LLVM 19.0.0git
LoopUnrollAndJam.cpp
Go to the documentation of this file.
1//===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements loop unroll and jam as a routine, much like
10// LoopUnroll.cpp implements loop unroll.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
30#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/DebugLoc.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/IR/ValueHandle.h"
42#include "llvm/IR/ValueMap.h"
44#include "llvm/Support/Debug.h"
53#include <assert.h>
54#include <memory>
55#include <type_traits>
56#include <vector>
57
58using namespace llvm;
59
60#define DEBUG_TYPE "loop-unroll-and-jam"
61
62STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
63STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");
64
66
67// Partition blocks in an outer/inner loop pair into blocks before and after
68// the loop
69static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks,
70 BasicBlockSet &AftBlocks, DominatorTree &DT) {
71 Loop *SubLoop = L.getSubLoops()[0];
72 BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
73
74 for (BasicBlock *BB : L.blocks()) {
75 if (!SubLoop->contains(BB)) {
76 if (DT.dominates(SubLoopLatch, BB))
77 AftBlocks.insert(BB);
78 else
79 ForeBlocks.insert(BB);
80 }
81 }
82
83 // Check that all blocks in ForeBlocks together dominate the subloop
84 // TODO: This might ideally be done better with a dominator/postdominators.
85 BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
86 for (BasicBlock *BB : ForeBlocks) {
87 if (BB == SubLoopPreHeader)
88 continue;
89 Instruction *TI = BB->getTerminator();
90 for (BasicBlock *Succ : successors(TI))
91 if (!ForeBlocks.count(Succ))
92 return false;
93 }
94
95 return true;
96}
97
98/// Partition blocks in a loop nest into blocks before and after each inner
99/// loop.
101 Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks,
102 DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
104 JamLoopBlocks.insert(JamLoop.block_begin(), JamLoop.block_end());
105
106 for (Loop *L : Root.getLoopsInPreorder()) {
107 if (L == &JamLoop)
108 break;
109
110 if (!partitionLoopBlocks(*L, ForeBlocksMap[L], AftBlocksMap[L], DT))
111 return false;
112 }
113
114 return true;
115}
116
117// TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more
118// than 2 levels loop.
119static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
120 BasicBlockSet &ForeBlocks,
121 BasicBlockSet &SubLoopBlocks,
122 BasicBlockSet &AftBlocks,
123 DominatorTree *DT) {
124 SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
125 return partitionLoopBlocks(*L, ForeBlocks, AftBlocks, *DT);
126}
127
128// Looks at the phi nodes in Header for values coming from Latch. For these
129// instructions and all their operands calls Visit on them, keeping going for
130// all the operands in AftBlocks. Returns false if Visit returns false,
131// otherwise returns true. This is used to process the instructions in the
132// Aft blocks that need to be moved before the subloop. It is used in two
133// places. One to check that the required set of instructions can be moved
134// before the loop. Then to collect the instructions to actually move in
135// moveHeaderPhiOperandsToForeBlocks.
136template <typename T>
138 BasicBlockSet &AftBlocks, T Visit) {
140
141 std::function<bool(Instruction * I)> ProcessInstr = [&](Instruction *I) {
142 if (VisitedInstr.count(I))
143 return true;
144
145 VisitedInstr.insert(I);
146
147 if (AftBlocks.count(I->getParent()))
148 for (auto &U : I->operands())
149 if (Instruction *II = dyn_cast<Instruction>(U))
150 if (!ProcessInstr(II))
151 return false;
152
153 return Visit(I);
154 };
155
156 for (auto &Phi : Header->phis()) {
157 Value *V = Phi.getIncomingValueForBlock(Latch);
158 if (Instruction *I = dyn_cast<Instruction>(V))
159 if (!ProcessInstr(I))
160 return false;
161 }
162
163 return true;
164}
165
166// Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
168 BasicBlock *Latch,
169 Instruction *InsertLoc,
170 BasicBlockSet &AftBlocks) {
171 // We need to ensure we move the instructions in the correct order,
172 // starting with the earliest required instruction and moving forward.
173 processHeaderPhiOperands(Header, Latch, AftBlocks,
174 [&AftBlocks, &InsertLoc](Instruction *I) {
175 if (AftBlocks.count(I->getParent()))
176 I->moveBefore(InsertLoc);
177 return true;
178 });
179}
180
181/*
182 This method performs Unroll and Jam. For a simple loop like:
183 for (i = ..)
184 Fore(i)
185 for (j = ..)
186 SubLoop(i, j)
187 Aft(i)
188
189 Instead of doing normal inner or outer unrolling, we do:
190 for (i = .., i+=2)
191 Fore(i)
192 Fore(i+1)
193 for (j = ..)
194 SubLoop(i, j)
195 SubLoop(i+1, j)
196 Aft(i)
197 Aft(i+1)
198
199 So the outer loop is essetially unrolled and then the inner loops are fused
200 ("jammed") together into a single loop. This can increase speed when there
201 are loads in SubLoop that are invariant to i, as they become shared between
202 the now jammed inner loops.
203
204 We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
205 Fore blocks are those before the inner loop, Aft are those after. Normal
206 Unroll code is used to copy each of these sets of blocks and the results are
207 combined together into the final form above.
208
209 isSafeToUnrollAndJam should be used prior to calling this to make sure the
210 unrolling will be valid. Checking profitablility is also advisable.
211
212 If EpilogueLoop is non-null, it receives the epilogue loop (if it was
213 necessary to create one and not fully unrolled).
214*/
216llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount,
217 unsigned TripMultiple, bool UnrollRemainder,
220 OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) {
221
222 // When we enter here we should have already checked that it is safe
223 BasicBlock *Header = L->getHeader();
224 assert(Header && "No header.");
225 assert(L->getSubLoops().size() == 1);
226 Loop *SubLoop = *L->begin();
227
228 // Don't enter the unroll code if there is nothing to do.
229 if (TripCount == 0 && Count < 2) {
230 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
231 return LoopUnrollResult::Unmodified;
232 }
233
234 assert(Count > 0);
235 assert(TripMultiple > 0);
236 assert(TripCount == 0 || TripCount % TripMultiple == 0);
237
238 // Are we eliminating the loop control altogether?
239 bool CompletelyUnroll = (Count == TripCount);
240
241 // We use the runtime remainder in cases where we don't know trip multiple
242 if (TripMultiple % Count != 0) {
243 if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
244 /*UseEpilogRemainder*/ true,
245 UnrollRemainder, /*ForgetAllSCEV*/ false,
246 LI, SE, DT, AC, TTI, true, EpilogueLoop)) {
247 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
248 "generated when assuming runtime trip count\n");
249 return LoopUnrollResult::Unmodified;
250 }
251 }
252
253 // Notify ScalarEvolution that the loop will be substantially changed,
254 // if not outright eliminated.
255 if (SE) {
256 SE->forgetLoop(L);
258 }
259
260 using namespace ore;
261 // Report the unrolling decision.
262 if (CompletelyUnroll) {
263 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
264 << Header->getName() << " with trip count " << TripCount
265 << "!\n");
266 ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
267 L->getHeader())
268 << "completely unroll and jammed loop with "
269 << NV("UnrollCount", TripCount) << " iterations");
270 } else {
271 auto DiagBuilder = [&]() {
272 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
273 L->getHeader());
274 return Diag << "unroll and jammed loop by a factor of "
275 << NV("UnrollCount", Count);
276 };
277
278 LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
279 << " by " << Count);
280 if (TripMultiple != 1) {
281 LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
282 ORE->emit([&]() {
283 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
284 << " trips per branch";
285 });
286 } else {
287 LLVM_DEBUG(dbgs() << " with run-time trip count");
288 ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
289 }
290 LLVM_DEBUG(dbgs() << "!\n");
291 }
292
293 BasicBlock *Preheader = L->getLoopPreheader();
294 BasicBlock *LatchBlock = L->getLoopLatch();
295 assert(Preheader && "No preheader");
296 assert(LatchBlock && "No latch block");
297 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
298 assert(BI && !BI->isUnconditional());
299 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
300 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
301 bool SubLoopContinueOnTrue = SubLoop->contains(
302 SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));
303
304 // Partition blocks in an outer/inner loop pair into blocks before and after
305 // the loop
306 BasicBlockSet SubLoopBlocks;
307 BasicBlockSet ForeBlocks;
308 BasicBlockSet AftBlocks;
309 partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
310 DT);
311
312 // We keep track of the entering/first and exiting/last block of each of
313 // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
314 // blocks easier.
315 std::vector<BasicBlock *> ForeBlocksFirst;
316 std::vector<BasicBlock *> ForeBlocksLast;
317 std::vector<BasicBlock *> SubLoopBlocksFirst;
318 std::vector<BasicBlock *> SubLoopBlocksLast;
319 std::vector<BasicBlock *> AftBlocksFirst;
320 std::vector<BasicBlock *> AftBlocksLast;
321 ForeBlocksFirst.push_back(Header);
322 ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
323 SubLoopBlocksFirst.push_back(SubLoop->getHeader());
324 SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
325 AftBlocksFirst.push_back(SubLoop->getExitBlock());
326 AftBlocksLast.push_back(L->getExitingBlock());
327 // Maps Blocks[0] -> Blocks[It]
328 ValueToValueMapTy LastValueMap;
329
330 // Move any instructions from fore phi operands from AftBlocks into Fore.
332 Header, LatchBlock, ForeBlocksLast[0]->getTerminator(), AftBlocks);
333
334 // The current on-the-fly SSA update requires blocks to be processed in
335 // reverse postorder so that LastValueMap contains the correct value at each
336 // exit.
337 LoopBlocksDFS DFS(L);
338 DFS.perform(LI);
339 // Stash the DFS iterators before adding blocks to the loop.
340 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
341 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
342
343 // When a FSDiscriminator is enabled, we don't need to add the multiply
344 // factors to the discriminators.
345 if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
347 for (BasicBlock *BB : L->getBlocks())
348 for (Instruction &I : *BB)
349 if (!I.isDebugOrPseudoInst())
350 if (const DILocation *DIL = I.getDebugLoc()) {
351 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count);
352 if (NewDIL)
353 I.setDebugLoc(*NewDIL);
354 else
356 << "Failed to create new discriminator: "
357 << DIL->getFilename() << " Line: " << DIL->getLine());
358 }
359
360 // Copy all blocks
361 for (unsigned It = 1; It != Count; ++It) {
363 // Maps Blocks[It] -> Blocks[It-1]
364 DenseMap<Value *, Value *> PrevItValueMap;
366 NewLoops[L] = L;
367 NewLoops[SubLoop] = SubLoop;
368
369 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
371 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
372 Header->getParent()->insert(Header->getParent()->end(), New);
373
374 // Tell LI about New.
375 addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
376
377 if (ForeBlocks.count(*BB)) {
378 if (*BB == ForeBlocksFirst[0])
379 ForeBlocksFirst.push_back(New);
380 if (*BB == ForeBlocksLast[0])
381 ForeBlocksLast.push_back(New);
382 } else if (SubLoopBlocks.count(*BB)) {
383 if (*BB == SubLoopBlocksFirst[0])
384 SubLoopBlocksFirst.push_back(New);
385 if (*BB == SubLoopBlocksLast[0])
386 SubLoopBlocksLast.push_back(New);
387 } else if (AftBlocks.count(*BB)) {
388 if (*BB == AftBlocksFirst[0])
389 AftBlocksFirst.push_back(New);
390 if (*BB == AftBlocksLast[0])
391 AftBlocksLast.push_back(New);
392 } else {
393 llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
394 }
395
396 // Update our running maps of newest clones
397 PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
398 LastValueMap[*BB] = New;
399 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
400 VI != VE; ++VI) {
401 PrevItValueMap[VI->second] =
402 const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
403 LastValueMap[VI->first] = VI->second;
404 }
405
406 NewBlocks.push_back(New);
407
408 // Update DomTree:
409 if (*BB == ForeBlocksFirst[0])
410 DT->addNewBlock(New, ForeBlocksLast[It - 1]);
411 else if (*BB == SubLoopBlocksFirst[0])
412 DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
413 else if (*BB == AftBlocksFirst[0])
414 DT->addNewBlock(New, AftBlocksLast[It - 1]);
415 else {
416 // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
417 // structure.
418 auto BBDomNode = DT->getNode(*BB);
419 auto BBIDom = BBDomNode->getIDom();
420 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
421 assert(OriginalBBIDom);
422 assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
423 DT->addNewBlock(
424 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
425 }
426 }
427
428 // Remap all instructions in the most recent iteration
429 remapInstructionsInBlocks(NewBlocks, LastValueMap);
430 for (BasicBlock *NewBlock : NewBlocks) {
431 for (Instruction &I : *NewBlock) {
432 if (auto *II = dyn_cast<AssumeInst>(&I))
433 AC->registerAssumption(II);
434 }
435 }
436
437 // Alter the ForeBlocks phi's, pointing them at the latest version of the
438 // value from the previous iteration's phis
439 for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
440 Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
441 assert(OldValue && "should have incoming edge from Aft[It]");
442 Value *NewValue = OldValue;
443 if (Value *PrevValue = PrevItValueMap[OldValue])
444 NewValue = PrevValue;
445
446 assert(Phi.getNumOperands() == 2);
447 Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
448 Phi.setIncomingValue(0, NewValue);
449 Phi.removeIncomingValue(1);
450 }
451 }
452
453 // Now that all the basic blocks for the unrolled iterations are in place,
454 // finish up connecting the blocks and phi nodes. At this point LastValueMap
455 // is the last unrolled iterations values.
456
457 // Update Phis in BB from OldBB to point to NewBB and use the latest value
458 // from LastValueMap
459 auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
460 BasicBlock *NewBB,
461 ValueToValueMapTy &LastValueMap) {
462 for (PHINode &Phi : BB->phis()) {
463 for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
464 if (Phi.getIncomingBlock(b) == OldBB) {
465 Value *OldValue = Phi.getIncomingValue(b);
466 if (Value *LastValue = LastValueMap[OldValue])
467 Phi.setIncomingValue(b, LastValue);
468 Phi.setIncomingBlock(b, NewBB);
469 break;
470 }
471 }
472 }
473 };
474 // Move all the phis from Src into Dest
475 auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
476 BasicBlock::iterator insertPoint = Dest->getFirstNonPHIIt();
477 while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
478 Phi->moveBefore(*Dest, insertPoint);
479 };
480
481 // Update the PHI values outside the loop to point to the last block
482 updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
483 LastValueMap);
484
485 // Update ForeBlocks successors and phi nodes
486 BranchInst *ForeTerm =
487 cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
488 assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
489 ForeTerm->setSuccessor(0, SubLoopBlocksFirst[0]);
490
491 if (CompletelyUnroll) {
492 while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
493 Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
494 Phi->eraseFromParent();
495 }
496 } else {
497 // Update the PHI values to point to the last aft block
498 updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
499 AftBlocksLast.back(), LastValueMap);
500 }
501
502 for (unsigned It = 1; It != Count; It++) {
503 // Remap ForeBlock successors from previous iteration to this
504 BranchInst *ForeTerm =
505 cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
506 assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
507 ForeTerm->setSuccessor(0, ForeBlocksFirst[It]);
508 }
509
510 // Subloop successors and phis
511 BranchInst *SubTerm =
512 cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
513 SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
514 SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
515 SubLoopBlocksFirst[0]->replacePhiUsesWith(ForeBlocksLast[0],
516 ForeBlocksLast.back());
517 SubLoopBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0],
518 SubLoopBlocksLast.back());
519
520 for (unsigned It = 1; It != Count; It++) {
521 // Replace the conditional branch of the previous iteration subloop with an
522 // unconditional one to this one
523 BranchInst *SubTerm =
524 cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
525 BranchInst::Create(SubLoopBlocksFirst[It], SubTerm->getIterator());
526 SubTerm->eraseFromParent();
527
528 SubLoopBlocksFirst[It]->replacePhiUsesWith(ForeBlocksLast[It],
529 ForeBlocksLast.back());
530 SubLoopBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It],
531 SubLoopBlocksLast.back());
532 movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
533 }
534
535 // Aft blocks successors and phis
536 BranchInst *AftTerm = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
537 if (CompletelyUnroll) {
538 BranchInst::Create(LoopExit, AftTerm->getIterator());
539 AftTerm->eraseFromParent();
540 } else {
541 AftTerm->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
542 assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit &&
543 "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit");
544 }
545 AftBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0],
546 SubLoopBlocksLast.back());
547
548 for (unsigned It = 1; It != Count; It++) {
549 // Replace the conditional branch of the previous iteration subloop with an
550 // unconditional one to this one
551 BranchInst *AftTerm =
552 cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
553 BranchInst::Create(AftBlocksFirst[It], AftTerm->getIterator());
554 AftTerm->eraseFromParent();
555
556 AftBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It],
557 SubLoopBlocksLast.back());
558 movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
559 }
560
561 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
562 // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
563 // new ones required.
564 if (Count != 1) {
566 DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
567 SubLoopBlocksFirst[0]);
568 DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
569 SubLoopBlocksLast[0], AftBlocksFirst[0]);
570
571 DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
572 ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
573 DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
574 SubLoopBlocksLast.back(), AftBlocksFirst[0]);
575 DTU.applyUpdatesPermissive(DTUpdates);
576 }
577
578 // Merge adjacent basic blocks, if possible.
580 MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
581 MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
582 MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
583
584 MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, &DTU, LI);
585
586 // Apply updates to the DomTree.
587 DT = &DTU.getDomTree();
588
589 // At this point, the code is well formed. We now do a quick sweep over the
590 // inserted code, doing constant propagation and dead code elimination as we
591 // go.
592 simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC, TTI);
593 simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC,
594 TTI);
595
596 NumCompletelyUnrolledAndJammed += CompletelyUnroll;
597 ++NumUnrolledAndJammed;
598
599 // Update LoopInfo if the loop is completely removed.
600 if (CompletelyUnroll)
601 LI->erase(L);
602
603#ifndef NDEBUG
604 // We shouldn't have done anything to break loop simplify form or LCSSA.
605 Loop *OutestLoop = SubLoop->getParentLoop()
606 ? SubLoop->getParentLoop()->getParentLoop()
607 ? SubLoop->getParentLoop()->getParentLoop()
608 : SubLoop->getParentLoop()
609 : SubLoop;
610 assert(DT->verify());
611 LI->verify(*DT);
612 assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
613 if (!CompletelyUnroll)
614 assert(L->isLoopSimplifyForm());
615 assert(SubLoop->isLoopSimplifyForm());
616 SE->verify();
617#endif
618
619 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
620 : LoopUnrollResult::PartiallyUnrolled;
621}
622
625 // Scan the BBs and collect legal loads and stores.
626 // Returns false if non-simple loads/stores are found.
627 for (BasicBlock *BB : Blocks) {
628 for (Instruction &I : *BB) {
629 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
630 if (!Ld->isSimple())
631 return false;
632 MemInstr.push_back(&I);
633 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
634 if (!St->isSimple())
635 return false;
636 MemInstr.push_back(&I);
637 } else if (I.mayReadOrWriteMemory()) {
638 return false;
639 }
640 }
641 }
642 return true;
643}
644
646 unsigned UnrollLevel, unsigned JamLevel,
647 bool Sequentialized, Dependence *D) {
648 // UnrollLevel might carry the dependency Src --> Dst
649 // Does a different loop after unrolling?
650 for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
651 ++CurLoopDepth) {
652 auto JammedDir = D->getDirection(CurLoopDepth);
653 if (JammedDir == Dependence::DVEntry::LT)
654 return true;
655
656 if (JammedDir & Dependence::DVEntry::GT)
657 return false;
658 }
659
660 return true;
661}
662
664 unsigned UnrollLevel, unsigned JamLevel,
665 bool Sequentialized, Dependence *D) {
666 // UnrollLevel might carry the dependency Dst --> Src
667 for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
668 ++CurLoopDepth) {
669 auto JammedDir = D->getDirection(CurLoopDepth);
670 if (JammedDir == Dependence::DVEntry::GT)
671 return true;
672
673 if (JammedDir & Dependence::DVEntry::LT)
674 return false;
675 }
676
677 // Backward dependencies are only preserved if not interleaved.
678 return Sequentialized;
679}
680
681// Check whether it is semantically safe Src and Dst considering any potential
682// dependency between them.
683//
684// @param UnrollLevel The level of the loop being unrolled
685// @param JamLevel The level of the loop being jammed; if Src and Dst are on
686// different levels, the outermost common loop counts as jammed level
687//
688// @return true if is safe and false if there is a dependency violation.
690 unsigned UnrollLevel, unsigned JamLevel,
691 bool Sequentialized, DependenceInfo &DI) {
692 assert(UnrollLevel <= JamLevel &&
693 "Expecting JamLevel to be at least UnrollLevel");
694
695 if (Src == Dst)
696 return true;
697 // Ignore Input dependencies.
698 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
699 return true;
700
701 // Check whether unroll-and-jam may violate a dependency.
702 // By construction, every dependency will be lexicographically non-negative
703 // (if it was, it would violate the current execution order), such as
704 // (0,0,>,*,*)
705 // Unroll-and-jam changes the GT execution of two executions to the same
706 // iteration of the chosen unroll level. That is, a GT dependence becomes a GE
707 // dependence (or EQ, if we fully unrolled the loop) at the loop's position:
708 // (0,0,>=,*,*)
709 // Now, the dependency is not necessarily non-negative anymore, i.e.
710 // unroll-and-jam may violate correctness.
711 std::unique_ptr<Dependence> D = DI.depends(Src, Dst, true);
712 if (!D)
713 return true;
714 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
715
716 if (D->isConfused()) {
717 LLVM_DEBUG(dbgs() << " Confused dependency between:\n"
718 << " " << *Src << "\n"
719 << " " << *Dst << "\n");
720 return false;
721 }
722
723 // If outer levels (levels enclosing the loop being unroll-and-jammed) have a
724 // non-equal direction, then the locations accessed in the inner levels cannot
725 // overlap in memory. We assumes the indexes never overlap into neighboring
726 // dimensions.
727 for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth)
728 if (!(D->getDirection(CurLoopDepth) & Dependence::DVEntry::EQ))
729 return true;
730
731 auto UnrollDirection = D->getDirection(UnrollLevel);
732
733 // If the distance carried by the unrolled loop is 0, then after unrolling
734 // that distance will become non-zero resulting in non-overlapping accesses in
735 // the inner loops.
736 if (UnrollDirection == Dependence::DVEntry::EQ)
737 return true;
738
739 if (UnrollDirection & Dependence::DVEntry::LT &&
740 !preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel,
741 Sequentialized, D.get()))
742 return false;
743
744 if (UnrollDirection & Dependence::DVEntry::GT &&
745 !preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel,
746 Sequentialized, D.get()))
747 return false;
748
749 return true;
750}
751
752static bool
753checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks,
754 const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
755 const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap,
756 DependenceInfo &DI, LoopInfo &LI) {
758 for (Loop *L : Root.getLoopsInPreorder())
759 if (ForeBlocksMap.contains(L))
760 AllBlocks.push_back(ForeBlocksMap.lookup(L));
761 AllBlocks.push_back(SubLoopBlocks);
762 for (Loop *L : Root.getLoopsInPreorder())
763 if (AftBlocksMap.contains(L))
764 AllBlocks.push_back(AftBlocksMap.lookup(L));
765
766 unsigned LoopDepth = Root.getLoopDepth();
767 SmallVector<Instruction *, 4> EarlierLoadsAndStores;
768 SmallVector<Instruction *, 4> CurrentLoadsAndStores;
769 for (BasicBlockSet &Blocks : AllBlocks) {
770 CurrentLoadsAndStores.clear();
771 if (!getLoadsAndStores(Blocks, CurrentLoadsAndStores))
772 return false;
773
774 Loop *CurLoop = LI.getLoopFor((*Blocks.begin())->front().getParent());
775 unsigned CurLoopDepth = CurLoop->getLoopDepth();
776
777 for (auto *Earlier : EarlierLoadsAndStores) {
778 Loop *EarlierLoop = LI.getLoopFor(Earlier->getParent());
779 unsigned EarlierDepth = EarlierLoop->getLoopDepth();
780 unsigned CommonLoopDepth = std::min(EarlierDepth, CurLoopDepth);
781 for (auto *Later : CurrentLoadsAndStores) {
782 if (!checkDependency(Earlier, Later, LoopDepth, CommonLoopDepth, false,
783 DI))
784 return false;
785 }
786 }
787
788 size_t NumInsts = CurrentLoadsAndStores.size();
789 for (size_t I = 0; I < NumInsts; ++I) {
790 for (size_t J = I; J < NumInsts; ++J) {
791 if (!checkDependency(CurrentLoadsAndStores[I], CurrentLoadsAndStores[J],
792 LoopDepth, CurLoopDepth, true, DI))
793 return false;
794 }
795 }
796
797 EarlierLoadsAndStores.append(CurrentLoadsAndStores.begin(),
798 CurrentLoadsAndStores.end());
799 }
800 return true;
801}
802
803static bool isEligibleLoopForm(const Loop &Root) {
804 // Root must have a child.
805 if (Root.getSubLoops().size() != 1)
806 return false;
807
808 const Loop *L = &Root;
809 do {
810 // All loops in Root need to be in simplify and rotated form.
811 if (!L->isLoopSimplifyForm())
812 return false;
813
814 if (!L->isRotatedForm())
815 return false;
816
817 if (L->getHeader()->hasAddressTaken()) {
818 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
819 return false;
820 }
821
822 unsigned SubLoopsSize = L->getSubLoops().size();
823 if (SubLoopsSize == 0)
824 return true;
825
826 // Only one child is allowed.
827 if (SubLoopsSize != 1)
828 return false;
829
830 // Only loops with a single exit block can be unrolled and jammed.
831 // The function getExitBlock() is used for this check, rather than
832 // getUniqueExitBlock() to ensure loops with mulitple exit edges are
833 // disallowed.
834 if (!L->getExitBlock()) {
835 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit "
836 "blocks can be unrolled and jammed.\n");
837 return false;
838 }
839
840 // Only loops with a single exiting block can be unrolled and jammed.
841 if (!L->getExitingBlock()) {
842 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single "
843 "exiting blocks can be unrolled and jammed.\n");
844 return false;
845 }
846
847 L = L->getSubLoops()[0];
848 } while (L);
849
850 return true;
851}
852
854 while (!L->getSubLoops().empty())
855 L = L->getSubLoops()[0];
856 return L;
857}
858
860 DependenceInfo &DI, LoopInfo &LI) {
861 if (!isEligibleLoopForm(*L)) {
862 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n");
863 return false;
864 }
865
866 /* We currently handle outer loops like this:
867 |
868 ForeFirst <------\ }
869 Blocks | } ForeBlocks of L
870 ForeLast | }
871 | |
872 ... |
873 | |
874 ForeFirst <----\ | }
875 Blocks | | } ForeBlocks of a inner loop of L
876 ForeLast | | }
877 | | |
878 JamLoopFirst <\ | | }
879 Blocks | | | } JamLoopBlocks of the innermost loop
880 JamLoopLast -/ | | }
881 | | |
882 AftFirst | | }
883 Blocks | | } AftBlocks of a inner loop of L
884 AftLast ------/ | }
885 | |
886 ... |
887 | |
888 AftFirst | }
889 Blocks | } AftBlocks of L
890 AftLast --------/ }
891 |
892
893 There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
894 and AftBlocks, providing that there is one edge from Fores to SubLoops,
895 one edge from SubLoops to Afts and a single outer loop exit (from Afts).
896 In practice we currently limit Aft blocks to a single block, and limit
897 things further in the profitablility checks of the unroll and jam pass.
898
899 Because of the way we rearrange basic blocks, we also require that
900 the Fore blocks of L on all unrolled iterations are safe to move before the
901 blocks of the direct child of L of all iterations. So we require that the
902 phi node looping operands of ForeHeader can be moved to at least the end of
903 ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and
904 match up Phi's correctly.
905
906 i.e. The old order of blocks used to be
907 (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2.
908 It needs to be safe to transform this to
909 (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2.
910
911 There are then a number of checks along the lines of no calls, no
912 exceptions, inner loop IV is consistent, etc. Note that for loops requiring
913 runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
914 UnrollAndJamLoop if the trip count cannot be easily calculated.
915 */
916
917 // Split blocks into Fore/SubLoop/Aft based on dominators
918 Loop *JamLoop = getInnerMostLoop(L);
919 BasicBlockSet SubLoopBlocks;
922 if (!partitionOuterLoopBlocks(*L, *JamLoop, SubLoopBlocks, ForeBlocksMap,
923 AftBlocksMap, DT)) {
924 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
925 return false;
926 }
927
928 // Aft blocks may need to move instructions to fore blocks, which becomes more
929 // difficult if there are multiple (potentially conditionally executed)
930 // blocks. For now we just exclude loops with multiple aft blocks.
931 if (AftBlocksMap[L].size() != 1) {
932 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
933 "multiple blocks after the loop\n");
934 return false;
935 }
936
937 // Check inner loop backedge count is consistent on all iterations of the
938 // outer loop
939 if (any_of(L->getLoopsInPreorder(), [&SE](Loop *SubLoop) {
940 return !hasIterationCountInvariantInParent(SubLoop, SE);
941 })) {
942 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
943 "not consistent on each iteration\n");
944 return false;
945 }
946
947 // Check the loop safety info for exceptions.
950 if (LSI.anyBlockMayThrow()) {
951 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
952 return false;
953 }
954
955 // We've ruled out the easy stuff and now need to check that there are no
956 // interdependencies which may prevent us from moving the:
957 // ForeBlocks before Subloop and AftBlocks.
958 // Subloop before AftBlocks.
959 // ForeBlock phi operands before the subloop
960
961 // Make sure we can move all instructions we need to before the subloop
962 BasicBlock *Header = L->getHeader();
963 BasicBlock *Latch = L->getLoopLatch();
964 BasicBlockSet AftBlocks = AftBlocksMap[L];
965 Loop *SubLoop = L->getSubLoops()[0];
967 Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
968 if (SubLoop->contains(I->getParent()))
969 return false;
970 if (AftBlocks.count(I->getParent())) {
971 // If we hit a phi node in afts we know we are done (probably
972 // LCSSA)
973 if (isa<PHINode>(I))
974 return false;
975 // Can't move instructions with side effects or memory
976 // reads/writes
977 if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
978 return false;
979 }
980 // Keep going
981 return true;
982 })) {
983 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
984 "instructions after subloop to before it\n");
985 return false;
986 }
987
988 // Check for memory dependencies which prohibit the unrolling we are doing.
989 // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
990 // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
991 if (!checkDependencies(*L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI,
992 LI)) {
993 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
994 return false;
995 }
996
997 return true;
998}
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
This file defines a set of templates that efficiently compute a dominator tree over a generic graph.
SmallPtrSet< BasicBlock *, 4 > BasicBlockSet
static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks, BasicBlockSet &AftBlocks, DominatorTree &DT)
static Loop * getInnerMostLoop(Loop *L)
static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header, BasicBlock *Latch, Instruction *InsertLoc, BasicBlockSet &AftBlocks)
static bool getLoadsAndStores(BasicBlockSet &Blocks, SmallVector< Instruction *, 4 > &MemInstr)
static bool preservesForwardDependence(Instruction *Src, Instruction *Dst, unsigned UnrollLevel, unsigned JamLevel, bool Sequentialized, Dependence *D)
static bool partitionOuterLoopBlocks(Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks, DenseMap< Loop *, BasicBlockSet > &ForeBlocksMap, DenseMap< Loop *, BasicBlockSet > &AftBlocksMap, DominatorTree &DT)
Partition blocks in a loop nest into blocks before and after each inner loop.
static bool isEligibleLoopForm(const Loop &Root)
static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst, unsigned UnrollLevel, unsigned JamLevel, bool Sequentialized, Dependence *D)
static bool checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks, const DenseMap< Loop *, BasicBlockSet > &ForeBlocksMap, const DenseMap< Loop *, BasicBlockSet > &AftBlocksMap, DependenceInfo &DI, LoopInfo &LI)
#define DEBUG_TYPE
static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch, BasicBlockSet &AftBlocks, T Visit)
static bool checkDependency(Instruction *Src, Instruction *Dst, unsigned UnrollLevel, unsigned JamLevel, bool Sequentialized, DependenceInfo &DI)
#define I(x, y, z)
Definition: MD5.cpp:58
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
if(VerifyEach)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:164
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:220
const Instruction & back() const
Definition: BasicBlock.h:454
Conditional or Unconditional Branch instruction.
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock::iterator InsertBefore)
unsigned getNumSuccessors() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Debug location.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:202
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:145
DependenceInfo - This class is the main dependence-analysis driver.
std::unique_ptr< Dependence > depends(Instruction *Src, Instruction *Dst, bool PossiblyLoopIndependent)
depends - Tests for a dependence between the Src and Dst instructions.
Dependence - This class represents a dependence between two memory memory references in a function.
DomTreeNodeBase * getIDom() const
DominatorTree & getDomTree()
Flush DomTree updates and return DomTree.
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
SmallVector< const LoopT *, 4 > getLoopsInPreorder() const
Return all loops in the loop nest rooted by the loop in preorder, with siblings in forward program or...
const std::vector< LoopT * > & getSubLoops() const
Return the loops contained entirely within this loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
block_iterator block_end() const
BlockT * getExitBlock() const
If getExitBlocks would return exactly one block, return that block.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
block_iterator block_begin() const
Store the result of a depth first search within basic blocks contained by a single loop.
Definition: LoopIterator.h:97
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
Definition: LoopIterator.h:136
std::vector< BasicBlock * >::const_reverse_iterator RPOIterator
Definition: LoopIterator.h:101
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
Definition: LoopInfo.cpp:1222
RPOIterator endRPO() const
Definition: LoopIterator.h:140
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Definition: LoopInfo.cpp:875
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
bool isLoopSimplifyForm() const
Return true if the Loop is in the form that the LoopSimplify form transforms loops to,...
Definition: LoopInfo.cpp:479
bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, bool IgnoreTokens=true) const
Return true if this Loop and all inner subloops are in LCSSA form.
Definition: LoopInfo.cpp:469
The optimization diagnostic interface.
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for applied optimization remarks.
The main scalar evolution driver.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
Simple and conservative implementation of LoopSafetyInfo that can give false-positive answers to its ...
Definition: MustExecute.h:110
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
Definition: MustExecute.cpp:51
bool anyBlockMayThrow() const override
Returns true iff any block of the loop for which this info is contains an instruction that may throw ...
Definition: MustExecute.cpp:47
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
size_t size() const
Definition: SmallVector.h:91
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
iterator begin()
Definition: ValueMap.h:134
iterator end()
Definition: ValueMap.h:135
LLVM Value Representation.
Definition: Value.h:74
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, DependenceInfo &DI, LoopInfo &LI)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1689
auto successors(const MachineBasicBlock *BB)
cl::opt< bool > EnableFSDiscriminator
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1738
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
bool MergeBlockSuccessorsIntoGivenBlocks(SmallPtrSetImpl< BasicBlock * > &MergeBlocks, Loop *L=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
Merge block(s) sucessors, if possible.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
LoopUnrollResult
Represents the result of a UnrollLoop invocation.
Definition: UnrollLoop.h:54
void remapInstructionsInBlocks(ArrayRef< BasicBlock * > Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.
const Loop * addClonedBlockToLoopInfo(BasicBlock *OriginalBB, BasicBlock *ClonedBB, LoopInfo *LI, NewLoopsMap &NewLoops)
Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary and adds a mapping from the o...
Definition: LoopUnroll.cpp:147
LoopUnrollResult UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount, unsigned TripMultiple, bool UnrollRemainder, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop=nullptr)
void simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI)
Perform some cleanup and simplifications on loops after unrolling.
Definition: LoopUnroll.cpp:215
bool UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, bool AllowExpensiveTripCount, bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop=nullptr)
Insert code in the prolog/epilog code when unrolling a loop with a run-time trip-count.