LLVM 19.0.0git
SSAUpdaterBulk.cpp
Go to the documentation of this file.
1//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SSAUpdaterBulk class.
10//
11//===----------------------------------------------------------------------===//
12
15#include "llvm/IR/BasicBlock.h"
16#include "llvm/IR/Dominators.h"
17#include "llvm/IR/IRBuilder.h"
19#include "llvm/IR/Use.h"
20#include "llvm/IR/Value.h"
21
22using namespace llvm;
23
24#define DEBUG_TYPE "ssaupdaterbulk"
25
26/// Helper function for finding a block which should have a value for the given
27/// user. For PHI-nodes this block is the corresponding predecessor, for other
28/// instructions it's their parent block.
30 auto *User = cast<Instruction>(U->getUser());
31
32 if (auto *UserPN = dyn_cast<PHINode>(User))
33 return UserPN->getIncomingBlock(*U);
34 else
35 return User->getParent();
36}
37
38/// Add a new variable to the SSA rewriter. This needs to be called before
39/// AddAvailableValue or AddUse calls.
41 unsigned Var = Rewrites.size();
42 LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = "
43 << *Ty << ", Name = " << Name << "\n");
44 RewriteInfo RI(Name, Ty);
45 Rewrites.push_back(RI);
46 return Var;
47}
48
49/// Indicate that a rewritten value is available in the specified block with the
50/// specified value.
52 assert(Var < Rewrites.size() && "Variable not found!");
53 LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var
54 << ": added new available value " << *V << " in "
55 << BB->getName() << "\n");
56 Rewrites[Var].Defines[BB] = V;
57}
58
59/// Record a use of the symbolic value. This use will be updated with a
60/// rewritten value when RewriteAllUses is called.
61void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
62 assert(Var < Rewrites.size() && "Variable not found!");
63 LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get()
64 << " in " << getUserBB(U)->getName() << "\n");
65 Rewrites[Var].Uses.push_back(U);
66}
67
68// Compute value at the given block BB. We either should already know it, or we
69// should be able to recursively reach it going up dominator tree.
70Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
71 DominatorTree *DT) {
72 if (!R.Defines.count(BB)) {
73 if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) {
74 BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
75 Value *V = computeValueAt(IDom, R, DT);
76 R.Defines[BB] = V;
77 } else
78 R.Defines[BB] = UndefValue::get(R.Ty);
79 }
80 return R.Defines[BB];
81}
82
83/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
84/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
85static void
87 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
89 PredIteratorCache &PredCache) {
90 // To determine liveness, we must iterate through the predecessors of blocks
91 // where the def is live. Blocks are added to the worklist if we need to
92 // check their predecessors. Start with all the using blocks.
93 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
94 UsingBlocks.end());
95
96 // Now that we have a set of blocks where the phi is live-in, recursively add
97 // their predecessors until we find the full region the value is live.
98 while (!LiveInBlockWorklist.empty()) {
99 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
100
101 // The block really is live in here, insert it into the set. If already in
102 // the set, then it has already been processed.
103 if (!LiveInBlocks.insert(BB).second)
104 continue;
105
106 // Since the value is live into BB, it is either defined in a predecessor or
107 // live into it to. Add the preds to the worklist unless they are a
108 // defining block.
109 for (BasicBlock *P : PredCache.get(BB)) {
110 // The value is not live into a predecessor if it defines the value.
111 if (DefBlocks.count(P))
112 continue;
113
114 // Otherwise it is, add to the worklist.
115 LiveInBlockWorklist.push_back(P);
116 }
117 }
118}
119
120/// Perform all the necessary updates, including new PHI-nodes insertion and the
121/// requested uses update.
123 SmallVectorImpl<PHINode *> *InsertedPHIs) {
124 for (auto &R : Rewrites) {
125 // Compute locations for new phi-nodes.
126 // For that we need to initialize DefBlocks from definitions in R.Defines,
127 // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
128 // this set for computing iterated dominance frontier (IDF).
129 // The IDF blocks are the blocks where we need to insert new phi-nodes.
130 ForwardIDFCalculator IDF(*DT);
131 LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size()
132 << " use(s)\n");
133
135 for (auto &Def : R.Defines)
136 DefBlocks.insert(Def.first);
137 IDF.setDefiningBlocks(DefBlocks);
138
140 for (Use *U : R.Uses)
141 UsingBlocks.insert(getUserBB(U));
142
145 ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache);
146 IDF.resetLiveInBlocks();
147 IDF.setLiveInBlocks(LiveInBlocks);
148 IDF.calculate(IDFBlocks);
149
150 // We've computed IDF, now insert new phi-nodes there.
151 SmallVector<PHINode *, 4> InsertedPHIsForVar;
152 for (auto *FrontierBB : IDFBlocks) {
153 IRBuilder<> B(FrontierBB, FrontierBB->begin());
154 PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
155 R.Defines[FrontierBB] = PN;
156 InsertedPHIsForVar.push_back(PN);
157 if (InsertedPHIs)
158 InsertedPHIs->push_back(PN);
159 }
160
161 // Fill in arguments of the inserted PHIs.
162 for (auto *PN : InsertedPHIsForVar) {
163 BasicBlock *PBB = PN->getParent();
164 for (BasicBlock *Pred : PredCache.get(PBB))
165 PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
166 }
167
168 // Rewrite actual uses with the inserted definitions.
169 SmallPtrSet<Use *, 4> ProcessedUses;
170 for (Use *U : R.Uses) {
171 if (!ProcessedUses.insert(U).second)
172 continue;
173 Value *V = computeValueAt(getUserBB(U), R, DT);
174 Value *OldVal = U->get();
175 assert(OldVal && "Invalid use!");
176 // Notify that users of the existing value that it is being replaced.
177 if (OldVal != V && OldVal->hasValueHandle())
179 LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V
180 << "\n");
181 U->set(V);
182 }
183 }
184}
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::string Name
#define P(N)
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static BasicBlock * getUserBB(Use *U)
Helper function for finding a block which should have a value for the given user.
static void ComputeLiveInBlocks(const SmallPtrSetImpl< BasicBlock * > &UsingBlocks, const SmallPtrSetImpl< BasicBlock * > &DefBlocks, SmallPtrSetImpl< BasicBlock * > &LiveInBlocks, PredIteratorCache &PredCache)
Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
This defines the Use class.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:206
DomTreeNodeBase * getIDom() const
NodeT * getBlock() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
void resetLiveInBlocks()
Reset the live-in block set to be empty, and tell the IDF calculator to not use liveness anymore.
void calculate(SmallVectorImpl< NodeTy * > &IDFBlocks)
Calculate iterated dominance frontiers.
void setLiveInBlocks(const SmallPtrSetImpl< NodeTy * > &Blocks)
Give the IDF calculator the set of blocks in which the value is live on entry to the block.
void setDefiningBlocks(const SmallPtrSetImpl< NodeTy * > &Blocks)
Give the IDF calculator the set of blocks in which the value is defined.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2666
PredIteratorCache - This class is an extremely trivial cache for predecessor iterator queries.
ArrayRef< BasicBlock * > get(BasicBlock *BB)
unsigned AddVariable(StringRef Name, Type *Ty)
Add a new variable to the SSA rewriter.
void AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
void RewriteAllUses(DominatorTree *DT, SmallVectorImpl< PHINode * > *InsertedPHIs=nullptr)
Perform all the necessary updates, including new PHI-nodes insertion and the requested uses update.
void AddUse(unsigned Var, Use *U)
Record a use of the symbolic value.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
iterator end() const
Definition: SmallPtrSet.h:385
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
iterator begin() const
Definition: SmallPtrSet.h:380
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1808
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
static void ValueIsRAUWd(Value *Old, Value *New)
Definition: Value.cpp:1254
LLVM Value Representation.
Definition: Value.h:74
bool hasValueHandle() const
Return true if there is a value handle associated with this value.
Definition: Value.h:554
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163