LLVM 19.0.0git
LiveRangeShrink.cpp
Go to the documentation of this file.
1//===- LiveRangeShrink.cpp - Move instructions to shrink live range -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7///===---------------------------------------------------------------------===//
8///
9/// \file
10/// This pass moves instructions close to the definition of its operands to
11/// shrink live range of the def instruction. The code motion is limited within
12/// the basic block. The moved instruction should have 1 def, and more than one
13/// uses, all of which are the only use of the def.
14///
15///===---------------------------------------------------------------------===//
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/Statistic.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/Debug.h"
31#include <iterator>
32#include <utility>
33
34using namespace llvm;
35
36#define DEBUG_TYPE "lrshrink"
37
38STATISTIC(NumInstrsHoistedToShrinkLiveRange,
39 "Number of insructions hoisted to shrink live range.");
40
41namespace {
42
43class LiveRangeShrink : public MachineFunctionPass {
44public:
45 static char ID;
46
47 LiveRangeShrink() : MachineFunctionPass(ID) {
49 }
50
51 void getAnalysisUsage(AnalysisUsage &AU) const override {
52 AU.setPreservesCFG();
54 }
55
56 StringRef getPassName() const override { return "Live Range Shrink"; }
57
58 bool runOnMachineFunction(MachineFunction &MF) override;
59};
60
61} // end anonymous namespace
62
63char LiveRangeShrink::ID = 0;
64
65char &llvm::LiveRangeShrinkID = LiveRangeShrink::ID;
66
67INITIALIZE_PASS(LiveRangeShrink, "lrshrink", "Live Range Shrink Pass", false,
68 false)
69
70using InstOrderMap = DenseMap<MachineInstr *, unsigned>;
71
72/// Returns \p New if it's dominated by \p Old, otherwise return \p Old.
73/// \p M maintains a map from instruction to its dominating order that satisfies
74/// M[A] > M[B] guarantees that A is dominated by B.
75/// If \p New is not in \p M, return \p Old. Otherwise if \p Old is null, return
76/// \p New.
78 MachineInstr *Old,
79 const InstOrderMap &M) {
80 auto NewIter = M.find(&New);
81 if (NewIter == M.end())
82 return Old;
83 if (Old == nullptr)
84 return &New;
85 unsigned OrderOld = M.find(Old)->second;
86 unsigned OrderNew = NewIter->second;
87 if (OrderOld != OrderNew)
88 return OrderOld < OrderNew ? &New : Old;
89 // OrderOld == OrderNew, we need to iterate down from Old to see if it
90 // can reach New, if yes, New is dominated by Old.
91 for (MachineInstr *I = Old->getNextNode(); M.find(I)->second == OrderNew;
92 I = I->getNextNode())
93 if (I == &New)
94 return &New;
95 return Old;
96}
97
98/// Builds Instruction to its dominating order number map \p M by traversing
99/// from instruction \p Start.
101 InstOrderMap &M) {
102 M.clear();
103 unsigned i = 0;
104 for (MachineInstr &I : make_range(Start, Start->getParent()->end()))
105 M[&I] = i++;
106}
107
108bool LiveRangeShrink::runOnMachineFunction(MachineFunction &MF) {
109 if (skipFunction(MF.getFunction()))
110 return false;
111
114
115 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
116
117 InstOrderMap IOM;
118 // Map from register to instruction order (value of IOM) where the
119 // register is used last. When moving instructions up, we need to
120 // make sure all its defs (including dead def) will not cross its
121 // last use when moving up.
123
124 for (MachineBasicBlock &MBB : MF) {
125 if (MBB.empty())
126 continue;
127 bool SawStore = false;
129 UseMap.clear();
130
131 for (MachineBasicBlock::iterator Next = MBB.begin(); Next != MBB.end();) {
132 MachineInstr &MI = *Next;
133 ++Next;
134 if (MI.isPHI() || MI.isDebugOrPseudoInstr())
135 continue;
136 if (MI.mayStore())
137 SawStore = true;
138
139 unsigned CurrentOrder = IOM[&MI];
140 unsigned Barrier = 0;
141 MachineInstr *BarrierMI = nullptr;
142 for (const MachineOperand &MO : MI.operands()) {
143 if (!MO.isReg() || MO.isDebug())
144 continue;
145 if (MO.isUse())
146 UseMap[MO.getReg()] = std::make_pair(CurrentOrder, &MI);
147 else if (MO.isDead() && UseMap.count(MO.getReg()))
148 // Barrier is the last instruction where MO get used. MI should not
149 // be moved above Barrier.
150 if (Barrier < UseMap[MO.getReg()].first) {
151 Barrier = UseMap[MO.getReg()].first;
152 BarrierMI = UseMap[MO.getReg()].second;
153 }
154 }
155
156 if (!MI.isSafeToMove(nullptr, SawStore)) {
157 // If MI has side effects, it should become a barrier for code motion.
158 // IOM is rebuild from the next instruction to prevent later
159 // instructions from being moved before this MI.
160 if (MI.hasUnmodeledSideEffects() && !MI.isPseudoProbe() &&
161 Next != MBB.end()) {
162 BuildInstOrderMap(Next, IOM);
163 SawStore = false;
164 }
165 continue;
166 }
167
168 const MachineOperand *DefMO = nullptr;
169 MachineInstr *Insert = nullptr;
170
171 // Number of live-ranges that will be shortened. We do not count
172 // live-ranges that are defined by a COPY as it could be coalesced later.
173 unsigned NumEligibleUse = 0;
174
175 for (const MachineOperand &MO : MI.operands()) {
176 if (!MO.isReg() || MO.isDead() || MO.isDebug())
177 continue;
178 Register Reg = MO.getReg();
179 // Do not move the instruction if it def/uses a physical register,
180 // unless it is a constant physical register or a noreg.
181 if (!Reg.isVirtual()) {
182 if (!Reg || MRI.isConstantPhysReg(Reg))
183 continue;
184 Insert = nullptr;
185 break;
186 }
187 if (MO.isDef()) {
188 // Do not move if there is more than one def.
189 if (DefMO) {
190 Insert = nullptr;
191 break;
192 }
193 DefMO = &MO;
194 } else if (MRI.hasOneNonDBGUse(Reg) && MRI.hasOneDef(Reg) && DefMO &&
195 MRI.getRegClass(DefMO->getReg()) ==
196 MRI.getRegClass(MO.getReg())) {
197 // The heuristic does not handle different register classes yet
198 // (registers of different sizes, looser/tighter constraints). This
199 // is because it needs more accurate model to handle register
200 // pressure correctly.
201 MachineInstr &DefInstr = *MRI.def_instr_begin(Reg);
202 if (!TII.isCopyInstr(DefInstr))
203 NumEligibleUse++;
204 Insert = FindDominatedInstruction(DefInstr, Insert, IOM);
205 } else {
206 Insert = nullptr;
207 break;
208 }
209 }
210
211 // If Barrier equals IOM[I], traverse forward to find if BarrierMI is
212 // after Insert, if yes, then we should not hoist.
213 for (MachineInstr *I = Insert; I && IOM[I] == Barrier;
214 I = I->getNextNode())
215 if (I == BarrierMI) {
216 Insert = nullptr;
217 break;
218 }
219 // Move the instruction when # of shrunk live range > 1.
220 if (DefMO && Insert && NumEligibleUse > 1 && Barrier <= IOM[Insert]) {
221 MachineBasicBlock::iterator I = std::next(Insert->getIterator());
222 // Skip all the PHI and debug instructions.
223 while (I != MBB.end() && (I->isPHI() || I->isDebugOrPseudoInstr()))
224 I = std::next(I);
225 if (I == MI.getIterator())
226 continue;
227
228 // Update the dominator order to be the same as the insertion point.
229 // We do this to maintain a non-decreasing order without need to update
230 // all instruction orders after the insertion point.
231 unsigned NewOrder = IOM[&*I];
232 IOM[&MI] = NewOrder;
233 NumInstrsHoistedToShrinkLiveRange++;
234
235 // Find MI's debug value following MI.
236 MachineBasicBlock::iterator EndIter = std::next(MI.getIterator());
237 if (MI.getOperand(0).isReg())
238 for (; EndIter != MBB.end() && EndIter->isDebugValue() &&
239 EndIter->hasDebugOperandForReg(MI.getOperand(0).getReg());
240 ++EndIter, ++Next)
241 IOM[&*EndIter] = NewOrder;
242 MBB.splice(I, &MBB, MI.getIterator(), EndIter);
243 }
244 }
245 }
246 return false;
247}
unsigned const MachineRegisterInfo * MRI
aarch64 promote const
MachineBasicBlock & MBB
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static MachineInstr * FindDominatedInstruction(MachineInstr &New, MachineInstr *Old, const InstOrderMap &M)
Returns New if it's dominated by Old, otherwise return Old.
static void BuildInstOrderMap(MachineBasicBlock::iterator Start, InstOrderMap &M)
Builds Instruction to its dominating order number map M by traversing from instruction Start.
#define I(x, y, z)
Definition: MD5.cpp:58
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
Represent the analysis usage information of a pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
virtual const TargetInstrInfo * getInstrInfo() const
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void initializeLiveRangeShrinkPass(PassRegistry &)
char & LiveRangeShrinkID
LiveRangeShrink pass.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163