LLVM 19.0.0git
ScalarEvolutionExpressions.h
Go to the documentation of this file.
1//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the classes used to represent and build scalar expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
14#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15
16#include "llvm/ADT/DenseMap.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/ValueHandle.h"
24#include <cassert>
25#include <cstddef>
26
27namespace llvm {
28
29class APInt;
30class Constant;
31class ConstantInt;
32class ConstantRange;
33class Loop;
34class Type;
35class Value;
36
37enum SCEVTypes : unsigned short {
38 // These should be ordered in terms of increasing complexity to make the
39 // folders simpler.
57};
58
59/// This class represents a constant integer value.
60class SCEVConstant : public SCEV {
61 friend class ScalarEvolution;
62
63 ConstantInt *V;
64
66 : SCEV(ID, scConstant, 1), V(v) {}
67
68public:
69 ConstantInt *getValue() const { return V; }
70 const APInt &getAPInt() const { return getValue()->getValue(); }
71
72 Type *getType() const { return V->getType(); }
73
74 /// Methods for support type inquiry through isa, cast, and dyn_cast:
75 static bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; }
76};
77
78/// This class represents the value of vscale, as used when defining the length
79/// of a scalable vector or returned by the llvm.vscale() intrinsic.
80class SCEVVScale : public SCEV {
81 friend class ScalarEvolution;
82
84 : SCEV(ID, scVScale, 0), Ty(ty) {}
85
86 Type *Ty;
87
88public:
89 Type *getType() const { return Ty; }
90
91 /// Methods for support type inquiry through isa, cast, and dyn_cast:
92 static bool classof(const SCEV *S) { return S->getSCEVType() == scVScale; }
93};
94
95inline unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) {
96 APInt Size(16, 1);
97 for (const auto *Arg : Args)
98 Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize()));
99 return (unsigned short)Size.getZExtValue();
100}
101
102/// This is the base class for unary cast operator classes.
103class SCEVCastExpr : public SCEV {
104protected:
105 const SCEV *Op;
107
108 SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op,
109 Type *ty);
110
111public:
112 const SCEV *getOperand() const { return Op; }
113 const SCEV *getOperand(unsigned i) const {
114 assert(i == 0 && "Operand index out of range!");
115 return Op;
116 }
118 size_t getNumOperands() const { return 1; }
119 Type *getType() const { return Ty; }
120
121 /// Methods for support type inquiry through isa, cast, and dyn_cast:
122 static bool classof(const SCEV *S) {
123 return S->getSCEVType() == scPtrToInt || S->getSCEVType() == scTruncate ||
125 }
126};
127
128/// This class represents a cast from a pointer to a pointer-sized integer
129/// value.
131 friend class ScalarEvolution;
132
133 SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, Type *ITy);
134
135public:
136 /// Methods for support type inquiry through isa, cast, and dyn_cast:
137 static bool classof(const SCEV *S) { return S->getSCEVType() == scPtrToInt; }
138};
139
140/// This is the base class for unary integral cast operator classes.
142protected:
144 const SCEV *op, Type *ty);
145
146public:
147 /// Methods for support type inquiry through isa, cast, and dyn_cast:
148 static bool classof(const SCEV *S) {
149 return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend ||
151 }
152};
153
154/// This class represents a truncation of an integer value to a
155/// smaller integer value.
157 friend class ScalarEvolution;
158
160
161public:
162 /// Methods for support type inquiry through isa, cast, and dyn_cast:
163 static bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; }
164};
165
166/// This class represents a zero extension of a small integer value
167/// to a larger integer value.
169 friend class ScalarEvolution;
170
172
173public:
174 /// Methods for support type inquiry through isa, cast, and dyn_cast:
175 static bool classof(const SCEV *S) {
176 return S->getSCEVType() == scZeroExtend;
177 }
178};
179
180/// This class represents a sign extension of a small integer value
181/// to a larger integer value.
183 friend class ScalarEvolution;
184
186
187public:
188 /// Methods for support type inquiry through isa, cast, and dyn_cast:
189 static bool classof(const SCEV *S) {
190 return S->getSCEVType() == scSignExtend;
191 }
192};
193
194/// This node is a base class providing common functionality for
195/// n'ary operators.
196class SCEVNAryExpr : public SCEV {
197protected:
198 // Since SCEVs are immutable, ScalarEvolution allocates operand
199 // arrays with its SCEVAllocator, so this class just needs a simple
200 // pointer rather than a more elaborate vector-like data structure.
201 // This also avoids the need for a non-trivial destructor.
202 const SCEV *const *Operands;
204
206 const SCEV *const *O, size_t N)
208 NumOperands(N) {}
209
210public:
211 size_t getNumOperands() const { return NumOperands; }
212
213 const SCEV *getOperand(unsigned i) const {
214 assert(i < NumOperands && "Operand index out of range!");
215 return Operands[i];
216 }
217
220 }
221
223 return (NoWrapFlags)(SubclassData & Mask);
224 }
225
226 bool hasNoUnsignedWrap() const {
228 }
229
230 bool hasNoSignedWrap() const {
232 }
233
234 bool hasNoSelfWrap() const { return getNoWrapFlags(FlagNW) != FlagAnyWrap; }
235
236 /// Methods for support type inquiry through isa, cast, and dyn_cast:
237 static bool classof(const SCEV *S) {
238 return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
239 S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
240 S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr ||
243 }
244};
245
246/// This node is the base class for n'ary commutative operators.
248protected:
250 const SCEV *const *O, size_t N)
251 : SCEVNAryExpr(ID, T, O, N) {}
252
253public:
254 /// Methods for support type inquiry through isa, cast, and dyn_cast:
255 static bool classof(const SCEV *S) {
256 return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
257 S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
258 S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr;
259 }
260
261 /// Set flags for a non-recurrence without clearing previously set flags.
262 void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; }
263};
264
265/// This node represents an addition of some number of SCEVs.
267 friend class ScalarEvolution;
268
269 Type *Ty;
270
271 SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
273 auto *FirstPointerTypedOp = find_if(operands(), [](const SCEV *Op) {
274 return Op->getType()->isPointerTy();
275 });
276 if (FirstPointerTypedOp != operands().end())
277 Ty = (*FirstPointerTypedOp)->getType();
278 else
279 Ty = getOperand(0)->getType();
280 }
281
282public:
283 Type *getType() const { return Ty; }
284
285 /// Methods for support type inquiry through isa, cast, and dyn_cast:
286 static bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; }
287};
288
289/// This node represents multiplication of some number of SCEVs.
291 friend class ScalarEvolution;
292
293 SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
295
296public:
297 Type *getType() const { return getOperand(0)->getType(); }
298
299 /// Methods for support type inquiry through isa, cast, and dyn_cast:
300 static bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; }
301};
302
303/// This class represents a binary unsigned division operation.
304class SCEVUDivExpr : public SCEV {
305 friend class ScalarEvolution;
306
307 std::array<const SCEV *, 2> Operands;
308
309 SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
310 : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})) {
311 Operands[0] = lhs;
312 Operands[1] = rhs;
313 }
314
315public:
316 const SCEV *getLHS() const { return Operands[0]; }
317 const SCEV *getRHS() const { return Operands[1]; }
318 size_t getNumOperands() const { return 2; }
319 const SCEV *getOperand(unsigned i) const {
320 assert((i == 0 || i == 1) && "Operand index out of range!");
321 return i == 0 ? getLHS() : getRHS();
322 }
323
325
326 Type *getType() const {
327 // In most cases the types of LHS and RHS will be the same, but in some
328 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
329 // depend on the type for correctness, but handling types carefully can
330 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
331 // a pointer type than the RHS, so use the RHS' type here.
332 return getRHS()->getType();
333 }
334
335 /// Methods for support type inquiry through isa, cast, and dyn_cast:
336 static bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; }
337};
338
339/// This node represents a polynomial recurrence on the trip count
340/// of the specified loop. This is the primary focus of the
341/// ScalarEvolution framework; all the other SCEV subclasses are
342/// mostly just supporting infrastructure to allow SCEVAddRecExpr
343/// expressions to be created and analyzed.
344///
345/// All operands of an AddRec are required to be loop invariant.
346///
348 friend class ScalarEvolution;
349
350 const Loop *L;
351
352 SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N,
353 const Loop *l)
354 : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
355
356public:
357 Type *getType() const { return getStart()->getType(); }
358 const SCEV *getStart() const { return Operands[0]; }
359 const Loop *getLoop() const { return L; }
360
361 /// Constructs and returns the recurrence indicating how much this
362 /// expression steps by. If this is a polynomial of degree N, it
363 /// returns a chrec of degree N-1. We cannot determine whether
364 /// the step recurrence has self-wraparound.
366 if (isAffine())
367 return getOperand(1);
368 return SE.getAddRecExpr(
371 }
372
373 /// Return true if this represents an expression A + B*x where A
374 /// and B are loop invariant values.
375 bool isAffine() const {
376 // We know that the start value is invariant. This expression is thus
377 // affine iff the step is also invariant.
378 return getNumOperands() == 2;
379 }
380
381 /// Return true if this represents an expression A + B*x + C*x^2
382 /// where A, B and C are loop invariant values. This corresponds
383 /// to an addrec of the form {L,+,M,+,N}
384 bool isQuadratic() const { return getNumOperands() == 3; }
385
386 /// Set flags for a recurrence without clearing any previously set flags.
387 /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
388 /// to make it easier to propagate flags.
390 if (Flags & (FlagNUW | FlagNSW))
391 Flags = ScalarEvolution::setFlags(Flags, FlagNW);
392 SubclassData |= Flags;
393 }
394
395 /// Return the value of this chain of recurrences at the specified
396 /// iteration number.
397 const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
398
399 /// Return the value of this chain of recurrences at the specified iteration
400 /// number. Takes an explicit list of operands to represent an AddRec.
402 const SCEV *It, ScalarEvolution &SE);
403
404 /// Return the number of iterations of this loop that produce
405 /// values in the specified constant range. Another way of
406 /// looking at this is that it returns the first iteration number
407 /// where the value is not in the condition, thus computing the
408 /// exit count. If the iteration count can't be computed, an
409 /// instance of SCEVCouldNotCompute is returned.
410 const SCEV *getNumIterationsInRange(const ConstantRange &Range,
411 ScalarEvolution &SE) const;
412
413 /// Return an expression representing the value of this expression
414 /// one iteration of the loop ahead.
416
417 /// Methods for support type inquiry through isa, cast, and dyn_cast:
418 static bool classof(const SCEV *S) {
419 return S->getSCEVType() == scAddRecExpr;
420 }
421};
422
423/// This node is the base class min/max selections.
425 friend class ScalarEvolution;
426
427 static bool isMinMaxType(enum SCEVTypes T) {
428 return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr ||
429 T == scUMinExpr;
430 }
431
432protected:
433 /// Note: Constructing subclasses via this constructor is allowed
435 const SCEV *const *O, size_t N)
436 : SCEVCommutativeExpr(ID, T, O, N) {
437 assert(isMinMaxType(T));
438 // Min and max never overflow
440 }
441
442public:
443 Type *getType() const { return getOperand(0)->getType(); }
444
445 static bool classof(const SCEV *S) { return isMinMaxType(S->getSCEVType()); }
446
447 static enum SCEVTypes negate(enum SCEVTypes T) {
448 switch (T) {
449 case scSMaxExpr:
450 return scSMinExpr;
451 case scSMinExpr:
452 return scSMaxExpr;
453 case scUMaxExpr:
454 return scUMinExpr;
455 case scUMinExpr:
456 return scUMaxExpr;
457 default:
458 llvm_unreachable("Not a min or max SCEV type!");
459 }
460 }
461};
462
463/// This class represents a signed maximum selection.
465 friend class ScalarEvolution;
466
467 SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
468 : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {}
469
470public:
471 /// Methods for support type inquiry through isa, cast, and dyn_cast:
472 static bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; }
473};
474
475/// This class represents an unsigned maximum selection.
477 friend class ScalarEvolution;
478
479 SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
480 : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {}
481
482public:
483 /// Methods for support type inquiry through isa, cast, and dyn_cast:
484 static bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; }
485};
486
487/// This class represents a signed minimum selection.
489 friend class ScalarEvolution;
490
491 SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
492 : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {}
493
494public:
495 /// Methods for support type inquiry through isa, cast, and dyn_cast:
496 static bool classof(const SCEV *S) { return S->getSCEVType() == scSMinExpr; }
497};
498
499/// This class represents an unsigned minimum selection.
501 friend class ScalarEvolution;
502
503 SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
504 : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {}
505
506public:
507 /// Methods for support type inquiry through isa, cast, and dyn_cast:
508 static bool classof(const SCEV *S) { return S->getSCEVType() == scUMinExpr; }
509};
510
511/// This node is the base class for sequential/in-order min/max selections.
512/// Note that their fundamental difference from SCEVMinMaxExpr's is that they
513/// are early-returning upon reaching saturation point.
514/// I.e. given `0 umin_seq poison`, the result will be `0`,
515/// while the result of `0 umin poison` is `poison`.
517 friend class ScalarEvolution;
518
519 static bool isSequentialMinMaxType(enum SCEVTypes T) {
520 return T == scSequentialUMinExpr;
521 }
522
523 /// Set flags for a non-recurrence without clearing previously set flags.
524 void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; }
525
526protected:
527 /// Note: Constructing subclasses via this constructor is allowed
529 const SCEV *const *O, size_t N)
530 : SCEVNAryExpr(ID, T, O, N) {
531 assert(isSequentialMinMaxType(T));
532 // Min and max never overflow
533 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
534 }
535
536public:
537 Type *getType() const { return getOperand(0)->getType(); }
538
540 assert(isSequentialMinMaxType(Ty));
541 switch (Ty) {
543 return scUMinExpr;
544 default:
545 llvm_unreachable("Not a sequential min/max type.");
546 }
547 }
548
551 }
552
553 static bool classof(const SCEV *S) {
554 return isSequentialMinMaxType(S->getSCEVType());
555 }
556};
557
558/// This class represents a sequential/in-order unsigned minimum selection.
560 friend class ScalarEvolution;
561
562 SCEVSequentialUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O,
563 size_t N)
565
566public:
567 /// Methods for support type inquiry through isa, cast, and dyn_cast:
568 static bool classof(const SCEV *S) {
569 return S->getSCEVType() == scSequentialUMinExpr;
570 }
571};
572
573/// This means that we are dealing with an entirely unknown SCEV
574/// value, and only represent it as its LLVM Value. This is the
575/// "bottom" value for the analysis.
576class SCEVUnknown final : public SCEV, private CallbackVH {
577 friend class ScalarEvolution;
578
579 /// The parent ScalarEvolution value. This is used to update the
580 /// parent's maps when the value associated with a SCEVUnknown is
581 /// deleted or RAUW'd.
582 ScalarEvolution *SE;
583
584 /// The next pointer in the linked list of all SCEVUnknown
585 /// instances owned by a ScalarEvolution.
586 SCEVUnknown *Next;
587
589 SCEVUnknown *next)
590 : SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {}
591
592 // Implement CallbackVH.
593 void deleted() override;
594 void allUsesReplacedWith(Value *New) override;
595
596public:
597 Value *getValue() const { return getValPtr(); }
598
599 Type *getType() const { return getValPtr()->getType(); }
600
601 /// Methods for support type inquiry through isa, cast, and dyn_cast:
602 static bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; }
603};
604
605/// This class defines a simple visitor class that may be used for
606/// various SCEV analysis purposes.
607template <typename SC, typename RetVal = void> struct SCEVVisitor {
608 RetVal visit(const SCEV *S) {
609 switch (S->getSCEVType()) {
610 case scConstant:
611 return ((SC *)this)->visitConstant((const SCEVConstant *)S);
612 case scVScale:
613 return ((SC *)this)->visitVScale((const SCEVVScale *)S);
614 case scPtrToInt:
615 return ((SC *)this)->visitPtrToIntExpr((const SCEVPtrToIntExpr *)S);
616 case scTruncate:
617 return ((SC *)this)->visitTruncateExpr((const SCEVTruncateExpr *)S);
618 case scZeroExtend:
619 return ((SC *)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr *)S);
620 case scSignExtend:
621 return ((SC *)this)->visitSignExtendExpr((const SCEVSignExtendExpr *)S);
622 case scAddExpr:
623 return ((SC *)this)->visitAddExpr((const SCEVAddExpr *)S);
624 case scMulExpr:
625 return ((SC *)this)->visitMulExpr((const SCEVMulExpr *)S);
626 case scUDivExpr:
627 return ((SC *)this)->visitUDivExpr((const SCEVUDivExpr *)S);
628 case scAddRecExpr:
629 return ((SC *)this)->visitAddRecExpr((const SCEVAddRecExpr *)S);
630 case scSMaxExpr:
631 return ((SC *)this)->visitSMaxExpr((const SCEVSMaxExpr *)S);
632 case scUMaxExpr:
633 return ((SC *)this)->visitUMaxExpr((const SCEVUMaxExpr *)S);
634 case scSMinExpr:
635 return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S);
636 case scUMinExpr:
637 return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S);
639 return ((SC *)this)
640 ->visitSequentialUMinExpr((const SCEVSequentialUMinExpr *)S);
641 case scUnknown:
642 return ((SC *)this)->visitUnknown((const SCEVUnknown *)S);
644 return ((SC *)this)->visitCouldNotCompute((const SCEVCouldNotCompute *)S);
645 }
646 llvm_unreachable("Unknown SCEV kind!");
647 }
648
650 llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
651 }
652};
653
654/// Visit all nodes in the expression tree using worklist traversal.
655///
656/// Visitor implements:
657/// // return true to follow this node.
658/// bool follow(const SCEV *S);
659/// // return true to terminate the search.
660/// bool isDone();
661template <typename SV> class SCEVTraversal {
662 SV &Visitor;
665
666 void push(const SCEV *S) {
667 if (Visited.insert(S).second && Visitor.follow(S))
668 Worklist.push_back(S);
669 }
670
671public:
672 SCEVTraversal(SV &V) : Visitor(V) {}
673
674 void visitAll(const SCEV *Root) {
675 push(Root);
676 while (!Worklist.empty() && !Visitor.isDone()) {
677 const SCEV *S = Worklist.pop_back_val();
678
679 switch (S->getSCEVType()) {
680 case scConstant:
681 case scVScale:
682 case scUnknown:
683 continue;
684 case scPtrToInt:
685 case scTruncate:
686 case scZeroExtend:
687 case scSignExtend:
688 case scAddExpr:
689 case scMulExpr:
690 case scUDivExpr:
691 case scSMaxExpr:
692 case scUMaxExpr:
693 case scSMinExpr:
694 case scUMinExpr:
696 case scAddRecExpr:
697 for (const auto *Op : S->operands()) {
698 push(Op);
699 if (Visitor.isDone())
700 break;
701 }
702 continue;
704 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
705 }
706 llvm_unreachable("Unknown SCEV kind!");
707 }
708 }
709};
710
711/// Use SCEVTraversal to visit all nodes in the given expression tree.
712template <typename SV> void visitAll(const SCEV *Root, SV &Visitor) {
713 SCEVTraversal<SV> T(Visitor);
714 T.visitAll(Root);
715}
716
717/// Return true if any node in \p Root satisfies the predicate \p Pred.
718template <typename PredTy>
719bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
720 struct FindClosure {
721 bool Found = false;
722 PredTy Pred;
723
724 FindClosure(PredTy Pred) : Pred(Pred) {}
725
726 bool follow(const SCEV *S) {
727 if (!Pred(S))
728 return true;
729
730 Found = true;
731 return false;
732 }
733
734 bool isDone() const { return Found; }
735 };
736
737 FindClosure FC(Pred);
738 visitAll(Root, FC);
739 return FC.Found;
740}
741
742/// This visitor recursively visits a SCEV expression and re-writes it.
743/// The result from each visit is cached, so it will return the same
744/// SCEV for the same input.
745template <typename SC>
746class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
747protected:
749 // Memoize the result of each visit so that we only compute once for
750 // the same input SCEV. This is to avoid redundant computations when
751 // a SCEV is referenced by multiple SCEVs. Without memoization, this
752 // visit algorithm would have exponential time complexity in the worst
753 // case, causing the compiler to hang on certain tests.
755
756public:
758
759 const SCEV *visit(const SCEV *S) {
760 auto It = RewriteResults.find(S);
761 if (It != RewriteResults.end())
762 return It->second;
763 auto *Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
764 auto Result = RewriteResults.try_emplace(S, Visited);
765 assert(Result.second && "Should insert a new entry");
766 return Result.first->second;
767 }
768
770
771 const SCEV *visitVScale(const SCEVVScale *VScale) { return VScale; }
772
774 const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
775 return Operand == Expr->getOperand()
776 ? Expr
777 : SE.getPtrToIntExpr(Operand, Expr->getType());
778 }
779
781 const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
782 return Operand == Expr->getOperand()
783 ? Expr
784 : SE.getTruncateExpr(Operand, Expr->getType());
785 }
786
788 const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
789 return Operand == Expr->getOperand()
790 ? Expr
791 : SE.getZeroExtendExpr(Operand, Expr->getType());
792 }
793
795 const SCEV *Operand = ((SC *)this)->visit(Expr->getOperand());
796 return Operand == Expr->getOperand()
797 ? Expr
798 : SE.getSignExtendExpr(Operand, Expr->getType());
799 }
800
801 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
803 bool Changed = false;
804 for (const auto *Op : Expr->operands()) {
805 Operands.push_back(((SC *)this)->visit(Op));
806 Changed |= Op != Operands.back();
807 }
808 return !Changed ? Expr : SE.getAddExpr(Operands);
809 }
810
811 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
813 bool Changed = false;
814 for (const auto *Op : Expr->operands()) {
815 Operands.push_back(((SC *)this)->visit(Op));
816 Changed |= Op != Operands.back();
817 }
818 return !Changed ? Expr : SE.getMulExpr(Operands);
819 }
820
821 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
822 auto *LHS = ((SC *)this)->visit(Expr->getLHS());
823 auto *RHS = ((SC *)this)->visit(Expr->getRHS());
824 bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
825 return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
826 }
827
828 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
830 bool Changed = false;
831 for (const auto *Op : Expr->operands()) {
832 Operands.push_back(((SC *)this)->visit(Op));
833 Changed |= Op != Operands.back();
834 }
835 return !Changed ? Expr
836 : SE.getAddRecExpr(Operands, Expr->getLoop(),
837 Expr->getNoWrapFlags());
838 }
839
840 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
842 bool Changed = false;
843 for (const auto *Op : Expr->operands()) {
844 Operands.push_back(((SC *)this)->visit(Op));
845 Changed |= Op != Operands.back();
846 }
847 return !Changed ? Expr : SE.getSMaxExpr(Operands);
848 }
849
850 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
852 bool Changed = false;
853 for (const auto *Op : Expr->operands()) {
854 Operands.push_back(((SC *)this)->visit(Op));
855 Changed |= Op != Operands.back();
856 }
857 return !Changed ? Expr : SE.getUMaxExpr(Operands);
858 }
859
860 const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
862 bool Changed = false;
863 for (const auto *Op : Expr->operands()) {
864 Operands.push_back(((SC *)this)->visit(Op));
865 Changed |= Op != Operands.back();
866 }
867 return !Changed ? Expr : SE.getSMinExpr(Operands);
868 }
869
870 const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
872 bool Changed = false;
873 for (const auto *Op : Expr->operands()) {
874 Operands.push_back(((SC *)this)->visit(Op));
875 Changed |= Op != Operands.back();
876 }
877 return !Changed ? Expr : SE.getUMinExpr(Operands);
878 }
879
882 bool Changed = false;
883 for (const auto *Op : Expr->operands()) {
884 Operands.push_back(((SC *)this)->visit(Op));
885 Changed |= Op != Operands.back();
886 }
887 return !Changed ? Expr : SE.getUMinExpr(Operands, /*Sequential=*/true);
888 }
889
890 const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; }
891
893 return Expr;
894 }
895};
896
899
900/// The SCEVParameterRewriter takes a scalar evolution expression and updates
901/// the SCEVUnknown components following the Map (Value -> SCEV).
902class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
903public:
904 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
905 ValueToSCEVMapTy &Map) {
907 return Rewriter.visit(Scev);
908 }
909
911 : SCEVRewriteVisitor(SE), Map(M) {}
912
913 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
914 auto I = Map.find(Expr->getValue());
915 if (I == Map.end())
916 return Expr;
917 return I->second;
918 }
919
920private:
921 ValueToSCEVMapTy &Map;
922};
923
925
926/// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
927/// the Map (Loop -> SCEV) to all AddRecExprs.
929 : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
930public:
932 : SCEVRewriteVisitor(SE), Map(M) {}
933
934 static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
937 return Rewriter.visit(Scev);
938 }
939
940 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
942 for (const SCEV *Op : Expr->operands())
943 Operands.push_back(visit(Op));
944
945 const Loop *L = Expr->getLoop();
946 if (0 == Map.count(L))
947 return SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
948
950 }
951
952private:
953 LoopToScevMapT &Map;
954};
955
956} // end namespace llvm
957
958#endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
RelocType Type
Definition: COFFYAML.cpp:391
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
uint64_t Size
#define op(i)
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
#define T
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
Virtual Register Rewriter
Definition: VirtRegMap.cpp:237
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:76
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Value handle with callbacks on RAUW and destruction.
Definition: ValueHandle.h:383
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:145
This class represents a range of values.
Definition: ConstantRange.h:47
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
iterator end()
Definition: DenseMap.h:84
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
Definition: FoldingSet.h:290
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
This node represents an addition of some number of SCEVs.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const
Return the value of this chain of recurrences at the specified iteration number.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
void setNoWrapFlags(NoWrapFlags Flags)
Set flags for a recurrence without clearing any previously set flags.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
bool isQuadratic() const
Return true if this represents an expression A + B*x + C*x^2 where A, B and C are loop invariant valu...
const SCEV * getNumIterationsInRange(const ConstantRange &Range, ScalarEvolution &SE) const
Return the number of iterations of this loop that produce values in the specified constant range.
const SCEVAddRecExpr * getPostIncExpr(ScalarEvolution &SE) const
Return an expression representing the value of this expression one iteration of the loop ahead.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This is the base class for unary cast operator classes.
const SCEV * getOperand(unsigned i) const
ArrayRef< const SCEV * > operands() const
const SCEV * getOperand() const
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This node is the base class for n'ary commutative operators.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
void setNoWrapFlags(NoWrapFlags Flags)
Set flags for a non-recurrence without clearing previously set flags.
SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N)
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This is the base class for unary integral cast operator classes.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies the Map (Loop -> SCEV) to ...
static const SCEV * rewrite(const SCEV *Scev, LoopToScevMapT &Map, ScalarEvolution &SE)
const SCEV * visitAddRecExpr(const SCEVAddRecExpr *Expr)
SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
This node is the base class min/max selections.
static enum SCEVTypes negate(enum SCEVTypes T)
SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N)
Note: Constructing subclasses via this constructor is allowed.
static bool classof(const SCEV *S)
This node represents multiplication of some number of SCEVs.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This node is a base class providing common functionality for n'ary operators.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N)
const SCEV * getOperand(unsigned i) const
const SCEV *const * Operands
ArrayRef< const SCEV * > operands() const
The SCEVParameterRewriter takes a scalar evolution expression and updates the SCEVUnknown components ...
const SCEV * visitUnknown(const SCEVUnknown *Expr)
static const SCEV * rewrite(const SCEV *Scev, ScalarEvolution &SE, ValueToSCEVMapTy &Map)
SCEVParameterRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
This class represents a cast from a pointer to a pointer-sized integer value.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This visitor recursively visits a SCEV expression and re-writes it.
const SCEV * visitSignExtendExpr(const SCEVSignExtendExpr *Expr)
const SCEV * visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr)
const SCEV * visit(const SCEV *S)
const SCEV * visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr)
const SCEV * visitUnknown(const SCEVUnknown *Expr)
const SCEV * visitSMinExpr(const SCEVSMinExpr *Expr)
SCEVRewriteVisitor(ScalarEvolution &SE)
const SCEV * visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr)
const SCEV * visitAddExpr(const SCEVAddExpr *Expr)
const SCEV * visitUMinExpr(const SCEVUMinExpr *Expr)
const SCEV * visitMulExpr(const SCEVMulExpr *Expr)
SmallDenseMap< const SCEV *, const SCEV * > RewriteResults
const SCEV * visitTruncateExpr(const SCEVTruncateExpr *Expr)
const SCEV * visitUMaxExpr(const SCEVUMaxExpr *Expr)
const SCEV * visitSMaxExpr(const SCEVSMaxExpr *Expr)
const SCEV * visitUDivExpr(const SCEVUDivExpr *Expr)
const SCEV * visitCouldNotCompute(const SCEVCouldNotCompute *Expr)
const SCEV * visitVScale(const SCEVVScale *VScale)
const SCEV * visitAddRecExpr(const SCEVAddRecExpr *Expr)
const SCEV * visitConstant(const SCEVConstant *Constant)
This class represents a signed maximum selection.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents a signed minimum selection.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This node is the base class for sequential/in-order min/max selections.
SCEVSequentialMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N)
Note: Constructing subclasses via this constructor is allowed.
static SCEVTypes getEquivalentNonSequentialSCEVType(SCEVTypes Ty)
This class represents a sequential/in-order unsigned minimum selection.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents a sign extension of a small integer value to a larger integer value.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
Visit all nodes in the expression tree using worklist traversal.
void visitAll(const SCEV *Root)
This class represents a truncation of an integer value to a smaller integer value.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents a binary unsigned division operation.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
ArrayRef< const SCEV * > operands() const
const SCEV * getOperand(unsigned i) const
const SCEV * getLHS() const
const SCEV * getRHS() const
This class represents an unsigned maximum selection.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents an unsigned minimum selection.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents the value of vscale, as used when defining the length of a scalable vector or r...
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents a zero extension of a small integer value to a larger integer value.
static bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class represents an analyzed expression in the program.
ArrayRef< const SCEV * > operands() const
Return operands of this SCEV expression.
SCEVTypes getSCEVType() const
unsigned short SubclassData
This field is initialized to zero and may be used in subclasses to store miscellaneous information.
Type * getType() const
Return the LLVM type of this SCEV expression.
NoWrapFlags
NoWrapFlags are bitfield indices into SubclassData.
The main scalar evolution driver.
const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags)
const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
Value * getValPtr() const
Definition: ValueHandle.h:99
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void visitAll(const SCEV *Root, SV &Visitor)
Use SCEVTraversal to visit all nodes in the given expression tree.
unsigned short computeExpressionSize(ArrayRef< const SCEV * > Args)
bool isPointerTy(const Type *T)
Definition: SPIRVUtils.h:116
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1749
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.
#define N
An object of this class is returned by queries that could not be answered.
This class defines a simple visitor class that may be used for various SCEV analysis purposes.
RetVal visit(const SCEV *S)
RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S)