LLVM 19.0.0git
MSP430ISelLowering.cpp
Go to the documentation of this file.
1//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the MSP430TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "MSP430ISelLowering.h"
14#include "MSP430.h"
16#include "MSP430Subtarget.h"
17#include "MSP430TargetMachine.h"
25#include "llvm/IR/CallingConv.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/Intrinsics.h"
32#include "llvm/Support/Debug.h"
35using namespace llvm;
36
37#define DEBUG_TYPE "msp430-lower"
38
40 "msp430-no-legal-immediate", cl::Hidden,
41 cl::desc("Enable non legal immediates (for testing purposes only)"),
42 cl::init(false));
43
45 const MSP430Subtarget &STI)
47
48 // Set up the register classes.
49 addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
50 addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
51
52 // Compute derived properties from the register classes
54
55 // Provide all sorts of operation actions
58 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
59
60 // We have post-incremented loads / stores.
63
64 for (MVT VT : MVT::integer_valuetypes()) {
70 }
71
72 // We don't have any truncstores
73 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
74
103
110
117
119
120 // FIXME: Implement efficiently multiplication by a constant
131
144
145 // varargs support
151
152 // EABI Libcalls - EABI Section 6.2
153 const struct {
154 const RTLIB::Libcall Op;
155 const char * const Name;
156 const ISD::CondCode Cond;
157 } LibraryCalls[] = {
158 // Floating point conversions - EABI Table 6
159 { RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
160 { RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
161 // The following is NOT implemented in libgcc
162 //{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
163 { RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
164 { RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
165 // The following is NOT implemented in libgcc
166 //{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
167 { RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
168 { RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
169 // The following is NOT implemented in libgcc
170 //{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
171 { RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
172 { RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
173 // The following is NOT implemented in libgcc
174 //{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
175 { RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
176 { RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
177 // TODO The following IS implemented in libgcc
178 //{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
179 { RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
180 // TODO The following IS implemented in libgcc but is not in the EABI
181 { RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
182 // TODO The following IS implemented in libgcc
183 //{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
184 { RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
185 // The following IS implemented in libgcc but is not in the EABI
186 { RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
187 // TODO The following IS implemented in libgcc
188 //{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
189 { RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
190 // TODO The following IS implemented in libgcc but is not in the EABI
191 { RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
192 // TODO The following IS implemented in libgcc
193 //{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
194 { RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
195 // The following IS implemented in libgcc but is not in the EABI
196 { RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
197
198 // Floating point comparisons - EABI Table 7
199 { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
200 { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
201 { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
202 { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
203 { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
204 { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
205 { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
206 { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
207 { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
208 { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
209 { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
210 { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
211
212 // Floating point arithmetic - EABI Table 8
213 { RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
214 { RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
215 { RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
216 { RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
217 { RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
218 { RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
219 { RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
220 { RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
221 // The following are NOT implemented in libgcc
222 // { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
223 // { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
224
225 // Universal Integer Operations - EABI Table 9
226 { RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
227 { RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
228 { RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
229 { RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
230 { RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
231 { RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
232 { RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
233 { RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
234 { RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
235 { RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
236 { RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
237 { RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
238
239 // Bitwise Operations - EABI Table 10
240 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
241 { RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
242 { RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
243 { RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
244 // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
245
246 };
247
248 for (const auto &LC : LibraryCalls) {
249 setLibcallName(LC.Op, LC.Name);
250 if (LC.Cond != ISD::SETCC_INVALID)
251 setCmpLibcallCC(LC.Op, LC.Cond);
252 }
253
254 if (STI.hasHWMult16()) {
255 const struct {
256 const RTLIB::Libcall Op;
257 const char * const Name;
258 } LibraryCalls[] = {
259 // Integer Multiply - EABI Table 9
260 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
261 { RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
262 { RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
263 // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
264 // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
265 };
266 for (const auto &LC : LibraryCalls) {
267 setLibcallName(LC.Op, LC.Name);
268 }
269 } else if (STI.hasHWMult32()) {
270 const struct {
271 const RTLIB::Libcall Op;
272 const char * const Name;
273 } LibraryCalls[] = {
274 // Integer Multiply - EABI Table 9
275 { RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
276 { RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
277 { RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
278 // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
279 // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
280 };
281 for (const auto &LC : LibraryCalls) {
282 setLibcallName(LC.Op, LC.Name);
283 }
284 } else if (STI.hasHWMultF5()) {
285 const struct {
286 const RTLIB::Libcall Op;
287 const char * const Name;
288 } LibraryCalls[] = {
289 // Integer Multiply - EABI Table 9
290 { RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
291 { RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
292 { RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
293 // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
294 // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
295 };
296 for (const auto &LC : LibraryCalls) {
297 setLibcallName(LC.Op, LC.Name);
298 }
299 } else { // NoHWMult
300 const struct {
301 const RTLIB::Libcall Op;
302 const char * const Name;
303 } LibraryCalls[] = {
304 // Integer Multiply - EABI Table 9
305 { RTLIB::MUL_I16, "__mspabi_mpyi" },
306 { RTLIB::MUL_I32, "__mspabi_mpyl" },
307 { RTLIB::MUL_I64, "__mspabi_mpyll" },
308 // The __mspabi_mpysl* functions are NOT implemented in libgcc
309 // The __mspabi_mpyul* functions are NOT implemented in libgcc
310 };
311 for (const auto &LC : LibraryCalls) {
312 setLibcallName(LC.Op, LC.Name);
313 }
315 }
316
317 // Several of the runtime library functions use a special calling conv
332 // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
333
337}
338
340 SelectionDAG &DAG) const {
341 switch (Op.getOpcode()) {
342 case ISD::SHL: // FALLTHROUGH
343 case ISD::SRL:
344 case ISD::SRA: return LowerShifts(Op, DAG);
345 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
346 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
347 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
348 case ISD::SETCC: return LowerSETCC(Op, DAG);
349 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
350 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
351 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
352 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
353 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
354 case ISD::VASTART: return LowerVASTART(Op, DAG);
355 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
356 default:
357 llvm_unreachable("unimplemented operand");
358 }
359}
360
361// Define non profitable transforms into shifts
363 unsigned Amount) const {
364 return !(Amount == 8 || Amount == 9 || Amount<=2);
365}
366
367// Implemented to verify test case assertions in
368// tests/codegen/msp430/shift-amount-threshold-b.ll
371 return Immed >= -32 && Immed < 32;
373}
374
375//===----------------------------------------------------------------------===//
376// MSP430 Inline Assembly Support
377//===----------------------------------------------------------------------===//
378
379/// getConstraintType - Given a constraint letter, return the type of
380/// constraint it is for this target.
383 if (Constraint.size() == 1) {
384 switch (Constraint[0]) {
385 case 'r':
386 return C_RegisterClass;
387 default:
388 break;
389 }
390 }
391 return TargetLowering::getConstraintType(Constraint);
392}
393
394std::pair<unsigned, const TargetRegisterClass *>
396 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
397 if (Constraint.size() == 1) {
398 // GCC Constraint Letters
399 switch (Constraint[0]) {
400 default: break;
401 case 'r': // GENERAL_REGS
402 if (VT == MVT::i8)
403 return std::make_pair(0U, &MSP430::GR8RegClass);
404
405 return std::make_pair(0U, &MSP430::GR16RegClass);
406 }
407 }
408
410}
411
412//===----------------------------------------------------------------------===//
413// Calling Convention Implementation
414//===----------------------------------------------------------------------===//
415
416#include "MSP430GenCallingConv.inc"
417
418/// For each argument in a function store the number of pieces it is composed
419/// of.
420template<typename ArgT>
423 unsigned CurrentArgIndex;
424
425 if (Args.empty())
426 return;
427
428 CurrentArgIndex = Args[0].OrigArgIndex;
429 Out.push_back(0);
430
431 for (auto &Arg : Args) {
432 if (CurrentArgIndex == Arg.OrigArgIndex) {
433 Out.back() += 1;
434 } else {
435 Out.push_back(1);
436 CurrentArgIndex = Arg.OrigArgIndex;
437 }
438 }
439}
440
441static void AnalyzeVarArgs(CCState &State,
443 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
444}
445
446static void AnalyzeVarArgs(CCState &State,
448 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
449}
450
451/// Analyze incoming and outgoing function arguments. We need custom C++ code
452/// to handle special constraints in the ABI like reversing the order of the
453/// pieces of splitted arguments. In addition, all pieces of a certain argument
454/// have to be passed either using registers or the stack but never mixing both.
455template<typename ArgT>
456static void AnalyzeArguments(CCState &State,
458 const SmallVectorImpl<ArgT> &Args) {
459 static const MCPhysReg CRegList[] = {
460 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
461 };
462 static const unsigned CNbRegs = std::size(CRegList);
463 static const MCPhysReg BuiltinRegList[] = {
464 MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
465 MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
466 };
467 static const unsigned BuiltinNbRegs = std::size(BuiltinRegList);
468
469 ArrayRef<MCPhysReg> RegList;
470 unsigned NbRegs;
471
472 bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
473 if (Builtin) {
474 RegList = BuiltinRegList;
475 NbRegs = BuiltinNbRegs;
476 } else {
477 RegList = CRegList;
478 NbRegs = CNbRegs;
479 }
480
481 if (State.isVarArg()) {
482 AnalyzeVarArgs(State, Args);
483 return;
484 }
485
486 SmallVector<unsigned, 4> ArgsParts;
487 ParseFunctionArgs(Args, ArgsParts);
488
489 if (Builtin) {
490 assert(ArgsParts.size() == 2 &&
491 "Builtin calling convention requires two arguments");
492 }
493
494 unsigned RegsLeft = NbRegs;
495 bool UsedStack = false;
496 unsigned ValNo = 0;
497
498 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
499 MVT ArgVT = Args[ValNo].VT;
500 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
501 MVT LocVT = ArgVT;
503
504 // Promote i8 to i16
505 if (LocVT == MVT::i8) {
506 LocVT = MVT::i16;
507 if (ArgFlags.isSExt())
508 LocInfo = CCValAssign::SExt;
509 else if (ArgFlags.isZExt())
510 LocInfo = CCValAssign::ZExt;
511 else
512 LocInfo = CCValAssign::AExt;
513 }
514
515 // Handle byval arguments
516 if (ArgFlags.isByVal()) {
517 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, Align(2), ArgFlags);
518 continue;
519 }
520
521 unsigned Parts = ArgsParts[i];
522
523 if (Builtin) {
524 assert(Parts == 4 &&
525 "Builtin calling convention requires 64-bit arguments");
526 }
527
528 if (!UsedStack && Parts == 2 && RegsLeft == 1) {
529 // Special case for 32-bit register split, see EABI section 3.3.3
530 unsigned Reg = State.AllocateReg(RegList);
531 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
532 RegsLeft -= 1;
533
534 UsedStack = true;
535 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
536 } else if (Parts <= RegsLeft) {
537 for (unsigned j = 0; j < Parts; j++) {
538 unsigned Reg = State.AllocateReg(RegList);
539 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
540 RegsLeft--;
541 }
542 } else {
543 UsedStack = true;
544 for (unsigned j = 0; j < Parts; j++)
545 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
546 }
547 }
548}
549
550static void AnalyzeRetResult(CCState &State,
552 State.AnalyzeCallResult(Ins, RetCC_MSP430);
553}
554
555static void AnalyzeRetResult(CCState &State,
557 State.AnalyzeReturn(Outs, RetCC_MSP430);
558}
559
560template<typename ArgT>
561static void AnalyzeReturnValues(CCState &State,
563 const SmallVectorImpl<ArgT> &Args) {
564 AnalyzeRetResult(State, Args);
565}
566
567SDValue MSP430TargetLowering::LowerFormalArguments(
568 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
569 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
570 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
571
572 switch (CallConv) {
573 default:
574 report_fatal_error("Unsupported calling convention");
575 case CallingConv::C:
577 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
579 if (Ins.empty())
580 return Chain;
581 report_fatal_error("ISRs cannot have arguments");
582 }
583}
584
586MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
587 SmallVectorImpl<SDValue> &InVals) const {
588 SelectionDAG &DAG = CLI.DAG;
589 SDLoc &dl = CLI.DL;
591 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
593 SDValue Chain = CLI.Chain;
594 SDValue Callee = CLI.Callee;
595 bool &isTailCall = CLI.IsTailCall;
596 CallingConv::ID CallConv = CLI.CallConv;
597 bool isVarArg = CLI.IsVarArg;
598
599 // MSP430 target does not yet support tail call optimization.
600 isTailCall = false;
601
602 switch (CallConv) {
603 default:
604 report_fatal_error("Unsupported calling convention");
607 case CallingConv::C:
608 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
609 Outs, OutVals, Ins, dl, DAG, InVals);
611 report_fatal_error("ISRs cannot be called directly");
612 }
613}
614
615/// LowerCCCArguments - transform physical registers into virtual registers and
616/// generate load operations for arguments places on the stack.
617// FIXME: struct return stuff
618SDValue MSP430TargetLowering::LowerCCCArguments(
619 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
620 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
621 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
623 MachineFrameInfo &MFI = MF.getFrameInfo();
626
627 // Assign locations to all of the incoming arguments.
629 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
630 *DAG.getContext());
631 AnalyzeArguments(CCInfo, ArgLocs, Ins);
632
633 // Create frame index for the start of the first vararg value
634 if (isVarArg) {
635 unsigned Offset = CCInfo.getStackSize();
636 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
637 }
638
639 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
640 CCValAssign &VA = ArgLocs[i];
641 if (VA.isRegLoc()) {
642 // Arguments passed in registers
643 EVT RegVT = VA.getLocVT();
644 switch (RegVT.getSimpleVT().SimpleTy) {
645 default:
646 {
647#ifndef NDEBUG
648 errs() << "LowerFormalArguments Unhandled argument type: "
649 << RegVT << "\n";
650#endif
651 llvm_unreachable(nullptr);
652 }
653 case MVT::i16:
654 Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
655 RegInfo.addLiveIn(VA.getLocReg(), VReg);
656 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
657
658 // If this is an 8-bit value, it is really passed promoted to 16
659 // bits. Insert an assert[sz]ext to capture this, then truncate to the
660 // right size.
661 if (VA.getLocInfo() == CCValAssign::SExt)
662 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
663 DAG.getValueType(VA.getValVT()));
664 else if (VA.getLocInfo() == CCValAssign::ZExt)
665 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
666 DAG.getValueType(VA.getValVT()));
667
668 if (VA.getLocInfo() != CCValAssign::Full)
669 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
670
671 InVals.push_back(ArgValue);
672 }
673 } else {
674 // Only arguments passed on the stack should make it here.
675 assert(VA.isMemLoc());
676
677 SDValue InVal;
678 ISD::ArgFlagsTy Flags = Ins[i].Flags;
679
680 if (Flags.isByVal()) {
681 MVT PtrVT = VA.getLocVT();
682 int FI = MFI.CreateFixedObject(Flags.getByValSize(),
683 VA.getLocMemOffset(), true);
684 InVal = DAG.getFrameIndex(FI, PtrVT);
685 } else {
686 // Load the argument to a virtual register
687 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
688 if (ObjSize > 2) {
689 errs() << "LowerFormalArguments Unhandled argument type: "
690 << VA.getLocVT() << "\n";
691 }
692 // Create the frame index object for this incoming parameter...
693 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
694
695 // Create the SelectionDAG nodes corresponding to a load
696 //from this parameter
697 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
698 InVal = DAG.getLoad(
699 VA.getLocVT(), dl, Chain, FIN,
701 }
702
703 InVals.push_back(InVal);
704 }
705 }
706
707 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
708 if (Ins[i].Flags.isSRet()) {
709 Register Reg = FuncInfo->getSRetReturnReg();
710 if (!Reg) {
712 getRegClassFor(MVT::i16));
713 FuncInfo->setSRetReturnReg(Reg);
714 }
715 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
716 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
717 }
718 }
719
720 return Chain;
721}
722
723bool
724MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
725 MachineFunction &MF,
726 bool IsVarArg,
728 LLVMContext &Context) const {
730 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
731 return CCInfo.CheckReturn(Outs, RetCC_MSP430);
732}
733
735MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
736 bool isVarArg,
738 const SmallVectorImpl<SDValue> &OutVals,
739 const SDLoc &dl, SelectionDAG &DAG) const {
740
742
743 // CCValAssign - represent the assignment of the return value to a location
745
746 // ISRs cannot return any value.
747 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
748 report_fatal_error("ISRs cannot return any value");
749
750 // CCState - Info about the registers and stack slot.
751 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
752 *DAG.getContext());
753
754 // Analize return values.
755 AnalyzeReturnValues(CCInfo, RVLocs, Outs);
756
757 SDValue Glue;
758 SmallVector<SDValue, 4> RetOps(1, Chain);
759
760 // Copy the result values into the output registers.
761 for (unsigned i = 0; i != RVLocs.size(); ++i) {
762 CCValAssign &VA = RVLocs[i];
763 assert(VA.isRegLoc() && "Can only return in registers!");
764
765 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
766 OutVals[i], Glue);
767
768 // Guarantee that all emitted copies are stuck together,
769 // avoiding something bad.
770 Glue = Chain.getValue(1);
771 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
772 }
773
774 if (MF.getFunction().hasStructRetAttr()) {
776 Register Reg = FuncInfo->getSRetReturnReg();
777
778 if (!Reg)
779 llvm_unreachable("sret virtual register not created in entry block");
780
781 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
782 SDValue Val =
783 DAG.getCopyFromReg(Chain, dl, Reg, PtrVT);
784 unsigned R12 = MSP430::R12;
785
786 Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Glue);
787 Glue = Chain.getValue(1);
788 RetOps.push_back(DAG.getRegister(R12, PtrVT));
789 }
790
791 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
793
794 RetOps[0] = Chain; // Update chain.
795
796 // Add the glue if we have it.
797 if (Glue.getNode())
798 RetOps.push_back(Glue);
799
800 return DAG.getNode(Opc, dl, MVT::Other, RetOps);
801}
802
803/// LowerCCCCallTo - functions arguments are copied from virtual regs to
804/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
805SDValue MSP430TargetLowering::LowerCCCCallTo(
806 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
807 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
808 const SmallVectorImpl<SDValue> &OutVals,
809 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
810 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
811 // Analyze operands of the call, assigning locations to each operand.
813 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
814 *DAG.getContext());
815 AnalyzeArguments(CCInfo, ArgLocs, Outs);
816
817 // Get a count of how many bytes are to be pushed on the stack.
818 unsigned NumBytes = CCInfo.getStackSize();
819 MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
820
821 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
822
824 SmallVector<SDValue, 12> MemOpChains;
826
827 // Walk the register/memloc assignments, inserting copies/loads.
828 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
829 CCValAssign &VA = ArgLocs[i];
830
831 SDValue Arg = OutVals[i];
832
833 // Promote the value if needed.
834 switch (VA.getLocInfo()) {
835 default: llvm_unreachable("Unknown loc info!");
836 case CCValAssign::Full: break;
838 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
839 break;
841 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
842 break;
844 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
845 break;
846 }
847
848 // Arguments that can be passed on register must be kept at RegsToPass
849 // vector
850 if (VA.isRegLoc()) {
851 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
852 } else {
853 assert(VA.isMemLoc());
854
855 if (!StackPtr.getNode())
856 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
857
858 SDValue PtrOff =
859 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
860 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
861
863 ISD::ArgFlagsTy Flags = Outs[i].Flags;
864
865 if (Flags.isByVal()) {
866 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
867 MemOp = DAG.getMemcpy(
868 Chain, dl, PtrOff, Arg, SizeNode, Flags.getNonZeroByValAlign(),
869 /*isVolatile*/ false,
870 /*AlwaysInline=*/true,
871 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
872 } else {
873 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
874 }
875
876 MemOpChains.push_back(MemOp);
877 }
878 }
879
880 // Transform all store nodes into one single node because all store nodes are
881 // independent of each other.
882 if (!MemOpChains.empty())
883 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
884
885 // Build a sequence of copy-to-reg nodes chained together with token chain and
886 // flag operands which copy the outgoing args into registers. The InGlue in
887 // necessary since all emitted instructions must be stuck together.
888 SDValue InGlue;
889 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
890 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
891 RegsToPass[i].second, InGlue);
892 InGlue = Chain.getValue(1);
893 }
894
895 // If the callee is a GlobalAddress node (quite common, every direct call is)
896 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
897 // Likewise ExternalSymbol -> TargetExternalSymbol.
898 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
899 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
900 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
901 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
902
903 // Returns a chain & a flag for retval copy to use.
904 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
906 Ops.push_back(Chain);
907 Ops.push_back(Callee);
908
909 // Add argument registers to the end of the list so that they are
910 // known live into the call.
911 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
912 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
913 RegsToPass[i].second.getValueType()));
914
915 if (InGlue.getNode())
916 Ops.push_back(InGlue);
917
918 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
919 InGlue = Chain.getValue(1);
920
921 // Create the CALLSEQ_END node.
922 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl);
923 InGlue = Chain.getValue(1);
924
925 // Handle result values, copying them out of physregs into vregs that we
926 // return.
927 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl,
928 DAG, InVals);
929}
930
931/// LowerCallResult - Lower the result values of a call into the
932/// appropriate copies out of appropriate physical registers.
933///
934SDValue MSP430TargetLowering::LowerCallResult(
935 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
936 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
937 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
938
939 // Assign locations to each value returned by this call.
941 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
942 *DAG.getContext());
943
944 AnalyzeReturnValues(CCInfo, RVLocs, Ins);
945
946 // Copy all of the result registers out of their specified physreg.
947 for (unsigned i = 0; i != RVLocs.size(); ++i) {
948 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
949 RVLocs[i].getValVT(), InGlue).getValue(1);
950 InGlue = Chain.getValue(2);
951 InVals.push_back(Chain.getValue(0));
952 }
953
954 return Chain;
955}
956
958 SelectionDAG &DAG) const {
959 unsigned Opc = Op.getOpcode();
960 SDNode* N = Op.getNode();
961 EVT VT = Op.getValueType();
962 SDLoc dl(N);
963
964 // Expand non-constant shifts to loops:
965 if (!isa<ConstantSDNode>(N->getOperand(1)))
966 return Op;
967
968 uint64_t ShiftAmount = N->getConstantOperandVal(1);
969
970 // Expand the stuff into sequence of shifts.
971 SDValue Victim = N->getOperand(0);
972
973 if (ShiftAmount >= 8) {
974 assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
975 switch(Opc) {
976 default:
977 llvm_unreachable("Unknown shift");
978 case ISD::SHL:
979 // foo << (8 + N) => swpb(zext(foo)) << N
980 Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
981 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
982 break;
983 case ISD::SRA:
984 case ISD::SRL:
985 // foo >> (8 + N) => sxt(swpb(foo)) >> N
986 Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
987 Victim = (Opc == ISD::SRA)
988 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
989 DAG.getValueType(MVT::i8))
990 : DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
991 break;
992 }
993 ShiftAmount -= 8;
994 }
995
996 if (Opc == ISD::SRL && ShiftAmount) {
997 // Emit a special goodness here:
998 // srl A, 1 => clrc; rrc A
999 Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
1000 ShiftAmount -= 1;
1001 }
1002
1003 while (ShiftAmount--)
1004 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
1005 dl, VT, Victim);
1006
1007 return Victim;
1008}
1009
1011 SelectionDAG &DAG) const {
1012 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1013 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1014 EVT PtrVT = Op.getValueType();
1015
1016 // Create the TargetGlobalAddress node, folding in the constant offset.
1017 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
1018 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
1019}
1020
1022 SelectionDAG &DAG) const {
1023 SDLoc dl(Op);
1024 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
1025 EVT PtrVT = Op.getValueType();
1026 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
1027
1028 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1029}
1030
1032 SelectionDAG &DAG) const {
1033 SDLoc dl(Op);
1034 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1035 EVT PtrVT = Op.getValueType();
1036 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
1037
1038 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1039}
1040
1041static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
1042 ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
1043 // FIXME: Handle bittests someday
1044 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
1045
1046 // FIXME: Handle jump negative someday
1048 switch (CC) {
1049 default: llvm_unreachable("Invalid integer condition!");
1050 case ISD::SETEQ:
1051 TCC = MSP430CC::COND_E; // aka COND_Z
1052 // Minor optimization: if LHS is a constant, swap operands, then the
1053 // constant can be folded into comparison.
1054 if (LHS.getOpcode() == ISD::Constant)
1055 std::swap(LHS, RHS);
1056 break;
1057 case ISD::SETNE:
1058 TCC = MSP430CC::COND_NE; // aka COND_NZ
1059 // Minor optimization: if LHS is a constant, swap operands, then the
1060 // constant can be folded into comparison.
1061 if (LHS.getOpcode() == ISD::Constant)
1062 std::swap(LHS, RHS);
1063 break;
1064 case ISD::SETULE:
1065 std::swap(LHS, RHS);
1066 [[fallthrough]];
1067 case ISD::SETUGE:
1068 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1069 // fold constant into instruction.
1070 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1071 LHS = RHS;
1072 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1073 TCC = MSP430CC::COND_LO;
1074 break;
1075 }
1076 TCC = MSP430CC::COND_HS; // aka COND_C
1077 break;
1078 case ISD::SETUGT:
1079 std::swap(LHS, RHS);
1080 [[fallthrough]];
1081 case ISD::SETULT:
1082 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1083 // fold constant into instruction.
1084 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1085 LHS = RHS;
1086 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1087 TCC = MSP430CC::COND_HS;
1088 break;
1089 }
1090 TCC = MSP430CC::COND_LO; // aka COND_NC
1091 break;
1092 case ISD::SETLE:
1093 std::swap(LHS, RHS);
1094 [[fallthrough]];
1095 case ISD::SETGE:
1096 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1097 // fold constant into instruction.
1098 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1099 LHS = RHS;
1100 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1101 TCC = MSP430CC::COND_L;
1102 break;
1103 }
1104 TCC = MSP430CC::COND_GE;
1105 break;
1106 case ISD::SETGT:
1107 std::swap(LHS, RHS);
1108 [[fallthrough]];
1109 case ISD::SETLT:
1110 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1111 // fold constant into instruction.
1112 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1113 LHS = RHS;
1114 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1115 TCC = MSP430CC::COND_GE;
1116 break;
1117 }
1118 TCC = MSP430CC::COND_L;
1119 break;
1120 }
1121
1122 TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
1123 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
1124}
1125
1126
1128 SDValue Chain = Op.getOperand(0);
1129 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1130 SDValue LHS = Op.getOperand(2);
1131 SDValue RHS = Op.getOperand(3);
1132 SDValue Dest = Op.getOperand(4);
1133 SDLoc dl (Op);
1134
1135 SDValue TargetCC;
1136 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1137
1138 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
1139 Chain, Dest, TargetCC, Flag);
1140}
1141
1143 SDValue LHS = Op.getOperand(0);
1144 SDValue RHS = Op.getOperand(1);
1145 SDLoc dl (Op);
1146
1147 // If we are doing an AND and testing against zero, then the CMP
1148 // will not be generated. The AND (or BIT) will generate the condition codes,
1149 // but they are different from CMP.
1150 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1151 // lowering & isel wouldn't diverge.
1152 bool andCC = isNullConstant(RHS) && LHS.hasOneUse() &&
1153 (LHS.getOpcode() == ISD::AND ||
1154 (LHS.getOpcode() == ISD::TRUNCATE &&
1155 LHS.getOperand(0).getOpcode() == ISD::AND));
1156 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1157 SDValue TargetCC;
1158 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1159
1160 // Get the condition codes directly from the status register, if its easy.
1161 // Otherwise a branch will be generated. Note that the AND and BIT
1162 // instructions generate different flags than CMP, the carry bit can be used
1163 // for NE/EQ.
1164 bool Invert = false;
1165 bool Shift = false;
1166 bool Convert = true;
1167 switch (TargetCC->getAsZExtVal()) {
1168 default:
1169 Convert = false;
1170 break;
1171 case MSP430CC::COND_HS:
1172 // Res = SR & 1, no processing is required
1173 break;
1174 case MSP430CC::COND_LO:
1175 // Res = ~(SR & 1)
1176 Invert = true;
1177 break;
1178 case MSP430CC::COND_NE:
1179 if (andCC) {
1180 // C = ~Z, thus Res = SR & 1, no processing is required
1181 } else {
1182 // Res = ~((SR >> 1) & 1)
1183 Shift = true;
1184 Invert = true;
1185 }
1186 break;
1187 case MSP430CC::COND_E:
1188 Shift = true;
1189 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1190 // Res = (SR >> 1) & 1 is 1 word shorter.
1191 break;
1192 }
1193 EVT VT = Op.getValueType();
1194 SDValue One = DAG.getConstant(1, dl, VT);
1195 if (Convert) {
1196 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
1197 MVT::i16, Flag);
1198 if (Shift)
1199 // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1200 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
1201 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
1202 if (Invert)
1203 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
1204 return SR;
1205 } else {
1206 SDValue Zero = DAG.getConstant(0, dl, VT);
1207 SDValue Ops[] = {One, Zero, TargetCC, Flag};
1208 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1209 }
1210}
1211
1213 SelectionDAG &DAG) const {
1214 SDValue LHS = Op.getOperand(0);
1215 SDValue RHS = Op.getOperand(1);
1216 SDValue TrueV = Op.getOperand(2);
1217 SDValue FalseV = Op.getOperand(3);
1218 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1219 SDLoc dl (Op);
1220
1221 SDValue TargetCC;
1222 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1223
1224 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1225
1226 return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1227}
1228
1230 SelectionDAG &DAG) const {
1231 SDValue Val = Op.getOperand(0);
1232 EVT VT = Op.getValueType();
1233 SDLoc dl(Op);
1234
1235 assert(VT == MVT::i16 && "Only support i16 for now!");
1236
1237 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1238 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1239 DAG.getValueType(Val.getValueType()));
1240}
1241
1242SDValue
1246 int ReturnAddrIndex = FuncInfo->getRAIndex();
1247 MVT PtrVT = getFrameIndexTy(MF.getDataLayout());
1248
1249 if (ReturnAddrIndex == 0) {
1250 // Set up a frame object for the return address.
1251 uint64_t SlotSize = PtrVT.getStoreSize();
1252 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
1253 true);
1254 FuncInfo->setRAIndex(ReturnAddrIndex);
1255 }
1256
1257 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1258}
1259
1261 SelectionDAG &DAG) const {
1263 MFI.setReturnAddressIsTaken(true);
1264
1266 return SDValue();
1267
1268 unsigned Depth = Op.getConstantOperandVal(0);
1269 SDLoc dl(Op);
1270 EVT PtrVT = Op.getValueType();
1271
1272 if (Depth > 0) {
1273 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1274 SDValue Offset =
1275 DAG.getConstant(PtrVT.getStoreSize(), dl, MVT::i16);
1276 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1277 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1279 }
1280
1281 // Just load the return address.
1282 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1283 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1285}
1286
1288 SelectionDAG &DAG) const {
1290 MFI.setFrameAddressIsTaken(true);
1291
1292 EVT VT = Op.getValueType();
1293 SDLoc dl(Op); // FIXME probably not meaningful
1294 unsigned Depth = Op.getConstantOperandVal(0);
1295 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1296 MSP430::R4, VT);
1297 while (Depth--)
1298 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1300 return FrameAddr;
1301}
1302
1304 SelectionDAG &DAG) const {
1307
1308 SDValue Ptr = Op.getOperand(1);
1309 EVT PtrVT = Ptr.getValueType();
1310
1311 // Frame index of first vararg argument
1312 SDValue FrameIndex =
1313 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1314 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1315
1316 // Create a store of the frame index to the location operand
1317 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Ptr,
1318 MachinePointerInfo(SV));
1319}
1320
1322 SelectionDAG &DAG) const {
1323 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1324 EVT PtrVT = Op.getValueType();
1325 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1326 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1327}
1328
1329/// getPostIndexedAddressParts - returns true by value, base pointer and
1330/// offset pointer and addressing mode by reference if this node can be
1331/// combined with a load / store to form a post-indexed load / store.
1332bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1333 SDValue &Base,
1334 SDValue &Offset,
1336 SelectionDAG &DAG) const {
1337
1338 LoadSDNode *LD = cast<LoadSDNode>(N);
1339 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1340 return false;
1341
1342 EVT VT = LD->getMemoryVT();
1343 if (VT != MVT::i8 && VT != MVT::i16)
1344 return false;
1345
1346 if (Op->getOpcode() != ISD::ADD)
1347 return false;
1348
1349 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1350 uint64_t RHSC = RHS->getZExtValue();
1351 if ((VT == MVT::i16 && RHSC != 2) ||
1352 (VT == MVT::i8 && RHSC != 1))
1353 return false;
1354
1355 Base = Op->getOperand(0);
1356 Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1357 AM = ISD::POST_INC;
1358 return true;
1359 }
1360
1361 return false;
1362}
1363
1364
1365const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1366 switch ((MSP430ISD::NodeType)Opcode) {
1367 case MSP430ISD::FIRST_NUMBER: break;
1368 case MSP430ISD::RET_GLUE: return "MSP430ISD::RET_GLUE";
1369 case MSP430ISD::RETI_GLUE: return "MSP430ISD::RETI_GLUE";
1370 case MSP430ISD::RRA: return "MSP430ISD::RRA";
1371 case MSP430ISD::RLA: return "MSP430ISD::RLA";
1372 case MSP430ISD::RRC: return "MSP430ISD::RRC";
1373 case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
1374 case MSP430ISD::CALL: return "MSP430ISD::CALL";
1375 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
1376 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
1377 case MSP430ISD::CMP: return "MSP430ISD::CMP";
1378 case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
1379 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
1380 case MSP430ISD::DADD: return "MSP430ISD::DADD";
1381 }
1382 return nullptr;
1383}
1384
1386 Type *Ty2) const {
1387 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1388 return false;
1389
1390 return (Ty1->getPrimitiveSizeInBits().getFixedValue() >
1392}
1393
1395 if (!VT1.isInteger() || !VT2.isInteger())
1396 return false;
1397
1398 return (VT1.getFixedSizeInBits() > VT2.getFixedSizeInBits());
1399}
1400
1402 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1403 return false && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1404}
1405
1407 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1408 return false && VT1 == MVT::i8 && VT2 == MVT::i16;
1409}
1410
1411//===----------------------------------------------------------------------===//
1412// Other Lowering Code
1413//===----------------------------------------------------------------------===//
1414
1417 MachineBasicBlock *BB) const {
1418 MachineFunction *F = BB->getParent();
1419 MachineRegisterInfo &RI = F->getRegInfo();
1420 DebugLoc dl = MI.getDebugLoc();
1421 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1422
1423 unsigned Opc;
1424 bool ClearCarry = false;
1425 const TargetRegisterClass * RC;
1426 switch (MI.getOpcode()) {
1427 default: llvm_unreachable("Invalid shift opcode!");
1428 case MSP430::Shl8:
1429 Opc = MSP430::ADD8rr;
1430 RC = &MSP430::GR8RegClass;
1431 break;
1432 case MSP430::Shl16:
1433 Opc = MSP430::ADD16rr;
1434 RC = &MSP430::GR16RegClass;
1435 break;
1436 case MSP430::Sra8:
1437 Opc = MSP430::RRA8r;
1438 RC = &MSP430::GR8RegClass;
1439 break;
1440 case MSP430::Sra16:
1441 Opc = MSP430::RRA16r;
1442 RC = &MSP430::GR16RegClass;
1443 break;
1444 case MSP430::Srl8:
1445 ClearCarry = true;
1446 Opc = MSP430::RRC8r;
1447 RC = &MSP430::GR8RegClass;
1448 break;
1449 case MSP430::Srl16:
1450 ClearCarry = true;
1451 Opc = MSP430::RRC16r;
1452 RC = &MSP430::GR16RegClass;
1453 break;
1454 case MSP430::Rrcl8:
1455 case MSP430::Rrcl16: {
1456 BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1457 .addReg(MSP430::SR).addImm(1);
1458 Register SrcReg = MI.getOperand(1).getReg();
1459 Register DstReg = MI.getOperand(0).getReg();
1460 unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
1461 ? MSP430::RRC16r : MSP430::RRC8r;
1462 BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
1463 .addReg(SrcReg);
1464 MI.eraseFromParent(); // The pseudo instruction is gone now.
1465 return BB;
1466 }
1467 }
1468
1469 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1471
1472 // Create loop block
1473 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1474 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1475
1476 F->insert(I, LoopBB);
1477 F->insert(I, RemBB);
1478
1479 // Update machine-CFG edges by transferring all successors of the current
1480 // block to the block containing instructions after shift.
1481 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1482 BB->end());
1484
1485 // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1486 BB->addSuccessor(LoopBB);
1487 BB->addSuccessor(RemBB);
1488 LoopBB->addSuccessor(RemBB);
1489 LoopBB->addSuccessor(LoopBB);
1490
1491 Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1492 Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1493 Register ShiftReg = RI.createVirtualRegister(RC);
1494 Register ShiftReg2 = RI.createVirtualRegister(RC);
1495 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1496 Register SrcReg = MI.getOperand(1).getReg();
1497 Register DstReg = MI.getOperand(0).getReg();
1498
1499 // BB:
1500 // cmp 0, N
1501 // je RemBB
1502 BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1503 .addReg(ShiftAmtSrcReg).addImm(0);
1504 BuildMI(BB, dl, TII.get(MSP430::JCC))
1505 .addMBB(RemBB)
1507
1508 // LoopBB:
1509 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1510 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1511 // ShiftReg2 = shift ShiftReg
1512 // ShiftAmt2 = ShiftAmt - 1;
1513 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1514 .addReg(SrcReg).addMBB(BB)
1515 .addReg(ShiftReg2).addMBB(LoopBB);
1516 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1517 .addReg(ShiftAmtSrcReg).addMBB(BB)
1518 .addReg(ShiftAmtReg2).addMBB(LoopBB);
1519 if (ClearCarry)
1520 BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1521 .addReg(MSP430::SR).addImm(1);
1522 if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
1523 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1524 .addReg(ShiftReg)
1525 .addReg(ShiftReg);
1526 else
1527 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1528 .addReg(ShiftReg);
1529 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1530 .addReg(ShiftAmtReg).addImm(1);
1531 BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1532 .addMBB(LoopBB)
1534
1535 // RemBB:
1536 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1537 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1538 .addReg(SrcReg).addMBB(BB)
1539 .addReg(ShiftReg2).addMBB(LoopBB);
1540
1541 MI.eraseFromParent(); // The pseudo instruction is gone now.
1542 return RemBB;
1543}
1544
1547 MachineBasicBlock *BB) const {
1548 unsigned Opc = MI.getOpcode();
1549
1550 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1551 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1552 Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
1553 Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
1554 return EmitShiftInstr(MI, BB);
1555
1557 DebugLoc dl = MI.getDebugLoc();
1558
1559 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1560 "Unexpected instr type to insert");
1561
1562 // To "insert" a SELECT instruction, we actually have to insert the diamond
1563 // control-flow pattern. The incoming instruction knows the destination vreg
1564 // to set, the condition code register to branch on, the true/false values to
1565 // select between, and a branch opcode to use.
1566 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1568
1569 // thisMBB:
1570 // ...
1571 // TrueVal = ...
1572 // cmpTY ccX, r1, r2
1573 // jCC copy1MBB
1574 // fallthrough --> copy0MBB
1575 MachineBasicBlock *thisMBB = BB;
1576 MachineFunction *F = BB->getParent();
1577 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1578 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1579 F->insert(I, copy0MBB);
1580 F->insert(I, copy1MBB);
1581 // Update machine-CFG edges by transferring all successors of the current
1582 // block to the new block which will contain the Phi node for the select.
1583 copy1MBB->splice(copy1MBB->begin(), BB,
1584 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1585 copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1586 // Next, add the true and fallthrough blocks as its successors.
1587 BB->addSuccessor(copy0MBB);
1588 BB->addSuccessor(copy1MBB);
1589
1590 BuildMI(BB, dl, TII.get(MSP430::JCC))
1591 .addMBB(copy1MBB)
1592 .addImm(MI.getOperand(3).getImm());
1593
1594 // copy0MBB:
1595 // %FalseValue = ...
1596 // # fallthrough to copy1MBB
1597 BB = copy0MBB;
1598
1599 // Update machine-CFG edges
1600 BB->addSuccessor(copy1MBB);
1601
1602 // copy1MBB:
1603 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1604 // ...
1605 BB = copy1MBB;
1606 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
1607 .addReg(MI.getOperand(2).getReg())
1608 .addMBB(copy0MBB)
1609 .addReg(MI.getOperand(1).getReg())
1610 .addMBB(thisMBB);
1611
1612 MI.eraseFromParent(); // The pseudo instruction is gone now.
1613 return BB;
1614}
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
static void AnalyzeReturnValues(CCState &State, SmallVectorImpl< CCValAssign > &RVLocs, const SmallVectorImpl< ArgT > &Args)
static void AnalyzeVarArgs(CCState &State, const SmallVectorImpl< ISD::OutputArg > &Outs)
static void AnalyzeRetResult(CCState &State, const SmallVectorImpl< ISD::InputArg > &Ins)
static cl::opt< bool > MSP430NoLegalImmediate("msp430-no-legal-immediate", cl::Hidden, cl::desc("Enable non legal immediates (for testing purposes only)"), cl::init(false))
static void ParseFunctionArgs(const SmallVectorImpl< ArgT > &Args, SmallVectorImpl< unsigned > &Out)
For each argument in a function store the number of pieces it is composed of.
static void AnalyzeArguments(CCState &State, SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ArgT > &Args)
Analyze incoming and outgoing function arguments.
static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC, ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG)
unsigned const TargetRegisterInfo * TRI
const char LLVMTargetMachineRef TM
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
The address of a basic block.
Definition: Constants.h:888
CCState - This class holds information needed while lowering arguments and return values.
void HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, int MinSize, Align MinAlign, ISD::ArgFlagsTy ArgFlags)
Allocate space on the stack large enough to pass an argument by value.
void AnalyzeCallResult(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeCallResult - Analyze the return values of a call, incorporating info about the passed values i...
CallingConv::ID getCallingConv() const
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeReturn - Analyze the returned values of a return, incorporating info about the result values i...
void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
bool isVarArg() const
void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
void addLoc(const CCValAssign &V)
CCValAssign - Represent assignment of one arg/retval to a location.
bool isRegLoc() const
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, unsigned RegNo, MVT LocVT, LocInfo HTP, bool IsCustom=false)
bool isMemLoc() const
int64_t getLocMemOffset() const
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
bool hasStructRetAttr() const
Determine if the function returns a structure through first or second pointer argument.
Definition: Function.h:661
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
This class is used to represent ISD::LOAD nodes.
MSP430MachineFunctionInfo - This class is derived from MachineFunction and contains private MSP430 ta...
const MSP430RegisterInfo * getRegisterInfo() const override
bool hasHWMultF5() const
bool hasHWMult32() const
bool hasHWMult16() const
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const
MSP430TargetLowering(const TargetMachine &TM, const MSP430Subtarget &STI)
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
LowerOperation - Provide custom lowering hooks for some operations.
MachineBasicBlock * EmitShiftInstr(MachineInstr &MI, MachineBasicBlock *BB) const
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
isTruncateFree - Return true if it's free to truncate a value of type Ty1 to type Ty2.
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
SDValue LowerShifts(SDValue Op, SelectionDAG &DAG) const
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const
const char * getTargetNodeName(unsigned Opcode) const override
getTargetNodeName - This method returns the name of a target specific DAG node.
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const
bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const override
Return true if creating a shift of the type by the given amount is not profitable.
bool isZExtFree(Type *Ty1, Type *Ty2) const override
isZExtFree - Return true if any actual instruction that defines a value of type Ty1 implicit zero-ext...
TargetLowering::ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
bool isLegalICmpImmediate(int64_t) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
Machine Value Type.
SimpleValueType SimpleTy
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
void setFrameAddressIsTaken(bool T)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:225
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:722
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
Definition: SelectionDAG.h:732
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), AAResults *AA=nullptr)
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:472
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
SDValue getRegister(unsigned Reg, EVT VT)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N)
Definition: SelectionDAG.h:773
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
Definition: SelectionDAG.h:768
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:469
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT)
Definition: SelectionDAG.h:799
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVMContext * getContext() const
Definition: SelectionDAG.h:485
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
Definition: SelectionDAG.h:554
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:137
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC)
Override the default CondCode to be used to test the result of the comparison libcall against zero.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM Value Representation.
Definition: Value.h:74
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:187
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
CondCodes
Definition: MSP430.h:22
@ COND_LO
Definition: MSP430.h:26
@ COND_L
Definition: MSP430.h:28
@ COND_INVALID
Definition: MSP430.h:32
@ COND_E
Definition: MSP430.h:23
@ COND_GE
Definition: MSP430.h:27
@ COND_NE
Definition: MSP430.h:24
@ COND_HS
Definition: MSP430.h:25
@ MSP430_BUILTIN
Used for special MSP430 rtlib functions which have an "optimized" convention using additional registe...
Definition: CallingConv.h:210
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ MSP430_INTR
Used for MSP430 interrupt routines.
Definition: CallingConv.h:117
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:750
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
Definition: ISDOpcodes.h:1126
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
Definition: ISDOpcodes.h:1122
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition: ISDOpcodes.h:250
@ BSWAP
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:714
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
Definition: ISDOpcodes.h:1155
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:239
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:783
@ RETURNADDR
Definition: ISDOpcodes.h:95
@ GlobalAddress
Definition: ISDOpcodes.h:78
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition: ISDOpcodes.h:255
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:774
@ BR_CC
BR_CC - Conditional branch.
Definition: ISDOpcodes.h:1077
@ BR_JT
BR_JT - Jumptable branch.
Definition: ISDOpcodes.h:1056
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:727
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
Definition: ISDOpcodes.h:1151
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition: ISDOpcodes.h:651
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:705
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:780
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition: ISDOpcodes.h:742
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
Definition: ISDOpcodes.h:1041
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition: ISDOpcodes.h:798
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition: ISDOpcodes.h:94
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:680
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition: ISDOpcodes.h:52
@ ExternalSymbol
Definition: ISDOpcodes.h:83
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:786
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
Definition: ISDOpcodes.h:1146
@ BRCOND
BRCOND - Conditional branch.
Definition: ISDOpcodes.h:1070
@ BlockAddress
Definition: ISDOpcodes.h:84
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition: ISDOpcodes.h:763
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition: ISDOpcodes.h:61
@ AssertZext
Definition: ISDOpcodes.h:62
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1472
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1523
@ CALL
CALL - These operations represent an abstract call instruction, which includes a bunch of information...
@ RRA
Y = R{R,L}A X, rotate right (left) arithmetically.
@ BR_CC
MSP430 conditional branches.
@ DADD
DADD - Decimal addition with carry TODO Nothing generates a node of this type yet.
@ SETCC
SetCC - Operand 0 is condition code, and operand 1 is the flag operand produced by a CMP instruction.
@ RRCL
Rotate right via carry, carry gets cleared beforehand by clrc.
@ RETI_GLUE
Same as RET_GLUE, but used for returning from ISRs.
@ SELECT_CC
SELECT_CC - Operand 0 and operand 1 are selection variable, operand 3 is condition code and operand 4...
@ CMP
CMP - Compare instruction.
@ RRC
Y = RRC X, rotate right via carry.
@ Wrapper
Wrapper - A wrapper node for TargetConstantPool, TargetExternalSymbol, and TargetGlobalAddress.
@ RET_GLUE
Return with a glue operand. Operand 0 is the chain operand.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:456
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
DWARFExpression::Operation Op
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:34
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition: ValueTypes.h:380
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:306
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition: ValueTypes.h:366
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:151
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals