();
2264  if (ParseUInt32(Alignment)) return true;
2265  ParenLoc = Lex.getLoc();
2266  if (!EatIfPresent(lltok::rparen))
2267  return Error(ParenLoc, "expected ')'");
2268  if (!isPowerOf2_32(Alignment))
2269  return Error(AlignLoc, "stack alignment is not a power of two");
2270  return false;
2271 }
2272 
2273 /// ParseIndexList - This parses the index list for an insert/extractvalue
2274 /// instruction. This sets AteExtraComma in the case where we eat an extra
2275 /// comma at the end of the line and find that it is followed by metadata.
2276 /// Clients that don't allow metadata can call the version of this function that
2277 /// only takes one argument.
2278 ///
2279 /// ParseIndexList
2280 /// ::= (',' uint32)+
2281 ///
2282 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2283  bool &AteExtraComma) {
2284  AteExtraComma = false;
2285 
2286  if (Lex.getKind() != lltok::comma)
2287  return TokError("expected ',' as start of index list");
2288 
2289  while (EatIfPresent(lltok::comma)) {
2290  if (Lex.getKind() == lltok::MetadataVar) {
2291  if (Indices.empty()) return TokError("expected index");
2292  AteExtraComma = true;
2293  return false;
2294  }
2295  unsigned Idx = 0;
2296  if (ParseUInt32(Idx)) return true;
2297  Indices.push_back(Idx);
2298  }
2299 
2300  return false;
2301 }
2302 
2303 //===----------------------------------------------------------------------===//
2304 // Type Parsing.
2305 //===----------------------------------------------------------------------===//
2306 
2307 /// ParseType - Parse a type.
2308 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2309  SMLoc TypeLoc = Lex.getLoc();
2310  switch (Lex.getKind()) {
2311  default:
2312  return TokError(Msg);
2313  case lltok::Type:
2314  // Type ::= 'float' | 'void' (etc)
2315  Result = Lex.getTyVal();
2316  Lex.Lex();
2317  break;
2318  case lltok::lbrace:
2319  // Type ::= StructType
2320  if (ParseAnonStructType(Result, false))
2321  return true;
2322  break;
2323  case lltok::lsquare:
2324  // Type ::= '[' ... ']'
2325  Lex.Lex(); // eat the lsquare.
2326  if (ParseArrayVectorType(Result, false))
2327  return true;
2328  break;
2329  case lltok::less: // Either vector or packed struct.
2330  // Type ::= '<' ... '>'
2331  Lex.Lex();
2332  if (Lex.getKind() == lltok::lbrace) {
2333  if (ParseAnonStructType(Result, true) ||
2334  ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2335  return true;
2336  } else if (ParseArrayVectorType(Result, true))
2337  return true;
2338  break;
2339  case lltok::LocalVar: {
2340  // Type ::= %foo
2341  std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2342 
2343  // If the type hasn't been defined yet, create a forward definition and
2344  // remember where that forward def'n was seen (in case it never is defined).
2345  if (!Entry.first) {
2346  Entry.first = StructType::create(Context, Lex.getStrVal());
2347  Entry.second = Lex.getLoc();
2348  }
2349  Result = Entry.first;
2350  Lex.Lex();
2351  break;
2352  }
2353 
2354  case lltok::LocalVarID: {
2355  // Type ::= %4
2356  std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2357 
2358  // If the type hasn't been defined yet, create a forward definition and
2359  // remember where that forward def'n was seen (in case it never is defined).
2360  if (!Entry.first) {
2361  Entry.first = StructType::create(Context);
2362  Entry.second = Lex.getLoc();
2363  }
2364  Result = Entry.first;
2365  Lex.Lex();
2366  break;
2367  }
2368  }
2369 
2370  // Parse the type suffixes.
2371  while (true) {
2372  switch (Lex.getKind()) {
2373  // End of type.
2374  default:
2375  if (!AllowVoid && Result->isVoidTy())
2376  return Error(TypeLoc, "void type only allowed for function results");
2377  return false;
2378 
2379  // Type ::= Type '*'
2380  case lltok::star:
2381  if (Result->isLabelTy())
2382  return TokError("basic block pointers are invalid");
2383  if (Result->isVoidTy())
2384  return TokError("pointers to void are invalid - use i8* instead");
2385  if (!PointerType::isValidElementType(Result))
2386  return TokError("pointer to this type is invalid");
2387  Result = PointerType::getUnqual(Result);
2388  Lex.Lex();
2389  break;
2390 
2391  // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2392  case lltok::kw_addrspace: {
2393  if (Result->isLabelTy())
2394  return TokError("basic block pointers are invalid");
2395  if (Result->isVoidTy())
2396  return TokError("pointers to void are invalid; use i8* instead");
2397  if (!PointerType::isValidElementType(Result))
2398  return TokError("pointer to this type is invalid");
2399  unsigned AddrSpace;
2400  if (ParseOptionalAddrSpace(AddrSpace) ||
2401  ParseToken(lltok::star, "expected '*' in address space"))
2402  return true;
2403 
2404  Result = PointerType::get(Result, AddrSpace);
2405  break;
2406  }
2407 
2408  /// Types '(' ArgTypeListI ')' OptFuncAttrs
2409  case lltok::lparen:
2410  if (ParseFunctionType(Result))
2411  return true;
2412  break;
2413  }
2414  }
2415 }
2416 
2417 /// ParseParameterList
2418 /// ::= '(' ')'
2419 /// ::= '(' Arg (',' Arg)* ')'
2420 /// Arg
2421 /// ::= Type OptionalAttributes Value OptionalAttributes
2422 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2423  PerFunctionState &PFS, bool IsMustTailCall,
2424  bool InVarArgsFunc) {
2425  if (ParseToken(lltok::lparen, "expected '(' in call"))
2426  return true;
2427 
2428  while (Lex.getKind() != lltok::rparen) {
2429  // If this isn't the first argument, we need a comma.
2430  if (!ArgList.empty() &&
2431  ParseToken(lltok::comma, "expected ',' in argument list"))
2432  return true;
2433 
2434  // Parse an ellipsis if this is a musttail call in a variadic function.
2435  if (Lex.getKind() == lltok::dotdotdot) {
2436  const char *Msg = "unexpected ellipsis in argument list for ";
2437  if (!IsMustTailCall)
2438  return TokError(Twine(Msg) + "non-musttail call");
2439  if (!InVarArgsFunc)
2440  return TokError(Twine(Msg) + "musttail call in non-varargs function");
2441  Lex.Lex(); // Lex the '...', it is purely for readability.
2442  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2443  }
2444 
2445  // Parse the argument.
2446  LocTy ArgLoc;
2447  Type *ArgTy = nullptr;
2448  AttrBuilder ArgAttrs;
2449  Value *V;
2450  if (ParseType(ArgTy, ArgLoc))
2451  return true;
2452 
2453  if (ArgTy->isMetadataTy()) {
2454  if (ParseMetadataAsValue(V, PFS))
2455  return true;
2456  } else {
2457  // Otherwise, handle normal operands.
2458  if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2459  return true;
2460  }
2461  ArgList.push_back(ParamInfo(
2462  ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2463  }
2464 
2465  if (IsMustTailCall && InVarArgsFunc)
2466  return TokError("expected '...' at end of argument list for musttail call "
2467  "in varargs function");
2468 
2469  Lex.Lex(); // Lex the ')'.
2470  return false;
2471 }
2472 
2473 /// ParseByValWithOptionalType
2474 /// ::= byval
2475 /// ::= byval(<ty>)
2476 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2477  Result = nullptr;
2478  if (!EatIfPresent(lltok::kw_byval))
2479  return true;
2480  if (!EatIfPresent(lltok::lparen))
2481  return false;
2482  if (ParseType(Result))
2483  return true;
2484  if (!EatIfPresent(lltok::rparen))
2485  return Error(Lex.getLoc(), "expected ')'");
2486  return false;
2487 }
2488 
2489 /// ParseOptionalOperandBundles
2490 /// ::= /*empty*/
2491 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2492 ///
2493 /// OperandBundle
2494 /// ::= bundle-tag '(' ')'
2495 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2496 ///
2497 /// bundle-tag ::= String Constant
2498 bool LLParser::ParseOptionalOperandBundles(
2499  SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2500  LocTy BeginLoc = Lex.getLoc();
2501  if (!EatIfPresent(lltok::lsquare))
2502  return false;
2503 
2504  while (Lex.getKind() != lltok::rsquare) {
2505  // If this isn't the first operand bundle, we need a comma.
2506  if (!BundleList.empty() &&
2507  ParseToken(lltok::comma, "expected ',' in input list"))
2508  return true;
2509 
2510  std::string Tag;
2511  if (ParseStringConstant(Tag))
2512  return true;
2513 
2514  if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2515  return true;
2516 
2517  std::vector<Value *> Inputs;
2518  while (Lex.getKind() != lltok::rparen) {
2519  // If this isn't the first input, we need a comma.
2520  if (!Inputs.empty() &&
2521  ParseToken(lltok::comma, "expected ',' in input list"))
2522  return true;
2523 
2524  Type *Ty = nullptr;
2525  Value *Input = nullptr;
2526  if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2527  return true;
2528  Inputs.push_back(Input);
2529  }
2530 
2531  BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2532 
2533  Lex.Lex(); // Lex the ')'.
2534  }
2535 
2536  if (BundleList.empty())
2537  return Error(BeginLoc, "operand bundle set must not be empty");
2538 
2539  Lex.Lex(); // Lex the ']'.
2540  return false;
2541 }
2542 
2543 /// ParseArgumentList - Parse the argument list for a function type or function
2544 /// prototype.
2545 /// ::= '(' ArgTypeListI ')'
2546 /// ArgTypeListI
2547 /// ::= /*empty*/
2548 /// ::= '...'
2549 /// ::= ArgTypeList ',' '...'
2550 /// ::= ArgType (',' ArgType)*
2551 ///
2552 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2553  bool &isVarArg){
2554  isVarArg = false;
2555  assert(Lex.getKind() == lltok::lparen);
2556  Lex.Lex(); // eat the (.
2557 
2558  if (Lex.getKind() == lltok::rparen) {
2559  // empty
2560  } else if (Lex.getKind() == lltok::dotdotdot) {
2561  isVarArg = true;
2562  Lex.Lex();
2563  } else {
2564  LocTy TypeLoc = Lex.getLoc();
2565  Type *ArgTy = nullptr;
2567  std::string Name;
2568 
2569  if (ParseType(ArgTy) ||
2570  ParseOptionalParamAttrs(Attrs)) return true;
2571 
2572  if (ArgTy->isVoidTy())
2573  return Error(TypeLoc, "argument can not have void type");
2574 
2575  if (Lex.getKind() == lltok::LocalVar) {
2576  Name = Lex.getStrVal();
2577  Lex.Lex();
2578  }
2579 
2581  return Error(TypeLoc, "invalid type for function argument");
2582 
2583  ArgList.emplace_back(TypeLoc, ArgTy,
2584  AttributeSet::get(ArgTy->getContext(), Attrs),
2585  std::move(Name));
2586 
2587  while (EatIfPresent(lltok::comma)) {
2588  // Handle ... at end of arg list.
2589  if (EatIfPresent(lltok::dotdotdot)) {
2590  isVarArg = true;
2591  break;
2592  }
2593 
2594  // Otherwise must be an argument type.
2595  TypeLoc = Lex.getLoc();
2596  if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2597 
2598  if (ArgTy->isVoidTy())
2599  return Error(TypeLoc, "argument can not have void type");
2600 
2601  if (Lex.getKind() == lltok::LocalVar) {
2602  Name = Lex.getStrVal();
2603  Lex.Lex();
2604  } else {
2605  Name = "";
2606  }
2607 
2608  if (!ArgTy->isFirstClassType())
2609  return Error(TypeLoc, "invalid type for function argument");
2610 
2611  ArgList.emplace_back(TypeLoc, ArgTy,
2612  AttributeSet::get(ArgTy->getContext(), Attrs),
2613  std::move(Name));
2614  }
2615  }
2616 
2617  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2618 }
2619 
2620 /// ParseFunctionType
2621 /// ::= Type ArgumentList OptionalAttrs
2622 bool LLParser::ParseFunctionType(Type *&Result) {
2623  assert(Lex.getKind() == lltok::lparen);
2624 
2625  if (!FunctionType::isValidReturnType(Result))
2626  return TokError("invalid function return type");
2627 
2628  SmallVector<ArgInfo, 8> ArgList;
2629  bool isVarArg;
2630  if (ParseArgumentList(ArgList, isVarArg))
2631  return true;
2632 
2633  // Reject names on the arguments lists.
2634  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2635  if (!ArgList[i].Name.empty())
2636  return Error(ArgList[i].Loc, "argument name invalid in function type");
2637  if (ArgList[i].Attrs.hasAttributes())
2638  return Error(ArgList[i].Loc,
2639  "argument attributes invalid in function type");
2640  }
2641 
2642  SmallVector<Type*, 16> ArgListTy;
2643  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2644  ArgListTy.push_back(ArgList[i].Ty);
2645 
2646  Result = FunctionType::get(Result, ArgListTy, isVarArg);
2647  return false;
2648 }
2649 
2650 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2651 /// other structs.
2652 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2653  SmallVector<Type*, 8> Elts;
2654  if (ParseStructBody(Elts)) return true;
2655 
2656  Result = StructType::get(Context, Elts, Packed);
2657  return false;
2658 }
2659 
2660 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2661 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2662  std::pair<Type*, LocTy> &Entry,
2663  Type *&ResultTy) {
2664  // If the type was already defined, diagnose the redefinition.
2665  if (Entry.first && !Entry.second.isValid())
2666  return Error(TypeLoc, "redefinition of type");
2667 
2668  // If we have opaque, just return without filling in the definition for the
2669  // struct. This counts as a definition as far as the .ll file goes.
2670  if (EatIfPresent(lltok::kw_opaque)) {
2671  // This type is being defined, so clear the location to indicate this.
2672  Entry.second = SMLoc();
2673 
2674  // If this type number has never been uttered, create it.
2675  if (!Entry.first)
2676  Entry.first = StructType::create(Context, Name);
2677  ResultTy = Entry.first;
2678  return false;
2679  }
2680 
2681  // If the type starts with '<', then it is either a packed struct or a vector.
2682  bool isPacked = EatIfPresent(lltok::less);
2683 
2684  // If we don't have a struct, then we have a random type alias, which we
2685  // accept for compatibility with old files. These types are not allowed to be
2686  // forward referenced and not allowed to be recursive.
2687  if (Lex.getKind() != lltok::lbrace) {
2688  if (Entry.first)
2689  return Error(TypeLoc, "forward references to non-struct type");
2690 
2691  ResultTy = nullptr;
2692  if (isPacked)
2693  return ParseArrayVectorType(ResultTy, true);
2694  return ParseType(ResultTy);
2695  }
2696 
2697  // This type is being defined, so clear the location to indicate this.
2698  Entry.second = SMLoc();
2699 
2700  // If this type number has never been uttered, create it.
2701  if (!Entry.first)
2702  Entry.first = StructType::create(Context, Name);
2703 
2704  StructType *STy = cast<StructType>(Entry.first);
2705 
2706  SmallVector<Type*, 8> Body;
2707  if (ParseStructBody(Body) ||
2708  (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2709  return true;
2710 
2711  STy->setBody(Body, isPacked);
2712  ResultTy = STy;
2713  return false;
2714 }
2715 
2716 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2717 /// StructType
2718 /// ::= '{' '}'
2719 /// ::= '{' Type (',' Type)* '}'
2720 /// ::= '<' '{' '}' '>'
2721 /// ::= '<' '{' Type (',' Type)* '}' '>'
2722 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2723  assert(Lex.getKind() == lltok::lbrace);
2724  Lex.Lex(); // Consume the '{'
2725 
2726  // Handle the empty struct.
2727  if (EatIfPresent(lltok::rbrace))
2728  return false;
2729 
2730  LocTy EltTyLoc = Lex.getLoc();
2731  Type *Ty = nullptr;
2732  if (ParseType(Ty)) return true;
2733  Body.push_back(Ty);
2734 
2736  return Error(EltTyLoc, "invalid element type for struct");
2737 
2738  while (EatIfPresent(lltok::comma)) {
2739  EltTyLoc = Lex.getLoc();
2740  if (ParseType(Ty)) return true;
2741 
2743  return Error(EltTyLoc, "invalid element type for struct");
2744 
2745  Body.push_back(Ty);
2746  }
2747 
2748  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2749 }
2750 
2751 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2752 /// token has already been consumed.
2753 /// Type
2754 /// ::= '[' APSINTVAL 'x' Types ']'
2755 /// ::= '<' APSINTVAL 'x' Types '>'
2756 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2757 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2758  bool Scalable = false;
2759 
2760  if (isVector && Lex.getKind() == lltok::kw_vscale) {
2761  Lex.Lex(); // consume the 'vscale'
2762  if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2763  return true;
2764 
2765  Scalable = true;
2766  }
2767 
2768  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2769  Lex.getAPSIntVal().getBitWidth() > 64)
2770  return TokError("expected number in address space");
2771 
2772  LocTy SizeLoc = Lex.getLoc();
2773  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2774  Lex.Lex();
2775 
2776  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2777  return true;
2778 
2779  LocTy TypeLoc = Lex.getLoc();
2780  Type *EltTy = nullptr;
2781  if (ParseType(EltTy)) return true;
2782 
2783  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2784  "expected end of sequential type"))
2785  return true;
2786 
2787  if (isVector) {
2788  if (Size == 0)
2789  return Error(SizeLoc, "zero element vector is illegal");
2790  if ((unsigned)Size != Size)
2791  return Error(SizeLoc, "size too large for vector");
2792  if (!VectorType::isValidElementType(EltTy))
2793  return Error(TypeLoc, "invalid vector element type");
2794  Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2795  } else {
2796  if (!ArrayType::isValidElementType(EltTy))
2797  return Error(TypeLoc, "invalid array element type");
2798  Result = ArrayType::get(EltTy, Size);
2799  }
2800  return false;
2801 }
2802 
2803 //===----------------------------------------------------------------------===//
2804 // Function Semantic Analysis.
2805 //===----------------------------------------------------------------------===//
2806 
2807 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2808  int functionNumber)
2809  : P(p), F(f), FunctionNumber(functionNumber) {
2810 
2811  // Insert unnamed arguments into the NumberedVals list.
2812  for (Argument &A : F.args())
2813  if (!A.hasName())
2814  NumberedVals.push_back(&A);
2815 }
2816 
2817 LLParser::PerFunctionState::~PerFunctionState() {
2818  // If there were any forward referenced non-basicblock values, delete them.
2819 
2820  for (const auto &P : ForwardRefVals) {
2821  if (isa<BasicBlock>(P.second.first))
2822  continue;
2823  P.second.first->replaceAllUsesWith(
2824  UndefValue::get(P.second.first->getType()));
2825  P.second.first->deleteValue();
2826  }
2827 
2828  for (const auto &P : ForwardRefValIDs) {
2829  if (isa<BasicBlock>(P.second.first))
2830  continue;
2831  P.second.first->replaceAllUsesWith(
2832  UndefValue::get(P.second.first->getType()));
2833  P.second.first->deleteValue();
2834  }
2835 }
2836 
2837 bool LLParser::PerFunctionState::FinishFunction() {
2838  if (!ForwardRefVals.empty())
2839  return P.Error(ForwardRefVals.begin()->second.second,
2840  "use of undefined value '%" + ForwardRefVals.begin()->first +
2841  "'");
2842  if (!ForwardRefValIDs.empty())
2843  return P.Error(ForwardRefValIDs.begin()->second.second,
2844  "use of undefined value '%" +
2845  Twine(ForwardRefValIDs.begin()->first) + "'");
2846  return false;
2847 }
2848 
2849 /// GetVal - Get a value with the specified name or ID, creating a
2850 /// forward reference record if needed. This can return null if the value
2851 /// exists but does not have the right type.
2852 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2853  LocTy Loc, bool IsCall) {
2854  // Look this name up in the normal function symbol table.
2855  Value *Val = F.getValueSymbolTable()->lookup(Name);
2856 
2857  // If this is a forward reference for the value, see if we already created a
2858  // forward ref record.
2859  if (!Val) {
2860  auto I = ForwardRefVals.find(Name);
2861  if (I != ForwardRefVals.end())
2862  Val = I->second.first;
2863  }
2864 
2865  // If we have the value in the symbol table or fwd-ref table, return it.
2866  if (Val)
2867  return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2868 
2869  // Don't make placeholders with invalid type.
2870  if (!Ty->isFirstClassType()) {
2871  P.Error(Loc, "invalid use of a non-first-class type");
2872  return nullptr;
2873  }
2874 
2875  // Otherwise, create a new forward reference for this value and remember it.
2876  Value *FwdVal;
2877  if (Ty->isLabelTy()) {
2878  FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2879  } else {
2880  FwdVal = new Argument(Ty, Name);
2881  }
2882 
2883  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2884  return FwdVal;
2885 }
2886 
2887 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2888  bool IsCall) {
2889  // Look this name up in the normal function symbol table.
2890  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2891 
2892  // If this is a forward reference for the value, see if we already created a
2893  // forward ref record.
2894  if (!Val) {
2895  auto I = ForwardRefValIDs.find(ID);
2896  if (I != ForwardRefValIDs.end())
2897  Val = I->second.first;
2898  }
2899 
2900  // If we have the value in the symbol table or fwd-ref table, return it.
2901  if (Val)
2902  return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2903 
2904  if (!Ty->isFirstClassType()) {
2905  P.Error(Loc, "invalid use of a non-first-class type");
2906  return nullptr;
2907  }
2908 
2909  // Otherwise, create a new forward reference for this value and remember it.
2910  Value *FwdVal;
2911  if (Ty->isLabelTy()) {
2912  FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2913  } else {
2914  FwdVal = new Argument(Ty);
2915  }
2916 
2917  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2918  return FwdVal;
2919 }
2920 
2921 /// SetInstName - After an instruction is parsed and inserted into its
2922 /// basic block, this installs its name.
2923 bool LLParser::PerFunctionState::SetInstName(int NameID,
2924  const std::string &NameStr,
2925  LocTy NameLoc, Instruction *Inst) {
2926  // If this instruction has void type, it cannot have a name or ID specified.
2927  if (Inst->getType()->isVoidTy()) {
2928  if (NameID != -1 || !NameStr.empty())
2929  return P.Error(NameLoc, "instructions returning void cannot have a name");
2930  return false;
2931  }
2932 
2933  // If this was a numbered instruction, verify that the instruction is the
2934  // expected value and resolve any forward references.
2935  if (NameStr.empty()) {
2936  // If neither a name nor an ID was specified, just use the next ID.
2937  if (NameID == -1)
2938  NameID = NumberedVals.size();
2939 
2940  if (unsigned(NameID) != NumberedVals.size())
2941  return P.Error(NameLoc, "instruction expected to be numbered '%" +
2942  Twine(NumberedVals.size()) + "'");
2943 
2944  auto FI = ForwardRefValIDs.find(NameID);
2945  if (FI != ForwardRefValIDs.end()) {
2946  Value *Sentinel = FI->second.first;
2947  if (Sentinel->getType() != Inst->getType())
2948  return P.Error(NameLoc, "instruction forward referenced with type '" +
2949  getTypeString(FI->second.first->getType()) + "'");
2950 
2951  Sentinel->replaceAllUsesWith(Inst);
2952  Sentinel->deleteValue();
2953  ForwardRefValIDs.erase(FI);
2954  }
2955 
2956  NumberedVals.push_back(Inst);
2957  return false;
2958  }
2959 
2960  // Otherwise, the instruction had a name. Resolve forward refs and set it.
2961  auto FI = ForwardRefVals.find(NameStr);
2962  if (FI != ForwardRefVals.end()) {
2963  Value *Sentinel = FI->second.first;
2964  if (Sentinel->getType() != Inst->getType())
2965  return P.Error(NameLoc, "instruction forward referenced with type '" +
2966  getTypeString(FI->second.first->getType()) + "'");
2967 
2968  Sentinel->replaceAllUsesWith(Inst);
2969  Sentinel->deleteValue();
2970  ForwardRefVals.erase(FI);
2971  }
2972 
2973  // Set the name on the instruction.
2974  Inst->setName(NameStr);
2975 
2976  if (Inst->getName() != NameStr)
2977  return P.Error(NameLoc, "multiple definition of local value named '" +
2978  NameStr + "'");
2979  return false;
2980 }
2981 
2982 /// GetBB - Get a basic block with the specified name or ID, creating a
2983 /// forward reference record if needed.
2984 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2985  LocTy Loc) {
2986  return dyn_cast_or_null<BasicBlock>(
2987  GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2988 }
2989 
2990 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2991  return dyn_cast_or_null<BasicBlock>(
2992  GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2993 }
2994 
2995 /// DefineBB - Define the specified basic block, which is either named or
2996 /// unnamed. If there is an error, this returns null otherwise it returns
2997 /// the block being defined.
2998 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2999  int NameID, LocTy Loc) {
3000  BasicBlock *BB;
3001  if (Name.empty()) {
3002  if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3003  P.Error(Loc, "label expected to be numbered '" +
3004  Twine(NumberedVals.size()) + "'");
3005  return nullptr;
3006  }
3007  BB = GetBB(NumberedVals.size(), Loc);
3008  if (!BB) {
3009  P.Error(Loc, "unable to create block numbered '" +
3010  Twine(NumberedVals.size()) + "'");
3011  return nullptr;
3012  }
3013  } else {
3014  BB = GetBB(Name, Loc);
3015  if (!BB) {
3016  P.Error(Loc, "unable to create block named '" + Name + "'");
3017  return nullptr;
3018  }
3019  }
3020 
3021  // Move the block to the end of the function. Forward ref'd blocks are
3022  // inserted wherever they happen to be referenced.
3023  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3024 
3025  // Remove the block from forward ref sets.
3026  if (Name.empty()) {
3027  ForwardRefValIDs.erase(NumberedVals.size());
3028  NumberedVals.push_back(BB);
3029  } else {
3030  // BB forward references are already in the function symbol table.
3031  ForwardRefVals.erase(Name);
3032  }
3033 
3034  return BB;
3035 }
3036 
3037 //===----------------------------------------------------------------------===//
3038 // Constants.
3039 //===----------------------------------------------------------------------===//
3040 
3041 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3042 /// type implied. For example, if we parse "4" we don't know what integer type
3043 /// it has. The value will later be combined with its type and checked for
3044 /// sanity. PFS is used to convert function-local operands of metadata (since
3045 /// metadata operands are not just parsed here but also converted to values).
3046 /// PFS can be null when we are not parsing metadata values inside a function.
3047 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3048  ID.Loc = Lex.getLoc();
3049  switch (Lex.getKind()) {
3050  default: return TokError("expected value token");
3051  case lltok::GlobalID: // @42
3052  ID.UIntVal = Lex.getUIntVal();
3053  ID.Kind = ValID::t_GlobalID;
3054  break;
3055  case lltok::GlobalVar: // @foo
3056  ID.StrVal = Lex.getStrVal();
3058  break;
3059  case lltok::LocalVarID: // %42
3060  ID.UIntVal = Lex.getUIntVal();
3061  ID.Kind = ValID::t_LocalID;
3062  break;
3063  case lltok::LocalVar: // %foo
3064  ID.StrVal = Lex.getStrVal();
3065  ID.Kind = ValID::t_LocalName;
3066  break;
3067  case lltok::APSInt:
3068  ID.APSIntVal = Lex.getAPSIntVal();
3069  ID.Kind = ValID::t_APSInt;
3070  break;
3071  case lltok::APFloat:
3072  ID.APFloatVal = Lex.getAPFloatVal();
3073  ID.Kind = ValID::t_APFloat;
3074  break;
3075  case lltok::kw_true:
3076  ID.ConstantVal = ConstantInt::getTrue(Context);
3077  ID.Kind = ValID::t_Constant;
3078  break;
3079  case lltok::kw_false:
3080  ID.ConstantVal = ConstantInt::getFalse(Context);
3081  ID.Kind = ValID::t_Constant;
3082  break;
3083  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3084  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3085  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3086  case lltok::kw_none: ID.Kind = ValID::t_None; break;
3087 
3088  case lltok::lbrace: {
3089  // ValID ::= '{' ConstVector '}'
3090  Lex.Lex();
3092  if (ParseGlobalValueVector(Elts) ||
3093  ParseToken(lltok::rbrace, "expected end of struct constant"))
3094  return true;
3095 
3096  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3097  ID.UIntVal = Elts.size();
3098  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3099  Elts.size() * sizeof(Elts[0]));
3101  return false;
3102  }
3103  case lltok::less: {
3104  // ValID ::= '<' ConstVector '>' --> Vector.
3105  // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3106  Lex.Lex();
3107  bool isPackedStruct = EatIfPresent(lltok::lbrace);
3108 
3110  LocTy FirstEltLoc = Lex.getLoc();
3111  if (ParseGlobalValueVector(Elts) ||
3112  (isPackedStruct &&
3113  ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3114  ParseToken(lltok::greater, "expected end of constant"))
3115  return true;
3116 
3117  if (isPackedStruct) {
3118  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3119  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3120  Elts.size() * sizeof(Elts[0]));
3121  ID.UIntVal = Elts.size();
3123  return false;
3124  }
3125 
3126  if (Elts.empty())
3127  return Error(ID.Loc, "constant vector must not be empty");
3128 
3129  if (!Elts[0]->getType()->isIntegerTy() &&
3130  !Elts[0]->getType()->isFloatingPointTy() &&
3131  !Elts[0]->getType()->isPointerTy())
3132  return Error(FirstEltLoc,
3133  "vector elements must have integer, pointer or floating point type");
3134 
3135  // Verify that all the vector elements have the same type.
3136  for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3137  if (Elts[i]->getType() != Elts[0]->getType())
3138  return Error(FirstEltLoc,
3139  "vector element #" + Twine(i) +
3140  " is not of type '" + getTypeString(Elts[0]->getType()));
3141 
3142  ID.ConstantVal = ConstantVector::get(Elts);
3143  ID.Kind = ValID::t_Constant;
3144  return false;
3145  }
3146  case lltok::lsquare: { // Array Constant
3147  Lex.Lex();
3149  LocTy FirstEltLoc = Lex.getLoc();
3150  if (ParseGlobalValueVector(Elts) ||
3151  ParseToken(lltok::rsquare, "expected end of array constant"))
3152  return true;
3153 
3154  // Handle empty element.
3155  if (Elts.empty()) {
3156  // Use undef instead of an array because it's inconvenient to determine
3157  // the element type at this point, there being no elements to examine.
3159  return false;
3160  }
3161 
3162  if (!Elts[0]->getType()->isFirstClassType())
3163  return Error(FirstEltLoc, "invalid array element type: " +
3164  getTypeString(Elts[0]->getType()));
3165 
3166  ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3167 
3168  // Verify all elements are correct type!
3169  for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3170  if (Elts[i]->getType() != Elts[0]->getType())
3171  return Error(FirstEltLoc,
3172  "array element #" + Twine(i) +
3173  " is not of type '" + getTypeString(Elts[0]->getType()));
3174  }
3175 
3176  ID.ConstantVal = ConstantArray::get(ATy, Elts);
3177  ID.Kind = ValID::t_Constant;
3178  return false;
3179  }
3180  case lltok::kw_c: // c "foo"
3181  Lex.Lex();
3183  false);
3184  if (ParseToken(lltok::StringConstant, "expected string")) return true;
3185  ID.Kind = ValID::t_Constant;
3186  return false;
3187 
3188  case lltok::kw_asm: {
3189  // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3190  // STRINGCONSTANT
3191  bool HasSideEffect, AlignStack, AsmDialect;
3192  Lex.Lex();
3193  if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3194  ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3195  ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3196  ParseStringConstant(ID.StrVal) ||
3197  ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3198  ParseToken(lltok::StringConstant, "expected constraint string"))
3199  return true;
3200  ID.StrVal2 = Lex.getStrVal();
3201  ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3202  (unsigned(AsmDialect)<<2);
3203  ID.Kind = ValID::t_InlineAsm;
3204  return false;
3205  }
3206 
3207  case lltok::kw_blockaddress: {
3208  // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3209  Lex.Lex();
3210 
3211  ValID Fn, Label;
3212 
3213  if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3214  ParseValID(Fn) ||
3215  ParseToken(lltok::comma, "expected comma in block address expression")||
3216  ParseValID(Label) ||
3217  ParseToken(lltok::rparen, "expected ')' in block address expression"))
3218  return true;
3219 
3220  if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3221  return Error(Fn.Loc, "expected function name in blockaddress");
3222  if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3223  return Error(Label.Loc, "expected basic block name in blockaddress");
3224 
3225  // Try to find the function (but skip it if it's forward-referenced).
3226  GlobalValue *GV = nullptr;
3227  if (Fn.Kind == ValID::t_GlobalID) {
3228  if (Fn.UIntVal < NumberedVals.size())
3229  GV = NumberedVals[Fn.UIntVal];
3230  } else if (!ForwardRefVals.count(Fn.StrVal)) {
3231  GV = M->getNamedValue(Fn.StrVal);
3232  }
3233  Function *F = nullptr;
3234  if (GV) {
3235  // Confirm that it's actually a function with a definition.
3236  if (!isa<Function>(GV))
3237  return Error(Fn.Loc, "expected function name in blockaddress");
3238  F = cast<Function>(GV);
3239  if (F->isDeclaration())
3240  return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3241  }
3242 
3243  if (!F) {
3244  // Make a global variable as a placeholder for this reference.
3245  GlobalValue *&FwdRef =
3246  ForwardRefBlockAddresses.insert(std::make_pair(
3247  std::move(Fn),
3248  std::map<ValID, GlobalValue *>()))
3249  .first->second.insert(std::make_pair(std::move(Label), nullptr))
3250  .first->second;
3251  if (!FwdRef)
3252  FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3253  GlobalValue::InternalLinkage, nullptr, "");
3254  ID.ConstantVal = FwdRef;
3255  ID.Kind = ValID::t_Constant;
3256  return false;
3257  }
3258 
3259  // We found the function; now find the basic block. Don't use PFS, since we
3260  // might be inside a constant expression.
3261  BasicBlock *BB;
3262  if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3263  if (Label.Kind == ValID::t_LocalID)
3264  BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3265  else
3266  BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3267  if (!BB)
3268  return Error(Label.Loc, "referenced value is not a basic block");
3269  } else {
3270  if (Label.Kind == ValID::t_LocalID)
3271  return Error(Label.Loc, "cannot take address of numeric label after "
3272  "the function is defined");
3273  BB = dyn_cast_or_null<BasicBlock>(
3274  F->getValueSymbolTable()->lookup(Label.StrVal));
3275  if (!BB)
3276  return Error(Label.Loc, "referenced value is not a basic block");
3277  }
3278 
3279  ID.ConstantVal = BlockAddress::get(F, BB);
3280  ID.Kind = ValID::t_Constant;
3281  return false;
3282  }
3283 
3284  case lltok::kw_trunc:
3285  case lltok::kw_zext:
3286  case lltok::kw_sext:
3287  case lltok::kw_fptrunc:
3288  case lltok::kw_fpext:
3289  case lltok::kw_bitcast:
3291  case lltok::kw_uitofp:
3292  case lltok::kw_sitofp:
3293  case lltok::kw_fptoui:
3294  case lltok::kw_fptosi:
3295  case lltok::kw_inttoptr:
3296  case lltok::kw_ptrtoint: {
3297  unsigned Opc = Lex.getUIntVal();
3298  Type *DestTy = nullptr;
3299  Constant *SrcVal;
3300  Lex.Lex();
3301  if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3302  ParseGlobalTypeAndValue(SrcVal) ||
3303  ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3304  ParseType(DestTy) ||
3305  ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3306  return true;
3307  if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3308  return Error(ID.Loc, "invalid cast opcode for cast from '" +
3309  getTypeString(SrcVal->getType()) + "' to '" +
3310  getTypeString(DestTy) + "'");
3312  SrcVal, DestTy);
3313  ID.Kind = ValID::t_Constant;
3314  return false;
3315  }
3316  case lltok::kw_extractvalue: {
3317  Lex.Lex();
3318  Constant *Val;
3319  SmallVector<unsigned, 4> Indices;
3320  if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3321  ParseGlobalTypeAndValue(Val) ||
3322  ParseIndexList(Indices) ||
3323  ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3324  return true;
3325 
3326  if (!Val->getType()->isAggregateType())
3327  return Error(ID.Loc, "extractvalue operand must be aggregate type");
3328  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3329  return Error(ID.Loc, "invalid indices for extractvalue");
3330  ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3331  ID.Kind = ValID::t_Constant;
3332  return false;
3333  }
3334  case lltok::kw_insertvalue: {
3335  Lex.Lex();
3336  Constant *Val0, *Val1;
3337  SmallVector<unsigned, 4> Indices;
3338  if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3339  ParseGlobalTypeAndValue(Val0) ||
3340  ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3341  ParseGlobalTypeAndValue(Val1) ||
3342  ParseIndexList(Indices) ||
3343  ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3344  return true;
3345  if (!Val0->getType()->isAggregateType())
3346  return Error(ID.Loc, "insertvalue operand must be aggregate type");
3347  Type *IndexedType =
3348  ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3349  if (!IndexedType)
3350  return Error(ID.Loc, "invalid indices for insertvalue");
3351  if (IndexedType != Val1->getType())
3352  return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3353  getTypeString(Val1->getType()) +
3354  "' instead of '" + getTypeString(IndexedType) +
3355  "'");
3356  ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3357  ID.Kind = ValID::t_Constant;
3358  return false;
3359  }
3360  case lltok::kw_icmp:
3361  case lltok::kw_fcmp: {
3362  unsigned PredVal, Opc = Lex.getUIntVal();
3363  Constant *Val0, *Val1;
3364  Lex.Lex();
3365  if (ParseCmpPredicate(PredVal, Opc) ||
3366  ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3367  ParseGlobalTypeAndValue(Val0) ||
3368  ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3369  ParseGlobalTypeAndValue(Val1) ||
3370  ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3371  return true;
3372 
3373  if (Val0->getType() != Val1->getType())
3374  return Error(ID.Loc, "compare operands must have the same type");
3375 
3376  CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3377 
3378  if (Opc == Instruction::FCmp) {
3379  if (!Val0->getType()->isFPOrFPVectorTy())
3380  return Error(ID.Loc, "fcmp requires floating point operands");
3381  ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3382  } else {
3383  assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3384  if (!Val0->getType()->isIntOrIntVectorTy() &&
3385  !Val0->getType()->isPtrOrPtrVectorTy())
3386  return Error(ID.Loc, "icmp requires pointer or integer operands");
3387  ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3388  }
3389  ID.Kind = ValID::t_Constant;
3390  return false;
3391  }
3392 
3393  // Unary Operators.
3394  case lltok::kw_fneg: {
3395  unsigned Opc = Lex.getUIntVal();
3396  Constant *Val;
3397  Lex.Lex();
3398  if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3399  ParseGlobalTypeAndValue(Val) ||
3400  ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3401  return true;
3402 
3403  // Check that the type is valid for the operator.
3404  switch (Opc) {
3405  case Instruction::FNeg:
3406  if (!Val->getType()->isFPOrFPVectorTy())
3407  return Error(ID.Loc, "constexpr requires fp operands");
3408  break;
3409  default: llvm_unreachable("Unknown unary operator!");
3410  }
3411  unsigned Flags = 0;
3412  Constant *C = ConstantExpr::get(Opc, Val, Flags);
3413  ID.ConstantVal = C;
3414  ID.Kind = ValID::t_Constant;
3415  return false;
3416  }
3417  // Binary Operators.
3418  case lltok::kw_add:
3419  case lltok::kw_fadd:
3420  case lltok::kw_sub:
3421  case lltok::kw_fsub:
3422  case lltok::kw_mul:
3423  case lltok::kw_fmul:
3424  case lltok::kw_udiv:
3425  case lltok::kw_sdiv:
3426  case lltok::kw_fdiv:
3427  case lltok::kw_urem:
3428  case lltok::kw_srem:
3429  case lltok::kw_frem:
3430  case lltok::kw_shl:
3431  case lltok::kw_lshr:
3432  case lltok::kw_ashr: {
3433  bool NUW = false;
3434  bool NSW = false;
3435  bool Exact = false;
3436  unsigned Opc = Lex.getUIntVal();
3437  Constant *Val0, *Val1;
3438  Lex.Lex();
3439  if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3440  Opc == Instruction::Mul || Opc == Instruction::Shl) {
3441  if (EatIfPresent(lltok::kw_nuw))
3442  NUW = true;
3443  if (EatIfPresent(lltok::kw_nsw)) {
3444  NSW = true;
3445  if (EatIfPresent(lltok::kw_nuw))
3446  NUW = true;
3447  }
3448  } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3449  Opc == Instruction::LShr || Opc == Instruction::AShr) {
3450  if (EatIfPresent(lltok::kw_exact))
3451  Exact = true;
3452  }
3453  if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3454  ParseGlobalTypeAndValue(Val0) ||
3455  ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3456  ParseGlobalTypeAndValue(Val1) ||
3457  ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3458  return true;
3459  if (Val0->getType() != Val1->getType())
3460  return Error(ID.Loc, "operands of constexpr must have same type");
3461  // Check that the type is valid for the operator.
3462  switch (Opc) {
3463  case Instruction::Add:
3464  case Instruction::Sub:
3465  case Instruction::Mul:
3466  case Instruction::UDiv:
3467  case Instruction::SDiv:
3468  case Instruction::URem:
3469  case Instruction::SRem:
3470  case Instruction::Shl:
3471  case Instruction::AShr:
3472  case Instruction::LShr:
3473  if (!Val0->getType()->isIntOrIntVectorTy())
3474  return Error(ID.Loc, "constexpr requires integer operands");
3475  break;
3476  case Instruction::FAdd:
3477  case Instruction::FSub:
3478  case Instruction::FMul:
3479  case Instruction::FDiv:
3480  case Instruction::FRem:
3481  if (!Val0->getType()->isFPOrFPVectorTy())
3482  return Error(ID.Loc, "constexpr requires fp operands");
3483  break;
3484  default: llvm_unreachable("Unknown binary operator!");
3485  }
3486  unsigned Flags = 0;
3488  if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3489  if (Exact) Flags |= PossiblyExactOperator::IsExact;
3490  Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3491  ID.ConstantVal = C;
3492  ID.Kind = ValID::t_Constant;
3493  return false;
3494  }
3495 
3496  // Logical Operations
3497  case lltok::kw_and:
3498  case lltok::kw_or:
3499  case lltok::kw_xor: {
3500  unsigned Opc = Lex.getUIntVal();
3501  Constant *Val0, *Val1;
3502  Lex.Lex();
3503  if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3504  ParseGlobalTypeAndValue(Val0) ||
3505  ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3506  ParseGlobalTypeAndValue(Val1) ||
3507  ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3508  return true;
3509  if (Val0->getType() != Val1->getType())
3510  return Error(ID.Loc, "operands of constexpr must have same type");
3511  if (!Val0->getType()->isIntOrIntVectorTy())
3512  return Error(ID.Loc,
3513  "constexpr requires integer or integer vector operands");
3514  ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3515  ID.Kind = ValID::t_Constant;
3516  return false;
3517  }
3518 
3523  case lltok::kw_select: {
3524  unsigned Opc = Lex.getUIntVal();
3526  bool InBounds = false;
3527  Type *Ty;
3528  Lex.Lex();
3529 
3530  if (Opc == Instruction::GetElementPtr)
3531  InBounds = EatIfPresent(lltok::kw_inbounds);
3532 
3533  if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3534  return true;
3535 
3536  LocTy ExplicitTypeLoc = Lex.getLoc();
3537  if (Opc == Instruction::GetElementPtr) {
3538  if (ParseType(Ty) ||
3539  ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3540  return true;
3541  }
3542 
3543  Optional<unsigned> InRangeOp;
3544  if (ParseGlobalValueVector(
3545  Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3546  ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3547  return true;
3548 
3549  if (Opc == Instruction::GetElementPtr) {
3550  if (Elts.size() == 0 ||
3551  !Elts[0]->getType()->isPtrOrPtrVectorTy())
3552  return Error(ID.Loc, "base of getelementptr must be a pointer");
3553 
3554  Type *BaseType = Elts[0]->getType();
3555  auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3556  if (Ty != BasePointerType->getElementType())
3557  return Error(
3558  ExplicitTypeLoc,
3559  "explicit pointee type doesn't match operand's pointee type");
3560 
3561  unsigned GEPWidth =
3562  BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3563 
3564  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3565  for (Constant *Val : Indices) {
3566  Type *ValTy = Val->getType();
3567  if (!ValTy->isIntOrIntVectorTy())
3568  return Error(ID.Loc, "getelementptr index must be an integer");
3569  if (ValTy->isVectorTy()) {
3570  unsigned ValNumEl = ValTy->getVectorNumElements();
3571  if (GEPWidth && (ValNumEl != GEPWidth))
3572  return Error(
3573  ID.Loc,
3574  "getelementptr vector index has a wrong number of elements");
3575  // GEPWidth may have been unknown because the base is a scalar,
3576  // but it is known now.
3577  GEPWidth = ValNumEl;
3578  }
3579  }
3580 
3581  SmallPtrSet<Type*, 4> Visited;
3582  if (!Indices.empty() && !Ty->isSized(&Visited))
3583  return Error(ID.Loc, "base element of getelementptr must be sized");
3584 
3585  if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3586  return Error(ID.Loc, "invalid getelementptr indices");
3587 
3588  if (InRangeOp) {
3589  if (*InRangeOp == 0)
3590  return Error(ID.Loc,
3591  "inrange keyword may not appear on pointer operand");
3592  --*InRangeOp;
3593  }
3594 
3595  ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3596  InBounds, InRangeOp);
3597  } else if (Opc == Instruction::Select) {
3598  if (Elts.size() != 3)
3599  return Error(ID.Loc, "expected three operands to select");
3600  if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3601  Elts[2]))
3602  return Error(ID.Loc, Reason);
3603  ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3604  } else if (Opc == Instruction::ShuffleVector) {
3605  if (Elts.size() != 3)
3606  return Error(ID.Loc, "expected three operands to shufflevector");
3607  if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3608  return Error(ID.Loc, "invalid operands to shufflevector");
3609  ID.ConstantVal =
3610  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3611  } else if (Opc == Instruction::ExtractElement) {
3612  if (Elts.size() != 2)
3613  return Error(ID.Loc, "expected two operands to extractelement");
3614  if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3615  return Error(ID.Loc, "invalid extractelement operands");
3616  ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3617  } else {
3618  assert(Opc == Instruction::InsertElement && "Unknown opcode");
3619  if (Elts.size() != 3)
3620  return Error(ID.Loc, "expected three operands to insertelement");
3621  if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3622  return Error(ID.Loc, "invalid insertelement operands");
3623  ID.ConstantVal =
3624  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3625  }
3626 
3627  ID.Kind = ValID::t_Constant;
3628  return false;
3629  }
3630  }
3631 
3632  Lex.Lex();
3633  return false;
3634 }
3635 
3636 /// ParseGlobalValue - Parse a global value with the specified type.
3637 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3638  C = nullptr;
3639  ValID ID;
3640  Value *V = nullptr;
3641  bool Parsed = ParseValID(ID) ||
3642  ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3643  if (V && !(C = dyn_cast<Constant>(V)))
3644  return Error(ID.Loc, "global values must be constants");
3645  return Parsed;
3646 }
3647 
3648 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3649  Type *Ty = nullptr;
3650  return ParseType(Ty) ||
3651  ParseGlobalValue(Ty, V);
3652 }
3653 
3654 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3655  C = nullptr;
3656 
3657  LocTy KwLoc = Lex.getLoc();
3658  if (!EatIfPresent(lltok::kw_comdat))
3659  return false;
3660 
3661  if (EatIfPresent(lltok::lparen)) {
3662  if (Lex.getKind() != lltok::ComdatVar)
3663  return TokError("expected comdat variable");
3664  C = getComdat(Lex.getStrVal(), Lex.getLoc());
3665  Lex.Lex();
3666  if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3667  return true;
3668  } else {
3669  if (GlobalName.empty())
3670  return TokError("comdat cannot be unnamed");
3671  C = getComdat(GlobalName, KwLoc);
3672  }
3673 
3674  return false;
3675 }
3676 
3677 /// ParseGlobalValueVector
3678 /// ::= /*empty*/
3679 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3680 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3681  Optional<unsigned> *InRangeOp) {
3682  // Empty list.
3683  if (Lex.getKind() == lltok::rbrace ||
3684  Lex.getKind() == lltok::rsquare ||
3685  Lex.getKind() == lltok::greater ||
3686  Lex.getKind() == lltok::rparen)
3687  return false;
3688 
3689  do {
3690  if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3691  *InRangeOp = Elts.size();
3692 
3693  Constant *C;
3694  if (ParseGlobalTypeAndValue(C)) return true;
3695  Elts.push_back(C);
3696  } while (EatIfPresent(lltok::comma));
3697 
3698  return false;
3699 }
3700 
3701 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3703  if (ParseMDNodeVector(Elts))
3704  return true;
3705 
3706  MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3707  return false;
3708 }
3709 
3710 /// MDNode:
3711 /// ::= !{ ... }
3712 /// ::= !7
3713 /// ::= !DILocation(...)
3714 bool LLParser::ParseMDNode(MDNode *&N) {
3715  if (Lex.getKind() == lltok::MetadataVar)
3716  return ParseSpecializedMDNode(N);
3717 
3718  return ParseToken(lltok::exclaim, "expected '!' here") ||
3719  ParseMDNodeTail(N);
3720 }
3721 
3722 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3723  // !{ ... }
3724  if (Lex.getKind() == lltok::lbrace)
3725  return ParseMDTuple(N);
3726 
3727  // !42
3728  return ParseMDNodeID(N);
3729 }
3730 
3731 namespace {
3732 
3733 /// Structure to represent an optional metadata field.
3734 template <class FieldTy> struct MDFieldImpl {
3735  typedef MDFieldImpl ImplTy;
3736  FieldTy Val;
3737  bool Seen;
3738 
3739  void assign(FieldTy Val) {
3740  Seen = true;
3741  this->Val = std::move(Val);
3742  }
3743 
3744  explicit MDFieldImpl(FieldTy Default)
3745  : Val(std::move(Default)), Seen(false) {}
3746 };
3747 
3748 /// Structure to represent an optional metadata field that
3749 /// can be of either type (A or B) and encapsulates the
3750 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3751 /// to reimplement the specifics for representing each Field.
3752 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3753  typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3754  FieldTypeA A;
3755  FieldTypeB B;
3756  bool Seen;
3757 
3758  enum {
3759  IsInvalid = 0,
3760  IsTypeA = 1,
3761  IsTypeB = 2
3762  } WhatIs;
3763 
3764  void assign(FieldTypeA A) {
3765  Seen = true;
3766  this->A = std::move(A);
3767  WhatIs = IsTypeA;
3768  }
3769 
3770  void assign(FieldTypeB B) {
3771  Seen = true;
3772  this->B = std::move(B);
3773  WhatIs = IsTypeB;
3774  }
3775 
3776  explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3777  : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3778  WhatIs(IsInvalid) {}
3779 };
3780 
3781 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3782  uint64_t Max;
3783 
3784  MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3785  : ImplTy(Default), Max(Max) {}
3786 };
3787 
3788 struct LineField : public MDUnsignedField {
3789  LineField() : MDUnsignedField(0, UINT32_MAX) {}
3790 };
3791 
3792 struct ColumnField : public MDUnsignedField {
3793  ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3794 };
3795 
3796 struct DwarfTagField : public MDUnsignedField {
3797  DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3798  DwarfTagField(dwarf::Tag DefaultTag)
3799  : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3800 };
3801 
3802 struct DwarfMacinfoTypeField : public MDUnsignedField {
3803  DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3804  DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3805  : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3806 };
3807 
3808 struct DwarfAttEncodingField : public MDUnsignedField {
3809  DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3810 };
3811 
3812 struct DwarfVirtualityField : public MDUnsignedField {
3813  DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3814 };
3815 
3816 struct DwarfLangField : public MDUnsignedField {
3817  DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3818 };
3819 
3820 struct DwarfCCField : public MDUnsignedField {
3821  DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3822 };
3823 
3824 struct EmissionKindField : public MDUnsignedField {
3825  EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3826 };
3827 
3828 struct NameTableKindField : public MDUnsignedField {
3829  NameTableKindField()
3830  : MDUnsignedField(
3831  0, (unsigned)
3833 };
3834 
3835 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3836  DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3837 };
3838 
3839 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3840  DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3841 };
3842 
3843 struct MDSignedField : public MDFieldImpl<int64_t> {
3844  int64_t Min;
3845  int64_t Max;
3846 
3847  MDSignedField(int64_t Default = 0)
3848  : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3849  MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3850  : ImplTy(Default), Min(Min), Max(Max) {}
3851 };
3852 
3853 struct MDBoolField : public MDFieldImpl<bool> {
3854  MDBoolField(bool Default = false) : ImplTy(Default) {}
3855 };
3856 
3857 struct MDField : public MDFieldImpl<Metadata *> {
3858  bool AllowNull;
3859 
3860  MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3861 };
3862 
3863 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3864  MDConstant() : ImplTy(nullptr) {}
3865 };
3866 
3867 struct MDStringField : public MDFieldImpl<MDString *> {
3868  bool AllowEmpty;
3869  MDStringField(bool AllowEmpty = true)
3870  : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3871 };
3872 
3873 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3874  MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3875 };
3876 
3877 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3878  ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3879 };
3880 
3881 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3882  MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3883  : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3884 
3885  MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3886  bool AllowNull = true)
3887  : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3888 
3889  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3890  bool isMDField() const { return WhatIs == IsTypeB; }
3891  int64_t getMDSignedValue() const {
3892  assert(isMDSignedField() && "Wrong field type");
3893  return A.Val;
3894  }
3895  Metadata *getMDFieldValue() const {
3896  assert(isMDField() && "Wrong field type");
3897  return B.Val;
3898  }
3899 };
3900 
3901 struct MDSignedOrUnsignedField
3902  : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3903  MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3904 
3905  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3906  bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3907  int64_t getMDSignedValue() const {
3908  assert(isMDSignedField() && "Wrong field type");
3909  return A.Val;
3910  }
3911  uint64_t getMDUnsignedValue() const {
3912  assert(isMDUnsignedField() && "Wrong field type");
3913  return B.Val;
3914  }
3915 };
3916 
3917 } // end anonymous namespace
3918 
3919 namespace llvm {
3920 
3921 template <>
3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3923  MDUnsignedField &Result) {
3924  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3925  return TokError("expected unsigned integer");
3926 
3927  auto &U = Lex.getAPSIntVal();
3928  if (U.ugt(Result.Max))
3929  return TokError("value for '" + Name + "' too large, limit is " +
3930  Twine(Result.Max));
3931  Result.assign(U.getZExtValue());
3932  assert(Result.Val <= Result.Max && "Expected value in range");
3933  Lex.Lex();
3934  return false;
3935 }
3936 
3937 template <>
3938 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3939  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3940 }
3941 template <>
3942 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3943  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3944 }
3945 
3946 template <>
3947 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3948  if (Lex.getKind() == lltok::APSInt)
3949  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3950 
3951  if (Lex.getKind() != lltok::DwarfTag)
3952  return TokError("expected DWARF tag");
3953 
3954  unsigned Tag = dwarf::getTag(Lex.getStrVal());
3955  if (Tag == dwarf::DW_TAG_invalid)
3956  return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3957  assert(Tag <= Result.Max && "Expected valid DWARF tag");
3958 
3959  Result.assign(Tag);
3960  Lex.Lex();
3961  return false;
3962 }
3963 
3964 template <>
3965 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3966  DwarfMacinfoTypeField &Result) {
3967  if (Lex.getKind() == lltok::APSInt)
3968  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3969 
3970  if (Lex.getKind() != lltok::DwarfMacinfo)
3971  return TokError("expected DWARF macinfo type");
3972 
3973  unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3974  if (Macinfo == dwarf::DW_MACINFO_invalid)
3975  return TokError(
3976  "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3977  assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3978 
3979  Result.assign(Macinfo);
3980  Lex.Lex();
3981  return false;
3982 }
3983 
3984 template <>
3985 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3986  DwarfVirtualityField &Result) {
3987  if (Lex.getKind() == lltok::APSInt)
3988  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3989 
3990  if (Lex.getKind() != lltok::DwarfVirtuality)
3991  return TokError("expected DWARF virtuality code");
3992 
3993  unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3994  if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3995  return TokError("invalid DWARF virtuality code" + Twine(" '") +
3996  Lex.getStrVal() + "'");
3997  assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3998  Result.assign(Virtuality);
3999  Lex.Lex();
4000  return false;
4001 }
4002 
4003 template <>
4004 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4005  if (Lex.getKind() == lltok::APSInt)
4006  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4007 
4008  if (Lex.getKind() != lltok::DwarfLang)
4009  return TokError("expected DWARF language");
4010 
4011  unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4012  if (!Lang)
4013  return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4014  "'");
4015  assert(Lang <= Result.Max && "Expected valid DWARF language");
4016  Result.assign(Lang);
4017  Lex.Lex();
4018  return false;
4019 }
4020 
4021 template <>
4022 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4023  if (Lex.getKind() == lltok::APSInt)
4024  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4025 
4026  if (Lex.getKind() != lltok::DwarfCC)
4027  return TokError("expected DWARF calling convention");
4028 
4029  unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4030  if (!CC)
4031  return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4032  "'");
4033  assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4034  Result.assign(CC);
4035  Lex.Lex();
4036  return false;
4037 }
4038 
4039 template <>
4040 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4041  if (Lex.getKind() == lltok::APSInt)
4042  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4043 
4044  if (Lex.getKind() != lltok::EmissionKind)
4045  return TokError("expected emission kind");
4046 
4047  auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4048  if (!Kind)
4049  return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4050  "'");
4051  assert(*Kind <= Result.Max && "Expected valid emission kind");
4052  Result.assign(*Kind);
4053  Lex.Lex();
4054  return false;
4055 }
4056 
4057 template <>
4058 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4059  NameTableKindField &Result) {
4060  if (Lex.getKind() == lltok::APSInt)
4061  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4062 
4063  if (Lex.getKind() != lltok::NameTableKind)
4064  return TokError("expected nameTable kind");
4065 
4066  auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4067  if (!Kind)
4068  return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4069  "'");
4070  assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4071  Result.assign((unsigned)*Kind);
4072  Lex.Lex();
4073  return false;
4074 }
4075 
4076 template <>
4077 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4078  DwarfAttEncodingField &Result) {
4079  if (Lex.getKind() == lltok::APSInt)
4080  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4081 
4082  if (Lex.getKind() != lltok::DwarfAttEncoding)
4083  return TokError("expected DWARF type attribute encoding");
4084 
4085  unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4086  if (!Encoding)
4087  return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4088  Lex.getStrVal() + "'");
4089  assert(Encoding <= Result.Max && "Expected valid DWARF language");
4090  Result.assign(Encoding);
4091  Lex.Lex();
4092  return false;
4093 }
4094 
4095 /// DIFlagField
4096 /// ::= uint32
4097 /// ::= DIFlagVector
4098 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4099 template <>
4100 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4101 
4102  // Parser for a single flag.
4103  auto parseFlag = [&](DINode::DIFlags &Val) {
4104  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4105  uint32_t TempVal = static_cast<uint32_t>(Val);
4106  bool Res = ParseUInt32(TempVal);
4107  Val = static_cast<DINode::DIFlags>(TempVal);
4108  return Res;
4109  }
4110 
4111  if (Lex.getKind() != lltok::DIFlag)
4112  return TokError("expected debug info flag");
4113 
4114  Val = DINode::getFlag(Lex.getStrVal());
4115  if (!Val)
4116  return TokError(Twine("invalid debug info flag flag '") +
4117  Lex.getStrVal() + "'");
4118  Lex.Lex();
4119  return false;
4120  };
4121 
4122  // Parse the flags and combine them together.
4123  DINode::DIFlags Combined = DINode::FlagZero;
4124  do {
4125  DINode::DIFlags Val;
4126  if (parseFlag(Val))
4127  return true;
4128  Combined |= Val;
4129  } while (EatIfPresent(lltok::bar));
4130 
4131  Result.assign(Combined);
4132  return false;
4133 }
4134 
4135 /// DISPFlagField
4136 /// ::= uint32
4137 /// ::= DISPFlagVector
4138 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4139 template <>
4140 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4141 
4142  // Parser for a single flag.
4143  auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4144  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4145  uint32_t TempVal = static_cast<uint32_t>(Val);
4146  bool Res = ParseUInt32(TempVal);
4147  Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4148  return Res;
4149  }
4150 
4151  if (Lex.getKind() != lltok::DISPFlag)
4152  return TokError("expected debug info flag");
4153 
4154  Val = DISubprogram::getFlag(Lex.getStrVal());
4155  if (!Val)
4156  return TokError(Twine("invalid subprogram debug info flag '") +
4157  Lex.getStrVal() + "'");
4158  Lex.Lex();
4159  return false;
4160  };
4161 
4162  // Parse the flags and combine them together.
4163  DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4164  do {
4166  if (parseFlag(Val))
4167  return true;
4168  Combined |= Val;
4169  } while (EatIfPresent(lltok::bar));
4170 
4171  Result.assign(Combined);
4172  return false;
4173 }
4174 
4175 template <>
4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4177  MDSignedField &Result) {
4178  if (Lex.getKind() != lltok::APSInt)
4179  return TokError("expected signed integer");
4180 
4181  auto &S = Lex.getAPSIntVal();
4182  if (S < Result.Min)
4183  return TokError("value for '" + Name + "' too small, limit is " +
4184  Twine(Result.Min));
4185  if (S > Result.Max)
4186  return TokError("value for '" + Name + "' too large, limit is " +
4187  Twine(Result.Max));
4188  Result.assign(S.getExtValue());
4189  assert(Result.Val >= Result.Min && "Expected value in range");
4190  assert(Result.Val <= Result.Max && "Expected value in range");
4191  Lex.Lex();
4192  return false;
4193 }
4194 
4195 template <>
4196 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4197  switch (Lex.getKind()) {
4198  default:
4199  return TokError("expected 'true' or 'false'");
4200  case lltok::kw_true:
4201  Result.assign(true);
4202  break;
4203  case lltok::kw_false:
4204  Result.assign(false);
4205  break;
4206  }
4207  Lex.Lex();
4208  return false;
4209 }
4210 
4211 template <>
4212 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4213  if (Lex.getKind() == lltok::kw_null) {
4214  if (!Result.AllowNull)
4215  return TokError("'" + Name + "' cannot be null");
4216  Lex.Lex();
4217  Result.assign(nullptr);
4218  return false;
4219  }
4220 
4221  Metadata *MD;
4222  if (ParseMetadata(MD, nullptr))
4223  return true;
4224 
4225  Result.assign(MD);
4226  return false;
4227 }
4228 
4229 template <>
4230 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4231  MDSignedOrMDField &Result) {
4232  // Try to parse a signed int.
4233  if (Lex.getKind() == lltok::APSInt) {
4234  MDSignedField Res = Result.A;
4235  if (!ParseMDField(Loc, Name, Res)) {
4236  Result.assign(Res);
4237  return false;
4238  }
4239  return true;
4240  }
4241 
4242  // Otherwise, try to parse as an MDField.
4243  MDField Res = Result.B;
4244  if (!ParseMDField(Loc, Name, Res)) {
4245  Result.assign(Res);
4246  return false;
4247  }
4248 
4249  return true;
4250 }
4251 
4252 template <>
4253 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4254  MDSignedOrUnsignedField &Result) {
4255  if (Lex.getKind() != lltok::APSInt)
4256  return false;
4257 
4258  if (Lex.getAPSIntVal().isSigned()) {
4259  MDSignedField Res = Result.A;
4260  if (ParseMDField(Loc, Name, Res))
4261  return true;
4262  Result.assign(Res);
4263  return false;
4264  }
4265 
4266  MDUnsignedField Res = Result.B;
4267  if (ParseMDField(Loc, Name, Res))
4268  return true;
4269  Result.assign(Res);
4270  return false;
4271 }
4272 
4273 template <>
4274 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4275  LocTy ValueLoc = Lex.getLoc();
4276  std::string S;
4277  if (ParseStringConstant(S))
4278  return true;
4279 
4280  if (!Result.AllowEmpty && S.empty())
4281  return Error(ValueLoc, "'" + Name + "' cannot be empty");
4282 
4283  Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4284  return false;
4285 }
4286 
4287 template <>
4288 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4290  if (ParseMDNodeVector(MDs))
4291  return true;
4292 
4293  Result.assign(std::move(MDs));
4294  return false;
4295 }
4296 
4297 template <>
4298 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4299  ChecksumKindField &Result) {
4301  DIFile::getChecksumKind(Lex.getStrVal());
4302 
4303  if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4304  return TokError(
4305  "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4306 
4307  Result.assign(*CSKind);
4308  Lex.Lex();
4309  return false;
4310 }
4311 
4312 } // end namespace llvm
4313 
4314 template <class ParserTy>
4315 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4316  do {
4317  if (Lex.getKind() != lltok::LabelStr)
4318  return TokError("expected field label here");
4319 
4320  if (parseField())
4321  return true;
4322  } while (EatIfPresent(lltok::comma));
4323 
4324  return false;
4325 }
4326 
4327 template <class ParserTy>
4328 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4329  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4330  Lex.Lex();
4331 
4332  if (ParseToken(lltok::lparen, "expected '(' here"))
4333  return true;
4334  if (Lex.getKind() != lltok::rparen)
4335  if (ParseMDFieldsImplBody(parseField))
4336  return true;
4337 
4338  ClosingLoc = Lex.getLoc();
4339  return ParseToken(lltok::rparen, "expected ')' here");
4340 }
4341 
4342 template <class FieldTy>
4343 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4344  if (Result.Seen)
4345  return TokError("field '" + Name + "' cannot be specified more than once");
4346 
4347  LocTy Loc = Lex.getLoc();
4348  Lex.Lex();
4349  return ParseMDField(Loc, Name, Result);
4350 }
4351 
4352 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4353  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4354 
4355 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4356  if (Lex.getStrVal() == #CLASS) \
4357  return Parse##CLASS(N, IsDistinct);
4358 #include "llvm/IR/Metadata.def"
4359 
4360  return TokError("expected metadata type");
4361 }
4362 
4363 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4364 #define NOP_FIELD(NAME, TYPE, INIT)
4365 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4366  if (!NAME.Seen) \
4367  return Error(ClosingLoc, "missing required field '" #NAME "'");
4368 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4369  if (Lex.getStrVal() == #NAME) \
4370  return ParseMDField(#NAME, NAME);
4371 #define PARSE_MD_FIELDS() \
4372  VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4373  do { \
4374  LocTy ClosingLoc; \
4375  if (ParseMDFieldsImpl([&]() -> bool { \
4376  VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4377  return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4378  }, ClosingLoc)) \
4379  return true; \
4380  VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4381  } while (false)
4382 #define GET_OR_DISTINCT(CLASS, ARGS) \
4383  (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4384 
4385 /// ParseDILocationFields:
4386 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4387 /// isImplicitCode: true)
4388 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4389 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4390  OPTIONAL(line, LineField, ); \
4391  OPTIONAL(column, ColumnField, ); \
4392  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4393  OPTIONAL(inlinedAt, MDField, ); \
4394  OPTIONAL(isImplicitCode, MDBoolField, (false));
4395  PARSE_MD_FIELDS();
4396 #undef VISIT_MD_FIELDS
4397 
4398  Result =
4399  GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4400  inlinedAt.Val, isImplicitCode.Val));
4401  return false;
4402 }
4403 
4404 /// ParseGenericDINode:
4405 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4406 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4407 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4408  REQUIRED(tag, DwarfTagField, ); \
4409  OPTIONAL(header, MDStringField, ); \
4410  OPTIONAL(operands, MDFieldList, );
4411  PARSE_MD_FIELDS();
4412 #undef VISIT_MD_FIELDS
4413 
4414  Result = GET_OR_DISTINCT(GenericDINode,
4415  (Context, tag.Val, header.Val, operands.Val));
4416  return false;
4417 }
4418 
4419 /// ParseDISubrange:
4420 /// ::= !DISubrange(count: 30, lowerBound: 2)
4421 /// ::= !DISubrange(count: !node, lowerBound: 2)
4422 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4424  REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4425  OPTIONAL(lowerBound, MDSignedField, );
4426  PARSE_MD_FIELDS();
4427 #undef VISIT_MD_FIELDS
4428 
4429  if (count.isMDSignedField())
4430  Result = GET_OR_DISTINCT(
4431  DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4432  else if (count.isMDField())
4433  Result = GET_OR_DISTINCT(
4434  DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4435  else
4436  return true;
4437 
4438  return false;
4439 }
4440 
4441 /// ParseDIEnumerator:
4442 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4443 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4444 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4445  REQUIRED(name, MDStringField, ); \
4446  REQUIRED(value, MDSignedOrUnsignedField, ); \
4447  OPTIONAL(isUnsigned, MDBoolField, (false));
4448  PARSE_MD_FIELDS();
4449 #undef VISIT_MD_FIELDS
4450 
4451  if (isUnsigned.Val && value.isMDSignedField())
4452  return TokError("unsigned enumerator with negative value");
4453 
4454  int64_t Value = value.isMDSignedField()
4455  ? value.getMDSignedValue()
4456  : static_cast<int64_t>(value.getMDUnsignedValue());
4457  Result =
4458  GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4459 
4460  return false;
4461 }
4462 
4463 /// ParseDIBasicType:
4464 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4465 /// encoding: DW_ATE_encoding, flags: 0)
4466 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4467 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4468  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4469  OPTIONAL(name, MDStringField, ); \
4470  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4471  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4472  OPTIONAL(encoding, DwarfAttEncodingField, ); \
4473  OPTIONAL(flags, DIFlagField, );
4474  PARSE_MD_FIELDS();
4475 #undef VISIT_MD_FIELDS
4476 
4477  Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4478  align.Val, encoding.Val, flags.Val));
4479  return false;
4480 }
4481 
4482 /// ParseDIDerivedType:
4483 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4484 /// line: 7, scope: !1, baseType: !2, size: 32,
4485 /// align: 32, offset: 0, flags: 0, extraData: !3,
4486 /// dwarfAddressSpace: 3)
4487 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4488 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4489  REQUIRED(tag, DwarfTagField, ); \
4490  OPTIONAL(name, MDStringField, ); \
4491  OPTIONAL(file, MDField, ); \
4492  OPTIONAL(line, LineField, ); \
4493  OPTIONAL(scope, MDField, ); \
4494  REQUIRED(baseType, MDField, ); \
4495  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4496  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4497  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4498  OPTIONAL(flags, DIFlagField, ); \
4499  OPTIONAL(extraData, MDField, ); \
4500  OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4501  PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4503 
4504  Optional<unsigned> DWARFAddressSpace;
4505  if (dwarfAddressSpace.Val != UINT32_MAX)
4506  DWARFAddressSpace = dwarfAddressSpace.Val;
4507 
4508  Result = GET_OR_DISTINCT(DIDerivedType,
4509  (Context, tag.Val, name.Val, file.Val, line.Val,
4510  scope.Val, baseType.Val, size.Val, align.Val,
4511  offset.Val, DWARFAddressSpace, flags.Val,
4512  extraData.Val));
4513  return false;
4514 }
4515 
4516 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4517 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4518  REQUIRED(tag, DwarfTagField, ); \
4519  OPTIONAL(name, MDStringField, ); \
4520  OPTIONAL(file, MDField, ); \
4521  OPTIONAL(line, LineField, ); \
4522  OPTIONAL(scope, MDField, ); \
4523  OPTIONAL(baseType, MDField, ); \
4524  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4525  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4526  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4527  OPTIONAL(flags, DIFlagField, ); \
4528  OPTIONAL(elements, MDField, ); \
4529  OPTIONAL(runtimeLang, DwarfLangField, ); \
4530  OPTIONAL(vtableHolder, MDField, ); \
4531  OPTIONAL(templateParams, MDField, ); \
4532  OPTIONAL(identifier, MDStringField, ); \
4533  OPTIONAL(discriminator, MDField, );
4534  PARSE_MD_FIELDS();
4535 #undef VISIT_MD_FIELDS
4536 
4537  // If this has an identifier try to build an ODR type.
4538  if (identifier.Val)
4539  if (auto *CT = DICompositeType::buildODRType(
4540  Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4541  scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4542  elements.Val, runtimeLang.Val, vtableHolder.Val,
4543  templateParams.Val, discriminator.Val)) {
4544  Result = CT;
4545  return false;
4546  }
4547 
4548  // Create a new node, and save it in the context if it belongs in the type
4549  // map.
4550  Result = GET_OR_DISTINCT(
4552  (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4553  size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4554  runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4555  discriminator.Val));
4556  return false;
4557 }
4558 
4559 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4560 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4561  OPTIONAL(flags, DIFlagField, ); \
4562  OPTIONAL(cc, DwarfCCField, ); \
4563  REQUIRED(types, MDField, );
4564  PARSE_MD_FIELDS();
4565 #undef VISIT_MD_FIELDS
4566 
4568  (Context, flags.Val, cc.Val, types.Val));
4569  return false;
4570 }
4571 
4572 /// ParseDIFileType:
4573 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4574 /// checksumkind: CSK_MD5,
4575 /// checksum: "000102030405060708090a0b0c0d0e0f",
4576 /// source: "source file contents")
4577 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4578  // The default constructed value for checksumkind is required, but will never
4579  // be used, as the parser checks if the field was actually Seen before using
4580  // the Val.
4581 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4582  REQUIRED(filename, MDStringField, ); \
4583  REQUIRED(directory, MDStringField, ); \
4584  OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4585  OPTIONAL(checksum, MDStringField, ); \
4586  OPTIONAL(source, MDStringField, );
4587  PARSE_MD_FIELDS();
4588 #undef VISIT_MD_FIELDS
4589 
4591  if (checksumkind.Seen && checksum.Seen)
4592  OptChecksum.emplace(checksumkind.Val, checksum.Val);
4593  else if (checksumkind.Seen || checksum.Seen)
4594  return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4595 
4596  Optional<MDString *> OptSource;
4597  if (source.Seen)
4598  OptSource = source.Val;
4599  Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4600  OptChecksum, OptSource));
4601  return false;
4602 }
4603 
4604 /// ParseDICompileUnit:
4605 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4606 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4607 /// splitDebugFilename: "abc.debug",
4608 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4609 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4610 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4611  if (!IsDistinct)
4612  return Lex.Error("missing 'distinct', required for !DICompileUnit");
4613 
4614 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4615  REQUIRED(language, DwarfLangField, ); \
4616  REQUIRED(file, MDField, (/* AllowNull */ false)); \
4617  OPTIONAL(producer, MDStringField, ); \
4618  OPTIONAL(isOptimized, MDBoolField, ); \
4619  OPTIONAL(flags, MDStringField, ); \
4620  OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4621  OPTIONAL(splitDebugFilename, MDStringField, ); \
4622  OPTIONAL(emissionKind, EmissionKindField, ); \
4623  OPTIONAL(enums, MDField, ); \
4624  OPTIONAL(retainedTypes, MDField, ); \
4625  OPTIONAL(globals, MDField, ); \
4626  OPTIONAL(imports, MDField, ); \
4627  OPTIONAL(macros, MDField, ); \
4628  OPTIONAL(dwoId, MDUnsignedField, ); \
4629  OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4630  OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4631  OPTIONAL(nameTableKind, NameTableKindField, ); \
4632  OPTIONAL(debugBaseAddress, MDBoolField, = false);
4633  PARSE_MD_FIELDS();
4634 #undef VISIT_MD_FIELDS
4635 
4636  Result = DICompileUnit::getDistinct(
4637  Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4638  runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4639  retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4640  splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4641  debugBaseAddress.Val);
4642  return false;
4643 }
4644 
4645 /// ParseDISubprogram:
4646 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4647 /// file: !1, line: 7, type: !2, isLocal: false,
4648 /// isDefinition: true, scopeLine: 8, containingType: !3,
4649 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4650 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4651 /// spFlags: 10, isOptimized: false, templateParams: !4,
4652 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4653 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4654  auto Loc = Lex.getLoc();
4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4656  OPTIONAL(scope, MDField, ); \
4657  OPTIONAL(name, MDStringField, ); \
4658  OPTIONAL(linkageName, MDStringField, ); \
4659  OPTIONAL(file, MDField, ); \
4660  OPTIONAL(line, LineField, ); \
4661  OPTIONAL(type, MDField, ); \
4662  OPTIONAL(isLocal, MDBoolField, ); \
4663  OPTIONAL(isDefinition, MDBoolField, (true)); \
4664  OPTIONAL(scopeLine, LineField, ); \
4665  OPTIONAL(containingType, MDField, ); \
4666  OPTIONAL(virtuality, DwarfVirtualityField, ); \
4667  OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4668  OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4669  OPTIONAL(flags, DIFlagField, ); \
4670  OPTIONAL(spFlags, DISPFlagField, ); \
4671  OPTIONAL(isOptimized, MDBoolField, ); \
4672  OPTIONAL(unit, MDField, ); \
4673  OPTIONAL(templateParams, MDField, ); \
4674  OPTIONAL(declaration, MDField, ); \
4675  OPTIONAL(retainedNodes, MDField, ); \
4676  OPTIONAL(thrownTypes, MDField, );
4677  PARSE_MD_FIELDS();
4678 #undef VISIT_MD_FIELDS
4679 
4680  // An explicit spFlags field takes precedence over individual fields in
4681  // older IR versions.
4682  DISubprogram::DISPFlags SPFlags =
4683  spFlags.Seen ? spFlags.Val
4684  : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4685  isOptimized.Val, virtuality.Val);
4686  if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4687  return Lex.Error(
4688  Loc,
4689  "missing 'distinct', required for !DISubprogram that is a Definition");
4690  Result = GET_OR_DISTINCT(
4691  DISubprogram,
4692  (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4693  type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4694  thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4695  declaration.Val, retainedNodes.Val, thrownTypes.Val));
4696  return false;
4697 }
4698 
4699 /// ParseDILexicalBlock:
4700 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4701 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4702 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4703  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4704  OPTIONAL(file, MDField, ); \
4705  OPTIONAL(line, LineField, ); \
4706  OPTIONAL(column, ColumnField, );
4707  PARSE_MD_FIELDS();
4708 #undef VISIT_MD_FIELDS
4709 
4710  Result = GET_OR_DISTINCT(
4711  DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4712  return false;
4713 }
4714 
4715 /// ParseDILexicalBlockFile:
4716 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4717 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4719  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4720  OPTIONAL(file, MDField, ); \
4721  REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4722  PARSE_MD_FIELDS();
4723 #undef VISIT_MD_FIELDS
4724 
4726  (Context, scope.Val, file.Val, discriminator.Val));
4727  return false;
4728 }
4729 
4730 /// ParseDICommonBlock:
4731 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4732 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4734  REQUIRED(scope, MDField, ); \
4735  OPTIONAL(declaration, MDField, ); \
4736  OPTIONAL(name, MDStringField, ); \
4737  OPTIONAL(file, MDField, ); \
4738  OPTIONAL(line, LineField, );
4739  PARSE_MD_FIELDS();
4740 #undef VISIT_MD_FIELDS
4741 
4742  Result = GET_OR_DISTINCT(DICommonBlock,
4743  (Context, scope.Val, declaration.Val, name.Val,
4744  file.Val, line.Val));
4745  return false;
4746 }
4747 
4748 /// ParseDINamespace:
4749 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4750 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4751 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4752  REQUIRED(scope, MDField, ); \
4753  OPTIONAL(name, MDStringField, ); \
4754  OPTIONAL(exportSymbols, MDBoolField, );
4755  PARSE_MD_FIELDS();
4756 #undef VISIT_MD_FIELDS
4757 
4758  Result = GET_OR_DISTINCT(DINamespace,
4759  (Context, scope.Val, name.Val, exportSymbols.Val));
4760  return false;
4761 }
4762 
4763 /// ParseDIMacro:
4764 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4765 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4766 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4767  REQUIRED(type, DwarfMacinfoTypeField, ); \
4768  OPTIONAL(line, LineField, ); \
4769  REQUIRED(name, MDStringField, ); \
4770  OPTIONAL(value, MDStringField, );
4771  PARSE_MD_FIELDS();
4772 #undef VISIT_MD_FIELDS
4773 
4774  Result = GET_OR_DISTINCT(DIMacro,
4775  (Context, type.Val, line.Val, name.Val, value.Val));
4776  return false;
4777 }
4778 
4779 /// ParseDIMacroFile:
4780 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4781 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4783  OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4784  OPTIONAL(line, LineField, ); \
4785  REQUIRED(file, MDField, ); \
4786  OPTIONAL(nodes, MDField, );
4787  PARSE_MD_FIELDS();
4788 #undef VISIT_MD_FIELDS
4789 
4790  Result = GET_OR_DISTINCT(DIMacroFile,
4791  (Context, type.Val, line.Val, file.Val, nodes.Val));
4792  return false;
4793 }
4794 
4795 /// ParseDIModule:
4796 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4797 /// includePath: "/usr/include", isysroot: "/")
4798 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4800  REQUIRED(scope, MDField, ); \
4801  REQUIRED(name, MDStringField, ); \
4802  OPTIONAL(configMacros, MDStringField, ); \
4803  OPTIONAL(includePath, MDStringField, ); \
4804  OPTIONAL(isysroot, MDStringField, );
4805  PARSE_MD_FIELDS();
4806 #undef VISIT_MD_FIELDS
4807 
4808  Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4809  configMacros.Val, includePath.Val, isysroot.Val));
4810  return false;
4811 }
4812 
4813 /// ParseDITemplateTypeParameter:
4814 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4815 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4816 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4817  OPTIONAL(name, MDStringField, ); \
4818  REQUIRED(type, MDField, );
4819  PARSE_MD_FIELDS();
4820 #undef VISIT_MD_FIELDS
4821 
4822  Result =
4824  return false;
4825 }
4826 
4827 /// ParseDITemplateValueParameter:
4828 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4829 /// name: "V", type: !1, value: i32 7)
4830 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4831 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4832  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4833  OPTIONAL(name, MDStringField, ); \
4834  OPTIONAL(type, MDField, ); \
4835  REQUIRED(value, MDField, );
4836  PARSE_MD_FIELDS();
4837 #undef VISIT_MD_FIELDS
4838 
4840  (Context, tag.Val, name.Val, type.Val, value.Val));
4841  return false;
4842 }
4843 
4844 /// ParseDIGlobalVariable:
4845 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4846 /// file: !1, line: 7, type: !2, isLocal: false,
4847 /// isDefinition: true, templateParams: !3,
4848 /// declaration: !4, align: 8)
4849 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4850 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4851  REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4852  OPTIONAL(scope, MDField, ); \
4853  OPTIONAL(linkageName, MDStringField, ); \
4854  OPTIONAL(file, MDField, ); \
4855  OPTIONAL(line, LineField, ); \
4856  OPTIONAL(type, MDField, ); \
4857  OPTIONAL(isLocal, MDBoolField, ); \
4858  OPTIONAL(isDefinition, MDBoolField, (true)); \
4859  OPTIONAL(templateParams, MDField, ); \
4860  OPTIONAL(declaration, MDField, ); \
4861  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4862  PARSE_MD_FIELDS();
4863 #undef VISIT_MD_FIELDS
4864 
4865  Result =
4867  (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4868  line.Val, type.Val, isLocal.Val, isDefinition.Val,
4869  declaration.Val, templateParams.Val, align.Val));
4870  return false;
4871 }
4872 
4873 /// ParseDILocalVariable:
4874 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4875 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4876 /// align: 8)
4877 /// ::= !DILocalVariable(scope: !0, name: "foo",
4878 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4879 /// align: 8)
4880 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4881 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4882  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4883  OPTIONAL(name, MDStringField, ); \
4884  OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4885  OPTIONAL(file, MDField, ); \
4886  OPTIONAL(line, LineField, ); \
4887  OPTIONAL(type, MDField, ); \
4888  OPTIONAL(flags, DIFlagField, ); \
4889  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4890  PARSE_MD_FIELDS();
4891 #undef VISIT_MD_FIELDS
4892 
4894  (Context, scope.Val, name.Val, file.Val, line.Val,
4895  type.Val, arg.Val, flags.Val, align.Val));
4896  return false;
4897 }
4898 
4899 /// ParseDILabel:
4900 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4901 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4902 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4903  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4904  REQUIRED(name, MDStringField, ); \
4905  REQUIRED(file, MDField, ); \
4906  REQUIRED(line, LineField, );
4907  PARSE_MD_FIELDS();
4908 #undef VISIT_MD_FIELDS
4909 
4910  Result = GET_OR_DISTINCT(DILabel,
4911  (Context, scope.Val, name.Val, file.Val, line.Val));
4912  return false;
4913 }
4914 
4915 /// ParseDIExpression:
4916 /// ::= !DIExpression(0, 7, -1)
4917 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4918  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4919  Lex.Lex();
4920 
4921  if (ParseToken(lltok::lparen, "expected '(' here"))
4922  return true;
4923 
4924  SmallVector<uint64_t, 8> Elements;
4925  if (Lex.getKind() != lltok::rparen)
4926  do {
4927  if (Lex.getKind() == lltok::DwarfOp) {
4928  if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4929  Lex.Lex();
4930  Elements.push_back(Op);
4931  continue;
4932  }
4933  return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4934  }
4935 
4936  if (Lex.getKind() == lltok::DwarfAttEncoding) {
4937  if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4938  Lex.Lex();
4939  Elements.push_back(Op);
4940  continue;
4941  }
4942  return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4943  }
4944 
4945  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4946  return TokError("expected unsigned integer");
4947 
4948  auto &U = Lex.getAPSIntVal();
4949  if (U.ugt(UINT64_MAX))
4950  return TokError("element too large, limit is " + Twine(UINT64_MAX));
4951  Elements.push_back(U.getZExtValue());
4952  Lex.Lex();
4953  } while (EatIfPresent(lltok::comma));
4954 
4955  if (ParseToken(lltok::rparen, "expected ')' here"))
4956  return true;
4957 
4958  Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4959  return false;
4960 }
4961 
4962 /// ParseDIGlobalVariableExpression:
4963 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4964 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4965  bool IsDistinct) {
4966 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4967  REQUIRED(var, MDField, ); \
4968  REQUIRED(expr, MDField, );
4969  PARSE_MD_FIELDS();
4970 #undef VISIT_MD_FIELDS
4971 
4972  Result =
4973  GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4974  return false;
4975 }
4976 
4977 /// ParseDIObjCProperty:
4978 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4979 /// getter: "getFoo", attributes: 7, type: !2)
4980 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4981 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4982  OPTIONAL(name, MDStringField, ); \
4983  OPTIONAL(file, MDField, ); \
4984  OPTIONAL(line, LineField, ); \
4985  OPTIONAL(setter, MDStringField, ); \
4986  OPTIONAL(getter, MDStringField, ); \
4987  OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4988  OPTIONAL(type, MDField, );
4989  PARSE_MD_FIELDS();
4990 #undef VISIT_MD_FIELDS
4991 
4993  (Context, name.Val, file.Val, line.Val, setter.Val,
4994  getter.Val, attributes.Val, type.Val));
4995  return false;
4996 }
4997 
4998 /// ParseDIImportedEntity:
4999 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5000 /// line: 7, name: "foo")
5001 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5002 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5003  REQUIRED(tag, DwarfTagField, ); \
5004  REQUIRED(scope, MDField, ); \
5005  OPTIONAL(entity, MDField, ); \
5006  OPTIONAL(file, MDField, ); \
5007  OPTIONAL(line, LineField, ); \
5008  OPTIONAL(name, MDStringField, );
5009  PARSE_MD_FIELDS();
5010 #undef VISIT_MD_FIELDS
5011 
5012  Result = GET_OR_DISTINCT(
5014  (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5015  return false;
5016 }
5017 
5018 #undef PARSE_MD_FIELD
5019 #undef NOP_FIELD
5020 #undef REQUIRE_FIELD
5021 #undef DECLARE_FIELD
5022 
5023 /// ParseMetadataAsValue
5024 /// ::= metadata i32 %local
5025 /// ::= metadata i32 @global
5026 /// ::= metadata i32 7
5027 /// ::= metadata !0
5028 /// ::= metadata !{...}
5029 /// ::= metadata !"string"
5030 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5031  // Note: the type 'metadata' has already been parsed.
5032  Metadata *MD;
5033  if (ParseMetadata(MD, &PFS))
5034  return true;
5035 
5036  V = MetadataAsValue::get(Context, MD);
5037  return false;
5038 }
5039 
5040 /// ParseValueAsMetadata
5041 /// ::= i32 %local
5042 /// ::= i32 @global
5043 /// ::= i32 7
5044 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5045  PerFunctionState *PFS) {
5046  Type *Ty;
5047  LocTy Loc;
5048  if (ParseType(Ty, TypeMsg, Loc))
5049  return true;
5050  if (Ty->isMetadataTy())
5051  return Error(Loc, "invalid metadata-value-metadata roundtrip");
5052 
5053  Value *V;
5054  if (ParseValue(Ty, V, PFS))
5055  return true;
5056 
5057  MD = ValueAsMetadata::get(V);
5058  return false;
5059 }
5060 
5061 /// ParseMetadata
5062 /// ::= i32 %local
5063 /// ::= i32 @global
5064 /// ::= i32 7
5065 /// ::= !42
5066 /// ::= !{...}
5067 /// ::= !"string"
5068 /// ::= !DILocation(...)
5069 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5070  if (Lex.getKind() == lltok::MetadataVar) {
5071  MDNode *N;
5072  if (ParseSpecializedMDNode(N))
5073  return true;
5074  MD = N;
5075  return false;
5076  }
5077 
5078  // ValueAsMetadata:
5079  // <type> <value>
5080  if (Lex.getKind() != lltok::exclaim)
5081  return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5082 
5083  // '!'.
5084  assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5085  Lex.Lex();
5086 
5087  // MDString:
5088  // ::= '!' STRINGCONSTANT
5089  if (Lex.getKind() == lltok::StringConstant) {
5090  MDString *S;
5091  if (ParseMDString(S))
5092  return true;
5093  MD = S;
5094  return false;
5095  }
5096 
5097  // MDNode:
5098  // !{ ... }
5099  // !7
5100  MDNode *N;
5101  if (ParseMDNodeTail(N))
5102  return true;
5103  MD = N;
5104  return false;
5105 }
5106 
5107 //===----------------------------------------------------------------------===//
5108 // Function Parsing.
5109 //===----------------------------------------------------------------------===//
5110 
5111 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5112  PerFunctionState *PFS, bool IsCall) {
5113  if (Ty->isFunctionTy())
5114  return Error(ID.Loc, "functions are not values, refer to them as pointers");
5115 
5116  switch (ID.Kind) {
5117  case ValID::t_LocalID:
5118  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5119  V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5120  return V == nullptr;
5121  case ValID::t_LocalName:
5122  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5123  V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5124  return V == nullptr;
5125  case ValID::t_InlineAsm: {
5126  if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5127  return Error(ID.Loc, "invalid type for inline asm constraint string");
5128  V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5129  (ID.UIntVal >> 1) & 1,
5130  (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5131  return false;
5132  }
5133  case ValID::t_GlobalName:
5134  V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5135  return V == nullptr;
5136  case ValID::t_GlobalID:
5137  V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5138  return V == nullptr;
5139  case ValID::t_APSInt:
5140  if (!Ty->isIntegerTy())
5141  return Error(ID.Loc, "integer constant must have integer type");
5144  return false;
5145  case ValID::t_APFloat:
5146  if (!Ty->isFloatingPointTy() ||
5148  return Error(ID.Loc, "floating point constant invalid for type");
5149 
5150  // The lexer has no type info, so builds all half, float, and double FP
5151  // constants as double. Fix this here. Long double does not need this.
5152  if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5153  bool Ignored;
5154  if (Ty->isHalfTy())
5156  &Ignored);
5157  else if (Ty->isFloatTy())
5159  &Ignored);
5160  }
5162 
5163  if (V->getType() != Ty)
5164  return Error(ID.Loc, "floating point constant does not have type '" +
5165  getTypeString(Ty) + "'");
5166 
5167  return false;
5168  case ValID::t_Null:
5169  if (!Ty->isPointerTy())
5170  return Error(ID.Loc, "null must be a pointer type");
5171  V = ConstantPointerNull::get(cast<PointerType>(Ty));
5172  return false;
5173  case ValID::t_Undef:
5174  // FIXME: LabelTy should not be a first-class type.
5175  if (!Ty->isFirstClassType() || Ty->isLabelTy())
5176  return Error(ID.Loc, "invalid type for undef constant");
5177  V = UndefValue::get(Ty);
5178  return false;
5179  case ValID::t_EmptyArray:
5180  if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5181  return Error(ID.Loc, "invalid empty array initializer");
5182  V = UndefValue::get(Ty);
5183  return false;
5184  case ValID::t_Zero:
5185  // FIXME: LabelTy should not be a first-class type.
5186  if (!Ty->isFirstClassType() || Ty->isLabelTy())
5187  return Error(ID.Loc, "invalid type for null constant");
5188  V = Constant::getNullValue(Ty);
5189  return false;
5190  case ValID::t_None:
5191  if (!Ty->isTokenTy())
5192  return Error(ID.Loc, "invalid type for none constant");
5193  V = Constant::getNullValue(Ty);
5194  return false;
5195  case ValID::t_Constant:
5196  if (ID.ConstantVal->getType() != Ty)
5197  return Error(ID.Loc, "constant expression type mismatch");
5198 
5199  V = ID.ConstantVal;
5200  return false;
5203  if (StructType *ST = dyn_cast<StructType>(Ty)) {
5204  if (ST->getNumElements() != ID.UIntVal)
5205  return Error(ID.Loc,
5206  "initializer with struct type has wrong # elements");
5207  if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5208  return Error(ID.Loc, "packed'ness of initializer and type don't match");
5209 
5210  // Verify that the elements are compatible with the structtype.
5211  for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5212  if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5213  return Error(ID.Loc, "element " + Twine(i) +
5214  " of struct initializer doesn't match struct element type");
5215 
5216  V = ConstantStruct::get(
5217  ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5218  } else
5219  return Error(ID.Loc, "constant expression type mismatch");
5220  return false;
5221  }
5222  llvm_unreachable("Invalid ValID");
5223 }
5224 
5225 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5226  C = nullptr;
5227  ValID ID;
5228  auto Loc = Lex.getLoc();
5229  if (ParseValID(ID, /*PFS=*/nullptr))
5230  return true;
5231  switch (ID.Kind) {
5232  case ValID::t_APSInt:
5233  case ValID::t_APFloat:
5234  case ValID::t_Undef:
5235  case ValID::t_Constant:
5238  Value *V;
5239  if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5240  return true;
5241  assert(isa<Constant>(V) && "Expected a constant value");
5242  C = cast<Constant>(V);
5243  return false;
5244  }
5245  case ValID::t_Null:
5246  C = Constant::getNullValue(Ty);
5247  return false;
5248  default:
5249  return Error(Loc, "expected a constant value");
5250  }
5251 }
5252 
5253 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5254  V = nullptr;
5255  ValID ID;
5256  return ParseValID(ID, PFS) ||
5257  ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5258 }
5259 
5260 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5261  Type *Ty = nullptr;
5262  return ParseType(Ty) ||
5263  ParseValue(Ty, V, PFS);
5264 }
5265 
5266 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5267  PerFunctionState &PFS) {
5268  Value *V;
5269  Loc = Lex.getLoc();
5270  if (ParseTypeAndValue(V, PFS)) return true;
5271  if (!isa<BasicBlock>(V))
5272  return Error(Loc, "expected a basic block");
5273  BB = cast<BasicBlock>(V);
5274  return false;
5275 }
5276 
5277 /// FunctionHeader
5278 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5279 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5280 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5281 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5282 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5283  // Parse the linkage.
5284  LocTy LinkageLoc = Lex.getLoc();
5285  unsigned Linkage;
5286  unsigned Visibility;
5287  unsigned DLLStorageClass;
5288  bool DSOLocal;
5289  AttrBuilder RetAttrs;
5290  unsigned CC;
5291  bool HasLinkage;
5292  Type *RetType = nullptr;
5293  LocTy RetTypeLoc = Lex.getLoc();
5294  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5295  DSOLocal) ||
5296  ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5297  ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5298  return true;
5299 
5300  // Verify that the linkage is ok.
5301  switch ((GlobalValue::LinkageTypes)Linkage) {
5303  break; // always ok.
5305  if (isDefine)
5306  return Error(LinkageLoc, "invalid linkage for function definition");
5307  break;
5315  if (!isDefine)
5316  return Error(LinkageLoc, "invalid linkage for function declaration");
5317  break;
5320  return Error(LinkageLoc, "invalid function linkage type");
5321  }
5322 
5323  if (!isValidVisibilityForLinkage(Visibility, Linkage))
5324  return Error(LinkageLoc,
5325  "symbol with local linkage must have default visibility");
5326 
5327  if (!FunctionType::isValidReturnType(RetType))
5328  return Error(RetTypeLoc, "invalid function return type");
5329 
5330  LocTy NameLoc = Lex.getLoc();
5331 
5332  std::string FunctionName;
5333  if (Lex.getKind() == lltok::GlobalVar) {
5334  FunctionName = Lex.getStrVal();
5335  } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5336  unsigned NameID = Lex.getUIntVal();
5337 
5338  if (NameID != NumberedVals.size())
5339  return TokError("function expected to be numbered '%" +
5340  Twine(NumberedVals.size()) + "'");
5341  } else {
5342  return TokError("expected function name");
5343  }
5344 
5345  Lex.Lex();
5346 
5347  if (Lex.getKind() != lltok::lparen)
5348  return TokError("expected '(' in function argument list");
5349 
5350  SmallVector<ArgInfo, 8> ArgList;