LLVM 19.0.0git
LoopVectorizationPlanner.h
Go to the documentation of this file.
1//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file provides a LoopVectorizationPlanner class.
11/// InnerLoopVectorizer vectorizes loops which contain only one basic
12/// LoopVectorizationPlanner - drives the vectorization process after having
13/// passed Legality checks.
14/// The planner builds and optimizes the Vectorization Plans which record the
15/// decisions how to vectorize the given loop. In particular, represent the
16/// control-flow of the vectorized version, the replication of instructions that
17/// are to be scalarized, and interleave access groups.
18///
19/// Also provides a VPlan-based builder utility analogous to IRBuilder.
20/// It provides an instruction-level API for generating VPInstructions while
21/// abstracting away the Recipe manipulation details.
22//===----------------------------------------------------------------------===//
23
24#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26
27#include "VPlan.h"
28#include "llvm/ADT/SmallSet.h"
30
31namespace llvm {
32
33class LoopInfo;
34class DominatorTree;
35class LoopVectorizationLegality;
36class LoopVectorizationCostModel;
37class PredicatedScalarEvolution;
38class LoopVectorizeHints;
39class OptimizationRemarkEmitter;
40class TargetTransformInfo;
41class TargetLibraryInfo;
42class VPRecipeBuilder;
43
44/// VPlan-based builder utility analogous to IRBuilder.
45class VPBuilder {
46 VPBasicBlock *BB = nullptr;
48
49 /// Insert \p VPI in BB at InsertPt if BB is set.
50 VPInstruction *tryInsertInstruction(VPInstruction *VPI) {
51 if (BB)
52 BB->insert(VPI, InsertPt);
53 return VPI;
54 }
55
56 VPInstruction *createInstruction(unsigned Opcode,
58 const Twine &Name = "") {
59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
60 }
61
62 VPInstruction *createInstruction(unsigned Opcode,
63 std::initializer_list<VPValue *> Operands,
64 DebugLoc DL, const Twine &Name = "") {
65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
66 }
67
68public:
69 VPBuilder() = default;
70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
72 setInsertPoint(InsertPt->getParent(), InsertPt->getIterator());
73 }
74
75 /// Clear the insertion point: created instructions will not be inserted into
76 /// a block.
78 BB = nullptr;
79 InsertPt = VPBasicBlock::iterator();
80 }
81
82 VPBasicBlock *getInsertBlock() const { return BB; }
83 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
84
85 /// Create a VPBuilder to insert after \p R.
88 B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
89 return B;
90 }
91
92 /// InsertPoint - A saved insertion point.
94 VPBasicBlock *Block = nullptr;
96
97 public:
98 /// Creates a new insertion point which doesn't point to anything.
99 VPInsertPoint() = default;
100
101 /// Creates a new insertion point at the given location.
103 : Block(InsertBlock), Point(InsertPoint) {}
104
105 /// Returns true if this insert point is set.
106 bool isSet() const { return Block != nullptr; }
107
108 VPBasicBlock *getBlock() const { return Block; }
109 VPBasicBlock::iterator getPoint() const { return Point; }
110 };
111
112 /// Sets the current insert point to a previously-saved location.
114 if (IP.isSet())
115 setInsertPoint(IP.getBlock(), IP.getPoint());
116 else
118 }
119
120 /// This specifies that created VPInstructions should be appended to the end
121 /// of the specified block.
123 assert(TheBB && "Attempting to set a null insert point");
124 BB = TheBB;
125 InsertPt = BB->end();
126 }
127
128 /// This specifies that created instructions should be inserted at the
129 /// specified point.
131 BB = TheBB;
132 InsertPt = IP;
133 }
134
135 /// This specifies that created instructions should be inserted at the
136 /// specified point.
138 BB = IP->getParent();
139 InsertPt = IP->getIterator();
140 }
141
142 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
143 /// its underlying Instruction.
145 Instruction *Inst = nullptr,
146 const Twine &Name = "") {
147 DebugLoc DL;
148 if (Inst)
149 DL = Inst->getDebugLoc();
150 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
151 NewVPInst->setUnderlyingValue(Inst);
152 return NewVPInst;
153 }
155 DebugLoc DL, const Twine &Name = "") {
156 return createInstruction(Opcode, Operands, DL, Name);
157 }
158
160 std::initializer_list<VPValue *> Operands,
162 DebugLoc DL = {}, const Twine &Name = "") {
163 return tryInsertInstruction(
164 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
165 }
167 const Twine &Name = "") {
168 return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
169 }
170
172 const Twine &Name = "") {
173 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
174 }
175
177 const Twine &Name = "") {
178
179 return tryInsertInstruction(new VPInstruction(
180 Instruction::BinaryOps::Or, {LHS, RHS},
181 VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
182 }
183
185 DebugLoc DL = {}, const Twine &Name = "",
186 std::optional<FastMathFlags> FMFs = std::nullopt) {
187 auto *Select =
188 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
189 *FMFs, DL, Name)
190 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
191 DL, Name);
192 return tryInsertInstruction(Select);
193 }
194
195 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
196 /// and \p B.
197 /// TODO: add createFCmp when needed.
198 VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
199 DebugLoc DL = {}, const Twine &Name = "");
200
201 //===--------------------------------------------------------------------===//
202 // RAII helpers.
203 //===--------------------------------------------------------------------===//
204
205 /// RAII object that stores the current insertion point and restores it when
206 /// the object is destroyed.
208 VPBuilder &Builder;
209 VPBasicBlock *Block;
211
212 public:
214 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
215
218
219 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
220 };
221};
222
223/// TODO: The following VectorizationFactor was pulled out of
224/// LoopVectorizationCostModel class. LV also deals with
225/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
226/// We need to streamline them.
227
228/// Information about vectorization costs.
230 /// Vector width with best cost.
232
233 /// Cost of the loop with that width.
235
236 /// Cost of the scalar loop.
238
239 /// The minimum trip count required to make vectorization profitable, e.g. due
240 /// to runtime checks.
242
246
247 /// Width 1 means no vectorization, cost 0 means uncomputed cost.
249 return {ElementCount::getFixed(1), 0, 0};
250 }
251
252 bool operator==(const VectorizationFactor &rhs) const {
253 return Width == rhs.Width && Cost == rhs.Cost;
254 }
255
256 bool operator!=(const VectorizationFactor &rhs) const {
257 return !(*this == rhs);
258 }
259};
260
261/// ElementCountComparator creates a total ordering for ElementCount
262/// for the purposes of using it in a set structure.
264 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
265 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
266 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
267 }
268};
270
271/// A class that represents two vectorization factors (initialized with 0 by
272/// default). One for fixed-width vectorization and one for scalable
273/// vectorization. This can be used by the vectorizer to choose from a range of
274/// fixed and/or scalable VFs in order to find the most cost-effective VF to
275/// vectorize with.
279
281 : FixedVF(ElementCount::getFixed(0)),
282 ScalableVF(ElementCount::getScalable(0)) {}
284 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
285 }
290 "Invalid scalable properties");
291 }
292
294
295 /// \return true if either fixed- or scalable VF is non-zero.
296 explicit operator bool() const { return FixedVF || ScalableVF; }
297
298 /// \return true if either fixed- or scalable VF is a valid vector VF.
299 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
300};
301
302/// Planner drives the vectorization process after having passed
303/// Legality checks.
305 /// The loop that we evaluate.
306 Loop *OrigLoop;
307
308 /// Loop Info analysis.
309 LoopInfo *LI;
310
311 /// The dominator tree.
312 DominatorTree *DT;
313
314 /// Target Library Info.
315 const TargetLibraryInfo *TLI;
316
317 /// Target Transform Info.
319
320 /// The legality analysis.
322
323 /// The profitability analysis.
325
326 /// The interleaved access analysis.
328
330
331 const LoopVectorizeHints &Hints;
332
334
336
337 /// Profitable vector factors.
339
340 /// A builder used to construct the current plan.
341 VPBuilder Builder;
342
343public:
345 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
350 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
351 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
352
353 /// Plan how to best vectorize, return the best VF and its cost, or
354 /// std::nullopt if vectorization and interleaving should be avoided up front.
355 std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
356
357 /// Use the VPlan-native path to plan how to best vectorize, return the best
358 /// VF and its cost.
360
361 /// Return the best VPlan for \p VF.
363
364 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
365 /// according to the best selected \p VF and \p UF.
366 ///
367 /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
368 /// vectorization re-using plans for both the main and epilogue vector loops.
369 /// It should be removed once the re-use issue has been fixed.
370 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
371 /// to re-use expansion results generated during main plan execution.
372 ///
373 /// Returns a mapping of SCEVs to their expanded IR values and a mapping for
374 /// the reduction resume values. Note that this is a temporary workaround
375 /// needed due to the current epilogue handling.
376 std::pair<DenseMap<const SCEV *, Value *>,
378 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
380 bool IsEpilogueVectorization,
381 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
382
383#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
384 void printPlans(raw_ostream &O);
385#endif
386
387 /// Look through the existing plans and return true if we have one with
388 /// vectorization factor \p VF.
390 return any_of(VPlans,
391 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
392 }
393
394 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
395 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
396 /// returned value holds for the entire \p Range.
397 static bool
398 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
399 VFRange &Range);
400
401 /// \return The most profitable vectorization factor and the cost of that VF
402 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
403 /// epilogue vectorization is not supported for the loop.
405 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
406
407protected:
408 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
409 /// according to the information gathered by Legal when it checked if it is
410 /// legal to vectorize the loop.
411 void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
412
413private:
414 /// Build a VPlan according to the information gathered by Legal. \return a
415 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
416 /// exclusive, possibly decreasing \p Range.End.
417 VPlanPtr buildVPlan(VFRange &Range);
418
419 /// Build a VPlan using VPRecipes according to the information gather by
420 /// Legal. This method is only used for the legacy inner loop vectorizer.
421 /// \p Range's largest included VF is restricted to the maximum VF the
422 /// returned VPlan is valid for. If no VPlan can be built for the input range,
423 /// set the largest included VF to the maximum VF for which no plan could be
424 /// built.
425 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
426
427 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
428 /// according to the information gathered by Legal when it checked if it is
429 /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
430 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
431
432 // Adjust the recipes for reductions. For in-loop reductions the chain of
433 // instructions leading from the loop exit instr to the phi need to be
434 // converted to reductions, with one operand being vector and the other being
435 // the scalar reduction chain. For other reductions, a select is introduced
436 // between the phi and live-out recipes when folding the tail.
437 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
438 VPRecipeBuilder &RecipeBuilder,
439 ElementCount MinVF);
440
441 /// \return The most profitable vectorization factor and the cost of that VF.
442 /// This method checks every VF in \p CandidateVFs.
444 selectVectorizationFactor(const ElementCountSet &CandidateVFs);
445
446 /// Returns true if the per-lane cost of VectorizationFactor A is lower than
447 /// that of B.
448 bool isMoreProfitable(const VectorizationFactor &A,
449 const VectorizationFactor &B) const;
450
451 /// Determines if we have the infrastructure to vectorize the loop and its
452 /// epilogue, assuming the main loop is vectorized by \p VF.
453 bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
454};
455
456} // namespace llvm
457
458#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
amdgpu AMDGPU Register Bank Select
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
std::string Name
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
mir Rename Register Operands
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallSet class.
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
A debug info location.
Definition: DebugLoc.h:33
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isVector() const
One or more elements.
Definition: TypeSize.h:311
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:296
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:586
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Planner drives the vectorization process after having passed Legality checks.
std::optional< VectorizationFactor > plan(ElementCount UserVF, unsigned UserIC)
Plan how to best vectorize, return the best VF and its cost, or std::nullopt if vectorization and int...
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, OptimizationRemarkEmitter *ORE)
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
std::pair< DenseMap< const SCEV *, Value * >, DenseMap< const RecurrenceDescriptor *, Value * > > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool IsEpilogueVectorization, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VPlan & getBestPlanFor(ElementCount VF) const
Return the best VPlan for VF.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
The optimization diagnostic interface.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:2739
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:2760
iterator end()
Definition: VPlan.h:2770
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition: VPlan.h:2798
RAII object that stores the current insertion point and restores it when the object is destroyed.
InsertPointGuard(const InsertPointGuard &)=delete
InsertPointGuard & operator=(const InsertPointGuard &)=delete
InsertPoint - A saved insertion point.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
Creates a new insertion point at the given location.
VPBasicBlock::iterator getPoint() const
VPInsertPoint()=default
Creates a new insertion point which doesn't point to anything.
bool isSet() const
Returns true if this insert point is set.
VPlan-based builder utility analogous to IRBuilder.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP)
This specifies that created instructions should be inserted at the specified point.
void setInsertPoint(VPRecipeBase *IP)
This specifies that created instructions should be inserted at the specified point.
void restoreIP(VPInsertPoint IP)
Sets the current insert point to a previously-saved location.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPBasicBlock::iterator getInsertPoint() const
VPBuilder(VPBasicBlock *InsertBB)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL, const Twine &Name="")
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPBuilder(VPRecipeBase *InsertPt)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPValue * createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
void clearInsertionPoint()
Clear the insertion point: created instructions will not be inserted into a block.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPBuilder()=default
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1166
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:718
VPBasicBlock * getParent()
Definition: VPlan.h:743
Helper class to create VPRecipies from IR instructions.
void setUnderlyingValue(Value *Val)
Definition: VPlanValue.h:190
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:2973
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
self_iterator getIterator()
Definition: ilist_node.h:109
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:134
ElementCountComparator creates a total ordering for ElementCount for the purposes of using it in a se...
bool operator()(const ElementCount &LHS, const ElementCount &RHS) const
A class that represents two vectorization factors (initialized with 0 by default).
FixedScalableVFPair(const ElementCount &FixedVF, const ElementCount &ScalableVF)
FixedScalableVFPair(const ElementCount &Max)
static FixedScalableVFPair getNone()
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:87
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
bool operator==(const VectorizationFactor &rhs) const
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
bool operator!=(const VectorizationFactor &rhs) const
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
VectorizationFactor(ElementCount Width, InstructionCost Cost, InstructionCost ScalarCost)