LLVM  9.0.0svn
LLParser.cpp
Go to the documentation of this file.
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
44 #include "llvm/Support/Casting.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58  std::string Result;
59  raw_string_ostream Tmp(Result);
60  Tmp << *T;
61  return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66  // Prime the lexer.
67  Lex.Lex();
68 
69  if (Context.shouldDiscardValueNames())
70  return Error(
71  Lex.getLoc(),
72  "Can't read textual IR with a Context that discards named Values");
73 
74  return ParseTopLevelEntities() || ValidateEndOfModule() ||
75  ValidateEndOfIndex();
76 }
77 
79  const SlotMapping *Slots) {
80  restoreParsingState(Slots);
81  Lex.Lex();
82 
83  Type *Ty = nullptr;
84  if (ParseType(Ty) || parseConstantValue(Ty, C))
85  return true;
86  if (Lex.getKind() != lltok::Eof)
87  return Error(Lex.getLoc(), "expected end of string");
88  return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92  const SlotMapping *Slots) {
93  restoreParsingState(Slots);
94  Lex.Lex();
95 
96  Read = 0;
97  SMLoc Start = Lex.getLoc();
98  Ty = nullptr;
99  if (ParseType(Ty))
100  return true;
101  SMLoc End = Lex.getLoc();
102  Read = End.getPointer() - Start.getPointer();
103 
104  return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108  if (!Slots)
109  return;
110  NumberedVals = Slots->GlobalValues;
111  NumberedMetadata = Slots->MetadataNodes;
112  for (const auto &I : Slots->NamedTypes)
113  NamedTypes.insert(
114  std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115  for (const auto &I : Slots->Types)
116  NumberedTypes.insert(
117  std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123  if (!M)
124  return false;
125  // Handle any function attribute group forward references.
126  for (const auto &RAG : ForwardRefAttrGroups) {
127  Value *V = RAG.first;
128  const std::vector<unsigned> &Attrs = RAG.second;
129  AttrBuilder B;
130 
131  for (const auto &Attr : Attrs)
132  B.merge(NumberedAttrBuilders[Attr]);
133 
134  if (Function *Fn = dyn_cast<Function>(V)) {
135  AttributeList AS = Fn->getAttributes();
136  AttrBuilder FnAttrs(AS.getFnAttributes());
138 
139  FnAttrs.merge(B);
140 
141  // If the alignment was parsed as an attribute, move to the alignment
142  // field.
143  if (FnAttrs.hasAlignmentAttr()) {
144  Fn->setAlignment(FnAttrs.getAlignment());
145  FnAttrs.removeAttribute(Attribute::Alignment);
146  }
147 
149  AttributeSet::get(Context, FnAttrs));
150  Fn->setAttributes(AS);
151  } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
152  AttributeList AS = CI->getAttributes();
153  AttrBuilder FnAttrs(AS.getFnAttributes());
155  FnAttrs.merge(B);
157  AttributeSet::get(Context, FnAttrs));
158  CI->setAttributes(AS);
159  } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
160  AttributeList AS = II->getAttributes();
161  AttrBuilder FnAttrs(AS.getFnAttributes());
163  FnAttrs.merge(B);
165  AttributeSet::get(Context, FnAttrs));
166  II->setAttributes(AS);
167  } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
168  AttrBuilder Attrs(GV->getAttributes());
169  Attrs.merge(B);
170  GV->setAttributes(AttributeSet::get(Context,Attrs));
171  } else {
172  llvm_unreachable("invalid object with forward attribute group reference");
173  }
174  }
175 
176  // If there are entries in ForwardRefBlockAddresses at this point, the
177  // function was never defined.
178  if (!ForwardRefBlockAddresses.empty())
179  return Error(ForwardRefBlockAddresses.begin()->first.Loc,
180  "expected function name in blockaddress");
181 
182  for (const auto &NT : NumberedTypes)
183  if (NT.second.second.isValid())
184  return Error(NT.second.second,
185  "use of undefined type '%" + Twine(NT.first) + "'");
186 
187  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
188  NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
189  if (I->second.second.isValid())
190  return Error(I->second.second,
191  "use of undefined type named '" + I->getKey() + "'");
192 
193  if (!ForwardRefComdats.empty())
194  return Error(ForwardRefComdats.begin()->second,
195  "use of undefined comdat '$" +
196  ForwardRefComdats.begin()->first + "'");
197 
198  if (!ForwardRefVals.empty())
199  return Error(ForwardRefVals.begin()->second.second,
200  "use of undefined value '@" + ForwardRefVals.begin()->first +
201  "'");
202 
203  if (!ForwardRefValIDs.empty())
204  return Error(ForwardRefValIDs.begin()->second.second,
205  "use of undefined value '@" +
206  Twine(ForwardRefValIDs.begin()->first) + "'");
207 
208  if (!ForwardRefMDNodes.empty())
209  return Error(ForwardRefMDNodes.begin()->second.second,
210  "use of undefined metadata '!" +
211  Twine(ForwardRefMDNodes.begin()->first) + "'");
212 
213  // Resolve metadata cycles.
214  for (auto &N : NumberedMetadata) {
215  if (N.second && !N.second->isResolved())
216  N.second->resolveCycles();
217  }
218 
219  for (auto *Inst : InstsWithTBAATag) {
220  MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
221  assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
222  auto *UpgradedMD = UpgradeTBAANode(*MD);
223  if (MD != UpgradedMD)
224  Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
225  }
226 
227  // Look for intrinsic functions and CallInst that need to be upgraded
228  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
229  UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
230 
231  // Some types could be renamed during loading if several modules are
232  // loaded in the same LLVMContext (LTO scenario). In this case we should
233  // remangle intrinsics names as well.
234  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
235  Function *F = &*FI++;
236  if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
237  F->replaceAllUsesWith(Remangled.getValue());
238  F->eraseFromParent();
239  }
240  }
241 
242  if (UpgradeDebugInfo)
244 
245  UpgradeModuleFlags(*M);
247 
248  if (!Slots)
249  return false;
250  // Initialize the slot mapping.
251  // Because by this point we've parsed and validated everything, we can "steal"
252  // the mapping from LLParser as it doesn't need it anymore.
253  Slots->GlobalValues = std::move(NumberedVals);
254  Slots->MetadataNodes = std::move(NumberedMetadata);
255  for (const auto &I : NamedTypes)
256  Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
257  for (const auto &I : NumberedTypes)
258  Slots->Types.insert(std::make_pair(I.first, I.second.first));
259 
260  return false;
261 }
262 
263 /// Do final validity and sanity checks at the end of the index.
264 bool LLParser::ValidateEndOfIndex() {
265  if (!Index)
266  return false;
267 
268  if (!ForwardRefValueInfos.empty())
269  return Error(ForwardRefValueInfos.begin()->second.front().second,
270  "use of undefined summary '^" +
271  Twine(ForwardRefValueInfos.begin()->first) + "'");
272 
273  if (!ForwardRefAliasees.empty())
274  return Error(ForwardRefAliasees.begin()->second.front().second,
275  "use of undefined summary '^" +
276  Twine(ForwardRefAliasees.begin()->first) + "'");
277 
278  if (!ForwardRefTypeIds.empty())
279  return Error(ForwardRefTypeIds.begin()->second.front().second,
280  "use of undefined type id summary '^" +
281  Twine(ForwardRefTypeIds.begin()->first) + "'");
282 
283  return false;
284 }
285 
286 //===----------------------------------------------------------------------===//
287 // Top-Level Entities
288 //===----------------------------------------------------------------------===//
289 
290 bool LLParser::ParseTopLevelEntities() {
291  // If there is no Module, then parse just the summary index entries.
292  if (!M) {
293  while (true) {
294  switch (Lex.getKind()) {
295  case lltok::Eof:
296  return false;
297  case lltok::SummaryID:
298  if (ParseSummaryEntry())
299  return true;
300  break;
302  if (ParseSourceFileName())
303  return true;
304  break;
305  default:
306  // Skip everything else
307  Lex.Lex();
308  }
309  }
310  }
311  while (true) {
312  switch (Lex.getKind()) {
313  default: return TokError("expected top-level entity");
314  case lltok::Eof: return false;
315  case lltok::kw_declare: if (ParseDeclare()) return true; break;
316  case lltok::kw_define: if (ParseDefine()) return true; break;
317  case lltok::kw_module: if (ParseModuleAsm()) return true; break;
318  case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
320  if (ParseSourceFileName())
321  return true;
322  break;
323  case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
324  case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
325  case lltok::LocalVar: if (ParseNamedType()) return true; break;
326  case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
327  case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
328  case lltok::ComdatVar: if (parseComdat()) return true; break;
329  case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
330  case lltok::SummaryID:
331  if (ParseSummaryEntry())
332  return true;
333  break;
334  case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
335  case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
336  case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
338  if (ParseUseListOrderBB())
339  return true;
340  break;
341  }
342  }
343 }
344 
345 /// toplevelentity
346 /// ::= 'module' 'asm' STRINGCONSTANT
347 bool LLParser::ParseModuleAsm() {
348  assert(Lex.getKind() == lltok::kw_module);
349  Lex.Lex();
350 
351  std::string AsmStr;
352  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
353  ParseStringConstant(AsmStr)) return true;
354 
355  M->appendModuleInlineAsm(AsmStr);
356  return false;
357 }
358 
359 /// toplevelentity
360 /// ::= 'target' 'triple' '=' STRINGCONSTANT
361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
362 bool LLParser::ParseTargetDefinition() {
363  assert(Lex.getKind() == lltok::kw_target);
364  std::string Str;
365  switch (Lex.Lex()) {
366  default: return TokError("unknown target property");
367  case lltok::kw_triple:
368  Lex.Lex();
369  if (ParseToken(lltok::equal, "expected '=' after target triple") ||
370  ParseStringConstant(Str))
371  return true;
372  M->setTargetTriple(Str);
373  return false;
375  Lex.Lex();
376  if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
377  ParseStringConstant(Str))
378  return true;
379  if (DataLayoutStr.empty())
380  M->setDataLayout(Str);
381  return false;
382  }
383 }
384 
385 /// toplevelentity
386 /// ::= 'source_filename' '=' STRINGCONSTANT
387 bool LLParser::ParseSourceFileName() {
389  Lex.Lex();
390  if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
391  ParseStringConstant(SourceFileName))
392  return true;
393  if (M)
394  M->setSourceFileName(SourceFileName);
395  return false;
396 }
397 
398 /// toplevelentity
399 /// ::= 'deplibs' '=' '[' ']'
400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
401 /// FIXME: Remove in 4.0. Currently parse, but ignore.
402 bool LLParser::ParseDepLibs() {
403  assert(Lex.getKind() == lltok::kw_deplibs);
404  Lex.Lex();
405  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
406  ParseToken(lltok::lsquare, "expected '=' after deplibs"))
407  return true;
408 
409  if (EatIfPresent(lltok::rsquare))
410  return false;
411 
412  do {
413  std::string Str;
414  if (ParseStringConstant(Str)) return true;
415  } while (EatIfPresent(lltok::comma));
416 
417  return ParseToken(lltok::rsquare, "expected ']' at end of list");
418 }
419 
420 /// ParseUnnamedType:
421 /// ::= LocalVarID '=' 'type' type
422 bool LLParser::ParseUnnamedType() {
423  LocTy TypeLoc = Lex.getLoc();
424  unsigned TypeID = Lex.getUIntVal();
425  Lex.Lex(); // eat LocalVarID;
426 
427  if (ParseToken(lltok::equal, "expected '=' after name") ||
428  ParseToken(lltok::kw_type, "expected 'type' after '='"))
429  return true;
430 
431  Type *Result = nullptr;
432  if (ParseStructDefinition(TypeLoc, "",
433  NumberedTypes[TypeID], Result)) return true;
434 
435  if (!isa<StructType>(Result)) {
436  std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
437  if (Entry.first)
438  return Error(TypeLoc, "non-struct types may not be recursive");
439  Entry.first = Result;
440  Entry.second = SMLoc();
441  }
442 
443  return false;
444 }
445 
446 /// toplevelentity
447 /// ::= LocalVar '=' 'type' type
448 bool LLParser::ParseNamedType() {
449  std::string Name = Lex.getStrVal();
450  LocTy NameLoc = Lex.getLoc();
451  Lex.Lex(); // eat LocalVar.
452 
453  if (ParseToken(lltok::equal, "expected '=' after name") ||
454  ParseToken(lltok::kw_type, "expected 'type' after name"))
455  return true;
456 
457  Type *Result = nullptr;
458  if (ParseStructDefinition(NameLoc, Name,
459  NamedTypes[Name], Result)) return true;
460 
461  if (!isa<StructType>(Result)) {
462  std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
463  if (Entry.first)
464  return Error(NameLoc, "non-struct types may not be recursive");
465  Entry.first = Result;
466  Entry.second = SMLoc();
467  }
468 
469  return false;
470 }
471 
472 /// toplevelentity
473 /// ::= 'declare' FunctionHeader
474 bool LLParser::ParseDeclare() {
475  assert(Lex.getKind() == lltok::kw_declare);
476  Lex.Lex();
477 
478  std::vector<std::pair<unsigned, MDNode *>> MDs;
479  while (Lex.getKind() == lltok::MetadataVar) {
480  unsigned MDK;
481  MDNode *N;
482  if (ParseMetadataAttachment(MDK, N))
483  return true;
484  MDs.push_back({MDK, N});
485  }
486 
487  Function *F;
488  if (ParseFunctionHeader(F, false))
489  return true;
490  for (auto &MD : MDs)
491  F->addMetadata(MD.first, *MD.second);
492  return false;
493 }
494 
495 /// toplevelentity
496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
497 bool LLParser::ParseDefine() {
498  assert(Lex.getKind() == lltok::kw_define);
499  Lex.Lex();
500 
501  Function *F;
502  return ParseFunctionHeader(F, true) ||
503  ParseOptionalFunctionMetadata(*F) ||
504  ParseFunctionBody(*F);
505 }
506 
507 /// ParseGlobalType
508 /// ::= 'constant'
509 /// ::= 'global'
510 bool LLParser::ParseGlobalType(bool &IsConstant) {
511  if (Lex.getKind() == lltok::kw_constant)
512  IsConstant = true;
513  else if (Lex.getKind() == lltok::kw_global)
514  IsConstant = false;
515  else {
516  IsConstant = false;
517  return TokError("expected 'global' or 'constant'");
518  }
519  Lex.Lex();
520  return false;
521 }
522 
523 bool LLParser::ParseOptionalUnnamedAddr(
524  GlobalVariable::UnnamedAddr &UnnamedAddr) {
525  if (EatIfPresent(lltok::kw_unnamed_addr))
526  UnnamedAddr = GlobalValue::UnnamedAddr::Global;
527  else if (EatIfPresent(lltok::kw_local_unnamed_addr))
528  UnnamedAddr = GlobalValue::UnnamedAddr::Local;
529  else
530  UnnamedAddr = GlobalValue::UnnamedAddr::None;
531  return false;
532 }
533 
534 /// ParseUnnamedGlobal:
535 /// OptionalVisibility (ALIAS | IFUNC) ...
536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
537 /// OptionalDLLStorageClass
538 /// ... -> global variable
539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
541 /// OptionalDLLStorageClass
542 /// ... -> global variable
543 bool LLParser::ParseUnnamedGlobal() {
544  unsigned VarID = NumberedVals.size();
545  std::string Name;
546  LocTy NameLoc = Lex.getLoc();
547 
548  // Handle the GlobalID form.
549  if (Lex.getKind() == lltok::GlobalID) {
550  if (Lex.getUIntVal() != VarID)
551  return Error(Lex.getLoc(), "variable expected to be numbered '%" +
552  Twine(VarID) + "'");
553  Lex.Lex(); // eat GlobalID;
554 
555  if (ParseToken(lltok::equal, "expected '=' after name"))
556  return true;
557  }
558 
559  bool HasLinkage;
560  unsigned Linkage, Visibility, DLLStorageClass;
561  bool DSOLocal;
563  GlobalVariable::UnnamedAddr UnnamedAddr;
564  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
565  DSOLocal) ||
566  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
567  return true;
568 
569  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
570  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
571  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
572 
573  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
574  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
575 }
576 
577 /// ParseNamedGlobal:
578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
580 /// OptionalVisibility OptionalDLLStorageClass
581 /// ... -> global variable
582 bool LLParser::ParseNamedGlobal() {
583  assert(Lex.getKind() == lltok::GlobalVar);
584  LocTy NameLoc = Lex.getLoc();
585  std::string Name = Lex.getStrVal();
586  Lex.Lex();
587 
588  bool HasLinkage;
589  unsigned Linkage, Visibility, DLLStorageClass;
590  bool DSOLocal;
592  GlobalVariable::UnnamedAddr UnnamedAddr;
593  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
594  ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
595  DSOLocal) ||
596  ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
597  return true;
598 
599  if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
600  return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
601  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
602 
603  return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
604  DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
605 }
606 
607 bool LLParser::parseComdat() {
608  assert(Lex.getKind() == lltok::ComdatVar);
609  std::string Name = Lex.getStrVal();
610  LocTy NameLoc = Lex.getLoc();
611  Lex.Lex();
612 
613  if (ParseToken(lltok::equal, "expected '=' here"))
614  return true;
615 
616  if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
617  return TokError("expected comdat type");
618 
620  switch (Lex.getKind()) {
621  default:
622  return TokError("unknown selection kind");
623  case lltok::kw_any:
624  SK = Comdat::Any;
625  break;
627  SK = Comdat::ExactMatch;
628  break;
629  case lltok::kw_largest:
630  SK = Comdat::Largest;
631  break;
634  break;
635  case lltok::kw_samesize:
636  SK = Comdat::SameSize;
637  break;
638  }
639  Lex.Lex();
640 
641  // See if the comdat was forward referenced, if so, use the comdat.
642  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
643  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
644  if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
645  return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
646 
647  Comdat *C;
648  if (I != ComdatSymTab.end())
649  C = &I->second;
650  else
651  C = M->getOrInsertComdat(Name);
652  C->setSelectionKind(SK);
653 
654  return false;
655 }
656 
657 // MDString:
658 // ::= '!' STRINGCONSTANT
659 bool LLParser::ParseMDString(MDString *&Result) {
660  std::string Str;
661  if (ParseStringConstant(Str)) return true;
662  Result = MDString::get(Context, Str);
663  return false;
664 }
665 
666 // MDNode:
667 // ::= '!' MDNodeNumber
668 bool LLParser::ParseMDNodeID(MDNode *&Result) {
669  // !{ ..., !42, ... }
670  LocTy IDLoc = Lex.getLoc();
671  unsigned MID = 0;
672  if (ParseUInt32(MID))
673  return true;
674 
675  // If not a forward reference, just return it now.
676  if (NumberedMetadata.count(MID)) {
677  Result = NumberedMetadata[MID];
678  return false;
679  }
680 
681  // Otherwise, create MDNode forward reference.
682  auto &FwdRef = ForwardRefMDNodes[MID];
683  FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
684 
685  Result = FwdRef.first.get();
686  NumberedMetadata[MID].reset(Result);
687  return false;
688 }
689 
690 /// ParseNamedMetadata:
691 /// !foo = !{ !1, !2 }
692 bool LLParser::ParseNamedMetadata() {
694  std::string Name = Lex.getStrVal();
695  Lex.Lex();
696 
697  if (ParseToken(lltok::equal, "expected '=' here") ||
698  ParseToken(lltok::exclaim, "Expected '!' here") ||
699  ParseToken(lltok::lbrace, "Expected '{' here"))
700  return true;
701 
702  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
703  if (Lex.getKind() != lltok::rbrace)
704  do {
705  MDNode *N = nullptr;
706  // Parse DIExpressions inline as a special case. They are still MDNodes,
707  // so they can still appear in named metadata. Remove this logic if they
708  // become plain Metadata.
709  if (Lex.getKind() == lltok::MetadataVar &&
710  Lex.getStrVal() == "DIExpression") {
711  if (ParseDIExpression(N, /*IsDistinct=*/false))
712  return true;
713  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
714  ParseMDNodeID(N)) {
715  return true;
716  }
717  NMD->addOperand(N);
718  } while (EatIfPresent(lltok::comma));
719 
720  return ParseToken(lltok::rbrace, "expected end of metadata node");
721 }
722 
723 /// ParseStandaloneMetadata:
724 /// !42 = !{...}
725 bool LLParser::ParseStandaloneMetadata() {
726  assert(Lex.getKind() == lltok::exclaim);
727  Lex.Lex();
728  unsigned MetadataID = 0;
729 
730  MDNode *Init;
731  if (ParseUInt32(MetadataID) ||
732  ParseToken(lltok::equal, "expected '=' here"))
733  return true;
734 
735  // Detect common error, from old metadata syntax.
736  if (Lex.getKind() == lltok::Type)
737  return TokError("unexpected type in metadata definition");
738 
739  bool IsDistinct = EatIfPresent(lltok::kw_distinct);
740  if (Lex.getKind() == lltok::MetadataVar) {
741  if (ParseSpecializedMDNode(Init, IsDistinct))
742  return true;
743  } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
744  ParseMDTuple(Init, IsDistinct))
745  return true;
746 
747  // See if this was forward referenced, if so, handle it.
748  auto FI = ForwardRefMDNodes.find(MetadataID);
749  if (FI != ForwardRefMDNodes.end()) {
750  FI->second.first->replaceAllUsesWith(Init);
751  ForwardRefMDNodes.erase(FI);
752 
753  assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
754  } else {
755  if (NumberedMetadata.count(MetadataID))
756  return TokError("Metadata id is already used");
757  NumberedMetadata[MetadataID].reset(Init);
758  }
759 
760  return false;
761 }
762 
763 // Skips a single module summary entry.
764 bool LLParser::SkipModuleSummaryEntry() {
765  // Each module summary entry consists of a tag for the entry
766  // type, followed by a colon, then the fields surrounded by nested sets of
767  // parentheses. The "tag:" looks like a Label. Once parsing support is
768  // in place we will look for the tokens corresponding to the expected tags.
769  if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
770  Lex.getKind() != lltok::kw_typeid)
771  return TokError(
772  "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
773  Lex.Lex();
774  if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
775  ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
776  return true;
777  // Now walk through the parenthesized entry, until the number of open
778  // parentheses goes back down to 0 (the first '(' was parsed above).
779  unsigned NumOpenParen = 1;
780  do {
781  switch (Lex.getKind()) {
782  case lltok::lparen:
783  NumOpenParen++;
784  break;
785  case lltok::rparen:
786  NumOpenParen--;
787  break;
788  case lltok::Eof:
789  return TokError("found end of file while parsing summary entry");
790  default:
791  // Skip everything in between parentheses.
792  break;
793  }
794  Lex.Lex();
795  } while (NumOpenParen > 0);
796  return false;
797 }
798 
799 /// SummaryEntry
800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
801 bool LLParser::ParseSummaryEntry() {
802  assert(Lex.getKind() == lltok::SummaryID);
803  unsigned SummaryID = Lex.getUIntVal();
804 
805  // For summary entries, colons should be treated as distinct tokens,
806  // not an indication of the end of a label token.
807  Lex.setIgnoreColonInIdentifiers(true);
808 
809  Lex.Lex();
810  if (ParseToken(lltok::equal, "expected '=' here"))
811  return true;
812 
813  // If we don't have an index object, skip the summary entry.
814  if (!Index)
815  return SkipModuleSummaryEntry();
816 
817  switch (Lex.getKind()) {
818  case lltok::kw_gv:
819  return ParseGVEntry(SummaryID);
820  case lltok::kw_module:
821  return ParseModuleEntry(SummaryID);
822  case lltok::kw_typeid:
823  return ParseTypeIdEntry(SummaryID);
824  break;
825  default:
826  return Error(Lex.getLoc(), "unexpected summary kind");
827  }
828  Lex.setIgnoreColonInIdentifiers(false);
829  return false;
830 }
831 
832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
835 }
836 
837 // If there was an explicit dso_local, update GV. In the absence of an explicit
838 // dso_local we keep the default value.
839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
840  if (DSOLocal)
841  GV.setDSOLocal(true);
842 }
843 
844 /// parseIndirectSymbol:
845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
846 /// OptionalVisibility OptionalDLLStorageClass
847 /// OptionalThreadLocal OptionalUnnamedAddr
848 // 'alias|ifunc' IndirectSymbol
849 ///
850 /// IndirectSymbol
851 /// ::= TypeAndValue
852 ///
853 /// Everything through OptionalUnnamedAddr has already been parsed.
854 ///
855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
856  unsigned L, unsigned Visibility,
857  unsigned DLLStorageClass, bool DSOLocal,
859  GlobalVariable::UnnamedAddr UnnamedAddr) {
860  bool IsAlias;
861  if (Lex.getKind() == lltok::kw_alias)
862  IsAlias = true;
863  else if (Lex.getKind() == lltok::kw_ifunc)
864  IsAlias = false;
865  else
866  llvm_unreachable("Not an alias or ifunc!");
867  Lex.Lex();
868 
870 
871  if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
872  return Error(NameLoc, "invalid linkage type for alias");
873 
874  if (!isValidVisibilityForLinkage(Visibility, L))
875  return Error(NameLoc,
876  "symbol with local linkage must have default visibility");
877 
878  Type *Ty;
879  LocTy ExplicitTypeLoc = Lex.getLoc();
880  if (ParseType(Ty) ||
881  ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
882  return true;
883 
884  Constant *Aliasee;
885  LocTy AliaseeLoc = Lex.getLoc();
886  if (Lex.getKind() != lltok::kw_bitcast &&
887  Lex.getKind() != lltok::kw_getelementptr &&
888  Lex.getKind() != lltok::kw_addrspacecast &&
889  Lex.getKind() != lltok::kw_inttoptr) {
890  if (ParseGlobalTypeAndValue(Aliasee))
891  return true;
892  } else {
893  // The bitcast dest type is not present, it is implied by the dest type.
894  ValID ID;
895  if (ParseValID(ID))
896  return true;
897  if (ID.Kind != ValID::t_Constant)
898  return Error(AliaseeLoc, "invalid aliasee");
899  Aliasee = ID.ConstantVal;
900  }
901 
902  Type *AliaseeType = Aliasee->getType();
903  auto *PTy = dyn_cast<PointerType>(AliaseeType);
904  if (!PTy)
905  return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
906  unsigned AddrSpace = PTy->getAddressSpace();
907 
908  if (IsAlias && Ty != PTy->getElementType())
909  return Error(
910  ExplicitTypeLoc,
911  "explicit pointee type doesn't match operand's pointee type");
912 
913  if (!IsAlias && !PTy->getElementType()->isFunctionTy())
914  return Error(
915  ExplicitTypeLoc,
916  "explicit pointee type should be a function type");
917 
918  GlobalValue *GVal = nullptr;
919 
920  // See if the alias was forward referenced, if so, prepare to replace the
921  // forward reference.
922  if (!Name.empty()) {
923  GVal = M->getNamedValue(Name);
924  if (GVal) {
925  if (!ForwardRefVals.erase(Name))
926  return Error(NameLoc, "redefinition of global '@" + Name + "'");
927  }
928  } else {
929  auto I = ForwardRefValIDs.find(NumberedVals.size());
930  if (I != ForwardRefValIDs.end()) {
931  GVal = I->second.first;
932  ForwardRefValIDs.erase(I);
933  }
934  }
935 
936  // Okay, create the alias but do not insert it into the module yet.
937  std::unique_ptr<GlobalIndirectSymbol> GA;
938  if (IsAlias)
939  GA.reset(GlobalAlias::create(Ty, AddrSpace,
941  Aliasee, /*Parent*/ nullptr));
942  else
943  GA.reset(GlobalIFunc::create(Ty, AddrSpace,
945  Aliasee, /*Parent*/ nullptr));
946  GA->setThreadLocalMode(TLM);
947  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
948  GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
949  GA->setUnnamedAddr(UnnamedAddr);
950  maybeSetDSOLocal(DSOLocal, *GA);
951 
952  if (Name.empty())
953  NumberedVals.push_back(GA.get());
954 
955  if (GVal) {
956  // Verify that types agree.
957  if (GVal->getType() != GA->getType())
958  return Error(
959  ExplicitTypeLoc,
960  "forward reference and definition of alias have different types");
961 
962  // If they agree, just RAUW the old value with the alias and remove the
963  // forward ref info.
964  GVal->replaceAllUsesWith(GA.get());
965  GVal->eraseFromParent();
966  }
967 
968  // Insert into the module, we know its name won't collide now.
969  if (IsAlias)
970  M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
971  else
972  M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
973  assert(GA->getName() == Name && "Should not be a name conflict!");
974 
975  // The module owns this now
976  GA.release();
977 
978  return false;
979 }
980 
981 /// ParseGlobal
982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
983 /// OptionalVisibility OptionalDLLStorageClass
984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
989 /// Const OptionalAttrs
990 ///
991 /// Everything up to and including OptionalUnnamedAddr has been parsed
992 /// already.
993 ///
994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
995  unsigned Linkage, bool HasLinkage,
996  unsigned Visibility, unsigned DLLStorageClass,
997  bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
998  GlobalVariable::UnnamedAddr UnnamedAddr) {
999  if (!isValidVisibilityForLinkage(Visibility, Linkage))
1000  return Error(NameLoc,
1001  "symbol with local linkage must have default visibility");
1002 
1003  unsigned AddrSpace;
1004  bool IsConstant, IsExternallyInitialized;
1005  LocTy IsExternallyInitializedLoc;
1006  LocTy TyLoc;
1007 
1008  Type *Ty = nullptr;
1009  if (ParseOptionalAddrSpace(AddrSpace) ||
1010  ParseOptionalToken(lltok::kw_externally_initialized,
1011  IsExternallyInitialized,
1012  &IsExternallyInitializedLoc) ||
1013  ParseGlobalType(IsConstant) ||
1014  ParseType(Ty, TyLoc))
1015  return true;
1016 
1017  // If the linkage is specified and is external, then no initializer is
1018  // present.
1019  Constant *Init = nullptr;
1020  if (!HasLinkage ||
1022  (GlobalValue::LinkageTypes)Linkage)) {
1023  if (ParseGlobalValue(Ty, Init))
1024  return true;
1025  }
1026 
1028  return Error(TyLoc, "invalid type for global variable");
1029 
1030  GlobalValue *GVal = nullptr;
1031 
1032  // See if the global was forward referenced, if so, use the global.
1033  if (!Name.empty()) {
1034  GVal = M->getNamedValue(Name);
1035  if (GVal) {
1036  if (!ForwardRefVals.erase(Name))
1037  return Error(NameLoc, "redefinition of global '@" + Name + "'");
1038  }
1039  } else {
1040  auto I = ForwardRefValIDs.find(NumberedVals.size());
1041  if (I != ForwardRefValIDs.end()) {
1042  GVal = I->second.first;
1043  ForwardRefValIDs.erase(I);
1044  }
1045  }
1046 
1047  GlobalVariable *GV;
1048  if (!GVal) {
1049  GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1051  AddrSpace);
1052  } else {
1053  if (GVal->getValueType() != Ty)
1054  return Error(TyLoc,
1055  "forward reference and definition of global have different types");
1056 
1057  GV = cast<GlobalVariable>(GVal);
1058 
1059  // Move the forward-reference to the correct spot in the module.
1060  M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1061  }
1062 
1063  if (Name.empty())
1064  NumberedVals.push_back(GV);
1065 
1066  // Set the parsed properties on the global.
1067  if (Init)
1068  GV->setInitializer(Init);
1069  GV->setConstant(IsConstant);
1070  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1071  maybeSetDSOLocal(DSOLocal, *GV);
1074  GV->setExternallyInitialized(IsExternallyInitialized);
1075  GV->setThreadLocalMode(TLM);
1076  GV->setUnnamedAddr(UnnamedAddr);
1077 
1078  // Parse attributes on the global.
1079  while (Lex.getKind() == lltok::comma) {
1080  Lex.Lex();
1081 
1082  if (Lex.getKind() == lltok::kw_section) {
1083  Lex.Lex();
1084  GV->setSection(Lex.getStrVal());
1085  if (ParseToken(lltok::StringConstant, "expected global section string"))
1086  return true;
1087  } else if (Lex.getKind() == lltok::kw_align) {
1088  unsigned Alignment;
1089  if (ParseOptionalAlignment(Alignment)) return true;
1090  GV->setAlignment(Alignment);
1091  } else if (Lex.getKind() == lltok::MetadataVar) {
1092  if (ParseGlobalObjectMetadataAttachment(*GV))
1093  return true;
1094  } else {
1095  Comdat *C;
1096  if (parseOptionalComdat(Name, C))
1097  return true;
1098  if (C)
1099  GV->setComdat(C);
1100  else
1101  return TokError("unknown global variable property!");
1102  }
1103  }
1104 
1106  LocTy BuiltinLoc;
1107  std::vector<unsigned> FwdRefAttrGrps;
1108  if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1109  return true;
1110  if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1111  GV->setAttributes(AttributeSet::get(Context, Attrs));
1112  ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1113  }
1114 
1115  return false;
1116 }
1117 
1118 /// ParseUnnamedAttrGrp
1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1120 bool LLParser::ParseUnnamedAttrGrp() {
1122  LocTy AttrGrpLoc = Lex.getLoc();
1123  Lex.Lex();
1124 
1125  if (Lex.getKind() != lltok::AttrGrpID)
1126  return TokError("expected attribute group id");
1127 
1128  unsigned VarID = Lex.getUIntVal();
1129  std::vector<unsigned> unused;
1130  LocTy BuiltinLoc;
1131  Lex.Lex();
1132 
1133  if (ParseToken(lltok::equal, "expected '=' here") ||
1134  ParseToken(lltok::lbrace, "expected '{' here") ||
1135  ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1136  BuiltinLoc) ||
1137  ParseToken(lltok::rbrace, "expected end of attribute group"))
1138  return true;
1139 
1140  if (!NumberedAttrBuilders[VarID].hasAttributes())
1141  return Error(AttrGrpLoc, "attribute group has no attributes");
1142 
1143  return false;
1144 }
1145 
1146 /// ParseFnAttributeValuePairs
1147 /// ::= <attr> | <attr> '=' <value>
1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1149  std::vector<unsigned> &FwdRefAttrGrps,
1150  bool inAttrGrp, LocTy &BuiltinLoc) {
1151  bool HaveError = false;
1152 
1153  B.clear();
1154 
1155  while (true) {
1156  lltok::Kind Token = Lex.getKind();
1157  if (Token == lltok::kw_builtin)
1158  BuiltinLoc = Lex.getLoc();
1159  switch (Token) {
1160  default:
1161  if (!inAttrGrp) return HaveError;
1162  return Error(Lex.getLoc(), "unterminated attribute group");
1163  case lltok::rbrace:
1164  // Finished.
1165  return false;
1166 
1167  case lltok::AttrGrpID: {
1168  // Allow a function to reference an attribute group:
1169  //
1170  // define void @foo() #1 { ... }
1171  if (inAttrGrp)
1172  HaveError |=
1173  Error(Lex.getLoc(),
1174  "cannot have an attribute group reference in an attribute group");
1175 
1176  unsigned AttrGrpNum = Lex.getUIntVal();
1177  if (inAttrGrp) break;
1178 
1179  // Save the reference to the attribute group. We'll fill it in later.
1180  FwdRefAttrGrps.push_back(AttrGrpNum);
1181  break;
1182  }
1183  // Target-dependent attributes:
1184  case lltok::StringConstant: {
1185  if (ParseStringAttribute(B))
1186  return true;
1187  continue;
1188  }
1189 
1190  // Target-independent attributes:
1191  case lltok::kw_align: {
1192  // As a hack, we allow function alignment to be initially parsed as an
1193  // attribute on a function declaration/definition or added to an attribute
1194  // group and later moved to the alignment field.
1195  unsigned Alignment;
1196  if (inAttrGrp) {
1197  Lex.Lex();
1198  if (ParseToken(lltok::equal, "expected '=' here") ||
1199  ParseUInt32(Alignment))
1200  return true;
1201  } else {
1202  if (ParseOptionalAlignment(Alignment))
1203  return true;
1204  }
1205  B.addAlignmentAttr(Alignment);
1206  continue;
1207  }
1208  case lltok::kw_alignstack: {
1209  unsigned Alignment;
1210  if (inAttrGrp) {
1211  Lex.Lex();
1212  if (ParseToken(lltok::equal, "expected '=' here") ||
1213  ParseUInt32(Alignment))
1214  return true;
1215  } else {
1216  if (ParseOptionalStackAlignment(Alignment))
1217  return true;
1218  }
1219  B.addStackAlignmentAttr(Alignment);
1220  continue;
1221  }
1222  case lltok::kw_allocsize: {
1223  unsigned ElemSizeArg;
1224  Optional<unsigned> NumElemsArg;
1225  // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1226  if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1227  return true;
1228  B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1229  continue;
1230  }
1231  case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1232  case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1233  case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1237  B.addAttribute(Attribute::InaccessibleMemOnly); break;
1239  B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1240  case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1242  case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1243  case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1244  case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1245  case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1247  B.addAttribute(Attribute::NoImplicitFloat); break;
1248  case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1249  case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1250  case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1251  case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1252  case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1253  case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1254  case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1256  B.addAttribute(Attribute::OptForFuzzing); break;
1257  case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1258  case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1259  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1260  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1262  B.addAttribute(Attribute::ReturnsTwice); break;
1263  case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1264  case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1265  case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1266  case lltok::kw_sspstrong:
1267  B.addAttribute(Attribute::StackProtectStrong); break;
1268  case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1270  B.addAttribute(Attribute::ShadowCallStack); break;
1272  B.addAttribute(Attribute::SanitizeAddress); break;
1274  B.addAttribute(Attribute::SanitizeHWAddress); break;
1276  B.addAttribute(Attribute::SanitizeThread); break;
1278  B.addAttribute(Attribute::SanitizeMemory); break;
1280  B.addAttribute(Attribute::SpeculativeLoadHardening);
1281  break;
1282  case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1283  case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1284  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1285 
1286  // Error handling.
1287  case lltok::kw_inreg:
1288  case lltok::kw_signext:
1289  case lltok::kw_zeroext:
1290  HaveError |=
1291  Error(Lex.getLoc(),
1292  "invalid use of attribute on a function");
1293  break;
1294  case lltok::kw_byval:
1297  case lltok::kw_inalloca:
1298  case lltok::kw_nest:
1299  case lltok::kw_noalias:
1300  case lltok::kw_nocapture:
1301  case lltok::kw_nonnull:
1302  case lltok::kw_returned:
1303  case lltok::kw_sret:
1304  case lltok::kw_swifterror:
1305  case lltok::kw_swiftself:
1306  HaveError |=
1307  Error(Lex.getLoc(),
1308  "invalid use of parameter-only attribute on a function");
1309  break;
1310  }
1311 
1312  Lex.Lex();
1313  }
1314 }
1315 
1316 //===----------------------------------------------------------------------===//
1317 // GlobalValue Reference/Resolution Routines.
1318 //===----------------------------------------------------------------------===//
1319 
1321  const std::string &Name) {
1322  if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1324  PTy->getAddressSpace(), Name, M);
1325  else
1326  return new GlobalVariable(*M, PTy->getElementType(), false,
1329  PTy->getAddressSpace());
1330 }
1331 
1332 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1333  Value *Val, bool IsCall) {
1334  if (Val->getType() == Ty)
1335  return Val;
1336  // For calls we also accept variables in the program address space.
1337  Type *SuggestedTy = Ty;
1338  if (IsCall && isa<PointerType>(Ty)) {
1339  Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1341  SuggestedTy = TyInProgAS;
1342  if (Val->getType() == TyInProgAS)
1343  return Val;
1344  }
1345  if (Ty->isLabelTy())
1346  Error(Loc, "'" + Name + "' is not a basic block");
1347  else
1348  Error(Loc, "'" + Name + "' defined with type '" +
1349  getTypeString(Val->getType()) + "' but expected '" +
1350  getTypeString(SuggestedTy) + "'");
1351  return nullptr;
1352 }
1353 
1354 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1355 /// forward reference record if needed. This can return null if the value
1356 /// exists but does not have the right type.
1357 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1358  LocTy Loc, bool IsCall) {
1359  PointerType *PTy = dyn_cast<PointerType>(Ty);
1360  if (!PTy) {
1361  Error(Loc, "global variable reference must have pointer type");
1362  return nullptr;
1363  }
1364 
1365  // Look this name up in the normal function symbol table.
1366  GlobalValue *Val =
1367  cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1368 
1369  // If this is a forward reference for the value, see if we already created a
1370  // forward ref record.
1371  if (!Val) {
1372  auto I = ForwardRefVals.find(Name);
1373  if (I != ForwardRefVals.end())
1374  Val = I->second.first;
1375  }
1376 
1377  // If we have the value in the symbol table or fwd-ref table, return it.
1378  if (Val)
1379  return cast_or_null<GlobalValue>(
1380  checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1381 
1382  // Otherwise, create a new forward reference for this value and remember it.
1383  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1384  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1385  return FwdVal;
1386 }
1387 
1388 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1389  bool IsCall) {
1390  PointerType *PTy = dyn_cast<PointerType>(Ty);
1391  if (!PTy) {
1392  Error(Loc, "global variable reference must have pointer type");
1393  return nullptr;
1394  }
1395 
1396  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1397 
1398  // If this is a forward reference for the value, see if we already created a
1399  // forward ref record.
1400  if (!Val) {
1401  auto I = ForwardRefValIDs.find(ID);
1402  if (I != ForwardRefValIDs.end())
1403  Val = I->second.first;
1404  }
1405 
1406  // If we have the value in the symbol table or fwd-ref table, return it.
1407  if (Val)
1408  return cast_or_null<GlobalValue>(
1409  checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1410 
1411  // Otherwise, create a new forward reference for this value and remember it.
1412  GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1413  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1414  return FwdVal;
1415 }
1416 
1417 //===----------------------------------------------------------------------===//
1418 // Comdat Reference/Resolution Routines.
1419 //===----------------------------------------------------------------------===//
1420 
1421 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1422  // Look this name up in the comdat symbol table.
1423  Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1424  Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1425  if (I != ComdatSymTab.end())
1426  return &I->second;
1427 
1428  // Otherwise, create a new forward reference for this value and remember it.
1429  Comdat *C = M->getOrInsertComdat(Name);
1430  ForwardRefComdats[Name] = Loc;
1431  return C;
1432 }
1433 
1434 //===----------------------------------------------------------------------===//
1435 // Helper Routines.
1436 //===----------------------------------------------------------------------===//
1437 
1438 /// ParseToken - If the current token has the specified kind, eat it and return
1439 /// success. Otherwise, emit the specified error and return failure.
1440 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1441  if (Lex.getKind() != T)
1442  return TokError(ErrMsg);
1443  Lex.Lex();
1444  return false;
1445 }
1446 
1447 /// ParseStringConstant
1448 /// ::= StringConstant
1449 bool LLParser::ParseStringConstant(std::string &Result) {
1450  if (Lex.getKind() != lltok::StringConstant)
1451  return TokError("expected string constant");
1452  Result = Lex.getStrVal();
1453  Lex.Lex();
1454  return false;
1455 }
1456 
1457 /// ParseUInt32
1458 /// ::= uint32
1459 bool LLParser::ParseUInt32(uint32_t &Val) {
1460  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1461  return TokError("expected integer");
1462  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1463  if (Val64 != unsigned(Val64))
1464  return TokError("expected 32-bit integer (too large)");
1465  Val = Val64;
1466  Lex.Lex();
1467  return false;
1468 }
1469 
1470 /// ParseUInt64
1471 /// ::= uint64
1472 bool LLParser::ParseUInt64(uint64_t &Val) {
1473  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1474  return TokError("expected integer");
1475  Val = Lex.getAPSIntVal().getLimitedValue();
1476  Lex.Lex();
1477  return false;
1478 }
1479 
1480 /// ParseTLSModel
1481 /// := 'localdynamic'
1482 /// := 'initialexec'
1483 /// := 'localexec'
1484 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1485  switch (Lex.getKind()) {
1486  default:
1487  return TokError("expected localdynamic, initialexec or localexec");
1490  break;
1491  case lltok::kw_initialexec:
1493  break;
1494  case lltok::kw_localexec:
1496  break;
1497  }
1498 
1499  Lex.Lex();
1500  return false;
1501 }
1502 
1503 /// ParseOptionalThreadLocal
1504 /// := /*empty*/
1505 /// := 'thread_local'
1506 /// := 'thread_local' '(' tlsmodel ')'
1507 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1509  if (!EatIfPresent(lltok::kw_thread_local))
1510  return false;
1511 
1513  if (Lex.getKind() == lltok::lparen) {
1514  Lex.Lex();
1515  return ParseTLSModel(TLM) ||
1516  ParseToken(lltok::rparen, "expected ')' after thread local model");
1517  }
1518  return false;
1519 }
1520 
1521 /// ParseOptionalAddrSpace
1522 /// := /*empty*/
1523 /// := 'addrspace' '(' uint32 ')'
1524 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1525  AddrSpace = DefaultAS;
1526  if (!EatIfPresent(lltok::kw_addrspace))
1527  return false;
1528  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1529  ParseUInt32(AddrSpace) ||
1530  ParseToken(lltok::rparen, "expected ')' in address space");
1531 }
1532 
1533 /// ParseStringAttribute
1534 /// := StringConstant
1535 /// := StringConstant '=' StringConstant
1536 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1537  std::string Attr = Lex.getStrVal();
1538  Lex.Lex();
1539  std::string Val;
1540  if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1541  return true;
1542  B.addAttribute(Attr, Val);
1543  return false;
1544 }
1545 
1546 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1547 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1548  bool HaveError = false;
1549 
1550  B.clear();
1551 
1552  while (true) {
1553  lltok::Kind Token = Lex.getKind();
1554  switch (Token) {
1555  default: // End of attributes.
1556  return HaveError;
1557  case lltok::StringConstant: {
1558  if (ParseStringAttribute(B))
1559  return true;
1560  continue;
1561  }
1562  case lltok::kw_align: {
1563  unsigned Alignment;
1564  if (ParseOptionalAlignment(Alignment))
1565  return true;
1566  B.addAlignmentAttr(Alignment);
1567  continue;
1568  }
1569  case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1571  uint64_t Bytes;
1572  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1573  return true;
1574  B.addDereferenceableAttr(Bytes);
1575  continue;
1576  }
1578  uint64_t Bytes;
1579  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1580  return true;
1582  continue;
1583  }
1584  case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1585  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1586  case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1588  case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1589  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1590  case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1591  case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1592  case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1593  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1594  case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1595  case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1596  case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1597  case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1598  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1599 
1600  case lltok::kw_alignstack:
1602  case lltok::kw_argmemonly:
1603  case lltok::kw_builtin:
1604  case lltok::kw_inlinehint:
1605  case lltok::kw_jumptable:
1606  case lltok::kw_minsize:
1607  case lltok::kw_naked:
1608  case lltok::kw_nobuiltin:
1609  case lltok::kw_noduplicate:
1611  case lltok::kw_noinline:
1612  case lltok::kw_nonlazybind:
1613  case lltok::kw_noredzone:
1614  case lltok::kw_noreturn:
1615  case lltok::kw_nocf_check:
1616  case lltok::kw_nounwind:
1618  case lltok::kw_optnone:
1619  case lltok::kw_optsize:
1626  case lltok::kw_ssp:
1627  case lltok::kw_sspreq:
1628  case lltok::kw_sspstrong:
1629  case lltok::kw_safestack:
1631  case lltok::kw_strictfp:
1632  case lltok::kw_uwtable:
1633  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1634  break;
1635  }
1636 
1637  Lex.Lex();
1638  }
1639 }
1640 
1641 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1642 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1643  bool HaveError = false;
1644 
1645  B.clear();
1646 
1647  while (true) {
1648  lltok::Kind Token = Lex.getKind();
1649  switch (Token) {
1650  default: // End of attributes.
1651  return HaveError;
1652  case lltok::StringConstant: {
1653  if (ParseStringAttribute(B))
1654  return true;
1655  continue;
1656  }
1658  uint64_t Bytes;
1659  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1660  return true;
1661  B.addDereferenceableAttr(Bytes);
1662  continue;
1663  }
1665  uint64_t Bytes;
1666  if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1667  return true;
1669  continue;
1670  }
1671  case lltok::kw_align: {
1672  unsigned Alignment;
1673  if (ParseOptionalAlignment(Alignment))
1674  return true;
1675  B.addAlignmentAttr(Alignment);
1676  continue;
1677  }
1678  case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1680  case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1681  case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1682  case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1683 
1684  // Error handling.
1685  case lltok::kw_byval:
1686  case lltok::kw_inalloca:
1687  case lltok::kw_nest:
1688  case lltok::kw_nocapture:
1689  case lltok::kw_returned:
1690  case lltok::kw_sret:
1691  case lltok::kw_swifterror:
1692  case lltok::kw_swiftself:
1693  HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1694  break;
1695 
1696  case lltok::kw_alignstack:
1698  case lltok::kw_argmemonly:
1699  case lltok::kw_builtin:
1700  case lltok::kw_cold:
1701  case lltok::kw_inlinehint:
1702  case lltok::kw_jumptable:
1703  case lltok::kw_minsize:
1704  case lltok::kw_naked:
1705  case lltok::kw_nobuiltin:
1706  case lltok::kw_noduplicate:
1708  case lltok::kw_noinline:
1709  case lltok::kw_nonlazybind:
1710  case lltok::kw_noredzone:
1711  case lltok::kw_noreturn:
1712  case lltok::kw_nocf_check:
1713  case lltok::kw_nounwind:
1715  case lltok::kw_optnone:
1716  case lltok::kw_optsize:
1723  case lltok::kw_ssp:
1724  case lltok::kw_sspreq:
1725  case lltok::kw_sspstrong:
1726  case lltok::kw_safestack:
1728  case lltok::kw_strictfp:
1729  case lltok::kw_uwtable:
1730  HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1731  break;
1732 
1733  case lltok::kw_readnone:
1734  case lltok::kw_readonly:
1735  HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1736  }
1737 
1738  Lex.Lex();
1739  }
1740 }
1741 
1742 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1743  HasLinkage = true;
1744  switch (Kind) {
1745  default:
1746  HasLinkage = false;
1748  case lltok::kw_private:
1750  case lltok::kw_internal:
1752  case lltok::kw_weak:
1754  case lltok::kw_weak_odr:
1756  case lltok::kw_linkonce:
1762  case lltok::kw_appending:
1764  case lltok::kw_common:
1766  case lltok::kw_extern_weak:
1768  case lltok::kw_external:
1770  }
1771 }
1772 
1773 /// ParseOptionalLinkage
1774 /// ::= /*empty*/
1775 /// ::= 'private'
1776 /// ::= 'internal'
1777 /// ::= 'weak'
1778 /// ::= 'weak_odr'
1779 /// ::= 'linkonce'
1780 /// ::= 'linkonce_odr'
1781 /// ::= 'available_externally'
1782 /// ::= 'appending'
1783 /// ::= 'common'
1784 /// ::= 'extern_weak'
1785 /// ::= 'external'
1786 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1787  unsigned &Visibility,
1788  unsigned &DLLStorageClass,
1789  bool &DSOLocal) {
1790  Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1791  if (HasLinkage)
1792  Lex.Lex();
1793  ParseOptionalDSOLocal(DSOLocal);
1794  ParseOptionalVisibility(Visibility);
1795  ParseOptionalDLLStorageClass(DLLStorageClass);
1796 
1797  if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1798  return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1799  }
1800 
1801  return false;
1802 }
1803 
1804 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1805  switch (Lex.getKind()) {
1806  default:
1807  DSOLocal = false;
1808  break;
1809  case lltok::kw_dso_local:
1810  DSOLocal = true;
1811  Lex.Lex();
1812  break;
1814  DSOLocal = false;
1815  Lex.Lex();
1816  break;
1817  }
1818 }
1819 
1820 /// ParseOptionalVisibility
1821 /// ::= /*empty*/
1822 /// ::= 'default'
1823 /// ::= 'hidden'
1824 /// ::= 'protected'
1825 ///
1826 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1827  switch (Lex.getKind()) {
1828  default:
1830  return;
1831  case lltok::kw_default:
1833  break;
1834  case lltok::kw_hidden:
1836  break;
1837  case lltok::kw_protected:
1839  break;
1840  }
1841  Lex.Lex();
1842 }
1843 
1844 /// ParseOptionalDLLStorageClass
1845 /// ::= /*empty*/
1846 /// ::= 'dllimport'
1847 /// ::= 'dllexport'
1848 ///
1849 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1850  switch (Lex.getKind()) {
1851  default:
1853  return;
1854  case lltok::kw_dllimport:
1856  break;
1857  case lltok::kw_dllexport:
1859  break;
1860  }
1861  Lex.Lex();
1862 }
1863 
1864 /// ParseOptionalCallingConv
1865 /// ::= /*empty*/
1866 /// ::= 'ccc'
1867 /// ::= 'fastcc'
1868 /// ::= 'intel_ocl_bicc'
1869 /// ::= 'coldcc'
1870 /// ::= 'x86_stdcallcc'
1871 /// ::= 'x86_fastcallcc'
1872 /// ::= 'x86_thiscallcc'
1873 /// ::= 'x86_vectorcallcc'
1874 /// ::= 'arm_apcscc'
1875 /// ::= 'arm_aapcscc'
1876 /// ::= 'arm_aapcs_vfpcc'
1877 /// ::= 'aarch64_vector_pcs'
1878 /// ::= 'msp430_intrcc'
1879 /// ::= 'avr_intrcc'
1880 /// ::= 'avr_signalcc'
1881 /// ::= 'ptx_kernel'
1882 /// ::= 'ptx_device'
1883 /// ::= 'spir_func'
1884 /// ::= 'spir_kernel'
1885 /// ::= 'x86_64_sysvcc'
1886 /// ::= 'win64cc'
1887 /// ::= 'webkit_jscc'
1888 /// ::= 'anyregcc'
1889 /// ::= 'preserve_mostcc'
1890 /// ::= 'preserve_allcc'
1891 /// ::= 'ghccc'
1892 /// ::= 'swiftcc'
1893 /// ::= 'x86_intrcc'
1894 /// ::= 'hhvmcc'
1895 /// ::= 'hhvm_ccc'
1896 /// ::= 'cxx_fast_tlscc'
1897 /// ::= 'amdgpu_vs'
1898 /// ::= 'amdgpu_ls'
1899 /// ::= 'amdgpu_hs'
1900 /// ::= 'amdgpu_es'
1901 /// ::= 'amdgpu_gs'
1902 /// ::= 'amdgpu_ps'
1903 /// ::= 'amdgpu_cs'
1904 /// ::= 'amdgpu_kernel'
1905 /// ::= 'cc' UINT
1906 ///
1907 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1908  switch (Lex.getKind()) {
1909  default: CC = CallingConv::C; return false;
1910  case lltok::kw_ccc: CC = CallingConv::C; break;
1911  case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1912  case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1918  case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1923  case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1928  case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1931  case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1933  case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1936  case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1937  case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1938  case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1939  case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1940  case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1942  case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1943  case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1944  case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1945  case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1946  case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1947  case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1948  case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1950  case lltok::kw_cc: {
1951  Lex.Lex();
1952  return ParseUInt32(CC);
1953  }
1954  }
1955 
1956  Lex.Lex();
1957  return false;
1958 }
1959 
1960 /// ParseMetadataAttachment
1961 /// ::= !dbg !42
1962 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1963  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1964 
1965  std::string Name = Lex.getStrVal();
1966  Kind = M->getMDKindID(Name);
1967  Lex.Lex();
1968 
1969  return ParseMDNode(MD);
1970 }
1971 
1972 /// ParseInstructionMetadata
1973 /// ::= !dbg !42 (',' !dbg !57)*
1974 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1975  do {
1976  if (Lex.getKind() != lltok::MetadataVar)
1977  return TokError("expected metadata after comma");
1978 
1979  unsigned MDK;
1980  MDNode *N;
1981  if (ParseMetadataAttachment(MDK, N))
1982  return true;
1983 
1984  Inst.setMetadata(MDK, N);
1985  if (MDK == LLVMContext::MD_tbaa)
1986  InstsWithTBAATag.push_back(&Inst);
1987 
1988  // If this is the end of the list, we're done.
1989  } while (EatIfPresent(lltok::comma));
1990  return false;
1991 }
1992 
1993 /// ParseGlobalObjectMetadataAttachment
1994 /// ::= !dbg !57
1995 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1996  unsigned MDK;
1997  MDNode *N;
1998  if (ParseMetadataAttachment(MDK, N))
1999  return true;
2000 
2001  GO.addMetadata(MDK, *N);
2002  return false;
2003 }
2004 
2005 /// ParseOptionalFunctionMetadata
2006 /// ::= (!dbg !57)*
2007 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2008  while (Lex.getKind() == lltok::MetadataVar)
2009  if (ParseGlobalObjectMetadataAttachment(F))
2010  return true;
2011  return false;
2012 }
2013 
2014 /// ParseOptionalAlignment
2015 /// ::= /* empty */
2016 /// ::= 'align' 4
2017 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2018  Alignment = 0;
2019  if (!EatIfPresent(lltok::kw_align))
2020  return false;
2021  LocTy AlignLoc = Lex.getLoc();
2022  if (ParseUInt32(Alignment)) return true;
2023  if (!isPowerOf2_32(Alignment))
2024  return Error(AlignLoc, "alignment is not a power of two");
2025  if (Alignment > Value::MaximumAlignment)
2026  return Error(AlignLoc, "huge alignments are not supported yet");
2027  return false;
2028 }
2029 
2030 /// ParseOptionalDerefAttrBytes
2031 /// ::= /* empty */
2032 /// ::= AttrKind '(' 4 ')'
2033 ///
2034 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2035 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2036  uint64_t &Bytes) {
2037  assert((AttrKind == lltok::kw_dereferenceable ||
2038  AttrKind == lltok::kw_dereferenceable_or_null) &&
2039  "contract!");
2040 
2041  Bytes = 0;
2042  if (!EatIfPresent(AttrKind))
2043  return false;
2044  LocTy ParenLoc = Lex.getLoc();
2045  if (!EatIfPresent(lltok::lparen))
2046  return Error(ParenLoc, "expected '('");
2047  LocTy DerefLoc = Lex.getLoc();
2048  if (ParseUInt64(Bytes)) return true;
2049  ParenLoc = Lex.getLoc();
2050  if (!EatIfPresent(lltok::rparen))
2051  return Error(ParenLoc, "expected ')'");
2052  if (!Bytes)
2053  return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2054  return false;
2055 }
2056 
2057 /// ParseOptionalCommaAlign
2058 /// ::=
2059 /// ::= ',' align 4
2060 ///
2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2062 /// end.
2063 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2064  bool &AteExtraComma) {
2065  AteExtraComma = false;
2066  while (EatIfPresent(lltok::comma)) {
2067  // Metadata at the end is an early exit.
2068  if (Lex.getKind() == lltok::MetadataVar) {
2069  AteExtraComma = true;
2070  return false;
2071  }
2072 
2073  if (Lex.getKind() != lltok::kw_align)
2074  return Error(Lex.getLoc(), "expected metadata or 'align'");
2075 
2076  if (ParseOptionalAlignment(Alignment)) return true;
2077  }
2078 
2079  return false;
2080 }
2081 
2082 /// ParseOptionalCommaAddrSpace
2083 /// ::=
2084 /// ::= ',' addrspace(1)
2085 ///
2086 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2087 /// end.
2088 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2089  LocTy &Loc,
2090  bool &AteExtraComma) {
2091  AteExtraComma = false;
2092  while (EatIfPresent(lltok::comma)) {
2093  // Metadata at the end is an early exit.
2094  if (Lex.getKind() == lltok::MetadataVar) {
2095  AteExtraComma = true;
2096  return false;
2097  }
2098 
2099  Loc = Lex.getLoc();
2100  if (Lex.getKind() != lltok::kw_addrspace)
2101  return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2102 
2103  if (ParseOptionalAddrSpace(AddrSpace))
2104  return true;
2105  }
2106 
2107  return false;
2108 }
2109 
2110 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2111  Optional<unsigned> &HowManyArg) {
2112  Lex.Lex();
2113 
2114  auto StartParen = Lex.getLoc();
2115  if (!EatIfPresent(lltok::lparen))
2116  return Error(StartParen, "expected '('");
2117 
2118  if (ParseUInt32(BaseSizeArg))
2119  return true;
2120 
2121  if (EatIfPresent(lltok::comma)) {
2122  auto HowManyAt = Lex.getLoc();
2123  unsigned HowMany;
2124  if (ParseUInt32(HowMany))
2125  return true;
2126  if (HowMany == BaseSizeArg)
2127  return Error(HowManyAt,
2128  "'allocsize' indices can't refer to the same parameter");
2129  HowManyArg = HowMany;
2130  } else
2131  HowManyArg = None;
2132 
2133  auto EndParen = Lex.getLoc();
2134  if (!EatIfPresent(lltok::rparen))
2135  return Error(EndParen, "expected ')'");
2136  return false;
2137 }
2138 
2139 /// ParseScopeAndOrdering
2140 /// if isAtomic: ::= SyncScope? AtomicOrdering
2141 /// else: ::=
2142 ///
2143 /// This sets Scope and Ordering to the parsed values.
2144 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2145  AtomicOrdering &Ordering) {
2146  if (!isAtomic)
2147  return false;
2148 
2149  return ParseScope(SSID) || ParseOrdering(Ordering);
2150 }
2151 
2152 /// ParseScope
2153 /// ::= syncscope("singlethread" | "<target scope>")?
2154 ///
2155 /// This sets synchronization scope ID to the ID of the parsed value.
2156 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2157  SSID = SyncScope::System;
2158  if (EatIfPresent(lltok::kw_syncscope)) {
2159  auto StartParenAt = Lex.getLoc();
2160  if (!EatIfPresent(lltok::lparen))
2161  return Error(StartParenAt, "Expected '(' in syncscope");
2162 
2163  std::string SSN;
2164  auto SSNAt = Lex.getLoc();
2165  if (ParseStringConstant(SSN))
2166  return Error(SSNAt, "Expected synchronization scope name");
2167 
2168  auto EndParenAt = Lex.getLoc();
2169  if (!EatIfPresent(lltok::rparen))
2170  return Error(EndParenAt, "Expected ')' in syncscope");
2171 
2172  SSID = Context.getOrInsertSyncScopeID(SSN);
2173  }
2174 
2175  return false;
2176 }
2177 
2178 /// ParseOrdering
2179 /// ::= AtomicOrdering
2180 ///
2181 /// This sets Ordering to the parsed value.
2182 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2183  switch (Lex.getKind()) {
2184  default: return TokError("Expected ordering on atomic instruction");
2185  case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2186  case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2187  // Not specified yet:
2188  // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2189  case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2190  case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2191  case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2192  case lltok::kw_seq_cst:
2194  break;
2195  }
2196  Lex.Lex();
2197  return false;
2198 }
2199 
2200 /// ParseOptionalStackAlignment
2201 /// ::= /* empty */
2202 /// ::= 'alignstack' '(' 4 ')'
2203 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2204  Alignment = 0;
2205  if (!EatIfPresent(lltok::kw_alignstack))
2206  return false;
2207  LocTy ParenLoc = Lex.getLoc();
2208  if (!EatIfPresent(lltok::lparen))
2209  return Error(ParenLoc, "expected '('");
2210  LocTy AlignLoc = Lex.getLoc();
2211  if (ParseUInt32(Alignment)) return true;
2212  ParenLoc = Lex.getLoc();
2213  if (!EatIfPresent(lltok::rparen))
2214  return Error(ParenLoc, "expected ')'");
2215  if (!isPowerOf2_32(Alignment))
2216  return Error(AlignLoc, "stack alignment is not a power of two");
2217  return false;
2218 }
2219 
2220 /// ParseIndexList - This parses the index list for an insert/extractvalue
2221 /// instruction. This sets AteExtraComma in the case where we eat an extra
2222 /// comma at the end of the line and find that it is followed by metadata.
2223 /// Clients that don't allow metadata can call the version of this function that
2224 /// only takes one argument.
2225 ///
2226 /// ParseIndexList
2227 /// ::= (',' uint32)+
2228 ///
2229 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2230  bool &AteExtraComma) {
2231  AteExtraComma = false;
2232 
2233  if (Lex.getKind() != lltok::comma)
2234  return TokError("expected ',' as start of index list");
2235 
2236  while (EatIfPresent(lltok::comma)) {
2237  if (Lex.getKind() == lltok::MetadataVar) {
2238  if (Indices.empty()) return TokError("expected index");
2239  AteExtraComma = true;
2240  return false;
2241  }
2242  unsigned Idx = 0;
2243  if (ParseUInt32(Idx)) return true;
2244  Indices.push_back(Idx);
2245  }
2246 
2247  return false;
2248 }
2249 
2250 //===----------------------------------------------------------------------===//
2251 // Type Parsing.
2252 //===----------------------------------------------------------------------===//
2253 
2254 /// ParseType - Parse a type.
2255 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2256  SMLoc TypeLoc = Lex.getLoc();
2257  switch (Lex.getKind()) {
2258  default:
2259  return TokError(Msg);
2260  case lltok::Type:
2261  // Type ::= 'float' | 'void' (etc)
2262  Result = Lex.getTyVal();
2263  Lex.Lex();
2264  break;
2265  case lltok::lbrace:
2266  // Type ::= StructType
2267  if (ParseAnonStructType(Result, false))
2268  return true;
2269  break;
2270  case lltok::lsquare:
2271  // Type ::= '[' ... ']'
2272  Lex.Lex(); // eat the lsquare.
2273  if (ParseArrayVectorType(Result, false))
2274  return true;
2275  break;
2276  case lltok::less: // Either vector or packed struct.
2277  // Type ::= '<' ... '>'
2278  Lex.Lex();
2279  if (Lex.getKind() == lltok::lbrace) {
2280  if (ParseAnonStructType(Result, true) ||
2281  ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2282  return true;
2283  } else if (ParseArrayVectorType(Result, true))
2284  return true;
2285  break;
2286  case lltok::LocalVar: {
2287  // Type ::= %foo
2288  std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2289 
2290  // If the type hasn't been defined yet, create a forward definition and
2291  // remember where that forward def'n was seen (in case it never is defined).
2292  if (!Entry.first) {
2293  Entry.first = StructType::create(Context, Lex.getStrVal());
2294  Entry.second = Lex.getLoc();
2295  }
2296  Result = Entry.first;
2297  Lex.Lex();
2298  break;
2299  }
2300 
2301  case lltok::LocalVarID: {
2302  // Type ::= %4
2303  std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2304 
2305  // If the type hasn't been defined yet, create a forward definition and
2306  // remember where that forward def'n was seen (in case it never is defined).
2307  if (!Entry.first) {
2308  Entry.first = StructType::create(Context);
2309  Entry.second = Lex.getLoc();
2310  }
2311  Result = Entry.first;
2312  Lex.Lex();
2313  break;
2314  }
2315  }
2316 
2317  // Parse the type suffixes.
2318  while (true) {
2319  switch (Lex.getKind()) {
2320  // End of type.
2321  default:
2322  if (!AllowVoid && Result->isVoidTy())
2323  return Error(TypeLoc, "void type only allowed for function results");
2324  return false;
2325 
2326  // Type ::= Type '*'
2327  case lltok::star:
2328  if (Result->isLabelTy())
2329  return TokError("basic block pointers are invalid");
2330  if (Result->isVoidTy())
2331  return TokError("pointers to void are invalid - use i8* instead");
2332  if (!PointerType::isValidElementType(Result))
2333  return TokError("pointer to this type is invalid");
2334  Result = PointerType::getUnqual(Result);
2335  Lex.Lex();
2336  break;
2337 
2338  // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2339  case lltok::kw_addrspace: {
2340  if (Result->isLabelTy())
2341  return TokError("basic block pointers are invalid");
2342  if (Result->isVoidTy())
2343  return TokError("pointers to void are invalid; use i8* instead");
2344  if (!PointerType::isValidElementType(Result))
2345  return TokError("pointer to this type is invalid");
2346  unsigned AddrSpace;
2347  if (ParseOptionalAddrSpace(AddrSpace) ||
2348  ParseToken(lltok::star, "expected '*' in address space"))
2349  return true;
2350 
2351  Result = PointerType::get(Result, AddrSpace);
2352  break;
2353  }
2354 
2355  /// Types '(' ArgTypeListI ')' OptFuncAttrs
2356  case lltok::lparen:
2357  if (ParseFunctionType(Result))
2358  return true;
2359  break;
2360  }
2361  }
2362 }
2363 
2364 /// ParseParameterList
2365 /// ::= '(' ')'
2366 /// ::= '(' Arg (',' Arg)* ')'
2367 /// Arg
2368 /// ::= Type OptionalAttributes Value OptionalAttributes
2369 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2370  PerFunctionState &PFS, bool IsMustTailCall,
2371  bool InVarArgsFunc) {
2372  if (ParseToken(lltok::lparen, "expected '(' in call"))
2373  return true;
2374 
2375  while (Lex.getKind() != lltok::rparen) {
2376  // If this isn't the first argument, we need a comma.
2377  if (!ArgList.empty() &&
2378  ParseToken(lltok::comma, "expected ',' in argument list"))
2379  return true;
2380 
2381  // Parse an ellipsis if this is a musttail call in a variadic function.
2382  if (Lex.getKind() == lltok::dotdotdot) {
2383  const char *Msg = "unexpected ellipsis in argument list for ";
2384  if (!IsMustTailCall)
2385  return TokError(Twine(Msg) + "non-musttail call");
2386  if (!InVarArgsFunc)
2387  return TokError(Twine(Msg) + "musttail call in non-varargs function");
2388  Lex.Lex(); // Lex the '...', it is purely for readability.
2389  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2390  }
2391 
2392  // Parse the argument.
2393  LocTy ArgLoc;
2394  Type *ArgTy = nullptr;
2395  AttrBuilder ArgAttrs;
2396  Value *V;
2397  if (ParseType(ArgTy, ArgLoc))
2398  return true;
2399 
2400  if (ArgTy->isMetadataTy()) {
2401  if (ParseMetadataAsValue(V, PFS))
2402  return true;
2403  } else {
2404  // Otherwise, handle normal operands.
2405  if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2406  return true;
2407  }
2408  ArgList.push_back(ParamInfo(
2409  ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2410  }
2411 
2412  if (IsMustTailCall && InVarArgsFunc)
2413  return TokError("expected '...' at end of argument list for musttail call "
2414  "in varargs function");
2415 
2416  Lex.Lex(); // Lex the ')'.
2417  return false;
2418 }
2419 
2420 /// ParseOptionalOperandBundles
2421 /// ::= /*empty*/
2422 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2423 ///
2424 /// OperandBundle
2425 /// ::= bundle-tag '(' ')'
2426 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2427 ///
2428 /// bundle-tag ::= String Constant
2429 bool LLParser::ParseOptionalOperandBundles(
2430  SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2431  LocTy BeginLoc = Lex.getLoc();
2432  if (!EatIfPresent(lltok::lsquare))
2433  return false;
2434 
2435  while (Lex.getKind() != lltok::rsquare) {
2436  // If this isn't the first operand bundle, we need a comma.
2437  if (!BundleList.empty() &&
2438  ParseToken(lltok::comma, "expected ',' in input list"))
2439  return true;
2440 
2441  std::string Tag;
2442  if (ParseStringConstant(Tag))
2443  return true;
2444 
2445  if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2446  return true;
2447 
2448  std::vector<Value *> Inputs;
2449  while (Lex.getKind() != lltok::rparen) {
2450  // If this isn't the first input, we need a comma.
2451  if (!Inputs.empty() &&
2452  ParseToken(lltok::comma, "expected ',' in input list"))
2453  return true;
2454 
2455  Type *Ty = nullptr;
2456  Value *Input = nullptr;
2457  if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2458  return true;
2459  Inputs.push_back(Input);
2460  }
2461 
2462  BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2463 
2464  Lex.Lex(); // Lex the ')'.
2465  }
2466 
2467  if (BundleList.empty())
2468  return Error(BeginLoc, "operand bundle set must not be empty");
2469 
2470  Lex.Lex(); // Lex the ']'.
2471  return false;
2472 }
2473 
2474 /// ParseArgumentList - Parse the argument list for a function type or function
2475 /// prototype.
2476 /// ::= '(' ArgTypeListI ')'
2477 /// ArgTypeListI
2478 /// ::= /*empty*/
2479 /// ::= '...'
2480 /// ::= ArgTypeList ',' '...'
2481 /// ::= ArgType (',' ArgType)*
2482 ///
2483 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2484  bool &isVarArg){
2485  isVarArg = false;
2486  assert(Lex.getKind() == lltok::lparen);
2487  Lex.Lex(); // eat the (.
2488 
2489  if (Lex.getKind() == lltok::rparen) {
2490  // empty
2491  } else if (Lex.getKind() == lltok::dotdotdot) {
2492  isVarArg = true;
2493  Lex.Lex();
2494  } else {
2495  LocTy TypeLoc = Lex.getLoc();
2496  Type *ArgTy = nullptr;
2498  std::string Name;
2499 
2500  if (ParseType(ArgTy) ||
2501  ParseOptionalParamAttrs(Attrs)) return true;
2502 
2503  if (ArgTy->isVoidTy())
2504  return Error(TypeLoc, "argument can not have void type");
2505 
2506  if (Lex.getKind() == lltok::LocalVar) {
2507  Name = Lex.getStrVal();
2508  Lex.Lex();
2509  }
2510 
2512  return Error(TypeLoc, "invalid type for function argument");
2513 
2514  ArgList.emplace_back(TypeLoc, ArgTy,
2515  AttributeSet::get(ArgTy->getContext(), Attrs),
2516  std::move(Name));
2517 
2518  while (EatIfPresent(lltok::comma)) {
2519  // Handle ... at end of arg list.
2520  if (EatIfPresent(lltok::dotdotdot)) {
2521  isVarArg = true;
2522  break;
2523  }
2524 
2525  // Otherwise must be an argument type.
2526  TypeLoc = Lex.getLoc();
2527  if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2528 
2529  if (ArgTy->isVoidTy())
2530  return Error(TypeLoc, "argument can not have void type");
2531 
2532  if (Lex.getKind() == lltok::LocalVar) {
2533  Name = Lex.getStrVal();
2534  Lex.Lex();
2535  } else {
2536  Name = "";
2537  }
2538 
2539  if (!ArgTy->isFirstClassType())
2540  return Error(TypeLoc, "invalid type for function argument");
2541 
2542  ArgList.emplace_back(TypeLoc, ArgTy,
2543  AttributeSet::get(ArgTy->getContext(), Attrs),
2544  std::move(Name));
2545  }
2546  }
2547 
2548  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2549 }
2550 
2551 /// ParseFunctionType
2552 /// ::= Type ArgumentList OptionalAttrs
2553 bool LLParser::ParseFunctionType(Type *&Result) {
2554  assert(Lex.getKind() == lltok::lparen);
2555 
2556  if (!FunctionType::isValidReturnType(Result))
2557  return TokError("invalid function return type");
2558 
2559  SmallVector<ArgInfo, 8> ArgList;
2560  bool isVarArg;
2561  if (ParseArgumentList(ArgList, isVarArg))
2562  return true;
2563 
2564  // Reject names on the arguments lists.
2565  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2566  if (!ArgList[i].Name.empty())
2567  return Error(ArgList[i].Loc, "argument name invalid in function type");
2568  if (ArgList[i].Attrs.hasAttributes())
2569  return Error(ArgList[i].Loc,
2570  "argument attributes invalid in function type");
2571  }
2572 
2573  SmallVector<Type*, 16> ArgListTy;
2574  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2575  ArgListTy.push_back(ArgList[i].Ty);
2576 
2577  Result = FunctionType::get(Result, ArgListTy, isVarArg);
2578  return false;
2579 }
2580 
2581 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2582 /// other structs.
2583 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2584  SmallVector<Type*, 8> Elts;
2585  if (ParseStructBody(Elts)) return true;
2586 
2587  Result = StructType::get(Context, Elts, Packed);
2588  return false;
2589 }
2590 
2591 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2592 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2593  std::pair<Type*, LocTy> &Entry,
2594  Type *&ResultTy) {
2595  // If the type was already defined, diagnose the redefinition.
2596  if (Entry.first && !Entry.second.isValid())
2597  return Error(TypeLoc, "redefinition of type");
2598 
2599  // If we have opaque, just return without filling in the definition for the
2600  // struct. This counts as a definition as far as the .ll file goes.
2601  if (EatIfPresent(lltok::kw_opaque)) {
2602  // This type is being defined, so clear the location to indicate this.
2603  Entry.second = SMLoc();
2604 
2605  // If this type number has never been uttered, create it.
2606  if (!Entry.first)
2607  Entry.first = StructType::create(Context, Name);
2608  ResultTy = Entry.first;
2609  return false;
2610  }
2611 
2612  // If the type starts with '<', then it is either a packed struct or a vector.
2613  bool isPacked = EatIfPresent(lltok::less);
2614 
2615  // If we don't have a struct, then we have a random type alias, which we
2616  // accept for compatibility with old files. These types are not allowed to be
2617  // forward referenced and not allowed to be recursive.
2618  if (Lex.getKind() != lltok::lbrace) {
2619  if (Entry.first)
2620  return Error(TypeLoc, "forward references to non-struct type");
2621 
2622  ResultTy = nullptr;
2623  if (isPacked)
2624  return ParseArrayVectorType(ResultTy, true);
2625  return ParseType(ResultTy);
2626  }
2627 
2628  // This type is being defined, so clear the location to indicate this.
2629  Entry.second = SMLoc();
2630 
2631  // If this type number has never been uttered, create it.
2632  if (!Entry.first)
2633  Entry.first = StructType::create(Context, Name);
2634 
2635  StructType *STy = cast<StructType>(Entry.first);
2636 
2637  SmallVector<Type*, 8> Body;
2638  if (ParseStructBody(Body) ||
2639  (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2640  return true;
2641 
2642  STy->setBody(Body, isPacked);
2643  ResultTy = STy;
2644  return false;
2645 }
2646 
2647 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2648 /// StructType
2649 /// ::= '{' '}'
2650 /// ::= '{' Type (',' Type)* '}'
2651 /// ::= '<' '{' '}' '>'
2652 /// ::= '<' '{' Type (',' Type)* '}' '>'
2653 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2654  assert(Lex.getKind() == lltok::lbrace);
2655  Lex.Lex(); // Consume the '{'
2656 
2657  // Handle the empty struct.
2658  if (EatIfPresent(lltok::rbrace))
2659  return false;
2660 
2661  LocTy EltTyLoc = Lex.getLoc();
2662  Type *Ty = nullptr;
2663  if (ParseType(Ty)) return true;
2664  Body.push_back(Ty);
2665 
2667  return Error(EltTyLoc, "invalid element type for struct");
2668 
2669  while (EatIfPresent(lltok::comma)) {
2670  EltTyLoc = Lex.getLoc();
2671  if (ParseType(Ty)) return true;
2672 
2674  return Error(EltTyLoc, "invalid element type for struct");
2675 
2676  Body.push_back(Ty);
2677  }
2678 
2679  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2680 }
2681 
2682 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2683 /// token has already been consumed.
2684 /// Type
2685 /// ::= '[' APSINTVAL 'x' Types ']'
2686 /// ::= '<' APSINTVAL 'x' Types '>'
2687 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2688  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2689  Lex.getAPSIntVal().getBitWidth() > 64)
2690  return TokError("expected number in address space");
2691 
2692  LocTy SizeLoc = Lex.getLoc();
2693  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2694  Lex.Lex();
2695 
2696  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2697  return true;
2698 
2699  LocTy TypeLoc = Lex.getLoc();
2700  Type *EltTy = nullptr;
2701  if (ParseType(EltTy)) return true;
2702 
2703  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2704  "expected end of sequential type"))
2705  return true;
2706 
2707  if (isVector) {
2708  if (Size == 0)
2709  return Error(SizeLoc, "zero element vector is illegal");
2710  if ((unsigned)Size != Size)
2711  return Error(SizeLoc, "size too large for vector");
2712  if (!VectorType::isValidElementType(EltTy))
2713  return Error(TypeLoc, "invalid vector element type");
2714  Result = VectorType::get(EltTy, unsigned(Size));
2715  } else {
2716  if (!ArrayType::isValidElementType(EltTy))
2717  return Error(TypeLoc, "invalid array element type");
2718  Result = ArrayType::get(EltTy, Size);
2719  }
2720  return false;
2721 }
2722 
2723 //===----------------------------------------------------------------------===//
2724 // Function Semantic Analysis.
2725 //===----------------------------------------------------------------------===//
2726 
2727 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2728  int functionNumber)
2729  : P(p), F(f), FunctionNumber(functionNumber) {
2730 
2731  // Insert unnamed arguments into the NumberedVals list.
2732  for (Argument &A : F.args())
2733  if (!A.hasName())
2734  NumberedVals.push_back(&A);
2735 }
2736 
2737 LLParser::PerFunctionState::~PerFunctionState() {
2738  // If there were any forward referenced non-basicblock values, delete them.
2739 
2740  for (const auto &P : ForwardRefVals) {
2741  if (isa<BasicBlock>(P.second.first))
2742  continue;
2743  P.second.first->replaceAllUsesWith(
2744  UndefValue::get(P.second.first->getType()));
2745  P.second.first->deleteValue();
2746  }
2747 
2748  for (const auto &P : ForwardRefValIDs) {
2749  if (isa<BasicBlock>(P.second.first))
2750  continue;
2751  P.second.first->replaceAllUsesWith(
2752  UndefValue::get(P.second.first->getType()));
2753  P.second.first->deleteValue();
2754  }
2755 }
2756 
2757 bool LLParser::PerFunctionState::FinishFunction() {
2758  if (!ForwardRefVals.empty())
2759  return P.Error(ForwardRefVals.begin()->second.second,
2760  "use of undefined value '%" + ForwardRefVals.begin()->first +
2761  "'");
2762  if (!ForwardRefValIDs.empty())
2763  return P.Error(ForwardRefValIDs.begin()->second.second,
2764  "use of undefined value '%" +
2765  Twine(ForwardRefValIDs.begin()->first) + "'");
2766  return false;
2767 }
2768 
2769 /// GetVal - Get a value with the specified name or ID, creating a
2770 /// forward reference record if needed. This can return null if the value
2771 /// exists but does not have the right type.
2772 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2773  LocTy Loc, bool IsCall) {
2774  // Look this name up in the normal function symbol table.
2775  Value *Val = F.getValueSymbolTable()->lookup(Name);
2776 
2777  // If this is a forward reference for the value, see if we already created a
2778  // forward ref record.
2779  if (!Val) {
2780  auto I = ForwardRefVals.find(Name);
2781  if (I != ForwardRefVals.end())
2782  Val = I->second.first;
2783  }
2784 
2785  // If we have the value in the symbol table or fwd-ref table, return it.
2786  if (Val)
2787  return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2788 
2789  // Don't make placeholders with invalid type.
2790  if (!Ty->isFirstClassType()) {
2791  P.Error(Loc, "invalid use of a non-first-class type");
2792  return nullptr;
2793  }
2794 
2795  // Otherwise, create a new forward reference for this value and remember it.
2796  Value *FwdVal;
2797  if (Ty->isLabelTy()) {
2798  FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2799  } else {
2800  FwdVal = new Argument(Ty, Name);
2801  }
2802 
2803  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2804  return FwdVal;
2805 }
2806 
2807 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2808  bool IsCall) {
2809  // Look this name up in the normal function symbol table.
2810  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2811 
2812  // If this is a forward reference for the value, see if we already created a
2813  // forward ref record.
2814  if (!Val) {
2815  auto I = ForwardRefValIDs.find(ID);
2816  if (I != ForwardRefValIDs.end())
2817  Val = I->second.first;
2818  }
2819 
2820  // If we have the value in the symbol table or fwd-ref table, return it.
2821  if (Val)
2822  return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2823 
2824  if (!Ty->isFirstClassType()) {
2825  P.Error(Loc, "invalid use of a non-first-class type");
2826  return nullptr;
2827  }
2828 
2829  // Otherwise, create a new forward reference for this value and remember it.
2830  Value *FwdVal;
2831  if (Ty->isLabelTy()) {
2832  FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2833  } else {
2834  FwdVal = new Argument(Ty);
2835  }
2836 
2837  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2838  return FwdVal;
2839 }
2840 
2841 /// SetInstName - After an instruction is parsed and inserted into its
2842 /// basic block, this installs its name.
2843 bool LLParser::PerFunctionState::SetInstName(int NameID,
2844  const std::string &NameStr,
2845  LocTy NameLoc, Instruction *Inst) {
2846  // If this instruction has void type, it cannot have a name or ID specified.
2847  if (Inst->getType()->isVoidTy()) {
2848  if (NameID != -1 || !NameStr.empty())
2849  return P.Error(NameLoc, "instructions returning void cannot have a name");
2850  return false;
2851  }
2852 
2853  // If this was a numbered instruction, verify that the instruction is the
2854  // expected value and resolve any forward references.
2855  if (NameStr.empty()) {
2856  // If neither a name nor an ID was specified, just use the next ID.
2857  if (NameID == -1)
2858  NameID = NumberedVals.size();
2859 
2860  if (unsigned(NameID) != NumberedVals.size())
2861  return P.Error(NameLoc, "instruction expected to be numbered '%" +
2862  Twine(NumberedVals.size()) + "'");
2863 
2864  auto FI = ForwardRefValIDs.find(NameID);
2865  if (FI != ForwardRefValIDs.end()) {
2866  Value *Sentinel = FI->second.first;
2867  if (Sentinel->getType() != Inst->getType())
2868  return P.Error(NameLoc, "instruction forward referenced with type '" +
2869  getTypeString(FI->second.first->getType()) + "'");
2870 
2871  Sentinel->replaceAllUsesWith(Inst);
2872  Sentinel->deleteValue();
2873  ForwardRefValIDs.erase(FI);
2874  }
2875 
2876  NumberedVals.push_back(Inst);
2877  return false;
2878  }
2879 
2880  // Otherwise, the instruction had a name. Resolve forward refs and set it.
2881  auto FI = ForwardRefVals.find(NameStr);
2882  if (FI != ForwardRefVals.end()) {
2883  Value *Sentinel = FI->second.first;
2884  if (Sentinel->getType() != Inst->getType())
2885  return P.Error(NameLoc, "instruction forward referenced with type '" +
2886  getTypeString(FI->second.first->getType()) + "'");
2887 
2888  Sentinel->replaceAllUsesWith(Inst);
2889  Sentinel->deleteValue();
2890  ForwardRefVals.erase(FI);
2891  }
2892 
2893  // Set the name on the instruction.
2894  Inst->setName(NameStr);
2895 
2896  if (Inst->getName() != NameStr)
2897  return P.Error(NameLoc, "multiple definition of local value named '" +
2898  NameStr + "'");
2899  return false;
2900 }
2901 
2902 /// GetBB - Get a basic block with the specified name or ID, creating a
2903 /// forward reference record if needed.
2904 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2905  LocTy Loc) {
2906  return dyn_cast_or_null<BasicBlock>(
2907  GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2908 }
2909 
2910 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2911  return dyn_cast_or_null<BasicBlock>(
2912  GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2913 }
2914 
2915 /// DefineBB - Define the specified basic block, which is either named or
2916 /// unnamed. If there is an error, this returns null otherwise it returns
2917 /// the block being defined.
2918 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2919  LocTy Loc) {
2920  BasicBlock *BB;
2921  if (Name.empty())
2922  BB = GetBB(NumberedVals.size(), Loc);
2923  else
2924  BB = GetBB(Name, Loc);
2925  if (!BB) return nullptr; // Already diagnosed error.
2926 
2927  // Move the block to the end of the function. Forward ref'd blocks are
2928  // inserted wherever they happen to be referenced.
2929  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2930 
2931  // Remove the block from forward ref sets.
2932  if (Name.empty()) {
2933  ForwardRefValIDs.erase(NumberedVals.size());
2934  NumberedVals.push_back(BB);
2935  } else {
2936  // BB forward references are already in the function symbol table.
2937  ForwardRefVals.erase(Name);
2938  }
2939 
2940  return BB;
2941 }
2942 
2943 //===----------------------------------------------------------------------===//
2944 // Constants.
2945 //===----------------------------------------------------------------------===//
2946 
2947 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2948 /// type implied. For example, if we parse "4" we don't know what integer type
2949 /// it has. The value will later be combined with its type and checked for
2950 /// sanity. PFS is used to convert function-local operands of metadata (since
2951 /// metadata operands are not just parsed here but also converted to values).
2952 /// PFS can be null when we are not parsing metadata values inside a function.
2953 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2954  ID.Loc = Lex.getLoc();
2955  switch (Lex.getKind()) {
2956  default: return TokError("expected value token");
2957  case lltok::GlobalID: // @42
2958  ID.UIntVal = Lex.getUIntVal();
2959  ID.Kind = ValID::t_GlobalID;
2960  break;
2961  case lltok::GlobalVar: // @foo
2962  ID.StrVal = Lex.getStrVal();
2964  break;
2965  case lltok::LocalVarID: // %42
2966  ID.UIntVal = Lex.getUIntVal();
2967  ID.Kind = ValID::t_LocalID;
2968  break;
2969  case lltok::LocalVar: // %foo
2970  ID.StrVal = Lex.getStrVal();
2971  ID.Kind = ValID::t_LocalName;
2972  break;
2973  case lltok::APSInt:
2974  ID.APSIntVal = Lex.getAPSIntVal();
2975  ID.Kind = ValID::t_APSInt;
2976  break;
2977  case lltok::APFloat:
2978  ID.APFloatVal = Lex.getAPFloatVal();
2979  ID.Kind = ValID::t_APFloat;
2980  break;
2981  case lltok::kw_true:
2982  ID.ConstantVal = ConstantInt::getTrue(Context);
2983  ID.Kind = ValID::t_Constant;
2984  break;
2985  case lltok::kw_false:
2986  ID.ConstantVal = ConstantInt::getFalse(Context);
2987  ID.Kind = ValID::t_Constant;
2988  break;
2989  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2990  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2991  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2992  case lltok::kw_none: ID.Kind = ValID::t_None; break;
2993 
2994  case lltok::lbrace: {
2995  // ValID ::= '{' ConstVector '}'
2996  Lex.Lex();
2998  if (ParseGlobalValueVector(Elts) ||
2999  ParseToken(lltok::rbrace, "expected end of struct constant"))
3000  return true;
3001 
3002  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3003  ID.UIntVal = Elts.size();
3004  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3005  Elts.size() * sizeof(Elts[0]));
3007  return false;
3008  }
3009  case lltok::less: {
3010  // ValID ::= '<' ConstVector '>' --> Vector.
3011  // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3012  Lex.Lex();
3013  bool isPackedStruct = EatIfPresent(lltok::lbrace);
3014 
3016  LocTy FirstEltLoc = Lex.getLoc();
3017  if (ParseGlobalValueVector(Elts) ||
3018  (isPackedStruct &&
3019  ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3020  ParseToken(lltok::greater, "expected end of constant"))
3021  return true;
3022 
3023  if (isPackedStruct) {
3024  ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3025  memcpy(ID.ConstantStructElts.get(), Elts.data(),
3026  Elts.size() * sizeof(Elts[0]));
3027  ID.UIntVal = Elts.size();
3029  return false;
3030  }
3031 
3032  if (Elts.empty())
3033  return Error(ID.Loc, "constant vector must not be empty");
3034 
3035  if (!Elts[0]->getType()->isIntegerTy() &&
3036  !Elts[0]->getType()->isFloatingPointTy() &&
3037  !Elts[0]->getType()->isPointerTy())
3038  return Error(FirstEltLoc,
3039  "vector elements must have integer, pointer or floating point type");
3040 
3041  // Verify that all the vector elements have the same type.
3042  for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3043  if (Elts[i]->getType() != Elts[0]->getType())
3044  return Error(FirstEltLoc,
3045  "vector element #" + Twine(i) +
3046  " is not of type '" + getTypeString(Elts[0]->getType()));
3047 
3048  ID.ConstantVal = ConstantVector::get(Elts);
3049  ID.Kind = ValID::t_Constant;
3050  return false;
3051  }
3052  case lltok::lsquare: { // Array Constant
3053  Lex.Lex();
3055  LocTy FirstEltLoc = Lex.getLoc();
3056  if (ParseGlobalValueVector(Elts) ||
3057  ParseToken(lltok::rsquare, "expected end of array constant"))
3058  return true;
3059 
3060  // Handle empty element.
3061  if (Elts.empty()) {
3062  // Use undef instead of an array because it's inconvenient to determine
3063  // the element type at this point, there being no elements to examine.
3065  return false;
3066  }
3067 
3068  if (!Elts[0]->getType()->isFirstClassType())
3069  return Error(FirstEltLoc, "invalid array element type: " +
3070  getTypeString(Elts[0]->getType()));
3071 
3072  ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3073 
3074  // Verify all elements are correct type!
3075  for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3076  if (Elts[i]->getType() != Elts[0]->getType())
3077  return Error(FirstEltLoc,
3078  "array element #" + Twine(i) +
3079  " is not of type '" + getTypeString(Elts[0]->getType()));
3080  }
3081 
3082  ID.ConstantVal = ConstantArray::get(ATy, Elts);
3083  ID.Kind = ValID::t_Constant;
3084  return false;
3085  }
3086  case lltok::kw_c: // c "foo"
3087  Lex.Lex();
3089  false);
3090  if (ParseToken(lltok::StringConstant, "expected string")) return true;
3091  ID.Kind = ValID::t_Constant;
3092  return false;
3093 
3094  case lltok::kw_asm: {
3095  // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3096  // STRINGCONSTANT
3097  bool HasSideEffect, AlignStack, AsmDialect;
3098  Lex.Lex();
3099  if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3100  ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3101  ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3102  ParseStringConstant(ID.StrVal) ||
3103  ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3104  ParseToken(lltok::StringConstant, "expected constraint string"))
3105  return true;
3106  ID.StrVal2 = Lex.getStrVal();
3107  ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3108  (unsigned(AsmDialect)<<2);
3109  ID.Kind = ValID::t_InlineAsm;
3110  return false;
3111  }
3112 
3113  case lltok::kw_blockaddress: {
3114  // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3115  Lex.Lex();
3116 
3117  ValID Fn, Label;
3118 
3119  if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3120  ParseValID(Fn) ||
3121  ParseToken(lltok::comma, "expected comma in block address expression")||
3122  ParseValID(Label) ||
3123  ParseToken(lltok::rparen, "expected ')' in block address expression"))
3124  return true;
3125 
3126  if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3127  return Error(Fn.Loc, "expected function name in blockaddress");
3128  if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3129  return Error(Label.Loc, "expected basic block name in blockaddress");
3130 
3131  // Try to find the function (but skip it if it's forward-referenced).
3132  GlobalValue *GV = nullptr;
3133  if (Fn.Kind == ValID::t_GlobalID) {
3134  if (Fn.UIntVal < NumberedVals.size())
3135  GV = NumberedVals[Fn.UIntVal];
3136  } else if (!ForwardRefVals.count(Fn.StrVal)) {
3137  GV = M->getNamedValue(Fn.StrVal);
3138  }
3139  Function *F = nullptr;
3140  if (GV) {
3141  // Confirm that it's actually a function with a definition.
3142  if (!isa<Function>(GV))
3143  return Error(Fn.Loc, "expected function name in blockaddress");
3144  F = cast<Function>(GV);
3145  if (F->isDeclaration())
3146  return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3147  }
3148 
3149  if (!F) {
3150  // Make a global variable as a placeholder for this reference.
3151  GlobalValue *&FwdRef =
3152  ForwardRefBlockAddresses.insert(std::make_pair(
3153  std::move(Fn),
3154  std::map<ValID, GlobalValue *>()))
3155  .first->second.insert(std::make_pair(std::move(Label), nullptr))
3156  .first->second;
3157  if (!FwdRef)
3158  FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3159  GlobalValue::InternalLinkage, nullptr, "");
3160  ID.ConstantVal = FwdRef;
3161  ID.Kind = ValID::t_Constant;
3162  return false;
3163  }
3164 
3165  // We found the function; now find the basic block. Don't use PFS, since we
3166  // might be inside a constant expression.
3167  BasicBlock *BB;
3168  if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3169  if (Label.Kind == ValID::t_LocalID)
3170  BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3171  else
3172  BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3173  if (!BB)
3174  return Error(Label.Loc, "referenced value is not a basic block");
3175  } else {
3176  if (Label.Kind == ValID::t_LocalID)
3177  return Error(Label.Loc, "cannot take address of numeric label after "
3178  "the function is defined");
3179  BB = dyn_cast_or_null<BasicBlock>(
3180  F->getValueSymbolTable()->lookup(Label.StrVal));
3181  if (!BB)
3182  return Error(Label.Loc, "referenced value is not a basic block");
3183  }
3184 
3185  ID.ConstantVal = BlockAddress::get(F, BB);
3186  ID.Kind = ValID::t_Constant;
3187  return false;
3188  }
3189 
3190  case lltok::kw_trunc:
3191  case lltok::kw_zext:
3192  case lltok::kw_sext:
3193  case lltok::kw_fptrunc:
3194  case lltok::kw_fpext:
3195  case lltok::kw_bitcast:
3197  case lltok::kw_uitofp:
3198  case lltok::kw_sitofp:
3199  case lltok::kw_fptoui:
3200  case lltok::kw_fptosi:
3201  case lltok::kw_inttoptr:
3202  case lltok::kw_ptrtoint: {
3203  unsigned Opc = Lex.getUIntVal();
3204  Type *DestTy = nullptr;
3205  Constant *SrcVal;
3206  Lex.Lex();
3207  if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3208  ParseGlobalTypeAndValue(SrcVal) ||
3209  ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3210  ParseType(DestTy) ||
3211  ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3212  return true;
3213  if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3214  return Error(ID.Loc, "invalid cast opcode for cast from '" +
3215  getTypeString(SrcVal->getType()) + "' to '" +
3216  getTypeString(DestTy) + "'");
3218  SrcVal, DestTy);
3219  ID.Kind = ValID::t_Constant;
3220  return false;
3221  }
3222  case lltok::kw_extractvalue: {
3223  Lex.Lex();
3224  Constant *Val;
3225  SmallVector<unsigned, 4> Indices;
3226  if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3227  ParseGlobalTypeAndValue(Val) ||
3228  ParseIndexList(Indices) ||
3229  ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3230  return true;
3231 
3232  if (!Val->getType()->isAggregateType())
3233  return Error(ID.Loc, "extractvalue operand must be aggregate type");
3234  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3235  return Error(ID.Loc, "invalid indices for extractvalue");
3236  ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3237  ID.Kind = ValID::t_Constant;
3238  return false;
3239  }
3240  case lltok::kw_insertvalue: {
3241  Lex.Lex();
3242  Constant *Val0, *Val1;
3243  SmallVector<unsigned, 4> Indices;
3244  if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3245  ParseGlobalTypeAndValue(Val0) ||
3246  ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3247  ParseGlobalTypeAndValue(Val1) ||
3248  ParseIndexList(Indices) ||
3249  ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3250  return true;
3251  if (!Val0->getType()->isAggregateType())
3252  return Error(ID.Loc, "insertvalue operand must be aggregate type");
3253  Type *IndexedType =
3254  ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3255  if (!IndexedType)
3256  return Error(ID.Loc, "invalid indices for insertvalue");
3257  if (IndexedType != Val1->getType())
3258  return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3259  getTypeString(Val1->getType()) +
3260  "' instead of '" + getTypeString(IndexedType) +
3261  "'");
3262  ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3263  ID.Kind = ValID::t_Constant;
3264  return false;
3265  }
3266  case lltok::kw_icmp:
3267  case lltok::kw_fcmp: {
3268  unsigned PredVal, Opc = Lex.getUIntVal();
3269  Constant *Val0, *Val1;
3270  Lex.Lex();
3271  if (ParseCmpPredicate(PredVal, Opc) ||
3272  ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3273  ParseGlobalTypeAndValue(Val0) ||
3274  ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3275  ParseGlobalTypeAndValue(Val1) ||
3276  ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3277  return true;
3278 
3279  if (Val0->getType() != Val1->getType())
3280  return Error(ID.Loc, "compare operands must have the same type");
3281 
3282  CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3283 
3284  if (Opc == Instruction::FCmp) {
3285  if (!Val0->getType()->isFPOrFPVectorTy())
3286  return Error(ID.Loc, "fcmp requires floating point operands");
3287  ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3288  } else {
3289  assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3290  if (!Val0->getType()->isIntOrIntVectorTy() &&
3291  !Val0->getType()->isPtrOrPtrVectorTy())
3292  return Error(ID.Loc, "icmp requires pointer or integer operands");
3293  ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3294  }
3295  ID.Kind = ValID::t_Constant;
3296  return false;
3297  }
3298 
3299  // Unary Operators.
3300  case lltok::kw_fneg: {
3301  unsigned Opc = Lex.getUIntVal();
3302  Constant *Val;
3303  Lex.Lex();
3304  if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3305  ParseGlobalTypeAndValue(Val) ||
3306  ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3307  return true;
3308 
3309  // Check that the type is valid for the operator.
3310  switch (Opc) {
3311  case Instruction::FNeg:
3312  if (!Val->getType()->isFPOrFPVectorTy())
3313  return Error(ID.Loc, "constexpr requires fp operands");
3314  break;
3315  default: llvm_unreachable("Unknown unary operator!");
3316  }
3317  unsigned Flags = 0;
3318  Constant *C = ConstantExpr::get(Opc, Val, Flags);
3319  ID.ConstantVal = C;
3320  ID.Kind = ValID::t_Constant;
3321  return false;
3322  }
3323  // Binary Operators.
3324  case lltok::kw_add:
3325  case lltok::kw_fadd:
3326  case lltok::kw_sub:
3327  case lltok::kw_fsub:
3328  case lltok::kw_mul:
3329  case lltok::kw_fmul:
3330  case lltok::kw_udiv:
3331  case lltok::kw_sdiv:
3332  case lltok::kw_fdiv:
3333  case lltok::kw_urem:
3334  case lltok::kw_srem:
3335  case lltok::kw_frem:
3336  case lltok::kw_shl:
3337  case lltok::kw_lshr:
3338  case lltok::kw_ashr: {
3339  bool NUW = false;
3340  bool NSW = false;
3341  bool Exact = false;
3342  unsigned Opc = Lex.getUIntVal();
3343  Constant *Val0, *Val1;
3344  Lex.Lex();
3345  LocTy ModifierLoc = Lex.getLoc();
3346  if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3347  Opc == Instruction::Mul || Opc == Instruction::Shl) {
3348  if (EatIfPresent(lltok::kw_nuw))
3349  NUW = true;
3350  if (EatIfPresent(lltok::kw_nsw)) {
3351  NSW = true;
3352  if (EatIfPresent(lltok::kw_nuw))
3353  NUW = true;
3354  }
3355  } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3356  Opc == Instruction::LShr || Opc == Instruction::AShr) {
3357  if (EatIfPresent(lltok::kw_exact))
3358  Exact = true;
3359  }
3360  if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3361  ParseGlobalTypeAndValue(Val0) ||
3362  ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3363  ParseGlobalTypeAndValue(Val1) ||
3364  ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3365  return true;
3366  if (Val0->getType() != Val1->getType())
3367  return Error(ID.Loc, "operands of constexpr must have same type");
3368  if (!Val0->getType()->isIntOrIntVectorTy()) {
3369  if (NUW)
3370  return Error(ModifierLoc, "nuw only applies to integer operations");
3371  if (NSW)
3372  return Error(ModifierLoc, "nsw only applies to integer operations");
3373  }
3374  // Check that the type is valid for the operator.
3375  switch (Opc) {
3376  case Instruction::Add:
3377  case Instruction::Sub:
3378  case Instruction::Mul:
3379  case Instruction::UDiv:
3380  case Instruction::SDiv:
3381  case Instruction::URem:
3382  case Instruction::SRem:
3383  case Instruction::Shl:
3384  case Instruction::AShr:
3385  case Instruction::LShr:
3386  if (!Val0->getType()->isIntOrIntVectorTy())
3387  return Error(ID.Loc, "constexpr requires integer operands");
3388  break;
3389  case Instruction::FAdd:
3390  case Instruction::FSub:
3391  case Instruction::FMul:
3392  case Instruction::FDiv:
3393  case Instruction::FRem:
3394  if (!Val0->getType()->isFPOrFPVectorTy())
3395  return Error(ID.Loc, "constexpr requires fp operands");
3396  break;
3397  default: llvm_unreachable("Unknown binary operator!");
3398  }
3399  unsigned Flags = 0;
3401  if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3402  if (Exact) Flags |= PossiblyExactOperator::IsExact;
3403  Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3404  ID.ConstantVal = C;
3405  ID.Kind = ValID::t_Constant;
3406  return false;
3407  }
3408 
3409  // Logical Operations
3410  case lltok::kw_and:
3411  case lltok::kw_or:
3412  case lltok::kw_xor: {
3413  unsigned Opc = Lex.getUIntVal();
3414  Constant *Val0, *Val1;
3415  Lex.Lex();
3416  if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3417  ParseGlobalTypeAndValue(Val0) ||
3418  ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3419  ParseGlobalTypeAndValue(Val1) ||
3420  ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3421  return true;
3422  if (Val0->getType() != Val1->getType())
3423  return Error(ID.Loc, "operands of constexpr must have same type");
3424  if (!Val0->getType()->isIntOrIntVectorTy())
3425  return Error(ID.Loc,
3426  "constexpr requires integer or integer vector operands");
3427  ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3428  ID.Kind = ValID::t_Constant;
3429  return false;
3430  }
3431 
3436  case lltok::kw_select: {
3437  unsigned Opc = Lex.getUIntVal();
3439  bool InBounds = false;
3440  Type *Ty;
3441  Lex.Lex();
3442 
3443  if (Opc == Instruction::GetElementPtr)
3444  InBounds = EatIfPresent(lltok::kw_inbounds);
3445 
3446  if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3447  return true;
3448 
3449  LocTy ExplicitTypeLoc = Lex.getLoc();
3450  if (Opc == Instruction::GetElementPtr) {
3451  if (ParseType(Ty) ||
3452  ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3453  return true;
3454  }
3455 
3456  Optional<unsigned> InRangeOp;
3457  if (ParseGlobalValueVector(
3458  Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3459  ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3460  return true;
3461 
3462  if (Opc == Instruction::GetElementPtr) {
3463  if (Elts.size() == 0 ||
3464  !Elts[0]->getType()->isPtrOrPtrVectorTy())
3465  return Error(ID.Loc, "base of getelementptr must be a pointer");
3466 
3467  Type *BaseType = Elts[0]->getType();
3468  auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3469  if (Ty != BasePointerType->getElementType())
3470  return Error(
3471  ExplicitTypeLoc,
3472  "explicit pointee type doesn't match operand's pointee type");
3473 
3474  unsigned GEPWidth =
3475  BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3476 
3477  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3478  for (Constant *Val : Indices) {
3479  Type *ValTy = Val->getType();
3480  if (!ValTy->isIntOrIntVectorTy())
3481  return Error(ID.Loc, "getelementptr index must be an integer");
3482  if (ValTy->isVectorTy()) {
3483  unsigned ValNumEl = ValTy->getVectorNumElements();
3484  if (GEPWidth && (ValNumEl != GEPWidth))
3485  return Error(
3486  ID.Loc,
3487  "getelementptr vector index has a wrong number of elements");
3488  // GEPWidth may have been unknown because the base is a scalar,
3489  // but it is known now.
3490  GEPWidth = ValNumEl;
3491  }
3492  }
3493 
3494  SmallPtrSet<Type*, 4> Visited;
3495  if (!Indices.empty() && !Ty->isSized(&Visited))
3496  return Error(ID.Loc, "base element of getelementptr must be sized");
3497 
3498  if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3499  return Error(ID.Loc, "invalid getelementptr indices");
3500 
3501  if (InRangeOp) {
3502  if (*InRangeOp == 0)
3503  return Error(ID.Loc,
3504  "inrange keyword may not appear on pointer operand");
3505  --*InRangeOp;
3506  }
3507 
3508  ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3509  InBounds, InRangeOp);
3510  } else if (Opc == Instruction::Select) {
3511  if (Elts.size() != 3)
3512  return Error(ID.Loc, "expected three operands to select");
3513  if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3514  Elts[2]))
3515  return Error(ID.Loc, Reason);
3516  ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3517  } else if (Opc == Instruction::ShuffleVector) {
3518  if (Elts.size() != 3)
3519  return Error(ID.Loc, "expected three operands to shufflevector");
3520  if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3521  return Error(ID.Loc, "invalid operands to shufflevector");
3522  ID.ConstantVal =
3523  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3524  } else if (Opc == Instruction::ExtractElement) {
3525  if (Elts.size() != 2)
3526  return Error(ID.Loc, "expected two operands to extractelement");
3527  if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3528  return Error(ID.Loc, "invalid extractelement operands");
3529  ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3530  } else {
3531  assert(Opc == Instruction::InsertElement && "Unknown opcode");
3532  if (Elts.size() != 3)
3533  return Error(ID.Loc, "expected three operands to insertelement");
3534  if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3535  return Error(ID.Loc, "invalid insertelement operands");
3536  ID.ConstantVal =
3537  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3538  }
3539 
3540  ID.Kind = ValID::t_Constant;
3541  return false;
3542  }
3543  }
3544 
3545  Lex.Lex();
3546  return false;
3547 }
3548 
3549 /// ParseGlobalValue - Parse a global value with the specified type.
3550 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3551  C = nullptr;
3552  ValID ID;
3553  Value *V = nullptr;
3554  bool Parsed = ParseValID(ID) ||
3555  ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3556  if (V && !(C = dyn_cast<Constant>(V)))
3557  return Error(ID.Loc, "global values must be constants");
3558  return Parsed;
3559 }
3560 
3561 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3562  Type *Ty = nullptr;
3563  return ParseType(Ty) ||
3564  ParseGlobalValue(Ty, V);
3565 }
3566 
3567 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3568  C = nullptr;
3569 
3570  LocTy KwLoc = Lex.getLoc();
3571  if (!EatIfPresent(lltok::kw_comdat))
3572  return false;
3573 
3574  if (EatIfPresent(lltok::lparen)) {
3575  if (Lex.getKind() != lltok::ComdatVar)
3576  return TokError("expected comdat variable");
3577  C = getComdat(Lex.getStrVal(), Lex.getLoc());
3578  Lex.Lex();
3579  if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3580  return true;
3581  } else {
3582  if (GlobalName.empty())
3583  return TokError("comdat cannot be unnamed");
3584  C = getComdat(GlobalName, KwLoc);
3585  }
3586 
3587  return false;
3588 }
3589 
3590 /// ParseGlobalValueVector
3591 /// ::= /*empty*/
3592 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3593 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3594  Optional<unsigned> *InRangeOp) {
3595  // Empty list.
3596  if (Lex.getKind() == lltok::rbrace ||
3597  Lex.getKind() == lltok::rsquare ||
3598  Lex.getKind() == lltok::greater ||
3599  Lex.getKind() == lltok::rparen)
3600  return false;
3601 
3602  do {
3603  if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3604  *InRangeOp = Elts.size();
3605 
3606  Constant *C;
3607  if (ParseGlobalTypeAndValue(C)) return true;
3608  Elts.push_back(C);
3609  } while (EatIfPresent(lltok::comma));
3610 
3611  return false;
3612 }
3613 
3614 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3616  if (ParseMDNodeVector(Elts))
3617  return true;
3618 
3619  MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3620  return false;
3621 }
3622 
3623 /// MDNode:
3624 /// ::= !{ ... }
3625 /// ::= !7
3626 /// ::= !DILocation(...)
3627 bool LLParser::ParseMDNode(MDNode *&N) {
3628  if (Lex.getKind() == lltok::MetadataVar)
3629  return ParseSpecializedMDNode(N);
3630 
3631  return ParseToken(lltok::exclaim, "expected '!' here") ||
3632  ParseMDNodeTail(N);
3633 }
3634 
3635 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3636  // !{ ... }
3637  if (Lex.getKind() == lltok::lbrace)
3638  return ParseMDTuple(N);
3639 
3640  // !42
3641  return ParseMDNodeID(N);
3642 }
3643 
3644 namespace {
3645 
3646 /// Structure to represent an optional metadata field.
3647 template <class FieldTy> struct MDFieldImpl {
3648  typedef MDFieldImpl ImplTy;
3649  FieldTy Val;
3650  bool Seen;
3651 
3652  void assign(FieldTy Val) {
3653  Seen = true;
3654  this->Val = std::move(Val);
3655  }
3656 
3657  explicit MDFieldImpl(FieldTy Default)
3658  : Val(std::move(Default)), Seen(false) {}
3659 };
3660 
3661 /// Structure to represent an optional metadata field that
3662 /// can be of either type (A or B) and encapsulates the
3663 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3664 /// to reimplement the specifics for representing each Field.
3665 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3666  typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3667  FieldTypeA A;
3668  FieldTypeB B;
3669  bool Seen;
3670 
3671  enum {
3672  IsInvalid = 0,
3673  IsTypeA = 1,
3674  IsTypeB = 2
3675  } WhatIs;
3676 
3677  void assign(FieldTypeA A) {
3678  Seen = true;
3679  this->A = std::move(A);
3680  WhatIs = IsTypeA;
3681  }
3682 
3683  void assign(FieldTypeB B) {
3684  Seen = true;
3685  this->B = std::move(B);
3686  WhatIs = IsTypeB;
3687  }
3688 
3689  explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3690  : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3691  WhatIs(IsInvalid) {}
3692 };
3693 
3694 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3695  uint64_t Max;
3696 
3697  MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3698  : ImplTy(Default), Max(Max) {}
3699 };
3700 
3701 struct LineField : public MDUnsignedField {
3702  LineField() : MDUnsignedField(0, UINT32_MAX) {}
3703 };
3704 
3705 struct ColumnField : public MDUnsignedField {
3706  ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3707 };
3708 
3709 struct DwarfTagField : public MDUnsignedField {
3710  DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3711  DwarfTagField(dwarf::Tag DefaultTag)
3712  : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3713 };
3714 
3715 struct DwarfMacinfoTypeField : public MDUnsignedField {
3716  DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3717  DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3718  : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3719 };
3720 
3721 struct DwarfAttEncodingField : public MDUnsignedField {
3722  DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3723 };
3724 
3725 struct DwarfVirtualityField : public MDUnsignedField {
3726  DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3727 };
3728 
3729 struct DwarfLangField : public MDUnsignedField {
3730  DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3731 };
3732 
3733 struct DwarfCCField : public MDUnsignedField {
3734  DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3735 };
3736 
3737 struct EmissionKindField : public MDUnsignedField {
3738  EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3739 };
3740 
3741 struct NameTableKindField : public MDUnsignedField {
3742  NameTableKindField()
3743  : MDUnsignedField(
3744  0, (unsigned)
3746 };
3747 
3748 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3749  DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3750 };
3751 
3752 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3753  DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3754 };
3755 
3756 struct MDSignedField : public MDFieldImpl<int64_t> {
3757  int64_t Min;
3758  int64_t Max;
3759 
3760  MDSignedField(int64_t Default = 0)
3761  : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3762  MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3763  : ImplTy(Default), Min(Min), Max(Max) {}
3764 };
3765 
3766 struct MDBoolField : public MDFieldImpl<bool> {
3767  MDBoolField(bool Default = false) : ImplTy(Default) {}
3768 };
3769 
3770 struct MDField : public MDFieldImpl<Metadata *> {
3771  bool AllowNull;
3772 
3773  MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3774 };
3775 
3776 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3777  MDConstant() : ImplTy(nullptr) {}
3778 };
3779 
3780 struct MDStringField : public MDFieldImpl<MDString *> {
3781  bool AllowEmpty;
3782  MDStringField(bool AllowEmpty = true)
3783  : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3784 };
3785 
3786 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3787  MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3788 };
3789 
3790 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3791  ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3792 };
3793 
3794 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3795  MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3796  : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3797 
3798  MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3799  bool AllowNull = true)
3800  : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3801 
3802  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3803  bool isMDField() const { return WhatIs == IsTypeB; }
3804  int64_t getMDSignedValue() const {
3805  assert(isMDSignedField() && "Wrong field type");
3806  return A.Val;
3807  }
3808  Metadata *getMDFieldValue() const {
3809  assert(isMDField() && "Wrong field type");
3810  return B.Val;
3811  }
3812 };
3813 
3814 struct MDSignedOrUnsignedField
3815  : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3816  MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3817 
3818  bool isMDSignedField() const { return WhatIs == IsTypeA; }
3819  bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3820  int64_t getMDSignedValue() const {
3821  assert(isMDSignedField() && "Wrong field type");
3822  return A.Val;
3823  }
3824  uint64_t getMDUnsignedValue() const {
3825  assert(isMDUnsignedField() && "Wrong field type");
3826  return B.Val;
3827  }
3828 };
3829 
3830 } // end anonymous namespace
3831 
3832 namespace llvm {
3833 
3834 template <>
3835 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3836  MDUnsignedField &Result) {
3837  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3838  return TokError("expected unsigned integer");
3839 
3840  auto &U = Lex.getAPSIntVal();
3841  if (U.ugt(Result.Max))
3842  return TokError("value for '" + Name + "' too large, limit is " +
3843  Twine(Result.Max));
3844  Result.assign(U.getZExtValue());
3845  assert(Result.Val <= Result.Max && "Expected value in range");
3846  Lex.Lex();
3847  return false;
3848 }
3849 
3850 template <>
3851 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3852  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3853 }
3854 template <>
3855 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3856  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3857 }
3858 
3859 template <>
3860 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3861  if (Lex.getKind() == lltok::APSInt)
3862  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3863 
3864  if (Lex.getKind() != lltok::DwarfTag)
3865  return TokError("expected DWARF tag");
3866 
3867  unsigned Tag = dwarf::getTag(Lex.getStrVal());
3868  if (Tag == dwarf::DW_TAG_invalid)
3869  return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3870  assert(Tag <= Result.Max && "Expected valid DWARF tag");
3871 
3872  Result.assign(Tag);
3873  Lex.Lex();
3874  return false;
3875 }
3876 
3877 template <>
3878 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3879  DwarfMacinfoTypeField &Result) {
3880  if (Lex.getKind() == lltok::APSInt)
3881  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3882 
3883  if (Lex.getKind() != lltok::DwarfMacinfo)
3884  return TokError("expected DWARF macinfo type");
3885 
3886  unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3887  if (Macinfo == dwarf::DW_MACINFO_invalid)
3888  return TokError(
3889  "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3890  assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3891 
3892  Result.assign(Macinfo);
3893  Lex.Lex();
3894  return false;
3895 }
3896 
3897 template <>
3898 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3899  DwarfVirtualityField &Result) {
3900  if (Lex.getKind() == lltok::APSInt)
3901  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3902 
3903  if (Lex.getKind() != lltok::DwarfVirtuality)
3904  return TokError("expected DWARF virtuality code");
3905 
3906  unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3907  if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3908  return TokError("invalid DWARF virtuality code" + Twine(" '") +
3909  Lex.getStrVal() + "'");
3910  assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3911  Result.assign(Virtuality);
3912  Lex.Lex();
3913  return false;
3914 }
3915 
3916 template <>
3917 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3918  if (Lex.getKind() == lltok::APSInt)
3919  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3920 
3921  if (Lex.getKind() != lltok::DwarfLang)
3922  return TokError("expected DWARF language");
3923 
3924  unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3925  if (!Lang)
3926  return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3927  "'");
3928  assert(Lang <= Result.Max && "Expected valid DWARF language");
3929  Result.assign(Lang);
3930  Lex.Lex();
3931  return false;
3932 }
3933 
3934 template <>
3935 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3936  if (Lex.getKind() == lltok::APSInt)
3937  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3938 
3939  if (Lex.getKind() != lltok::DwarfCC)
3940  return TokError("expected DWARF calling convention");
3941 
3942  unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3943  if (!CC)
3944  return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3945  "'");
3946  assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3947  Result.assign(CC);
3948  Lex.Lex();
3949  return false;
3950 }
3951 
3952 template <>
3953 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3954  if (Lex.getKind() == lltok::APSInt)
3955  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3956 
3957  if (Lex.getKind() != lltok::EmissionKind)
3958  return TokError("expected emission kind");
3959 
3960  auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3961  if (!Kind)
3962  return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3963  "'");
3964  assert(*Kind <= Result.Max && "Expected valid emission kind");
3965  Result.assign(*Kind);
3966  Lex.Lex();
3967  return false;
3968 }
3969 
3970 template <>
3971 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3972  NameTableKindField &Result) {
3973  if (Lex.getKind() == lltok::APSInt)
3974  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3975 
3976  if (Lex.getKind() != lltok::NameTableKind)
3977  return TokError("expected nameTable kind");
3978 
3979  auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3980  if (!Kind)
3981  return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3982  "'");
3983  assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3984  Result.assign((unsigned)*Kind);
3985  Lex.Lex();
3986  return false;
3987 }
3988 
3989 template <>
3990 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3991  DwarfAttEncodingField &Result) {
3992  if (Lex.getKind() == lltok::APSInt)
3993  return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3994 
3995  if (Lex.getKind() != lltok::DwarfAttEncoding)
3996  return TokError("expected DWARF type attribute encoding");
3997 
3998  unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3999  if (!Encoding)
4000  return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4001  Lex.getStrVal() + "'");
4002  assert(Encoding <= Result.Max && "Expected valid DWARF language");
4003  Result.assign(Encoding);
4004  Lex.Lex();
4005  return false;
4006 }
4007 
4008 /// DIFlagField
4009 /// ::= uint32
4010 /// ::= DIFlagVector
4011 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4012 template <>
4013 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4014 
4015  // Parser for a single flag.
4016  auto parseFlag = [&](DINode::DIFlags &Val) {
4017  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4018  uint32_t TempVal = static_cast<uint32_t>(Val);
4019  bool Res = ParseUInt32(TempVal);
4020  Val = static_cast<DINode::DIFlags>(TempVal);
4021  return Res;
4022  }
4023 
4024  if (Lex.getKind() != lltok::DIFlag)
4025  return TokError("expected debug info flag");
4026 
4027  Val = DINode::getFlag(Lex.getStrVal());
4028  if (!Val)
4029  return TokError(Twine("invalid debug info flag flag '") +
4030  Lex.getStrVal() + "'");
4031  Lex.Lex();
4032  return false;
4033  };
4034 
4035  // Parse the flags and combine them together.
4036  DINode::DIFlags Combined = DINode::FlagZero;
4037  do {
4038  DINode::DIFlags Val;
4039  if (parseFlag(Val))
4040  return true;
4041  Combined |= Val;
4042  } while (EatIfPresent(lltok::bar));
4043 
4044  Result.assign(Combined);
4045  return false;
4046 }
4047 
4048 /// DISPFlagField
4049 /// ::= uint32
4050 /// ::= DISPFlagVector
4051 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4052 template <>
4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4054 
4055  // Parser for a single flag.
4056  auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4057  if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4058  uint32_t TempVal = static_cast<uint32_t>(Val);
4059  bool Res = ParseUInt32(TempVal);
4060  Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4061  return Res;
4062  }
4063 
4064  if (Lex.getKind() != lltok::DISPFlag)
4065  return TokError("expected debug info flag");
4066 
4067  Val = DISubprogram::getFlag(Lex.getStrVal());
4068  if (!Val)
4069  return TokError(Twine("invalid subprogram debug info flag '") +
4070  Lex.getStrVal() + "'");
4071  Lex.Lex();
4072  return false;
4073  };
4074 
4075  // Parse the flags and combine them together.
4076  DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4077  do {
4079  if (parseFlag(Val))
4080  return true;
4081  Combined |= Val;
4082  } while (EatIfPresent(lltok::bar));
4083 
4084  Result.assign(Combined);
4085  return false;
4086 }
4087 
4088 template <>
4089 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4090  MDSignedField &Result) {
4091  if (Lex.getKind() != lltok::APSInt)
4092  return TokError("expected signed integer");
4093 
4094  auto &S = Lex.getAPSIntVal();
4095  if (S < Result.Min)
4096  return TokError("value for '" + Name + "' too small, limit is " +
4097  Twine(Result.Min));
4098  if (S > Result.Max)
4099  return TokError("value for '" + Name + "' too large, limit is " +
4100  Twine(Result.Max));
4101  Result.assign(S.getExtValue());
4102  assert(Result.Val >= Result.Min && "Expected value in range");
4103  assert(Result.Val <= Result.Max && "Expected value in range");
4104  Lex.Lex();
4105  return false;
4106 }
4107 
4108 template <>
4109 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4110  switch (Lex.getKind()) {
4111  default:
4112  return TokError("expected 'true' or 'false'");
4113  case lltok::kw_true:
4114  Result.assign(true);
4115  break;
4116  case lltok::kw_false:
4117  Result.assign(false);
4118  break;
4119  }
4120  Lex.Lex();
4121  return false;
4122 }
4123 
4124 template <>
4125 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4126  if (Lex.getKind() == lltok::kw_null) {
4127  if (!Result.AllowNull)
4128  return TokError("'" + Name + "' cannot be null");
4129  Lex.Lex();
4130  Result.assign(nullptr);
4131  return false;
4132  }
4133 
4134  Metadata *MD;
4135  if (ParseMetadata(MD, nullptr))
4136  return true;
4137 
4138  Result.assign(MD);
4139  return false;
4140 }
4141 
4142 template <>
4143 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4144  MDSignedOrMDField &Result) {
4145  // Try to parse a signed int.
4146  if (Lex.getKind() == lltok::APSInt) {
4147  MDSignedField Res = Result.A;
4148  if (!ParseMDField(Loc, Name, Res)) {
4149  Result.assign(Res);
4150  return false;
4151  }
4152  return true;
4153  }
4154 
4155  // Otherwise, try to parse as an MDField.
4156  MDField Res = Result.B;
4157  if (!ParseMDField(Loc, Name, Res)) {
4158  Result.assign(Res);
4159  return false;
4160  }
4161 
4162  return true;
4163 }
4164 
4165 template <>
4166 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4167  MDSignedOrUnsignedField &Result) {
4168  if (Lex.getKind() != lltok::APSInt)
4169  return false;
4170 
4171  if (Lex.getAPSIntVal().isSigned()) {
4172  MDSignedField Res = Result.A;
4173  if (ParseMDField(Loc, Name, Res))
4174  return true;
4175  Result.assign(Res);
4176  return false;
4177  }
4178 
4179  MDUnsignedField Res = Result.B;
4180  if (ParseMDField(Loc, Name, Res))
4181  return true;
4182  Result.assign(Res);
4183  return false;
4184 }
4185 
4186 template <>
4187 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4188  LocTy ValueLoc = Lex.getLoc();
4189  std::string S;
4190  if (ParseStringConstant(S))
4191  return true;
4192 
4193  if (!Result.AllowEmpty && S.empty())
4194  return Error(ValueLoc, "'" + Name + "' cannot be empty");
4195 
4196  Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4197  return false;
4198 }
4199 
4200 template <>
4201 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4203  if (ParseMDNodeVector(MDs))
4204  return true;
4205 
4206  Result.assign(std::move(MDs));
4207  return false;
4208 }
4209 
4210 template <>
4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4212  ChecksumKindField &Result) {
4214  DIFile::getChecksumKind(Lex.getStrVal());
4215 
4216  if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4217  return TokError(
4218  "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4219 
4220  Result.assign(*CSKind);
4221  Lex.Lex();
4222  return false;
4223 }
4224 
4225 } // end namespace llvm
4226 
4227 template <class ParserTy>
4228 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4229  do {
4230  if (Lex.getKind() != lltok::LabelStr)
4231  return TokError("expected field label here");
4232 
4233  if (parseField())
4234  return true;
4235  } while (EatIfPresent(lltok::comma));
4236 
4237  return false;
4238 }
4239 
4240 template <class ParserTy>
4241 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4242  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4243  Lex.Lex();
4244 
4245  if (ParseToken(lltok::lparen, "expected '(' here"))
4246  return true;
4247  if (Lex.getKind() != lltok::rparen)
4248  if (ParseMDFieldsImplBody(parseField))
4249  return true;
4250 
4251  ClosingLoc = Lex.getLoc();
4252  return ParseToken(lltok::rparen, "expected ')' here");
4253 }
4254 
4255 template <class FieldTy>
4256 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4257  if (Result.Seen)
4258  return TokError("field '" + Name + "' cannot be specified more than once");
4259 
4260  LocTy Loc = Lex.getLoc();
4261  Lex.Lex();
4262  return ParseMDField(Loc, Name, Result);
4263 }
4264 
4265 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4266  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4267 
4268 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4269  if (Lex.getStrVal() == #CLASS) \
4270  return Parse##CLASS(N, IsDistinct);
4271 #include "llvm/IR/Metadata.def"
4272 
4273  return TokError("expected metadata type");
4274 }
4275 
4276 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4277 #define NOP_FIELD(NAME, TYPE, INIT)
4278 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4279  if (!NAME.Seen) \
4280  return Error(ClosingLoc, "missing required field '" #NAME "'");
4281 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4282  if (Lex.getStrVal() == #NAME) \
4283  return ParseMDField(#NAME, NAME);
4284 #define PARSE_MD_FIELDS() \
4285  VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4286  do { \
4287  LocTy ClosingLoc; \
4288  if (ParseMDFieldsImpl([&]() -> bool { \
4289  VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4290  return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4291  }, ClosingLoc)) \
4292  return true; \
4293  VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4294  } while (false)
4295 #define GET_OR_DISTINCT(CLASS, ARGS) \
4296  (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4297 
4298 /// ParseDILocationFields:
4299 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4300 /// isImplicitCode: true)
4301 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4302 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4303  OPTIONAL(line, LineField, ); \
4304  OPTIONAL(column, ColumnField, ); \
4305  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4306  OPTIONAL(inlinedAt, MDField, ); \
4307  OPTIONAL(isImplicitCode, MDBoolField, (false));
4308  PARSE_MD_FIELDS();
4309 #undef VISIT_MD_FIELDS
4310 
4311  Result =
4312  GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4313  inlinedAt.Val, isImplicitCode.Val));
4314  return false;
4315 }
4316 
4317 /// ParseGenericDINode:
4318 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4319 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4320 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4321  REQUIRED(tag, DwarfTagField, ); \
4322  OPTIONAL(header, MDStringField, ); \
4323  OPTIONAL(operands, MDFieldList, );
4324  PARSE_MD_FIELDS();
4325 #undef VISIT_MD_FIELDS
4326 
4327  Result = GET_OR_DISTINCT(GenericDINode,
4328  (Context, tag.Val, header.Val, operands.Val));
4329  return false;
4330 }
4331 
4332 /// ParseDISubrange:
4333 /// ::= !DISubrange(count: 30, lowerBound: 2)
4334 /// ::= !DISubrange(count: !node, lowerBound: 2)
4335 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4336 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4337  REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4338  OPTIONAL(lowerBound, MDSignedField, );
4339  PARSE_MD_FIELDS();
4340 #undef VISIT_MD_FIELDS
4341 
4342  if (count.isMDSignedField())
4343  Result = GET_OR_DISTINCT(
4344  DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4345  else if (count.isMDField())
4346  Result = GET_OR_DISTINCT(
4347  DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4348  else
4349  return true;
4350 
4351  return false;
4352 }
4353 
4354 /// ParseDIEnumerator:
4355 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4356 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4357 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4358  REQUIRED(name, MDStringField, ); \
4359  REQUIRED(value, MDSignedOrUnsignedField, ); \
4360  OPTIONAL(isUnsigned, MDBoolField, (false));
4361  PARSE_MD_FIELDS();
4362 #undef VISIT_MD_FIELDS
4363 
4364  if (isUnsigned.Val && value.isMDSignedField())
4365  return TokError("unsigned enumerator with negative value");
4366 
4367  int64_t Value = value.isMDSignedField()
4368  ? value.getMDSignedValue()
4369  : static_cast<int64_t>(value.getMDUnsignedValue());
4370  Result =
4371  GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4372 
4373  return false;
4374 }
4375 
4376 /// ParseDIBasicType:
4377 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4378 /// encoding: DW_ATE_encoding, flags: 0)
4379 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4380 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4381  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4382  OPTIONAL(name, MDStringField, ); \
4383  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4384  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4385  OPTIONAL(encoding, DwarfAttEncodingField, ); \
4386  OPTIONAL(flags, DIFlagField, );
4387  PARSE_MD_FIELDS();
4388 #undef VISIT_MD_FIELDS
4389 
4390  Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4391  align.Val, encoding.Val, flags.Val));
4392  return false;
4393 }
4394 
4395 /// ParseDIDerivedType:
4396 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4397 /// line: 7, scope: !1, baseType: !2, size: 32,
4398 /// align: 32, offset: 0, flags: 0, extraData: !3,
4399 /// dwarfAddressSpace: 3)
4400 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4401 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4402  REQUIRED(tag, DwarfTagField, ); \
4403  OPTIONAL(name, MDStringField, ); \
4404  OPTIONAL(file, MDField, ); \
4405  OPTIONAL(line, LineField, ); \
4406  OPTIONAL(scope, MDField, ); \
4407  REQUIRED(baseType, MDField, ); \
4408  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4409  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4410  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4411  OPTIONAL(flags, DIFlagField, ); \
4412  OPTIONAL(extraData, MDField, ); \
4413  OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4414  PARSE_MD_FIELDS();
4415 #undef VISIT_MD_FIELDS
4416 
4417  Optional<unsigned> DWARFAddressSpace;
4418  if (dwarfAddressSpace.Val != UINT32_MAX)
4419  DWARFAddressSpace = dwarfAddressSpace.Val;
4420 
4421  Result = GET_OR_DISTINCT(DIDerivedType,
4422  (Context, tag.Val, name.Val, file.Val, line.Val,
4423  scope.Val, baseType.Val, size.Val, align.Val,
4424  offset.Val, DWARFAddressSpace, flags.Val,
4425  extraData.Val));
4426  return false;
4427 }
4428 
4429 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4430 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4431  REQUIRED(tag, DwarfTagField, ); \
4432  OPTIONAL(name, MDStringField, ); \
4433  OPTIONAL(file, MDField, ); \
4434  OPTIONAL(line, LineField, ); \
4435  OPTIONAL(scope, MDField, ); \
4436  OPTIONAL(baseType, MDField, ); \
4437  OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4438  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4439  OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4440  OPTIONAL(flags, DIFlagField, ); \
4441  OPTIONAL(elements, MDField, ); \
4442  OPTIONAL(runtimeLang, DwarfLangField, ); \
4443  OPTIONAL(vtableHolder, MDField, ); \
4444  OPTIONAL(templateParams, MDField, ); \
4445  OPTIONAL(identifier, MDStringField, ); \
4446  OPTIONAL(discriminator, MDField, );
4447  PARSE_MD_FIELDS();
4448 #undef VISIT_MD_FIELDS
4449 
4450  // If this has an identifier try to build an ODR type.
4451  if (identifier.Val)
4452  if (auto *CT = DICompositeType::buildODRType(
4453  Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4454  scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4455  elements.Val, runtimeLang.Val, vtableHolder.Val,
4456  templateParams.Val, discriminator.Val)) {
4457  Result = CT;
4458  return false;
4459  }
4460 
4461  // Create a new node, and save it in the context if it belongs in the type
4462  // map.
4463  Result = GET_OR_DISTINCT(
4465  (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4466  size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4467  runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4468  discriminator.Val));
4469  return false;
4470 }
4471 
4472 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4473 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4474  OPTIONAL(flags, DIFlagField, ); \
4475  OPTIONAL(cc, DwarfCCField, ); \
4476  REQUIRED(types, MDField, );
4477  PARSE_MD_FIELDS();
4478 #undef VISIT_MD_FIELDS
4479 
4481  (Context, flags.Val, cc.Val, types.Val));
4482  return false;
4483 }
4484 
4485 /// ParseDIFileType:
4486 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4487 /// checksumkind: CSK_MD5,
4488 /// checksum: "000102030405060708090a0b0c0d0e0f",
4489 /// source: "source file contents")
4490 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4491  // The default constructed value for checksumkind is required, but will never
4492  // be used, as the parser checks if the field was actually Seen before using
4493  // the Val.
4494 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4495  REQUIRED(filename, MDStringField, ); \
4496  REQUIRED(directory, MDStringField, ); \
4497  OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4498  OPTIONAL(checksum, MDStringField, ); \
4499  OPTIONAL(source, MDStringField, );
4500  PARSE_MD_FIELDS();
4501 #undef VISIT_MD_FIELDS
4502 
4504  if (checksumkind.Seen && checksum.Seen)
4505  OptChecksum.emplace(checksumkind.Val, checksum.Val);
4506  else if (checksumkind.Seen || checksum.Seen)
4507  return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4508 
4509  Optional<MDString *> OptSource;
4510  if (source.Seen)
4511  OptSource = source.Val;
4512  Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4513  OptChecksum, OptSource));
4514  return false;
4515 }
4516 
4517 /// ParseDICompileUnit:
4518 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4519 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4520 /// splitDebugFilename: "abc.debug",
4521 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4522 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4523 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4524  if (!IsDistinct)
4525  return Lex.Error("missing 'distinct', required for !DICompileUnit");
4526 
4527 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4528  REQUIRED(language, DwarfLangField, ); \
4529  REQUIRED(file, MDField, (/* AllowNull */ false)); \
4530  OPTIONAL(producer, MDStringField, ); \
4531  OPTIONAL(isOptimized, MDBoolField, ); \
4532  OPTIONAL(flags, MDStringField, ); \
4533  OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4534  OPTIONAL(splitDebugFilename, MDStringField, ); \
4535  OPTIONAL(emissionKind, EmissionKindField, ); \
4536  OPTIONAL(enums, MDField, ); \
4537  OPTIONAL(retainedTypes, MDField, ); \
4538  OPTIONAL(globals, MDField, ); \
4539  OPTIONAL(imports, MDField, ); \
4540  OPTIONAL(macros, MDField, ); \
4541  OPTIONAL(dwoId, MDUnsignedField, ); \
4542  OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4543  OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4544  OPTIONAL(nameTableKind, NameTableKindField, ); \
4545  OPTIONAL(debugBaseAddress, MDBoolField, = false);
4546  PARSE_MD_FIELDS();
4547 #undef VISIT_MD_FIELDS
4548 
4549  Result = DICompileUnit::getDistinct(
4550  Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4551  runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4552  retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4553  splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4554  debugBaseAddress.Val);
4555  return false;
4556 }
4557 
4558 /// ParseDISubprogram:
4559 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4560 /// file: !1, line: 7, type: !2, isLocal: false,
4561 /// isDefinition: true, scopeLine: 8, containingType: !3,
4562 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4563 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4564 /// spFlags: 10, isOptimized: false, templateParams: !4,
4565 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4566 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4567  auto Loc = Lex.getLoc();
4568 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4569  OPTIONAL(scope, MDField, ); \
4570  OPTIONAL(name, MDStringField, ); \
4571  OPTIONAL(linkageName, MDStringField, ); \
4572  OPTIONAL(file, MDField, ); \
4573  OPTIONAL(line, LineField, ); \
4574  OPTIONAL(type, MDField, ); \
4575  OPTIONAL(isLocal, MDBoolField, ); \
4576  OPTIONAL(isDefinition, MDBoolField, (true)); \
4577  OPTIONAL(scopeLine, LineField, ); \
4578  OPTIONAL(containingType, MDField, ); \
4579  OPTIONAL(virtuality, DwarfVirtualityField, ); \
4580  OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4581  OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4582  OPTIONAL(flags, DIFlagField, ); \
4583  OPTIONAL(spFlags, DISPFlagField, ); \
4584  OPTIONAL(isOptimized, MDBoolField, ); \
4585  OPTIONAL(unit, MDField, ); \
4586  OPTIONAL(templateParams, MDField, ); \
4587  OPTIONAL(declaration, MDField, ); \
4588  OPTIONAL(retainedNodes, MDField, ); \
4589  OPTIONAL(thrownTypes, MDField, );
4590  PARSE_MD_FIELDS();
4591 #undef VISIT_MD_FIELDS
4592 
4593  // An explicit spFlags field takes precedence over individual fields in
4594  // older IR versions.
4595  DISubprogram::DISPFlags SPFlags =
4596  spFlags.Seen ? spFlags.Val
4597  : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4598  isOptimized.Val, virtuality.Val);
4599  if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4600  return Lex.Error(
4601  Loc,
4602  "missing 'distinct', required for !DISubprogram that is a Definition");
4603  Result = GET_OR_DISTINCT(
4604  DISubprogram,
4605  (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4606  type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4607  thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4608  declaration.Val, retainedNodes.Val, thrownTypes.Val));
4609  return false;
4610 }
4611 
4612 /// ParseDILexicalBlock:
4613 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4614 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4615 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4616  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4617  OPTIONAL(file, MDField, ); \
4618  OPTIONAL(line, LineField, ); \
4619  OPTIONAL(column, ColumnField, );
4620  PARSE_MD_FIELDS();
4621 #undef VISIT_MD_FIELDS
4622 
4623  Result = GET_OR_DISTINCT(
4624  DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4625  return false;
4626 }
4627 
4628 /// ParseDILexicalBlockFile:
4629 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4630 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4631 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4632  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4633  OPTIONAL(file, MDField, ); \
4634  REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4635  PARSE_MD_FIELDS();
4636 #undef VISIT_MD_FIELDS
4637 
4639  (Context, scope.Val, file.Val, discriminator.Val));
4640  return false;
4641 }
4642 
4643 /// ParseDINamespace:
4644 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4645 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4646 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4647  REQUIRED(scope, MDField, ); \
4648  OPTIONAL(name, MDStringField, ); \
4649  OPTIONAL(exportSymbols, MDBoolField, );
4650  PARSE_MD_FIELDS();
4651 #undef VISIT_MD_FIELDS
4652 
4653  Result = GET_OR_DISTINCT(DINamespace,
4654  (Context, scope.Val, name.Val, exportSymbols.Val));
4655  return false;
4656 }
4657 
4658 /// ParseDIMacro:
4659 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4660 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4661 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4662  REQUIRED(type, DwarfMacinfoTypeField, ); \
4663  OPTIONAL(line, LineField, ); \
4664  REQUIRED(name, MDStringField, ); \
4665  OPTIONAL(value, MDStringField, );
4666  PARSE_MD_FIELDS();
4667 #undef VISIT_MD_FIELDS
4668 
4669  Result = GET_OR_DISTINCT(DIMacro,
4670  (Context, type.Val, line.Val, name.Val, value.Val));
4671  return false;
4672 }
4673 
4674 /// ParseDIMacroFile:
4675 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4676 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4678  OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4679  OPTIONAL(line, LineField, ); \
4680  REQUIRED(file, MDField, ); \
4681  OPTIONAL(nodes, MDField, );
4682  PARSE_MD_FIELDS();
4683 #undef VISIT_MD_FIELDS
4684 
4685  Result = GET_OR_DISTINCT(DIMacroFile,
4686  (Context, type.Val, line.Val, file.Val, nodes.Val));
4687  return false;
4688 }
4689 
4690 /// ParseDIModule:
4691 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4692 /// includePath: "/usr/include", isysroot: "/")
4693 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4694 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4695  REQUIRED(scope, MDField, ); \
4696  REQUIRED(name, MDStringField, ); \
4697  OPTIONAL(configMacros, MDStringField, ); \
4698  OPTIONAL(includePath, MDStringField, ); \
4699  OPTIONAL(isysroot, MDStringField, );
4700  PARSE_MD_FIELDS();
4701 #undef VISIT_MD_FIELDS
4702 
4703  Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4704  configMacros.Val, includePath.Val, isysroot.Val));
4705  return false;
4706 }
4707 
4708 /// ParseDITemplateTypeParameter:
4709 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4710 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4711 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4712  OPTIONAL(name, MDStringField, ); \
4713  REQUIRED(type, MDField, );
4714  PARSE_MD_FIELDS();
4715 #undef VISIT_MD_FIELDS
4716 
4717  Result =
4719  return false;
4720 }
4721 
4722 /// ParseDITemplateValueParameter:
4723 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4724 /// name: "V", type: !1, value: i32 7)
4725 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4726 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4727  OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4728  OPTIONAL(name, MDStringField, ); \
4729  OPTIONAL(type, MDField, ); \
4730  REQUIRED(value, MDField, );
4731  PARSE_MD_FIELDS();
4732 #undef VISIT_MD_FIELDS
4733 
4735  (Context, tag.Val, name.Val, type.Val, value.Val));
4736  return false;
4737 }
4738 
4739 /// ParseDIGlobalVariable:
4740 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4741 /// file: !1, line: 7, type: !2, isLocal: false,
4742 /// isDefinition: true, templateParams: !3,
4743 /// declaration: !4, align: 8)
4744 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4745 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4746  REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4747  OPTIONAL(scope, MDField, ); \
4748  OPTIONAL(linkageName, MDStringField, ); \
4749  OPTIONAL(file, MDField, ); \
4750  OPTIONAL(line, LineField, ); \
4751  OPTIONAL(type, MDField, ); \
4752  OPTIONAL(isLocal, MDBoolField, ); \
4753  OPTIONAL(isDefinition, MDBoolField, (true)); \
4754  OPTIONAL(templateParams, MDField, ); \
4755  OPTIONAL(declaration, MDField, ); \
4756  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4757  PARSE_MD_FIELDS();
4758 #undef VISIT_MD_FIELDS
4759 
4760  Result =
4762  (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4763  line.Val, type.Val, isLocal.Val, isDefinition.Val,
4764  declaration.Val, templateParams.Val, align.Val));
4765  return false;
4766 }
4767 
4768 /// ParseDILocalVariable:
4769 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4770 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4771 /// align: 8)
4772 /// ::= !DILocalVariable(scope: !0, name: "foo",
4773 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4774 /// align: 8)
4775 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4776 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4777  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4778  OPTIONAL(name, MDStringField, ); \
4779  OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4780  OPTIONAL(file, MDField, ); \
4781  OPTIONAL(line, LineField, ); \
4782  OPTIONAL(type, MDField, ); \
4783  OPTIONAL(flags, DIFlagField, ); \
4784  OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4785  PARSE_MD_FIELDS();
4786 #undef VISIT_MD_FIELDS
4787 
4789  (Context, scope.Val, name.Val, file.Val, line.Val,
4790  type.Val, arg.Val, flags.Val, align.Val));
4791  return false;
4792 }
4793 
4794 /// ParseDILabel:
4795 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4796 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4797 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4798  REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4799  REQUIRED(name, MDStringField, ); \
4800  REQUIRED(file, MDField, ); \
4801  REQUIRED(line, LineField, );
4802  PARSE_MD_FIELDS();
4803 #undef VISIT_MD_FIELDS
4804 
4805  Result = GET_OR_DISTINCT(DILabel,
4806  (Context, scope.Val, name.Val, file.Val, line.Val));
4807  return false;
4808 }
4809 
4810 /// ParseDIExpression:
4811 /// ::= !DIExpression(0, 7, -1)
4812 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4813  assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4814  Lex.Lex();
4815 
4816  if (ParseToken(lltok::lparen, "expected '(' here"))
4817  return true;
4818 
4819  SmallVector<uint64_t, 8> Elements;
4820  if (Lex.getKind() != lltok::rparen)
4821  do {
4822  if (Lex.getKind() == lltok::DwarfOp) {
4823  if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4824  Lex.Lex();
4825  Elements.push_back(Op);
4826  continue;
4827  }
4828  return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4829  }
4830 
4831  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4832  return TokError("expected unsigned integer");
4833 
4834  auto &U = Lex.getAPSIntVal();
4835  if (U.ugt(UINT64_MAX))
4836  return TokError("element too large, limit is " + Twine(UINT64_MAX));
4837  Elements.push_back(U.getZExtValue());
4838  Lex.Lex();
4839  } while (EatIfPresent(lltok::comma));
4840 
4841  if (ParseToken(lltok::rparen, "expected ')' here"))
4842  return true;
4843 
4844  Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4845  return false;
4846 }
4847 
4848 /// ParseDIGlobalVariableExpression:
4849 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4850 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4851  bool IsDistinct) {
4852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4853  REQUIRED(var, MDField, ); \
4854  REQUIRED(expr, MDField, );
4855  PARSE_MD_FIELDS();
4856 #undef VISIT_MD_FIELDS
4857 
4858  Result =
4859  GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4860  return false;
4861 }
4862 
4863 /// ParseDIObjCProperty:
4864 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4865 /// getter: "getFoo", attributes: 7, type: !2)
4866 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4868  OPTIONAL(name, MDStringField, ); \
4869  OPTIONAL(file, MDField, ); \
4870  OPTIONAL(line, LineField, ); \
4871  OPTIONAL(setter, MDStringField, ); \
4872  OPTIONAL(getter, MDStringField, ); \
4873  OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4874  OPTIONAL(type, MDField, );
4875  PARSE_MD_FIELDS();
4876 #undef VISIT_MD_FIELDS
4877 
4879  (Context, name.Val, file.Val, line.Val, setter.Val,
4880  getter.Val, attributes.Val, type.Val));
4881  return false;
4882 }
4883 
4884 /// ParseDIImportedEntity:
4885 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4886 /// line: 7, name: "foo")
4887 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4888 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4889  REQUIRED(tag, DwarfTagField, ); \
4890  REQUIRED(scope, MDField, ); \
4891  OPTIONAL(entity, MDField, ); \
4892  OPTIONAL(file, MDField, ); \
4893  OPTIONAL(line, LineField, ); \
4894  OPTIONAL(name, MDStringField, );
4895  PARSE_MD_FIELDS();
4896 #undef VISIT_MD_FIELDS
4897 
4898  Result = GET_OR_DISTINCT(
4900  (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4901  return false;
4902 }
4903 
4904 #undef PARSE_MD_FIELD
4905 #undef NOP_FIELD
4906 #undef REQUIRE_FIELD
4907 #undef DECLARE_FIELD
4908 
4909 /// ParseMetadataAsValue
4910 /// ::= metadata i32 %local
4911 /// ::= metadata i32 @global
4912 /// ::= metadata i32 7
4913 /// ::= metadata !0
4914 /// ::= metadata !{...}
4915 /// ::= metadata !"string"
4916 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4917  // Note: the type 'metadata' has already been parsed.
4918  Metadata *MD;
4919  if (ParseMetadata(MD, &PFS))
4920  return true;
4921 
4922  V = MetadataAsValue::get(Context, MD);
4923  return false;
4924 }
4925 
4926 /// ParseValueAsMetadata
4927 /// ::= i32 %local
4928 /// ::= i32 @global
4929 /// ::= i32 7
4930 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4931  PerFunctionState *PFS) {
4932  Type *Ty;
4933  LocTy Loc;
4934  if (ParseType(Ty, TypeMsg, Loc))
4935  return true;
4936  if (Ty->isMetadataTy())
4937  return Error(Loc, "invalid metadata-value-metadata roundtrip");
4938 
4939  Value *V;
4940  if (ParseValue(Ty, V, PFS))
4941  return true;
4942 
4943  MD = ValueAsMetadata::get(V);
4944  return false;
4945 }
4946 
4947 /// ParseMetadata
4948 /// ::= i32 %local
4949 /// ::= i32 @global
4950 /// ::= i32 7
4951 /// ::= !42
4952 /// ::= !{...}
4953 /// ::= !"string"
4954 /// ::= !DILocation(...)
4955 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4956  if (Lex.getKind() == lltok::MetadataVar) {
4957  MDNode *N;
4958  if (ParseSpecializedMDNode(N))
4959  return true;
4960  MD = N;
4961  return false;
4962  }
4963 
4964  // ValueAsMetadata:
4965  // <type> <value>
4966  if (Lex.getKind() != lltok::exclaim)
4967  return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4968 
4969  // '!'.
4970  assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4971  Lex.Lex();
4972 
4973  // MDString:
4974  // ::= '!' STRINGCONSTANT
4975  if (Lex.getKind() == lltok::StringConstant) {
4976  MDString *S;
4977  if (ParseMDString(S))
4978  return true;
4979  MD = S;
4980  return false;
4981  }
4982 
4983  // MDNode:
4984  // !{ ... }
4985  // !7
4986  MDNode *N;
4987  if (ParseMDNodeTail(N))
4988  return true;
4989  MD = N;
4990  return false;
4991 }
4992 
4993 //===----------------------------------------------------------------------===//
4994 // Function Parsing.
4995 //===----------------------------------------------------------------------===//
4996 
4997 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4998  PerFunctionState *PFS, bool IsCall) {
4999  if (Ty->isFunctionTy())
5000  return Error(ID.Loc, "functions are not values, refer to them as pointers");
5001 
5002  switch (ID.Kind) {
5003  case ValID::t_LocalID:
5004  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5005  V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5006  return V == nullptr;
5007  case ValID::t_LocalName:
5008  if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5009  V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5010  return V == nullptr;
5011  case ValID::t_InlineAsm: {
5012  if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5013  return Error(ID.Loc, "invalid type for inline asm constraint string");
5014  V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5015  (ID.UIntVal >> 1) & 1,
5016  (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5017  return false;
5018  }
5019  case ValID::t_GlobalName:
5020  V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5021  return V == nullptr;
5022  case ValID::t_GlobalID:
5023  V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5024  return V == nullptr;
5025  case ValID::t_APSInt:
5026  if (!Ty->isIntegerTy())
5027  return Error(ID.Loc, "integer constant must have integer type");
5030  return false;
5031  case ValID::t_APFloat:
5032  if (!Ty->isFloatingPointTy() ||
5034  return Error(ID.Loc, "floating point constant invalid for type");
5035 
5036  // The lexer has no type info, so builds all half, float, and double FP
5037  // constants as double. Fix this here. Long double does not need this.
5038  if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5039  bool Ignored;
5040  if (Ty->isHalfTy())
5042  &Ignored);
5043  else if (Ty->isFloatTy())
5045  &Ignored);
5046  }
5048 
5049  if (V->getType() != Ty)
5050  return Error(ID.Loc, "floating point constant does not have type '" +
5051  getTypeString(Ty) + "'");
5052 
5053  return false;
5054  case ValID::t_Null:
5055  if (!Ty->isPointerTy())
5056  return Error(ID.Loc, "null must be a pointer type");
5057  V = ConstantPointerNull::get(cast<PointerType>(Ty));
5058  return false;
5059  case ValID::t_Undef:
5060  // FIXME: LabelTy should not be a first-class type.
5061  if (!Ty->isFirstClassType() || Ty->isLabelTy())
5062  return Error(ID.Loc, "invalid type for undef constant");
5063  V = UndefValue::get(Ty);
5064  return false;
5065  case ValID::t_EmptyArray:
5066  if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5067  return Error(ID.Loc, "invalid empty array initializer");
5068  V = UndefValue::get(Ty);
5069  return false;
5070  case ValID::t_Zero:
5071  // FIXME: LabelTy should not be a first-class type.
5072  if (!Ty->isFirstClassType() || Ty->isLabelTy())
5073  return Error(ID.Loc, "invalid type for null constant");
5074  V = Constant::getNullValue(Ty);
5075  return false;
5076  case ValID::t_None:
5077  if (!Ty->isTokenTy())
5078  return Error(ID.Loc, "invalid type for none constant");
5079  V = Constant::getNullValue(Ty);
5080  return false;
5081  case ValID::t_Constant:
5082  if (ID.ConstantVal->getType() != Ty)
5083  return Error(ID.Loc, "constant expression type mismatch");
5084 
5085  V = ID.ConstantVal;
5086  return false;
5089  if (StructType *ST = dyn_cast<StructType>(Ty)) {
5090  if (ST->getNumElements() != ID.UIntVal)
5091  return Error(ID.Loc,
5092  "initializer with struct type has wrong # elements");
5093  if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5094  return Error(ID.Loc, "packed'ness of initializer and type don't match");
5095 
5096  // Verify that the elements are compatible with the structtype.
5097  for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5098  if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5099  return Error(ID.Loc, "element " + Twine(i) +
5100  " of struct initializer doesn't match struct element type");
5101 
5102  V = ConstantStruct::get(
5103  ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5104  } else
5105  return Error(ID.Loc, "constant expression type mismatch");
5106  return false;
5107  }
5108  llvm_unreachable("Invalid ValID");
5109 }
5110 
5111 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5112  C = nullptr;
5113  ValID ID;
5114  auto Loc = Lex.getLoc();
5115  if (ParseValID(ID, /*PFS=*/nullptr))
5116  return true;
5117  switch (ID.Kind) {
5118  case ValID::t_APSInt:
5119  case ValID::t_APFloat:
5120  case ValID::t_Undef:
5121  case ValID::t_Constant:
5124  Value *V;
5125  if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5126  return true;
5127  assert(isa<Constant>(V) && "Expected a constant value");
5128  C = cast<Constant>(V);
5129  return false;
5130  }
5131  case ValID::t_Null:
5132  C = Constant::getNullValue(Ty);
5133  return false;
5134  default:
5135  return Error(Loc, "expected a constant value");
5136  }
5137 }
5138 
5139 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5140  V = nullptr;
5141  ValID ID;
5142  return ParseValID(ID, PFS) ||
5143  ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5144 }
5145 
5146 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5147  Type *Ty = nullptr;
5148  return ParseType(Ty) ||
5149  ParseValue(Ty, V, PFS);
5150 }
5151 
5152 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5153  PerFunctionState &PFS) {
5154  Value *V;
5155  Loc = Lex.getLoc();
5156  if (ParseTypeAndValue(V, PFS)) return true;
5157  if (!isa<BasicBlock>(V))
5158  return Error(Loc, "expected a basic block");
5159  BB = cast<BasicBlock>(V);
5160  return false;
5161 }
5162 
5163 /// FunctionHeader
5164 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5165 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5166 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5167 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5168 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5169  // Parse the linkage.
5170  LocTy LinkageLoc = Lex.getLoc();
5171  unsigned Linkage;
5172  unsigned Visibility;
5173  unsigned DLLStorageClass;
5174  bool DSOLocal;
5175  AttrBuilder RetAttrs;
5176  unsigned CC;
5177  bool HasLinkage;
5178  Type *RetType = nullptr;
5179  LocTy RetTypeLoc = Lex.getLoc();
5180  if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5181  DSOLocal) ||
5182  ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5183  ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5184  return true;
5185 
5186  // Verify that the linkage is ok.
5187  switch ((GlobalValue::LinkageTypes)Linkage) {
5189  break; // always ok.
5191  if (isDefine)
5192  return Error(LinkageLoc, "invalid linkage for function definition");
5193  break;
5201  if (!isDefine)
5202  return Error(LinkageLoc, "invalid linkage for function declaration");
5203  break;
5206  return Error(LinkageLoc, "invalid function linkage type");
5207  }
5208 
5209  if (!isValidVisibilityForLinkage(Visibility, Linkage))
5210  return Error(LinkageLoc,
5211  "symbol with local linkage must have default visibility");
5212 
5213  if (!FunctionType::isValidReturnType(RetType))
5214  return Error(RetTypeLoc, "invalid function return type");
5215 
5216  LocTy NameLoc = Lex.getLoc();
5217 
5218  std::string FunctionName;
5219  if (Lex.getKind() == lltok::GlobalVar) {
5220  FunctionName = Lex.getStrVal();
5221  } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5222  unsigned NameID = Lex.getUIntVal();
5223 
5224  if (NameID != NumberedVals.size())
5225  return TokError("function expected to be numbered '%" +
5226  Twine(NumberedVals.size()) + "'");
5227  } else {
5228  return TokError("expected function name");
5229  }
5230 
5231  Lex.Lex();
5232 
5233  if (Lex.getKind() != lltok::lparen)
5234  return TokError("expected '(' in function argument list");
5235 
5236  SmallVector<ArgInfo, 8> ArgList;
5237  bool isVarArg;
5238  AttrBuilder FuncAttrs;
5239  std::vector<unsigned> FwdRefAttrGrps;
5240  LocTy BuiltinLoc;
5241  std::string Section;
5242  unsigned Alignment;
5243  std::string GC;
5245  unsigned AddrSpace = 0;
5246  Constant *Prefix = nullptr;
5247  Constant *Prologue = nullptr;
5248  Constant *PersonalityFn = nullptr;
5249  Comdat *C;
5250 
5251  if (ParseArgumentList(ArgList, isVarArg) ||
5252  ParseOptionalUnnamedAddr(UnnamedAddr) ||
5253  ParseOptionalProgramAddrSpace(AddrSpace) ||
5254  ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5255  BuiltinLoc) ||
5256  (EatIfPresent(lltok::kw_section) &&
5257  ParseStringConstant(Section)) ||
5258  parseOptionalComdat(FunctionName, C) ||
5259  ParseOptionalAlignment(Alignment) ||
5260  (EatIfPresent(lltok::kw_gc) &&
5261  ParseStringConstant(GC)) ||
5262  (EatIfPresent(lltok::kw_prefix) &&
5263  ParseGlobalTypeAndValue(Prefix)) ||
5264  (EatIfPresent(lltok::kw_prologue) &&
5265  ParseGlobalTypeAndValue(Prologue)) ||
5266  (EatIfPresent(lltok::kw_personality) &&
5267  ParseGlobalTypeAndValue(PersonalityFn)))
5268  return true;
5269 
5270  if (FuncAttrs.contains(Attribute::Builtin))
5271  return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5272 
5273  // If the alignment was parsed as an attribute, move to the alignment field.
5274  if (FuncAttrs.hasAlignmentAttr()) {
5275  Alignment = FuncAttrs.getAlignment();
5276  FuncAttrs.removeAttribute(Attribute::Alignment);
5277  }
5278 
5279  // Okay, if we got here, the function is syntactically valid. Convert types
5280  // and do semantic checks.
5281  std::vector<Type*> ParamTypeList;
5283 
5284  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5285  ParamTypeList.push_back(ArgList[i].Ty);
5286  Attrs.push_back(ArgList[i].Attrs);
5287  }
5288 
5289  AttributeList PAL =
5291  AttributeSet::get(Context, RetAttrs), Attrs);
5292 
5293  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5294  return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5295 
5296  FunctionType *FT =
5297  FunctionType::get(RetType, ParamTypeList, isVarArg);
5298  PointerType *PFT = PointerType::get(FT, AddrSpace);
5299 
5300  Fn = nullptr;
5301  if (!FunctionName.empty()) {
5302  // If this was a definition of a forward reference, remove the definition
5303  // from the forward reference table and fill in the forward ref.
5304  auto FRVI = ForwardRefVals.find(FunctionName);
5305  if (FRVI != ForwardRefVals.end()) {
5306  Fn = M->getFunction(FunctionName);
5307  if (!Fn)
5308  return Error(FRVI->second.second, "invalid forward reference to "
5309  "function as global value!");
5310  if (Fn->getType() != PFT)
5311  return Error(FRVI->second.second, "invalid forward reference to "
5312  "function '" + FunctionName + "' with wrong type: "
5313  "expected '" + getTypeString(PFT) + "' but was '" +
5314  getTypeString(Fn->getType()) + "'");
5315  ForwardRefVals.erase(FRVI);
5316  } else if ((Fn = M->getFunction(FunctionName))) {
5317  // Reject redefinitions.
5318  return Error(NameLoc, "invalid redefinition of function '" +
5319  FunctionName + "'");
5320  } else if (M->getNamedValue(FunctionName)) {
5321  return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5322  }
5323 
5324  } else {
5325  // If this is a definition of a forward referenced function, make sure the
5326  // types agree.
5327  auto I = ForwardRefValIDs.find(NumberedVals.size());
5328  if (I != ForwardRefValIDs.end()) {
5329  Fn = cast<Function>(I->second.first);
5330  if (Fn->getType() != PFT)
5331  return Error(NameLoc, "type of definition and forward reference of '@" +
5332  Twine(NumberedVals.size()) + "' disagree: "
5333  "expected '" + getTypeString(PFT) + "' but was '" +
5334  getTypeString(Fn->getType()) + "'");
5335  ForwardRefValIDs.erase(I);
5336  }
5337  }
5338 
5339  if (!Fn)
5340  Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5341  FunctionName, M);
5342  else // Move the forward-reference to the correct spot in the module.
5343  M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5344 
5345  assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5346 
5347  if (FunctionName.empty())
5348  NumberedVals.push_back(Fn);
5349 
5350  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5351  maybeSetDSOLocal(DSOLocal, *Fn);
5354  Fn->setCallingConv(CC);
5355  Fn->setAttributes(PAL);
5356  Fn->