LLVM  10.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
40 // block.
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/MathExtras.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 namespace llvm {
117 
120  const Module &M;
123  const DataLayout &DL;
125 
126  /// Track the brokenness of the module while recursively visiting.
127  bool Broken = false;
128  /// Broken debug info can be "recovered" from by stripping the debug info.
129  bool BrokenDebugInfo = false;
130  /// Whether to treat broken debug info as an error.
132 
133  explicit VerifierSupport(raw_ostream *OS, const Module &M)
134  : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
135  Context(M.getContext()) {}
136 
137 private:
138  void Write(const Module *M) {
139  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140  }
141 
142  void Write(const Value *V) {
143  if (V)
144  Write(*V);
145  }
146 
147  void Write(const Value &V) {
148  if (isa<Instruction>(V)) {
149  V.print(*OS, MST);
150  *OS << '\n';
151  } else {
152  V.printAsOperand(*OS, true, MST);
153  *OS << '\n';
154  }
155  }
156 
157  void Write(const Metadata *MD) {
158  if (!MD)
159  return;
160  MD->print(*OS, MST, &M);
161  *OS << '\n';
162  }
163 
164  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
165  Write(MD.get());
166  }
167 
168  void Write(const NamedMDNode *NMD) {
169  if (!NMD)
170  return;
171  NMD->print(*OS, MST);
172  *OS << '\n';
173  }
174 
175  void Write(Type *T) {
176  if (!T)
177  return;
178  *OS << ' ' << *T;
179  }
180 
181  void Write(const Comdat *C) {
182  if (!C)
183  return;
184  *OS << *C;
185  }
186 
187  void Write(const APInt *AI) {
188  if (!AI)
189  return;
190  *OS << *AI << '\n';
191  }
192 
193  void Write(const unsigned i) { *OS << i << '\n'; }
194 
195  template <typename T> void Write(ArrayRef<T> Vs) {
196  for (const T &V : Vs)
197  Write(V);
198  }
199 
200  template <typename T1, typename... Ts>
201  void WriteTs(const T1 &V1, const Ts &... Vs) {
202  Write(V1);
203  WriteTs(Vs...);
204  }
205 
206  template <typename... Ts> void WriteTs() {}
207 
208 public:
209  /// A check failed, so printout out the condition and the message.
210  ///
211  /// This provides a nice place to put a breakpoint if you want to see why
212  /// something is not correct.
213  void CheckFailed(const Twine &Message) {
214  if (OS)
215  *OS << Message << '\n';
216  Broken = true;
217  }
218 
219  /// A check failed (with values to print).
220  ///
221  /// This calls the Message-only version so that the above is easier to set a
222  /// breakpoint on.
223  template <typename T1, typename... Ts>
224  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
225  CheckFailed(Message);
226  if (OS)
227  WriteTs(V1, Vs...);
228  }
229 
230  /// A debug info check failed.
231  void DebugInfoCheckFailed(const Twine &Message) {
232  if (OS)
233  *OS << Message << '\n';
234  Broken |= TreatBrokenDebugInfoAsError;
235  BrokenDebugInfo = true;
236  }
237 
238  /// A debug info check failed (with values to print).
239  template <typename T1, typename... Ts>
240  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
241  const Ts &... Vs) {
242  DebugInfoCheckFailed(Message);
243  if (OS)
244  WriteTs(V1, Vs...);
245  }
246 };
247 
248 } // namespace llvm
249 
250 namespace {
251 
252 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
253  friend class InstVisitor<Verifier>;
254 
255  DominatorTree DT;
256 
257  /// When verifying a basic block, keep track of all of the
258  /// instructions we have seen so far.
259  ///
260  /// This allows us to do efficient dominance checks for the case when an
261  /// instruction has an operand that is an instruction in the same block.
262  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
263 
264  /// Keep track of the metadata nodes that have been checked already.
266 
267  /// Keep track which DISubprogram is attached to which function.
268  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
269 
270  /// Track all DICompileUnits visited.
272 
273  /// The result type for a landingpad.
274  Type *LandingPadResultTy;
275 
276  /// Whether we've seen a call to @llvm.localescape in this function
277  /// already.
278  bool SawFrameEscape;
279 
280  /// Whether the current function has a DISubprogram attached to it.
281  bool HasDebugInfo = false;
282 
283  /// Whether source was present on the first DIFile encountered in each CU.
284  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
285 
286  /// Stores the count of how many objects were passed to llvm.localescape for a
287  /// given function and the largest index passed to llvm.localrecover.
289 
290  // Maps catchswitches and cleanuppads that unwind to siblings to the
291  // terminators that indicate the unwind, used to detect cycles therein.
292  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
293 
294  /// Cache of constants visited in search of ConstantExprs.
295  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
296 
297  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
298  SmallVector<const Function *, 4> DeoptimizeDeclarations;
299 
300  // Verify that this GlobalValue is only used in this module.
301  // This map is used to avoid visiting uses twice. We can arrive at a user
302  // twice, if they have multiple operands. In particular for very large
303  // constant expressions, we can arrive at a particular user many times.
304  SmallPtrSet<const Value *, 32> GlobalValueVisited;
305 
306  // Keeps track of duplicate function argument debug info.
308 
309  TBAAVerifier TBAAVerifyHelper;
310 
311  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
312 
313 public:
314  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
315  const Module &M)
316  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
317  SawFrameEscape(false), TBAAVerifyHelper(this) {
318  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
319  }
320 
321  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
322 
323  bool verify(const Function &F) {
324  assert(F.getParent() == &M &&
325  "An instance of this class only works with a specific module!");
326 
327  // First ensure the function is well-enough formed to compute dominance
328  // information, and directly compute a dominance tree. We don't rely on the
329  // pass manager to provide this as it isolates us from a potentially
330  // out-of-date dominator tree and makes it significantly more complex to run
331  // this code outside of a pass manager.
332  // FIXME: It's really gross that we have to cast away constness here.
333  if (!F.empty())
334  DT.recalculate(const_cast<Function &>(F));
335 
336  for (const BasicBlock &BB : F) {
337  if (!BB.empty() && BB.back().isTerminator())
338  continue;
339 
340  if (OS) {
341  *OS << "Basic Block in function '" << F.getName()
342  << "' does not have terminator!\n";
343  BB.printAsOperand(*OS, true, MST);
344  *OS << "\n";
345  }
346  return false;
347  }
348 
349  Broken = false;
350  // FIXME: We strip const here because the inst visitor strips const.
351  visit(const_cast<Function &>(F));
352  verifySiblingFuncletUnwinds();
353  InstsInThisBlock.clear();
354  DebugFnArgs.clear();
355  LandingPadResultTy = nullptr;
356  SawFrameEscape = false;
357  SiblingFuncletInfo.clear();
358 
359  return !Broken;
360  }
361 
362  /// Verify the module that this instance of \c Verifier was initialized with.
363  bool verify() {
364  Broken = false;
365 
366  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
367  for (const Function &F : M)
368  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
369  DeoptimizeDeclarations.push_back(&F);
370 
371  // Now that we've visited every function, verify that we never asked to
372  // recover a frame index that wasn't escaped.
373  verifyFrameRecoverIndices();
374  for (const GlobalVariable &GV : M.globals())
375  visitGlobalVariable(GV);
376 
377  for (const GlobalAlias &GA : M.aliases())
378  visitGlobalAlias(GA);
379 
380  for (const NamedMDNode &NMD : M.named_metadata())
381  visitNamedMDNode(NMD);
382 
383  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
384  visitComdat(SMEC.getValue());
385 
386  visitModuleFlags(M);
387  visitModuleIdents(M);
388  visitModuleCommandLines(M);
389 
390  verifyCompileUnits();
391 
392  verifyDeoptimizeCallingConvs();
393  DISubprogramAttachments.clear();
394  return !Broken;
395  }
396 
397 private:
398  // Verification methods...
399  void visitGlobalValue(const GlobalValue &GV);
400  void visitGlobalVariable(const GlobalVariable &GV);
401  void visitGlobalAlias(const GlobalAlias &GA);
402  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
403  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
404  const GlobalAlias &A, const Constant &C);
405  void visitNamedMDNode(const NamedMDNode &NMD);
406  void visitMDNode(const MDNode &MD);
407  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
408  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
409  void visitComdat(const Comdat &C);
410  void visitModuleIdents(const Module &M);
411  void visitModuleCommandLines(const Module &M);
412  void visitModuleFlags(const Module &M);
413  void visitModuleFlag(const MDNode *Op,
415  SmallVectorImpl<const MDNode *> &Requirements);
416  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
417  void visitFunction(const Function &F);
418  void visitBasicBlock(BasicBlock &BB);
419  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
420  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
421  void visitProfMetadata(Instruction &I, MDNode *MD);
422 
423  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
425 #include "llvm/IR/Metadata.def"
426  void visitDIScope(const DIScope &N);
427  void visitDIVariable(const DIVariable &N);
428  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
429  void visitDITemplateParameter(const DITemplateParameter &N);
430 
431  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
432 
433  // InstVisitor overrides...
435  void visit(Instruction &I);
436 
437  void visitTruncInst(TruncInst &I);
438  void visitZExtInst(ZExtInst &I);
439  void visitSExtInst(SExtInst &I);
440  void visitFPTruncInst(FPTruncInst &I);
441  void visitFPExtInst(FPExtInst &I);
442  void visitFPToUIInst(FPToUIInst &I);
443  void visitFPToSIInst(FPToSIInst &I);
444  void visitUIToFPInst(UIToFPInst &I);
445  void visitSIToFPInst(SIToFPInst &I);
446  void visitIntToPtrInst(IntToPtrInst &I);
447  void visitPtrToIntInst(PtrToIntInst &I);
448  void visitBitCastInst(BitCastInst &I);
449  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
450  void visitPHINode(PHINode &PN);
451  void visitCallBase(CallBase &Call);
452  void visitUnaryOperator(UnaryOperator &U);
453  void visitBinaryOperator(BinaryOperator &B);
454  void visitICmpInst(ICmpInst &IC);
455  void visitFCmpInst(FCmpInst &FC);
456  void visitExtractElementInst(ExtractElementInst &EI);
457  void visitInsertElementInst(InsertElementInst &EI);
458  void visitShuffleVectorInst(ShuffleVectorInst &EI);
459  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
460  void visitCallInst(CallInst &CI);
461  void visitInvokeInst(InvokeInst &II);
462  void visitGetElementPtrInst(GetElementPtrInst &GEP);
463  void visitLoadInst(LoadInst &LI);
464  void visitStoreInst(StoreInst &SI);
465  void verifyDominatesUse(Instruction &I, unsigned i);
466  void visitInstruction(Instruction &I);
467  void visitTerminator(Instruction &I);
468  void visitBranchInst(BranchInst &BI);
469  void visitReturnInst(ReturnInst &RI);
470  void visitSwitchInst(SwitchInst &SI);
471  void visitIndirectBrInst(IndirectBrInst &BI);
472  void visitCallBrInst(CallBrInst &CBI);
473  void visitSelectInst(SelectInst &SI);
474  void visitUserOp1(Instruction &I);
475  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
476  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
477  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
478  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
479  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
480  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
481  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
482  void visitFenceInst(FenceInst &FI);
483  void visitAllocaInst(AllocaInst &AI);
484  void visitExtractValueInst(ExtractValueInst &EVI);
485  void visitInsertValueInst(InsertValueInst &IVI);
486  void visitEHPadPredecessors(Instruction &I);
487  void visitLandingPadInst(LandingPadInst &LPI);
488  void visitResumeInst(ResumeInst &RI);
489  void visitCatchPadInst(CatchPadInst &CPI);
490  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
491  void visitCleanupPadInst(CleanupPadInst &CPI);
492  void visitFuncletPadInst(FuncletPadInst &FPI);
493  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
494  void visitCleanupReturnInst(CleanupReturnInst &CRI);
495 
496  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
497  void verifySwiftErrorValue(const Value *SwiftErrorVal);
498  void verifyMustTailCall(CallInst &CI);
499  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
500  unsigned ArgNo, std::string &Suffix);
501  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
502  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
503  const Value *V);
504  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
505  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
506  const Value *V, bool IsIntrinsic);
507  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
508 
509  void visitConstantExprsRecursively(const Constant *EntryC);
510  void visitConstantExpr(const ConstantExpr *CE);
511  void verifyStatepoint(const CallBase &Call);
512  void verifyFrameRecoverIndices();
513  void verifySiblingFuncletUnwinds();
514 
515  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
516  template <typename ValueOrMetadata>
517  void verifyFragmentExpression(const DIVariable &V,
519  ValueOrMetadata *Desc);
520  void verifyFnArgs(const DbgVariableIntrinsic &I);
521  void verifyNotEntryValue(const DbgVariableIntrinsic &I);
522 
523  /// Module-level debug info verification...
524  void verifyCompileUnits();
525 
526  /// Module-level verification that all @llvm.experimental.deoptimize
527  /// declarations share the same calling convention.
528  void verifyDeoptimizeCallingConvs();
529 
530  /// Verify all-or-nothing property of DIFile source attribute within a CU.
531  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
532 };
533 
534 } // end anonymous namespace
535 
536 /// We know that cond should be true, if not print an error message.
537 #define Assert(C, ...) \
538  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
539 
540 /// We know that a debug info condition should be true, if not print
541 /// an error message.
542 #define AssertDI(C, ...) \
543  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
544 
545 void Verifier::visit(Instruction &I) {
546  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
547  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
549 }
550 
551 // Helper to recursively iterate over indirect users. By
552 // returning false, the callback can ask to stop recursing
553 // further.
554 static void forEachUser(const Value *User,
556  llvm::function_ref<bool(const Value *)> Callback) {
557  if (!Visited.insert(User).second)
558  return;
559  for (const Value *TheNextUser : User->materialized_users())
560  if (Callback(TheNextUser))
561  forEachUser(TheNextUser, Visited, Callback);
562 }
563 
564 void Verifier::visitGlobalValue(const GlobalValue &GV) {
566  "Global is external, but doesn't have external or weak linkage!", &GV);
567 
569  "huge alignment values are unsupported", &GV);
570  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
571  "Only global variables can have appending linkage!", &GV);
572 
573  if (GV.hasAppendingLinkage()) {
574  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
575  Assert(GVar && GVar->getValueType()->isArrayTy(),
576  "Only global arrays can have appending linkage!", GVar);
577  }
578 
579  if (GV.isDeclarationForLinker())
580  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
581 
582  if (GV.hasDLLImportStorageClass()) {
583  Assert(!GV.isDSOLocal(),
584  "GlobalValue with DLLImport Storage is dso_local!", &GV);
585 
586  Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
588  "Global is marked as dllimport, but not external", &GV);
589  }
590 
591  if (GV.hasLocalLinkage())
592  Assert(GV.isDSOLocal(),
593  "GlobalValue with private or internal linkage must be dso_local!",
594  &GV);
595 
596  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
597  Assert(GV.isDSOLocal(),
598  "GlobalValue with non default visibility must be dso_local!", &GV);
599 
600  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
601  if (const Instruction *I = dyn_cast<Instruction>(V)) {
602  if (!I->getParent() || !I->getParent()->getParent())
603  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
604  I);
605  else if (I->getParent()->getParent()->getParent() != &M)
606  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
607  I->getParent()->getParent(),
608  I->getParent()->getParent()->getParent());
609  return false;
610  } else if (const Function *F = dyn_cast<Function>(V)) {
611  if (F->getParent() != &M)
612  CheckFailed("Global is used by function in a different module", &GV, &M,
613  F, F->getParent());
614  return false;
615  }
616  return true;
617  });
618 }
619 
620 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
621  if (GV.hasInitializer()) {
622  Assert(GV.getInitializer()->getType() == GV.getValueType(),
623  "Global variable initializer type does not match global "
624  "variable type!",
625  &GV);
626  // If the global has common linkage, it must have a zero initializer and
627  // cannot be constant.
628  if (GV.hasCommonLinkage()) {
630  "'common' global must have a zero initializer!", &GV);
631  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
632  &GV);
633  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
634  }
635  }
636 
637  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
638  GV.getName() == "llvm.global_dtors")) {
640  "invalid linkage for intrinsic global variable", &GV);
641  // Don't worry about emitting an error for it not being an array,
642  // visitGlobalValue will complain on appending non-array.
643  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
644  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
645  PointerType *FuncPtrTy =
647  getPointerTo(DL.getProgramAddressSpace());
648  Assert(STy &&
649  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
650  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
651  STy->getTypeAtIndex(1) == FuncPtrTy,
652  "wrong type for intrinsic global variable", &GV);
653  Assert(STy->getNumElements() == 3,
654  "the third field of the element type is mandatory, "
655  "specify i8* null to migrate from the obsoleted 2-field form");
656  Type *ETy = STy->getTypeAtIndex(2);
657  Assert(ETy->isPointerTy() &&
658  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
659  "wrong type for intrinsic global variable", &GV);
660  }
661  }
662 
663  if (GV.hasName() && (GV.getName() == "llvm.used" ||
664  GV.getName() == "llvm.compiler.used")) {
666  "invalid linkage for intrinsic global variable", &GV);
667  Type *GVType = GV.getValueType();
668  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
669  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
670  Assert(PTy, "wrong type for intrinsic global variable", &GV);
671  if (GV.hasInitializer()) {
672  const Constant *Init = GV.getInitializer();
673  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
674  Assert(InitArray, "wrong initalizer for intrinsic global variable",
675  Init);
676  for (Value *Op : InitArray->operands()) {
677  Value *V = Op->stripPointerCasts();
678  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
679  isa<GlobalAlias>(V),
680  "invalid llvm.used member", V);
681  Assert(V->hasName(), "members of llvm.used must be named", V);
682  }
683  }
684  }
685  }
686 
687  // Visit any debug info attachments.
689  GV.getMetadata(LLVMContext::MD_dbg, MDs);
690  for (auto *MD : MDs) {
691  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
692  visitDIGlobalVariableExpression(*GVE);
693  else
694  AssertDI(false, "!dbg attachment of global variable must be a "
695  "DIGlobalVariableExpression");
696  }
697 
698  // Scalable vectors cannot be global variables, since we don't know
699  // the runtime size. If the global is a struct or an array containing
700  // scalable vectors, that will be caught by the isValidElementType methods
701  // in StructType or ArrayType instead.
702  if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
703  Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
704 
705  if (!GV.hasInitializer()) {
706  visitGlobalValue(GV);
707  return;
708  }
709 
710  // Walk any aggregate initializers looking for bitcasts between address spaces
711  visitConstantExprsRecursively(GV.getInitializer());
712 
713  visitGlobalValue(GV);
714 }
715 
716 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
718  Visited.insert(&GA);
719  visitAliaseeSubExpr(Visited, GA, C);
720 }
721 
722 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
723  const GlobalAlias &GA, const Constant &C) {
724  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
725  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
726  &GA);
727 
728  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
729  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
730 
731  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
732  &GA);
733  } else {
734  // Only continue verifying subexpressions of GlobalAliases.
735  // Do not recurse into global initializers.
736  return;
737  }
738  }
739 
740  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
741  visitConstantExprsRecursively(CE);
742 
743  for (const Use &U : C.operands()) {
744  Value *V = &*U;
745  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
746  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
747  else if (const auto *C2 = dyn_cast<Constant>(V))
748  visitAliaseeSubExpr(Visited, GA, *C2);
749  }
750 }
751 
752 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
754  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
755  "weak_odr, or external linkage!",
756  &GA);
757  const Constant *Aliasee = GA.getAliasee();
758  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
759  Assert(GA.getType() == Aliasee->getType(),
760  "Alias and aliasee types should match!", &GA);
761 
762  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
763  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
764 
765  visitAliaseeSubExpr(GA, *Aliasee);
766 
767  visitGlobalValue(GA);
768 }
769 
770 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
771  // There used to be various other llvm.dbg.* nodes, but we don't support
772  // upgrading them and we want to reserve the namespace for future uses.
773  if (NMD.getName().startswith("llvm.dbg."))
774  AssertDI(NMD.getName() == "llvm.dbg.cu",
775  "unrecognized named metadata node in the llvm.dbg namespace",
776  &NMD);
777  for (const MDNode *MD : NMD.operands()) {
778  if (NMD.getName() == "llvm.dbg.cu")
779  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
780 
781  if (!MD)
782  continue;
783 
784  visitMDNode(*MD);
785  }
786 }
787 
788 void Verifier::visitMDNode(const MDNode &MD) {
789  // Only visit each node once. Metadata can be mutually recursive, so this
790  // avoids infinite recursion here, as well as being an optimization.
791  if (!MDNodes.insert(&MD).second)
792  return;
793 
794  switch (MD.getMetadataID()) {
795  default:
796  llvm_unreachable("Invalid MDNode subclass");
797  case Metadata::MDTupleKind:
798  break;
799 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
800  case Metadata::CLASS##Kind: \
801  visit##CLASS(cast<CLASS>(MD)); \
802  break;
803 #include "llvm/IR/Metadata.def"
804  }
805 
806  for (const Metadata *Op : MD.operands()) {
807  if (!Op)
808  continue;
809  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
810  &MD, Op);
811  if (auto *N = dyn_cast<MDNode>(Op)) {
812  visitMDNode(*N);
813  continue;
814  }
815  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
816  visitValueAsMetadata(*V, nullptr);
817  continue;
818  }
819  }
820 
821  // Check these last, so we diagnose problems in operands first.
822  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
823  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
824 }
825 
826 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
827  Assert(MD.getValue(), "Expected valid value", &MD);
828  Assert(!MD.getValue()->getType()->isMetadataTy(),
829  "Unexpected metadata round-trip through values", &MD, MD.getValue());
830 
831  auto *L = dyn_cast<LocalAsMetadata>(&MD);
832  if (!L)
833  return;
834 
835  Assert(F, "function-local metadata used outside a function", L);
836 
837  // If this was an instruction, bb, or argument, verify that it is in the
838  // function that we expect.
839  Function *ActualF = nullptr;
840  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
841  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
842  ActualF = I->getParent()->getParent();
843  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
844  ActualF = BB->getParent();
845  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
846  ActualF = A->getParent();
847  assert(ActualF && "Unimplemented function local metadata case!");
848 
849  Assert(ActualF == F, "function-local metadata used in wrong function", L);
850 }
851 
852 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
853  Metadata *MD = MDV.getMetadata();
854  if (auto *N = dyn_cast<MDNode>(MD)) {
855  visitMDNode(*N);
856  return;
857  }
858 
859  // Only visit each node once. Metadata can be mutually recursive, so this
860  // avoids infinite recursion here, as well as being an optimization.
861  if (!MDNodes.insert(MD).second)
862  return;
863 
864  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
865  visitValueAsMetadata(*V, F);
866 }
867 
868 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
869 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
870 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
871 
872 void Verifier::visitDILocation(const DILocation &N) {
873  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
874  "location requires a valid scope", &N, N.getRawScope());
875  if (auto *IA = N.getRawInlinedAt())
876  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
877  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
878  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
879 }
880 
881 void Verifier::visitGenericDINode(const GenericDINode &N) {
882  AssertDI(N.getTag(), "invalid tag", &N);
883 }
884 
885 void Verifier::visitDIScope(const DIScope &N) {
886  if (auto *F = N.getRawFile())
887  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
888 }
889 
890 void Verifier::visitDISubrange(const DISubrange &N) {
891  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
892  auto Count = N.getCount();
893  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
894  &N);
895  AssertDI(!Count.is<ConstantInt*>() ||
896  Count.get<ConstantInt*>()->getSExtValue() >= -1,
897  "invalid subrange count", &N);
898 }
899 
900 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
901  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
902 }
903 
904 void Verifier::visitDIBasicType(const DIBasicType &N) {
905  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
906  N.getTag() == dwarf::DW_TAG_unspecified_type,
907  "invalid tag", &N);
908  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
909  "has conflicting flags", &N);
910 }
911 
912 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
913  // Common scope checks.
914  visitDIScope(N);
915 
916  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
917  N.getTag() == dwarf::DW_TAG_pointer_type ||
918  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
919  N.getTag() == dwarf::DW_TAG_reference_type ||
920  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
921  N.getTag() == dwarf::DW_TAG_const_type ||
922  N.getTag() == dwarf::DW_TAG_volatile_type ||
923  N.getTag() == dwarf::DW_TAG_restrict_type ||
924  N.getTag() == dwarf::DW_TAG_atomic_type ||
925  N.getTag() == dwarf::DW_TAG_member ||
926  N.getTag() == dwarf::DW_TAG_inheritance ||
927  N.getTag() == dwarf::DW_TAG_friend,
928  "invalid tag", &N);
929  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
930  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
931  N.getRawExtraData());
932  }
933 
934  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
935  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
936  N.getRawBaseType());
937 
938  if (N.getDWARFAddressSpace()) {
939  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
940  N.getTag() == dwarf::DW_TAG_reference_type ||
941  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
942  "DWARF address space only applies to pointer or reference types",
943  &N);
944  }
945 }
946 
947 /// Detect mutually exclusive flags.
948 static bool hasConflictingReferenceFlags(unsigned Flags) {
949  return ((Flags & DINode::FlagLValueReference) &&
950  (Flags & DINode::FlagRValueReference)) ||
951  ((Flags & DINode::FlagTypePassByValue) &&
952  (Flags & DINode::FlagTypePassByReference));
953 }
954 
955 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
956  auto *Params = dyn_cast<MDTuple>(&RawParams);
957  AssertDI(Params, "invalid template params", &N, &RawParams);
958  for (Metadata *Op : Params->operands()) {
959  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
960  &N, Params, Op);
961  }
962 }
963 
964 void Verifier::visitDICompositeType(const DICompositeType &N) {
965  // Common scope checks.
966  visitDIScope(N);
967 
968  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
969  N.getTag() == dwarf::DW_TAG_structure_type ||
970  N.getTag() == dwarf::DW_TAG_union_type ||
971  N.getTag() == dwarf::DW_TAG_enumeration_type ||
972  N.getTag() == dwarf::DW_TAG_class_type ||
973  N.getTag() == dwarf::DW_TAG_variant_part,
974  "invalid tag", &N);
975 
976  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
977  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
978  N.getRawBaseType());
979 
980  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
981  "invalid composite elements", &N, N.getRawElements());
982  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
983  N.getRawVTableHolder());
985  "invalid reference flags", &N);
986  unsigned DIBlockByRefStruct = 1 << 4;
987  AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
988  "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
989 
990  if (N.isVector()) {
991  const DINodeArray Elements = N.getElements();
992  AssertDI(Elements.size() == 1 &&
993  Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
994  "invalid vector, expected one element of type subrange", &N);
995  }
996 
997  if (auto *Params = N.getRawTemplateParams())
998  visitTemplateParams(N, *Params);
999 
1000  if (N.getTag() == dwarf::DW_TAG_class_type ||
1001  N.getTag() == dwarf::DW_TAG_union_type) {
1002  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1003  "class/union requires a filename", &N, N.getFile());
1004  }
1005 
1006  if (auto *D = N.getRawDiscriminator()) {
1007  AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1008  "discriminator can only appear on variant part");
1009  }
1010 }
1011 
1012 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1013  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1014  if (auto *Types = N.getRawTypeArray()) {
1015  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1016  for (Metadata *Ty : N.getTypeArray()->operands()) {
1017  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1018  }
1019  }
1021  "invalid reference flags", &N);
1022 }
1023 
1024 void Verifier::visitDIFile(const DIFile &N) {
1025  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1026  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1027  if (Checksum) {
1028  AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1029  "invalid checksum kind", &N);
1030  size_t Size;
1031  switch (Checksum->Kind) {
1032  case DIFile::CSK_MD5:
1033  Size = 32;
1034  break;
1035  case DIFile::CSK_SHA1:
1036  Size = 40;
1037  break;
1038  }
1039  AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1040  AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1041  "invalid checksum", &N);
1042  }
1043 }
1044 
1045 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1046  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1047  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1048 
1049  // Don't bother verifying the compilation directory or producer string
1050  // as those could be empty.
1051  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1052  N.getRawFile());
1053  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1054  N.getFile());
1055 
1056  verifySourceDebugInfo(N, *N.getFile());
1057 
1059  "invalid emission kind", &N);
1060 
1061  if (auto *Array = N.getRawEnumTypes()) {
1062  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1063  for (Metadata *Op : N.getEnumTypes()->operands()) {
1064  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1065  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1066  "invalid enum type", &N, N.getEnumTypes(), Op);
1067  }
1068  }
1069  if (auto *Array = N.getRawRetainedTypes()) {
1070  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1071  for (Metadata *Op : N.getRetainedTypes()->operands()) {
1072  AssertDI(Op && (isa<DIType>(Op) ||
1073  (isa<DISubprogram>(Op) &&
1074  !cast<DISubprogram>(Op)->isDefinition())),
1075  "invalid retained type", &N, Op);
1076  }
1077  }
1078  if (auto *Array = N.getRawGlobalVariables()) {
1079  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1080  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1081  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1082  "invalid global variable ref", &N, Op);
1083  }
1084  }
1085  if (auto *Array = N.getRawImportedEntities()) {
1086  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1087  for (Metadata *Op : N.getImportedEntities()->operands()) {
1088  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1089  &N, Op);
1090  }
1091  }
1092  if (auto *Array = N.getRawMacros()) {
1093  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1094  for (Metadata *Op : N.getMacros()->operands()) {
1095  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1096  }
1097  }
1098  CUVisited.insert(&N);
1099 }
1100 
1101 void Verifier::visitDISubprogram(const DISubprogram &N) {
1102  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1103  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1104  if (auto *F = N.getRawFile())
1105  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1106  else
1107  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1108  if (auto *T = N.getRawType())
1109  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1110  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1111  N.getRawContainingType());
1112  if (auto *Params = N.getRawTemplateParams())
1113  visitTemplateParams(N, *Params);
1114  if (auto *S = N.getRawDeclaration())
1115  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1116  "invalid subprogram declaration", &N, S);
1117  if (auto *RawNode = N.getRawRetainedNodes()) {
1118  auto *Node = dyn_cast<MDTuple>(RawNode);
1119  AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1120  for (Metadata *Op : Node->operands()) {
1121  AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1122  "invalid retained nodes, expected DILocalVariable or DILabel",
1123  &N, Node, Op);
1124  }
1125  }
1126  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1127  "invalid reference flags", &N);
1128 
1129  auto *Unit = N.getRawUnit();
1130  if (N.isDefinition()) {
1131  // Subprogram definitions (not part of the type hierarchy).
1132  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1133  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1134  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1135  if (N.getFile())
1136  verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1137  } else {
1138  // Subprogram declarations (part of the type hierarchy).
1139  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1140  }
1141 
1142  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1143  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1144  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1145  for (Metadata *Op : ThrownTypes->operands())
1146  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1147  Op);
1148  }
1149 
1150  if (N.areAllCallsDescribed())
1151  AssertDI(N.isDefinition(),
1152  "DIFlagAllCallsDescribed must be attached to a definition");
1153 }
1154 
1155 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1156  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1157  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1158  "invalid local scope", &N, N.getRawScope());
1159  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1160  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1161 }
1162 
1163 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1164  visitDILexicalBlockBase(N);
1165 
1166  AssertDI(N.getLine() || !N.getColumn(),
1167  "cannot have column info without line info", &N);
1168 }
1169 
1170 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1171  visitDILexicalBlockBase(N);
1172 }
1173 
1174 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1175  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1176  if (auto *S = N.getRawScope())
1177  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1178  if (auto *S = N.getRawDecl())
1179  AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1180 }
1181 
1182 void Verifier::visitDINamespace(const DINamespace &N) {
1183  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1184  if (auto *S = N.getRawScope())
1185  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1186 }
1187 
1188 void Verifier::visitDIMacro(const DIMacro &N) {
1191  "invalid macinfo type", &N);
1192  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1193  if (!N.getValue().empty()) {
1194  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1195  }
1196 }
1197 
1198 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1200  "invalid macinfo type", &N);
1201  if (auto *F = N.getRawFile())
1202  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1203 
1204  if (auto *Array = N.getRawElements()) {
1205  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1206  for (Metadata *Op : N.getElements()->operands()) {
1207  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1208  }
1209  }
1210 }
1211 
1212 void Verifier::visitDIModule(const DIModule &N) {
1213  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1214  AssertDI(!N.getName().empty(), "anonymous module", &N);
1215 }
1216 
1217 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1218  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1219 }
1220 
1221 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1222  visitDITemplateParameter(N);
1223 
1224  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1225  &N);
1226 }
1227 
1228 void Verifier::visitDITemplateValueParameter(
1229  const DITemplateValueParameter &N) {
1230  visitDITemplateParameter(N);
1231 
1232  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1233  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1234  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1235  "invalid tag", &N);
1236 }
1237 
1238 void Verifier::visitDIVariable(const DIVariable &N) {
1239  if (auto *S = N.getRawScope())
1240  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1241  if (auto *F = N.getRawFile())
1242  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1243 }
1244 
1245 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1246  // Checks common to all variables.
1247  visitDIVariable(N);
1248 
1249  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1250  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1251  AssertDI(N.getType(), "missing global variable type", &N);
1252  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1253  AssertDI(isa<DIDerivedType>(Member),
1254  "invalid static data member declaration", &N, Member);
1255  }
1256 }
1257 
1258 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1259  // Checks common to all variables.
1260  visitDIVariable(N);
1261 
1262  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1263  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1264  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1265  "local variable requires a valid scope", &N, N.getRawScope());
1266  if (auto Ty = N.getType())
1267  AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1268 }
1269 
1270 void Verifier::visitDILabel(const DILabel &N) {
1271  if (auto *S = N.getRawScope())
1272  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1273  if (auto *F = N.getRawFile())
1274  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1275 
1276  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1277  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1278  "label requires a valid scope", &N, N.getRawScope());
1279 }
1280 
1281 void Verifier::visitDIExpression(const DIExpression &N) {
1282  AssertDI(N.isValid(), "invalid expression", &N);
1283 }
1284 
1285 void Verifier::visitDIGlobalVariableExpression(
1286  const DIGlobalVariableExpression &GVE) {
1287  AssertDI(GVE.getVariable(), "missing variable");
1288  if (auto *Var = GVE.getVariable())
1289  visitDIGlobalVariable(*Var);
1290  if (auto *Expr = GVE.getExpression()) {
1291  visitDIExpression(*Expr);
1292  if (auto Fragment = Expr->getFragmentInfo())
1293  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1294  }
1295 }
1296 
1297 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1298  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1299  if (auto *T = N.getRawType())
1300  AssertDI(isType(T), "invalid type ref", &N, T);
1301  if (auto *F = N.getRawFile())
1302  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1303 }
1304 
1305 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1306  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1307  N.getTag() == dwarf::DW_TAG_imported_declaration,
1308  "invalid tag", &N);
1309  if (auto *S = N.getRawScope())
1310  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1311  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1312  N.getRawEntity());
1313 }
1314 
1315 void Verifier::visitComdat(const Comdat &C) {
1316  // In COFF the Module is invalid if the GlobalValue has private linkage.
1317  // Entities with private linkage don't have entries in the symbol table.
1318  if (TT.isOSBinFormatCOFF())
1319  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1320  Assert(!GV->hasPrivateLinkage(),
1321  "comdat global value has private linkage", GV);
1322 }
1323 
1324 void Verifier::visitModuleIdents(const Module &M) {
1325  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1326  if (!Idents)
1327  return;
1328 
1329  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1330  // Scan each llvm.ident entry and make sure that this requirement is met.
1331  for (const MDNode *N : Idents->operands()) {
1332  Assert(N->getNumOperands() == 1,
1333  "incorrect number of operands in llvm.ident metadata", N);
1334  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1335  ("invalid value for llvm.ident metadata entry operand"
1336  "(the operand should be a string)"),
1337  N->getOperand(0));
1338  }
1339 }
1340 
1341 void Verifier::visitModuleCommandLines(const Module &M) {
1342  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1343  if (!CommandLines)
1344  return;
1345 
1346  // llvm.commandline takes a list of metadata entry. Each entry has only one
1347  // string. Scan each llvm.commandline entry and make sure that this
1348  // requirement is met.
1349  for (const MDNode *N : CommandLines->operands()) {
1350  Assert(N->getNumOperands() == 1,
1351  "incorrect number of operands in llvm.commandline metadata", N);
1352  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1353  ("invalid value for llvm.commandline metadata entry operand"
1354  "(the operand should be a string)"),
1355  N->getOperand(0));
1356  }
1357 }
1358 
1359 void Verifier::visitModuleFlags(const Module &M) {
1360  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1361  if (!Flags) return;
1362 
1363  // Scan each flag, and track the flags and requirements.
1365  SmallVector<const MDNode*, 16> Requirements;
1366  for (const MDNode *MDN : Flags->operands())
1367  visitModuleFlag(MDN, SeenIDs, Requirements);
1368 
1369  // Validate that the requirements in the module are valid.
1370  for (const MDNode *Requirement : Requirements) {
1371  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1372  const Metadata *ReqValue = Requirement->getOperand(1);
1373 
1374  const MDNode *Op = SeenIDs.lookup(Flag);
1375  if (!Op) {
1376  CheckFailed("invalid requirement on flag, flag is not present in module",
1377  Flag);
1378  continue;
1379  }
1380 
1381  if (Op->getOperand(2) != ReqValue) {
1382  CheckFailed(("invalid requirement on flag, "
1383  "flag does not have the required value"),
1384  Flag);
1385  continue;
1386  }
1387  }
1388 }
1389 
1390 void
1391 Verifier::visitModuleFlag(const MDNode *Op,
1393  SmallVectorImpl<const MDNode *> &Requirements) {
1394  // Each module flag should have three arguments, the merge behavior (a
1395  // constant int), the flag ID (an MDString), and the value.
1396  Assert(Op->getNumOperands() == 3,
1397  "incorrect number of operands in module flag", Op);
1399  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1400  Assert(
1401  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1402  "invalid behavior operand in module flag (expected constant integer)",
1403  Op->getOperand(0));
1404  Assert(false,
1405  "invalid behavior operand in module flag (unexpected constant)",
1406  Op->getOperand(0));
1407  }
1408  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1409  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1410  Op->getOperand(1));
1411 
1412  // Sanity check the values for behaviors with additional requirements.
1413  switch (MFB) {
1414  case Module::Error:
1415  case Module::Warning:
1416  case Module::Override:
1417  // These behavior types accept any value.
1418  break;
1419 
1420  case Module::Max: {
1421  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1422  "invalid value for 'max' module flag (expected constant integer)",
1423  Op->getOperand(2));
1424  break;
1425  }
1426 
1427  case Module::Require: {
1428  // The value should itself be an MDNode with two operands, a flag ID (an
1429  // MDString), and a value.
1430  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1431  Assert(Value && Value->getNumOperands() == 2,
1432  "invalid value for 'require' module flag (expected metadata pair)",
1433  Op->getOperand(2));
1434  Assert(isa<MDString>(Value->getOperand(0)),
1435  ("invalid value for 'require' module flag "
1436  "(first value operand should be a string)"),
1437  Value->getOperand(0));
1438 
1439  // Append it to the list of requirements, to check once all module flags are
1440  // scanned.
1441  Requirements.push_back(Value);
1442  break;
1443  }
1444 
1445  case Module::Append:
1446  case Module::AppendUnique: {
1447  // These behavior types require the operand be an MDNode.
1448  Assert(isa<MDNode>(Op->getOperand(2)),
1449  "invalid value for 'append'-type module flag "
1450  "(expected a metadata node)",
1451  Op->getOperand(2));
1452  break;
1453  }
1454  }
1455 
1456  // Unless this is a "requires" flag, check the ID is unique.
1457  if (MFB != Module::Require) {
1458  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1459  Assert(Inserted,
1460  "module flag identifiers must be unique (or of 'require' type)", ID);
1461  }
1462 
1463  if (ID->getString() == "wchar_size") {
1465  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1466  Assert(Value, "wchar_size metadata requires constant integer argument");
1467  }
1468 
1469  if (ID->getString() == "Linker Options") {
1470  // If the llvm.linker.options named metadata exists, we assume that the
1471  // bitcode reader has upgraded the module flag. Otherwise the flag might
1472  // have been created by a client directly.
1473  Assert(M.getNamedMetadata("llvm.linker.options"),
1474  "'Linker Options' named metadata no longer supported");
1475  }
1476 
1477  if (ID->getString() == "CG Profile") {
1478  for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1479  visitModuleFlagCGProfileEntry(MDO);
1480  }
1481 }
1482 
1483 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1484  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1485  if (!FuncMDO)
1486  return;
1487  auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1488  Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1489  FuncMDO);
1490  };
1491  auto Node = dyn_cast_or_null<MDNode>(MDO);
1492  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1493  CheckFunction(Node->getOperand(0));
1494  CheckFunction(Node->getOperand(1));
1495  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1496  Assert(Count && Count->getType()->isIntegerTy(),
1497  "expected an integer constant", Node->getOperand(2));
1498 }
1499 
1500 /// Return true if this attribute kind only applies to functions.
1502  switch (Kind) {
1503  case Attribute::NoReturn:
1504  case Attribute::NoSync:
1505  case Attribute::WillReturn:
1506  case Attribute::NoCfCheck:
1507  case Attribute::NoUnwind:
1508  case Attribute::NoInline:
1509  case Attribute::NoFree:
1510  case Attribute::AlwaysInline:
1511  case Attribute::OptimizeForSize:
1512  case Attribute::StackProtect:
1513  case Attribute::StackProtectReq:
1514  case Attribute::StackProtectStrong:
1515  case Attribute::SafeStack:
1516  case Attribute::ShadowCallStack:
1517  case Attribute::NoRedZone:
1518  case Attribute::NoImplicitFloat:
1519  case Attribute::Naked:
1520  case Attribute::InlineHint:
1521  case Attribute::StackAlignment:
1522  case Attribute::UWTable:
1523  case Attribute::NonLazyBind:
1524  case Attribute::ReturnsTwice:
1525  case Attribute::SanitizeAddress:
1526  case Attribute::SanitizeHWAddress:
1527  case Attribute::SanitizeMemTag:
1528  case Attribute::SanitizeThread:
1529  case Attribute::SanitizeMemory:
1530  case Attribute::MinSize:
1531  case Attribute::NoDuplicate:
1532  case Attribute::Builtin:
1533  case Attribute::NoBuiltin:
1534  case Attribute::Cold:
1535  case Attribute::OptForFuzzing:
1536  case Attribute::OptimizeNone:
1537  case Attribute::JumpTable:
1538  case Attribute::Convergent:
1539  case Attribute::ArgMemOnly:
1540  case Attribute::NoRecurse:
1541  case Attribute::InaccessibleMemOnly:
1542  case Attribute::InaccessibleMemOrArgMemOnly:
1543  case Attribute::AllocSize:
1544  case Attribute::SpeculativeLoadHardening:
1545  case Attribute::Speculatable:
1546  case Attribute::StrictFP:
1547  return true;
1548  default:
1549  break;
1550  }
1551  return false;
1552 }
1553 
1554 /// Return true if this is a function attribute that can also appear on
1555 /// arguments.
1557  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1558  Kind == Attribute::ReadNone;
1559 }
1560 
1561 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1562  const Value *V) {
1563  for (Attribute A : Attrs) {
1564  if (A.isStringAttribute())
1565  continue;
1566 
1567  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1568  if (!IsFunction) {
1569  CheckFailed("Attribute '" + A.getAsString() +
1570  "' only applies to functions!",
1571  V);
1572  return;
1573  }
1574  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1575  CheckFailed("Attribute '" + A.getAsString() +
1576  "' does not apply to functions!",
1577  V);
1578  return;
1579  }
1580  }
1581 }
1582 
1583 // VerifyParameterAttrs - Check the given attributes for an argument or return
1584 // value of the specified type. The value V is printed in error messages.
1585 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1586  const Value *V) {
1587  if (!Attrs.hasAttributes())
1588  return;
1589 
1590  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1591 
1592  if (Attrs.hasAttribute(Attribute::ImmArg)) {
1593  Assert(Attrs.getNumAttributes() == 1,
1594  "Attribute 'immarg' is incompatible with other attributes", V);
1595  }
1596 
1597  // Check for mutually incompatible attributes. Only inreg is compatible with
1598  // sret.
1599  unsigned AttrCount = 0;
1600  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1601  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1602  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1603  Attrs.hasAttribute(Attribute::InReg);
1604  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1605  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1606  "and 'sret' are incompatible!",
1607  V);
1608 
1609  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1610  Attrs.hasAttribute(Attribute::ReadOnly)),
1611  "Attributes "
1612  "'inalloca and readonly' are incompatible!",
1613  V);
1614 
1615  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1616  Attrs.hasAttribute(Attribute::Returned)),
1617  "Attributes "
1618  "'sret and returned' are incompatible!",
1619  V);
1620 
1621  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1622  Attrs.hasAttribute(Attribute::SExt)),
1623  "Attributes "
1624  "'zeroext and signext' are incompatible!",
1625  V);
1626 
1627  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1628  Attrs.hasAttribute(Attribute::ReadOnly)),
1629  "Attributes "
1630  "'readnone and readonly' are incompatible!",
1631  V);
1632 
1633  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1634  Attrs.hasAttribute(Attribute::WriteOnly)),
1635  "Attributes "
1636  "'readnone and writeonly' are incompatible!",
1637  V);
1638 
1639  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1640  Attrs.hasAttribute(Attribute::WriteOnly)),
1641  "Attributes "
1642  "'readonly and writeonly' are incompatible!",
1643  V);
1644 
1645  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1646  Attrs.hasAttribute(Attribute::AlwaysInline)),
1647  "Attributes "
1648  "'noinline and alwaysinline' are incompatible!",
1649  V);
1650 
1651  if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1652  Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1653  "Attribute 'byval' type does not match parameter!", V);
1654  }
1655 
1656  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1657  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1658  "Wrong types for attribute: " +
1659  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1660  V);
1661 
1662  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1663  SmallPtrSet<Type*, 4> Visited;
1664  if (!PTy->getElementType()->isSized(&Visited)) {
1665  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1666  !Attrs.hasAttribute(Attribute::InAlloca),
1667  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1668  V);
1669  }
1670  if (!isa<PointerType>(PTy->getElementType()))
1671  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1672  "Attribute 'swifterror' only applies to parameters "
1673  "with pointer to pointer type!",
1674  V);
1675  } else {
1676  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1677  "Attribute 'byval' only applies to parameters with pointer type!",
1678  V);
1679  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1680  "Attribute 'swifterror' only applies to parameters "
1681  "with pointer type!",
1682  V);
1683  }
1684 }
1685 
1686 // Check parameter attributes against a function type.
1687 // The value V is printed in error messages.
1688 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1689  const Value *V, bool IsIntrinsic) {
1690  if (Attrs.isEmpty())
1691  return;
1692 
1693  bool SawNest = false;
1694  bool SawReturned = false;
1695  bool SawSRet = false;
1696  bool SawSwiftSelf = false;
1697  bool SawSwiftError = false;
1698 
1699  // Verify return value attributes.
1700  AttributeSet RetAttrs = Attrs.getRetAttributes();
1701  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1702  !RetAttrs.hasAttribute(Attribute::Nest) &&
1703  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1704  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1705  !RetAttrs.hasAttribute(Attribute::Returned) &&
1706  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1707  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1708  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1709  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1710  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1711  "values!",
1712  V);
1713  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1714  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1715  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1716  "Attribute '" + RetAttrs.getAsString() +
1717  "' does not apply to function returns",
1718  V);
1719  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1720 
1721  // Verify parameter attributes.
1722  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1723  Type *Ty = FT->getParamType(i);
1724  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1725 
1726  if (!IsIntrinsic) {
1727  Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1728  "immarg attribute only applies to intrinsics",V);
1729  }
1730 
1731  verifyParameterAttrs(ArgAttrs, Ty, V);
1732 
1733  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1734  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1735  SawNest = true;
1736  }
1737 
1738  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1739  Assert(!SawReturned, "More than one parameter has attribute returned!",
1740  V);
1742  "Incompatible argument and return types for 'returned' attribute",
1743  V);
1744  SawReturned = true;
1745  }
1746 
1747  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1748  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1749  Assert(i == 0 || i == 1,
1750  "Attribute 'sret' is not on first or second parameter!", V);
1751  SawSRet = true;
1752  }
1753 
1754  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1755  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1756  SawSwiftSelf = true;
1757  }
1758 
1759  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1760  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1761  V);
1762  SawSwiftError = true;
1763  }
1764 
1765  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1766  Assert(i == FT->getNumParams() - 1,
1767  "inalloca isn't on the last parameter!", V);
1768  }
1769  }
1770 
1772  return;
1773 
1774  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1775 
1776  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1777  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1778  "Attributes 'readnone and readonly' are incompatible!", V);
1779 
1780  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1781  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1782  "Attributes 'readnone and writeonly' are incompatible!", V);
1783 
1784  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1785  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1786  "Attributes 'readonly and writeonly' are incompatible!", V);
1787 
1788  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1789  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1790  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1791  "incompatible!",
1792  V);
1793 
1794  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1795  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1796  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1797 
1798  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1799  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1800  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1801 
1802  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1803  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1804  "Attribute 'optnone' requires 'noinline'!", V);
1805 
1806  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1807  "Attributes 'optsize and optnone' are incompatible!", V);
1808 
1809  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1810  "Attributes 'minsize and optnone' are incompatible!", V);
1811  }
1812 
1813  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1814  const GlobalValue *GV = cast<GlobalValue>(V);
1816  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1817  }
1818 
1819  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1820  std::pair<unsigned, Optional<unsigned>> Args =
1822 
1823  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1824  if (ParamNo >= FT->getNumParams()) {
1825  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1826  return false;
1827  }
1828 
1829  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1830  CheckFailed("'allocsize' " + Name +
1831  " argument must refer to an integer parameter",
1832  V);
1833  return false;
1834  }
1835 
1836  return true;
1837  };
1838 
1839  if (!CheckParam("element size", Args.first))
1840  return;
1841 
1842  if (Args.second && !CheckParam("number of elements", *Args.second))
1843  return;
1844  }
1845 }
1846 
1847 void Verifier::verifyFunctionMetadata(
1848  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1849  for (const auto &Pair : MDs) {
1850  if (Pair.first == LLVMContext::MD_prof) {
1851  MDNode *MD = Pair.second;
1852  Assert(MD->getNumOperands() >= 2,
1853  "!prof annotations should have no less than 2 operands", MD);
1854 
1855  // Check first operand.
1856  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1857  MD);
1858  Assert(isa<MDString>(MD->getOperand(0)),
1859  "expected string with name of the !prof annotation", MD);
1860  MDString *MDS = cast<MDString>(MD->getOperand(0));
1861  StringRef ProfName = MDS->getString();
1862  Assert(ProfName.equals("function_entry_count") ||
1863  ProfName.equals("synthetic_function_entry_count"),
1864  "first operand should be 'function_entry_count'"
1865  " or 'synthetic_function_entry_count'",
1866  MD);
1867 
1868  // Check second operand.
1869  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1870  MD);
1871  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1872  "expected integer argument to function_entry_count", MD);
1873  }
1874  }
1875 }
1876 
1877 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1878  if (!ConstantExprVisited.insert(EntryC).second)
1879  return;
1880 
1882  Stack.push_back(EntryC);
1883 
1884  while (!Stack.empty()) {
1885  const Constant *C = Stack.pop_back_val();
1886 
1887  // Check this constant expression.
1888  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1889  visitConstantExpr(CE);
1890 
1891  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1892  // Global Values get visited separately, but we do need to make sure
1893  // that the global value is in the correct module
1894  Assert(GV->getParent() == &M, "Referencing global in another module!",
1895  EntryC, &M, GV, GV->getParent());
1896  continue;
1897  }
1898 
1899  // Visit all sub-expressions.
1900  for (const Use &U : C->operands()) {
1901  const auto *OpC = dyn_cast<Constant>(U);
1902  if (!OpC)
1903  continue;
1904  if (!ConstantExprVisited.insert(OpC).second)
1905  continue;
1906  Stack.push_back(OpC);
1907  }
1908  }
1909 }
1910 
1911 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1912  if (CE->getOpcode() == Instruction::BitCast)
1913  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1914  CE->getType()),
1915  "Invalid bitcast", CE);
1916 
1917  if (CE->getOpcode() == Instruction::IntToPtr ||
1918  CE->getOpcode() == Instruction::PtrToInt) {
1919  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1920  ? CE->getType()
1921  : CE->getOperand(0)->getType();
1922  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1923  ? "inttoptr not supported for non-integral pointers"
1924  : "ptrtoint not supported for non-integral pointers";
1925  Assert(
1926  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1927  Msg);
1928  }
1929 }
1930 
1931 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1932  // There shouldn't be more attribute sets than there are parameters plus the
1933  // function and return value.
1934  return Attrs.getNumAttrSets() <= Params + 2;
1935 }
1936 
1937 /// Verify that statepoint intrinsic is well formed.
1938 void Verifier::verifyStatepoint(const CallBase &Call) {
1939  assert(Call.getCalledFunction() &&
1940  Call.getCalledFunction()->getIntrinsicID() ==
1941  Intrinsic::experimental_gc_statepoint);
1942 
1943  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1944  !Call.onlyAccessesArgMemory(),
1945  "gc.statepoint must read and write all memory to preserve "
1946  "reordering restrictions required by safepoint semantics",
1947  Call);
1948 
1949  const int64_t NumPatchBytes =
1950  cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1951  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1952  Assert(NumPatchBytes >= 0,
1953  "gc.statepoint number of patchable bytes must be "
1954  "positive",
1955  Call);
1956 
1957  const Value *Target = Call.getArgOperand(2);
1958  auto *PT = dyn_cast<PointerType>(Target->getType());
1959  Assert(PT && PT->getElementType()->isFunctionTy(),
1960  "gc.statepoint callee must be of function pointer type", Call, Target);
1961  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1962 
1963  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1964  Assert(NumCallArgs >= 0,
1965  "gc.statepoint number of arguments to underlying call "
1966  "must be positive",
1967  Call);
1968  const int NumParams = (int)TargetFuncType->getNumParams();
1969  if (TargetFuncType->isVarArg()) {
1970  Assert(NumCallArgs >= NumParams,
1971  "gc.statepoint mismatch in number of vararg call args", Call);
1972 
1973  // TODO: Remove this limitation
1974  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1975  "gc.statepoint doesn't support wrapping non-void "
1976  "vararg functions yet",
1977  Call);
1978  } else
1979  Assert(NumCallArgs == NumParams,
1980  "gc.statepoint mismatch in number of call args", Call);
1981 
1982  const uint64_t Flags
1983  = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1984  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1985  "unknown flag used in gc.statepoint flags argument", Call);
1986 
1987  // Verify that the types of the call parameter arguments match
1988  // the type of the wrapped callee.
1989  AttributeList Attrs = Call.getAttributes();
1990  for (int i = 0; i < NumParams; i++) {
1991  Type *ParamType = TargetFuncType->getParamType(i);
1992  Type *ArgType = Call.getArgOperand(5 + i)->getType();
1993  Assert(ArgType == ParamType,
1994  "gc.statepoint call argument does not match wrapped "
1995  "function type",
1996  Call);
1997 
1998  if (TargetFuncType->isVarArg()) {
1999  AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2000  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2001  "Attribute 'sret' cannot be used for vararg call arguments!",
2002  Call);
2003  }
2004  }
2005 
2006  const int EndCallArgsInx = 4 + NumCallArgs;
2007 
2008  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2009  Assert(isa<ConstantInt>(NumTransitionArgsV),
2010  "gc.statepoint number of transition arguments "
2011  "must be constant integer",
2012  Call);
2013  const int NumTransitionArgs =
2014  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2015  Assert(NumTransitionArgs >= 0,
2016  "gc.statepoint number of transition arguments must be positive", Call);
2017  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2018 
2019  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2020  Assert(isa<ConstantInt>(NumDeoptArgsV),
2021  "gc.statepoint number of deoptimization arguments "
2022  "must be constant integer",
2023  Call);
2024  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2025  Assert(NumDeoptArgs >= 0,
2026  "gc.statepoint number of deoptimization arguments "
2027  "must be positive",
2028  Call);
2029 
2030  const int ExpectedNumArgs =
2031  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2032  Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2033  "gc.statepoint too few arguments according to length fields", Call);
2034 
2035  // Check that the only uses of this gc.statepoint are gc.result or
2036  // gc.relocate calls which are tied to this statepoint and thus part
2037  // of the same statepoint sequence
2038  for (const User *U : Call.users()) {
2039  const CallInst *UserCall = dyn_cast<const CallInst>(U);
2040  Assert(UserCall, "illegal use of statepoint token", Call, U);
2041  if (!UserCall)
2042  continue;
2043  Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2044  "gc.result or gc.relocate are the only value uses "
2045  "of a gc.statepoint",
2046  Call, U);
2047  if (isa<GCResultInst>(UserCall)) {
2048  Assert(UserCall->getArgOperand(0) == &Call,
2049  "gc.result connected to wrong gc.statepoint", Call, UserCall);
2050  } else if (isa<GCRelocateInst>(Call)) {
2051  Assert(UserCall->getArgOperand(0) == &Call,
2052  "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2053  }
2054  }
2055 
2056  // Note: It is legal for a single derived pointer to be listed multiple
2057  // times. It's non-optimal, but it is legal. It can also happen after
2058  // insertion if we strip a bitcast away.
2059  // Note: It is really tempting to check that each base is relocated and
2060  // that a derived pointer is never reused as a base pointer. This turns
2061  // out to be problematic since optimizations run after safepoint insertion
2062  // can recognize equality properties that the insertion logic doesn't know
2063  // about. See example statepoint.ll in the verifier subdirectory
2064 }
2065 
2066 void Verifier::verifyFrameRecoverIndices() {
2067  for (auto &Counts : FrameEscapeInfo) {
2068  Function *F = Counts.first;
2069  unsigned EscapedObjectCount = Counts.second.first;
2070  unsigned MaxRecoveredIndex = Counts.second.second;
2071  Assert(MaxRecoveredIndex <= EscapedObjectCount,
2072  "all indices passed to llvm.localrecover must be less than the "
2073  "number of arguments passed to llvm.localescape in the parent "
2074  "function",
2075  F);
2076  }
2077 }
2078 
2080  BasicBlock *UnwindDest;
2081  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2082  UnwindDest = II->getUnwindDest();
2083  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2084  UnwindDest = CSI->getUnwindDest();
2085  else
2086  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2087  return UnwindDest->getFirstNonPHI();
2088 }
2089 
2090 void Verifier::verifySiblingFuncletUnwinds() {
2093  for (const auto &Pair : SiblingFuncletInfo) {
2094  Instruction *PredPad = Pair.first;
2095  if (Visited.count(PredPad))
2096  continue;
2097  Active.insert(PredPad);
2098  Instruction *Terminator = Pair.second;
2099  do {
2100  Instruction *SuccPad = getSuccPad(Terminator);
2101  if (Active.count(SuccPad)) {
2102  // Found a cycle; report error
2103  Instruction *CyclePad = SuccPad;
2104  SmallVector<Instruction *, 8> CycleNodes;
2105  do {
2106  CycleNodes.push_back(CyclePad);
2107  Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2108  if (CycleTerminator != CyclePad)
2109  CycleNodes.push_back(CycleTerminator);
2110  CyclePad = getSuccPad(CycleTerminator);
2111  } while (CyclePad != SuccPad);
2112  Assert(false, "EH pads can't handle each other's exceptions",
2113  ArrayRef<Instruction *>(CycleNodes));
2114  }
2115  // Don't re-walk a node we've already checked
2116  if (!Visited.insert(SuccPad).second)
2117  break;
2118  // Walk to this successor if it has a map entry.
2119  PredPad = SuccPad;
2120  auto TermI = SiblingFuncletInfo.find(PredPad);
2121  if (TermI == SiblingFuncletInfo.end())
2122  break;
2123  Terminator = TermI->second;
2124  Active.insert(PredPad);
2125  } while (true);
2126  // Each node only has one successor, so we've walked all the active
2127  // nodes' successors.
2128  Active.clear();
2129  }
2130 }
2131 
2132 // visitFunction - Verify that a function is ok.
2133 //
2134 void Verifier::visitFunction(const Function &F) {
2135  visitGlobalValue(F);
2136 
2137  // Check function arguments.
2138  FunctionType *FT = F.getFunctionType();
2139  unsigned NumArgs = F.arg_size();
2140 
2141  Assert(&Context == &F.getContext(),
2142  "Function context does not match Module context!", &F);
2143 
2144  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2145  Assert(FT->getNumParams() == NumArgs,
2146  "# formal arguments must match # of arguments for function type!", &F,
2147  FT);
2148  Assert(F.getReturnType()->isFirstClassType() ||
2149  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2150  "Functions cannot return aggregate values!", &F);
2151 
2152  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2153  "Invalid struct return type!", &F);
2154 
2155  AttributeList Attrs = F.getAttributes();
2156 
2157  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2158  "Attribute after last parameter!", &F);
2159 
2160  bool isLLVMdotName = F.getName().size() >= 5 &&
2161  F.getName().substr(0, 5) == "llvm.";
2162 
2163  // Check function attributes.
2164  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2165 
2166  // On function declarations/definitions, we do not support the builtin
2167  // attribute. We do not check this in VerifyFunctionAttrs since that is
2168  // checking for Attributes that can/can not ever be on functions.
2169  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2170  "Attribute 'builtin' can only be applied to a callsite.", &F);
2171 
2172  // Check that this function meets the restrictions on this calling convention.
2173  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2174  // restrictions can be lifted.
2175  switch (F.getCallingConv()) {
2176  default:
2177  case CallingConv::C:
2178  break;
2181  Assert(F.getReturnType()->isVoidTy(),
2182  "Calling convention requires void return type", &F);
2189  Assert(!F.hasStructRetAttr(),
2190  "Calling convention does not allow sret", &F);
2192  case CallingConv::Fast:
2193  case CallingConv::Cold:
2197  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2198  "perfect forwarding!",
2199  &F);
2200  break;
2201  }
2202 
2203  // Check that the argument values match the function type for this function...
2204  unsigned i = 0;
2205  for (const Argument &Arg : F.args()) {
2206  Assert(Arg.getType() == FT->getParamType(i),
2207  "Argument value does not match function argument type!", &Arg,
2208  FT->getParamType(i));
2209  Assert(Arg.getType()->isFirstClassType(),
2210  "Function arguments must have first-class types!", &Arg);
2211  if (!isLLVMdotName) {
2212  Assert(!Arg.getType()->isMetadataTy(),
2213  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2214  Assert(!Arg.getType()->isTokenTy(),
2215  "Function takes token but isn't an intrinsic", &Arg, &F);
2216  }
2217 
2218  // Check that swifterror argument is only used by loads and stores.
2219  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2220  verifySwiftErrorValue(&Arg);
2221  }
2222  ++i;
2223  }
2224 
2225  if (!isLLVMdotName)
2226  Assert(!F.getReturnType()->isTokenTy(),
2227  "Functions returns a token but isn't an intrinsic", &F);
2228 
2229  // Get the function metadata attachments.
2231  F.getAllMetadata(MDs);
2232  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2233  verifyFunctionMetadata(MDs);
2234 
2235  // Check validity of the personality function
2236  if (F.hasPersonalityFn()) {
2237  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2238  if (Per)
2239  Assert(Per->getParent() == F.getParent(),
2240  "Referencing personality function in another module!",
2241  &F, F.getParent(), Per, Per->getParent());
2242  }
2243 
2244  if (F.isMaterializable()) {
2245  // Function has a body somewhere we can't see.
2246  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2247  MDs.empty() ? nullptr : MDs.front().second);
2248  } else if (F.isDeclaration()) {
2249  for (const auto &I : MDs) {
2250  // This is used for call site debug information.
2251  AssertDI(I.first != LLVMContext::MD_dbg ||
2252  !cast<DISubprogram>(I.second)->isDistinct(),
2253  "function declaration may only have a unique !dbg attachment",
2254  &F);
2255  Assert(I.first != LLVMContext::MD_prof,
2256  "function declaration may not have a !prof attachment", &F);
2257 
2258  // Verify the metadata itself.
2259  visitMDNode(*I.second);
2260  }
2261  Assert(!F.hasPersonalityFn(),
2262  "Function declaration shouldn't have a personality routine", &F);
2263  } else {
2264  // Verify that this function (which has a body) is not named "llvm.*". It
2265  // is not legal to define intrinsics.
2266  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2267 
2268  // Check the entry node
2269  const BasicBlock *Entry = &F.getEntryBlock();
2270  Assert(pred_empty(Entry),
2271  "Entry block to function must not have predecessors!", Entry);
2272 
2273  // The address of the entry block cannot be taken, unless it is dead.
2274  if (Entry->hasAddressTaken()) {
2275  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2276  "blockaddress may not be used with the entry block!", Entry);
2277  }
2278 
2279  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2280  // Visit metadata attachments.
2281  for (const auto &I : MDs) {
2282  // Verify that the attachment is legal.
2283  switch (I.first) {
2284  default:
2285  break;
2286  case LLVMContext::MD_dbg: {
2287  ++NumDebugAttachments;
2288  AssertDI(NumDebugAttachments == 1,
2289  "function must have a single !dbg attachment", &F, I.second);
2290  AssertDI(isa<DISubprogram>(I.second),
2291  "function !dbg attachment must be a subprogram", &F, I.second);
2292  auto *SP = cast<DISubprogram>(I.second);
2293  const Function *&AttachedTo = DISubprogramAttachments[SP];
2294  AssertDI(!AttachedTo || AttachedTo == &F,
2295  "DISubprogram attached to more than one function", SP, &F);
2296  AttachedTo = &F;
2297  break;
2298  }
2299  case LLVMContext::MD_prof:
2300  ++NumProfAttachments;
2301  Assert(NumProfAttachments == 1,
2302  "function must have a single !prof attachment", &F, I.second);
2303  break;
2304  }
2305 
2306  // Verify the metadata itself.
2307  visitMDNode(*I.second);
2308  }
2309  }
2310 
2311  // If this function is actually an intrinsic, verify that it is only used in
2312  // direct call/invokes, never having its "address taken".
2313  // Only do this if the module is materialized, otherwise we don't have all the
2314  // uses.
2315  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2316  const User *U;
2317  if (F.hasAddressTaken(&U))
2318  Assert(false, "Invalid user of intrinsic instruction!", U);
2319  }
2320 
2321  auto *N = F.getSubprogram();
2322  HasDebugInfo = (N != nullptr);
2323  if (!HasDebugInfo)
2324  return;
2325 
2326  // Check that all !dbg attachments lead to back to N (or, at least, another
2327  // subprogram that describes the same function).
2328  //
2329  // FIXME: Check this incrementally while visiting !dbg attachments.
2330  // FIXME: Only check when N is the canonical subprogram for F.
2332  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2333  // Be careful about using DILocation here since we might be dealing with
2334  // broken code (this is the Verifier after all).
2335  const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2336  if (!DL)
2337  return;
2338  if (!Seen.insert(DL).second)
2339  return;
2340 
2341  Metadata *Parent = DL->getRawScope();
2342  AssertDI(Parent && isa<DILocalScope>(Parent),
2343  "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2344  Parent);
2345  DILocalScope *Scope = DL->getInlinedAtScope();
2346  if (Scope && !Seen.insert(Scope).second)
2347  return;
2348 
2349  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2350 
2351  // Scope and SP could be the same MDNode and we don't want to skip
2352  // validation in that case
2353  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2354  return;
2355 
2356  // FIXME: Once N is canonical, check "SP == &N".
2357  AssertDI(SP->describes(&F),
2358  "!dbg attachment points at wrong subprogram for function", N, &F,
2359  &I, DL, Scope, SP);
2360  };
2361  for (auto &BB : F)
2362  for (auto &I : BB) {
2363  VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2364  // The llvm.loop annotations also contain two DILocations.
2365  if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2366  for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2367  VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2368  if (BrokenDebugInfo)
2369  return;
2370  }
2371 }
2372 
2373 // verifyBasicBlock - Verify that a basic block is well formed...
2374 //
2375 void Verifier::visitBasicBlock(BasicBlock &BB) {
2376  InstsInThisBlock.clear();
2377 
2378  // Ensure that basic blocks have terminators!
2379  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2380 
2381  // Check constraints that this basic block imposes on all of the PHI nodes in
2382  // it.
2383  if (isa<PHINode>(BB.front())) {
2386  llvm::sort(Preds);
2387  for (const PHINode &PN : BB.phis()) {
2388  // Ensure that PHI nodes have at least one entry!
2389  Assert(PN.getNumIncomingValues() != 0,
2390  "PHI nodes must have at least one entry. If the block is dead, "
2391  "the PHI should be removed!",
2392  &PN);
2393  Assert(PN.getNumIncomingValues() == Preds.size(),
2394  "PHINode should have one entry for each predecessor of its "
2395  "parent basic block!",
2396  &PN);
2397 
2398  // Get and sort all incoming values in the PHI node...
2399  Values.clear();
2400  Values.reserve(PN.getNumIncomingValues());
2401  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2402  Values.push_back(
2403  std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2404  llvm::sort(Values);
2405 
2406  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2407  // Check to make sure that if there is more than one entry for a
2408  // particular basic block in this PHI node, that the incoming values are
2409  // all identical.
2410  //
2411  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2412  Values[i].second == Values[i - 1].second,
2413  "PHI node has multiple entries for the same basic block with "
2414  "different incoming values!",
2415  &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2416 
2417  // Check to make sure that the predecessors and PHI node entries are
2418  // matched up.
2419  Assert(Values[i].first == Preds[i],
2420  "PHI node entries do not match predecessors!", &PN,
2421  Values[i].first, Preds[i]);
2422  }
2423  }
2424  }
2425 
2426  // Check that all instructions have their parent pointers set up correctly.
2427  for (auto &I : BB)
2428  {
2429  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2430  }
2431 }
2432 
2433 void Verifier::visitTerminator(Instruction &I) {
2434  // Ensure that terminators only exist at the end of the basic block.
2435  Assert(&I == I.getParent()->getTerminator(),
2436  "Terminator found in the middle of a basic block!", I.getParent());
2437  visitInstruction(I);
2438 }
2439 
2440 void Verifier::visitBranchInst(BranchInst &BI) {
2441  if (BI.isConditional()) {
2442  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2443  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2444  }
2445  visitTerminator(BI);
2446 }
2447 
2448 void Verifier::visitReturnInst(ReturnInst &RI) {
2449  Function *F = RI.getParent()->getParent();
2450  unsigned N = RI.getNumOperands();
2451  if (F->getReturnType()->isVoidTy())
2452  Assert(N == 0,
2453  "Found return instr that returns non-void in Function of void "
2454  "return type!",
2455  &RI, F->getReturnType());
2456  else
2457  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2458  "Function return type does not match operand "
2459  "type of return inst!",
2460  &RI, F->getReturnType());
2461 
2462  // Check to make sure that the return value has necessary properties for
2463  // terminators...
2464  visitTerminator(RI);
2465 }
2466 
2467 void Verifier::visitSwitchInst(SwitchInst &SI) {
2468  // Check to make sure that all of the constants in the switch instruction
2469  // have the same type as the switched-on value.
2470  Type *SwitchTy = SI.getCondition()->getType();
2472  for (auto &Case : SI.cases()) {
2473  Assert(Case.getCaseValue()->getType() == SwitchTy,
2474  "Switch constants must all be same type as switch value!", &SI);
2475  Assert(Constants.insert(Case.getCaseValue()).second,
2476  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2477  }
2478 
2479  visitTerminator(SI);
2480 }
2481 
2482 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2483  Assert(BI.getAddress()->getType()->isPointerTy(),
2484  "Indirectbr operand must have pointer type!", &BI);
2485  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2486  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2487  "Indirectbr destinations must all have pointer type!", &BI);
2488 
2489  visitTerminator(BI);
2490 }
2491 
2492 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2493  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2494  &CBI);
2495  Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2496  &CBI);
2497  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2498  Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2499  "Callbr successors must all have pointer type!", &CBI);
2500  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2501  Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2502  "Using an unescaped label as a callbr argument!", &CBI);
2503  if (isa<BasicBlock>(CBI.getOperand(i)))
2504  for (unsigned j = i + 1; j != e; ++j)
2505  Assert(CBI.getOperand(i) != CBI.getOperand(j),
2506  "Duplicate callbr destination!", &CBI);
2507  }
2508  {
2510  for (Value *V : CBI.args())
2511  if (auto *BA = dyn_cast<BlockAddress>(V))
2512  ArgBBs.insert(BA->getBasicBlock());
2513  for (BasicBlock *BB : CBI.getIndirectDests())
2514  Assert(ArgBBs.find(BB) != ArgBBs.end(),
2515  "Indirect label missing from arglist.", &CBI);
2516  }
2517 
2518  visitTerminator(CBI);
2519 }
2520 
2521 void Verifier::visitSelectInst(SelectInst &SI) {
2523  SI.getOperand(2)),
2524  "Invalid operands for select instruction!", &SI);
2525 
2526  Assert(SI.getTrueValue()->getType() == SI.getType(),
2527  "Select values must have same type as select instruction!", &SI);
2528  visitInstruction(SI);
2529 }
2530 
2531 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2532 /// a pass, if any exist, it's an error.
2533 ///
2534 void Verifier::visitUserOp1(Instruction &I) {
2535  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2536 }
2537 
2538 void Verifier::visitTruncInst(TruncInst &I) {
2539  // Get the source and destination types
2540  Type *SrcTy = I.getOperand(0)->getType();
2541  Type *DestTy = I.getType();
2542 
2543  // Get the size of the types in bits, we'll need this later
2544  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2545  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2546 
2547  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2548  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2549  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2550  "trunc source and destination must both be a vector or neither", &I);
2551  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2552 
2553  visitInstruction(I);
2554 }
2555 
2556 void Verifier::visitZExtInst(ZExtInst &I) {
2557  // Get the source and destination types
2558  Type *SrcTy = I.getOperand(0)->getType();
2559  Type *DestTy = I.getType();
2560 
2561  // Get the size of the types in bits, we'll need this later
2562  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2563  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2564  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2565  "zext source and destination must both be a vector or neither", &I);
2566  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2567  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2568 
2569  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2570 
2571  visitInstruction(I);
2572 }
2573 
2574 void Verifier::visitSExtInst(SExtInst &I) {
2575  // Get the source and destination types
2576  Type *SrcTy = I.getOperand(0)->getType();
2577  Type *DestTy = I.getType();
2578 
2579  // Get the size of the types in bits, we'll need this later
2580  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2581  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2582 
2583  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2584  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2585  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2586  "sext source and destination must both be a vector or neither", &I);
2587  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2588 
2589  visitInstruction(I);
2590 }
2591 
2592 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2593  // Get the source and destination types
2594  Type *SrcTy = I.getOperand(0)->getType();
2595  Type *DestTy = I.getType();
2596  // Get the size of the types in bits, we'll need this later
2597  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2598  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2599 
2600  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2601  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2602  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2603  "fptrunc source and destination must both be a vector or neither", &I);
2604  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2605 
2606  visitInstruction(I);
2607 }
2608 
2609 void Verifier::visitFPExtInst(FPExtInst &I) {
2610  // Get the source and destination types
2611  Type *SrcTy = I.getOperand(0)->getType();
2612  Type *DestTy = I.getType();
2613 
2614  // Get the size of the types in bits, we'll need this later
2615  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2616  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2617 
2618  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2619  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2620  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2621  "fpext source and destination must both be a vector or neither", &I);
2622  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2623 
2624  visitInstruction(I);
2625 }
2626 
2627 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2628  // Get the source and destination types
2629  Type *SrcTy = I.getOperand(0)->getType();
2630  Type *DestTy = I.getType();
2631 
2632  bool SrcVec = SrcTy->isVectorTy();
2633  bool DstVec = DestTy->isVectorTy();
2634 
2635  Assert(SrcVec == DstVec,
2636  "UIToFP source and dest must both be vector or scalar", &I);
2637  Assert(SrcTy->isIntOrIntVectorTy(),
2638  "UIToFP source must be integer or integer vector", &I);
2639  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2640  &I);
2641 
2642  if (SrcVec && DstVec)
2643  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2644  cast<VectorType>(DestTy)->getNumElements(),
2645  "UIToFP source and dest vector length mismatch", &I);
2646 
2647  visitInstruction(I);
2648 }
2649 
2650 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2651  // Get the source and destination types
2652  Type *SrcTy = I.getOperand(0)->getType();
2653  Type *DestTy = I.getType();
2654 
2655  bool SrcVec = SrcTy->isVectorTy();
2656  bool DstVec = DestTy->isVectorTy();
2657 
2658  Assert(SrcVec == DstVec,
2659  "SIToFP source and dest must both be vector or scalar", &I);
2660  Assert(SrcTy->isIntOrIntVectorTy(),
2661  "SIToFP source must be integer or integer vector", &I);
2662  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2663  &I);
2664 
2665  if (SrcVec && DstVec)
2666  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2667  cast<VectorType>(DestTy)->getNumElements(),
2668  "SIToFP source and dest vector length mismatch", &I);
2669 
2670  visitInstruction(I);
2671 }
2672 
2673 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2674  // Get the source and destination types
2675  Type *SrcTy = I.getOperand(0)->getType();
2676  Type *DestTy = I.getType();
2677 
2678  bool SrcVec = SrcTy->isVectorTy();
2679  bool DstVec = DestTy->isVectorTy();
2680 
2681  Assert(SrcVec == DstVec,
2682  "FPToUI source and dest must both be vector or scalar", &I);
2683  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2684  &I);
2685  Assert(DestTy->isIntOrIntVectorTy(),
2686  "FPToUI result must be integer or integer vector", &I);
2687 
2688  if (SrcVec && DstVec)
2689  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2690  cast<VectorType>(DestTy)->getNumElements(),
2691  "FPToUI source and dest vector length mismatch", &I);
2692 
2693  visitInstruction(I);
2694 }
2695 
2696 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2697  // Get the source and destination types
2698  Type *SrcTy = I.getOperand(0)->getType();
2699  Type *DestTy = I.getType();
2700 
2701  bool SrcVec = SrcTy->isVectorTy();
2702  bool DstVec = DestTy->isVectorTy();
2703 
2704  Assert(SrcVec == DstVec,
2705  "FPToSI source and dest must both be vector or scalar", &I);
2706  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2707  &I);
2708  Assert(DestTy->isIntOrIntVectorTy(),
2709  "FPToSI result must be integer or integer vector", &I);
2710 
2711  if (SrcVec && DstVec)
2712  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2713  cast<VectorType>(DestTy)->getNumElements(),
2714  "FPToSI source and dest vector length mismatch", &I);
2715 
2716  visitInstruction(I);
2717 }
2718 
2719 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2720  // Get the source and destination types
2721  Type *SrcTy = I.getOperand(0)->getType();
2722  Type *DestTy = I.getType();
2723 
2724  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2725 
2726  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2728  "ptrtoint not supported for non-integral pointers");
2729 
2730  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2731  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2732  &I);
2733 
2734  if (SrcTy->isVectorTy()) {
2735  VectorType *VSrc = cast<VectorType>(SrcTy);
2736  VectorType *VDest = cast<VectorType>(DestTy);
2737  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2738  "PtrToInt Vector width mismatch", &I);
2739  }
2740 
2741  visitInstruction(I);
2742 }
2743 
2744 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2745  // Get the source and destination types
2746  Type *SrcTy = I.getOperand(0)->getType();
2747  Type *DestTy = I.getType();
2748 
2749  Assert(SrcTy->isIntOrIntVectorTy(),
2750  "IntToPtr source must be an integral", &I);
2751  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2752 
2753  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2755  "inttoptr not supported for non-integral pointers");
2756 
2757  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2758  &I);
2759  if (SrcTy->isVectorTy()) {
2760  VectorType *VSrc = cast<VectorType>(SrcTy);
2761  VectorType *VDest = cast<VectorType>(DestTy);
2762  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2763  "IntToPtr Vector width mismatch", &I);
2764  }
2765  visitInstruction(I);
2766 }
2767 
2768 void Verifier::visitBitCastInst(BitCastInst &I) {
2769  Assert(
2770  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2771  "Invalid bitcast", &I);
2772  visitInstruction(I);
2773 }
2774 
2775 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2776  Type *SrcTy = I.getOperand(0)->getType();
2777  Type *DestTy = I.getType();
2778 
2779  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2780  &I);
2781  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2782  &I);
2784  "AddrSpaceCast must be between different address spaces", &I);
2785  if (SrcTy->isVectorTy())
2786  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2787  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2788  visitInstruction(I);
2789 }
2790 
2791 /// visitPHINode - Ensure that a PHI node is well formed.
2792 ///
2793 void Verifier::visitPHINode(PHINode &PN) {
2794  // Ensure that the PHI nodes are all grouped together at the top of the block.
2795  // This can be tested by checking whether the instruction before this is
2796  // either nonexistent (because this is begin()) or is a PHI node. If not,
2797  // then there is some other instruction before a PHI.
2798  Assert(&PN == &PN.getParent()->front() ||
2799  isa<PHINode>(--BasicBlock::iterator(&PN)),
2800  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2801 
2802  // Check that a PHI doesn't yield a Token.
2803  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2804 
2805  // Check that all of the values of the PHI node have the same type as the
2806  // result, and that the incoming blocks are really basic blocks.
2807  for (Value *IncValue : PN.incoming_values()) {
2808  Assert(PN.getType() == IncValue->getType(),
2809  "PHI node operands are not the same type as the result!", &PN);
2810  }
2811 
2812  // All other PHI node constraints are checked in the visitBasicBlock method.
2813 
2814  visitInstruction(PN);
2815 }
2816 
2817 void Verifier::visitCallBase(CallBase &Call) {
2819  "Called function must be a pointer!", Call);
2820  PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2821 
2822  Assert(FPTy->getElementType()->isFunctionTy(),
2823  "Called function is not pointer to function type!", Call);
2824 
2825  Assert(FPTy->getElementType() == Call.getFunctionType(),
2826  "Called function is not the same type as the call!", Call);
2827 
2828  FunctionType *FTy = Call.getFunctionType();
2829 
2830  // Verify that the correct number of arguments are being passed
2831  if (FTy->isVarArg())
2832  Assert(Call.arg_size() >= FTy->getNumParams(),
2833  "Called function requires more parameters than were provided!",
2834  Call);
2835  else
2836  Assert(Call.arg_size() == FTy->getNumParams(),
2837  "Incorrect number of arguments passed to called function!", Call);
2838 
2839  // Verify that all arguments to the call match the function type.
2840  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2841  Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2842  "Call parameter type does not match function signature!",
2843  Call.getArgOperand(i), FTy->getParamType(i), Call);
2844 
2845  AttributeList Attrs = Call.getAttributes();
2846 
2847  Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2848  "Attribute after last parameter!", Call);
2849 
2850  bool IsIntrinsic = Call.getCalledFunction() &&
2851  Call.getCalledFunction()->getName().startswith("llvm.");
2852 
2853  Function *Callee
2855 
2856  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2857  // Don't allow speculatable on call sites, unless the underlying function
2858  // declaration is also speculatable.
2859  Assert(Callee && Callee->isSpeculatable(),
2860  "speculatable attribute may not apply to call sites", Call);
2861  }
2862 
2863  // Verify call attributes.
2864  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2865 
2866  // Conservatively check the inalloca argument.
2867  // We have a bug if we can find that there is an underlying alloca without
2868  // inalloca.
2869  if (Call.hasInAllocaArgument()) {
2870  Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2871  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2872  Assert(AI->isUsedWithInAlloca(),
2873  "inalloca argument for call has mismatched alloca", AI, Call);
2874  }
2875 
2876  // For each argument of the callsite, if it has the swifterror argument,
2877  // make sure the underlying alloca/parameter it comes from has a swifterror as
2878  // well.
2879  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2880  if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2881  Value *SwiftErrorArg = Call.getArgOperand(i);
2882  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2883  Assert(AI->isSwiftError(),
2884  "swifterror argument for call has mismatched alloca", AI, Call);
2885  continue;
2886  }
2887  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2888  Assert(ArgI,
2889  "swifterror argument should come from an alloca or parameter",
2890  SwiftErrorArg, Call);
2891  Assert(ArgI->hasSwiftErrorAttr(),
2892  "swifterror argument for call has mismatched parameter", ArgI,
2893  Call);
2894  }
2895 
2896  if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2897  // Don't allow immarg on call sites, unless the underlying declaration
2898  // also has the matching immarg.
2899  Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2900  "immarg may not apply only to call sites",
2901  Call.getArgOperand(i), Call);
2902  }
2903 
2904  if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2905  Value *ArgVal = Call.getArgOperand(i);
2906  Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2907  "immarg operand has non-immediate parameter", ArgVal, Call);
2908  }
2909  }
2910 
2911  if (FTy->isVarArg()) {
2912  // FIXME? is 'nest' even legal here?
2913  bool SawNest = false;
2914  bool SawReturned = false;
2915 
2916  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2917  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2918  SawNest = true;
2919  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2920  SawReturned = true;
2921  }
2922 
2923  // Check attributes on the varargs part.
2924  for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2925  Type *Ty = Call.getArgOperand(Idx)->getType();
2926  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2927  verifyParameterAttrs(ArgAttrs, Ty, &Call);
2928 
2929  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2930  Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2931  SawNest = true;
2932  }
2933 
2934  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2935  Assert(!SawReturned, "More than one parameter has attribute returned!",
2936  Call);
2937  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2938  "Incompatible argument and return types for 'returned' "
2939  "attribute",
2940  Call);
2941  SawReturned = true;
2942  }
2943 
2944  // Statepoint intrinsic is vararg but the wrapped function may be not.
2945  // Allow sret here and check the wrapped function in verifyStatepoint.
2946  if (!Call.getCalledFunction() ||
2947  Call.getCalledFunction()->getIntrinsicID() !=
2948  Intrinsic::experimental_gc_statepoint)
2949  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2950  "Attribute 'sret' cannot be used for vararg call arguments!",
2951  Call);
2952 
2953  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2954  Assert(Idx == Call.arg_size() - 1,
2955  "inalloca isn't on the last argument!", Call);
2956  }
2957  }
2958 
2959  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2960  if (!IsIntrinsic) {
2961  for (Type *ParamTy : FTy->params()) {
2962  Assert(!ParamTy->isMetadataTy(),
2963  "Function has metadata parameter but isn't an intrinsic", Call);
2964  Assert(!ParamTy->isTokenTy(),
2965  "Function has token parameter but isn't an intrinsic", Call);
2966  }
2967  }
2968 
2969  // Verify that indirect calls don't return tokens.
2970  if (!Call.getCalledFunction())
2971  Assert(!FTy->getReturnType()->isTokenTy(),
2972  "Return type cannot be token for indirect call!");
2973 
2974  if (Function *F = Call.getCalledFunction())
2976  visitIntrinsicCall(ID, Call);
2977 
2978  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2979  // at most one "gc-transition" operand bundle.
2980  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2981  FoundGCTransitionBundle = false;
2982  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2983  OperandBundleUse BU = Call.getOperandBundleAt(i);
2984  uint32_t Tag = BU.getTagID();
2985  if (Tag == LLVMContext::OB_deopt) {
2986  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2987  FoundDeoptBundle = true;
2988  } else if (Tag == LLVMContext::OB_gc_transition) {
2989  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2990  Call);
2991  FoundGCTransitionBundle = true;
2992  } else if (Tag == LLVMContext::OB_funclet) {
2993  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2994  FoundFuncletBundle = true;
2995  Assert(BU.Inputs.size() == 1,
2996  "Expected exactly one funclet bundle operand", Call);
2997  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2998  "Funclet bundle operands should correspond to a FuncletPadInst",
2999  Call);
3000  }
3001  }
3002 
3003  // Verify that each inlinable callsite of a debug-info-bearing function in a
3004  // debug-info-bearing function has a debug location attached to it. Failure to
3005  // do so causes assertion failures when the inliner sets up inline scope info.
3006  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3007  Call.getCalledFunction()->getSubprogram())
3008  AssertDI(Call.getDebugLoc(),
3009  "inlinable function call in a function with "
3010  "debug info must have a !dbg location",
3011  Call);
3012 
3013  visitInstruction(Call);
3014 }
3015 
3016 /// Two types are "congruent" if they are identical, or if they are both pointer
3017 /// types with different pointee types and the same address space.
3018 static bool isTypeCongruent(Type *L, Type *R) {
3019  if (L == R)
3020  return true;
3023  if (!PL || !PR)
3024  return false;
3025  return PL->getAddressSpace() == PR->getAddressSpace();
3026 }
3027 
3029  static const Attribute::AttrKind ABIAttrs[] = {
3030  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3031  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3032  Attribute::SwiftError};
3033  AttrBuilder Copy;
3034  for (auto AK : ABIAttrs) {
3035  if (Attrs.hasParamAttribute(I, AK))
3036  Copy.addAttribute(AK);
3037  }
3038  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3039  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3040  return Copy;
3041 }
3042 
3043 void Verifier::verifyMustTailCall(CallInst &CI) {
3044  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3045 
3046  // - The caller and callee prototypes must match. Pointer types of
3047  // parameters or return types may differ in pointee type, but not
3048  // address space.
3049  Function *F = CI.getParent()->getParent();
3050  FunctionType *CallerTy = F->getFunctionType();
3051  FunctionType *CalleeTy = CI.getFunctionType();
3052  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3053  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3054  "cannot guarantee tail call due to mismatched parameter counts",
3055  &CI);
3056  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3057  Assert(
3058  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3059  "cannot guarantee tail call due to mismatched parameter types", &CI);
3060  }
3061  }
3062  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3063  "cannot guarantee tail call due to mismatched varargs", &CI);
3064  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3065  "cannot guarantee tail call due to mismatched return types", &CI);
3066 
3067  // - The calling conventions of the caller and callee must match.
3068  Assert(F->getCallingConv() == CI.getCallingConv(),
3069  "cannot guarantee tail call due to mismatched calling conv", &CI);
3070 
3071  // - All ABI-impacting function attributes, such as sret, byval, inreg,
3072  // returned, and inalloca, must match.
3073  AttributeList CallerAttrs = F->getAttributes();
3074  AttributeList CalleeAttrs = CI.getAttributes();
3075  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3076  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3077  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3078  Assert(CallerABIAttrs == CalleeABIAttrs,
3079  "cannot guarantee tail call due to mismatched ABI impacting "
3080  "function attributes",
3081  &CI, CI.getOperand(I));
3082  }
3083 
3084  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3085  // or a pointer bitcast followed by a ret instruction.
3086  // - The ret instruction must return the (possibly bitcasted) value
3087  // produced by the call or void.
3088  Value *RetVal = &CI;
3089  Instruction *Next = CI.getNextNode();
3090 
3091  // Handle the optional bitcast.
3092  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3093  Assert(BI->getOperand(0) == RetVal,
3094  "bitcast following musttail call must use the call", BI);
3095  RetVal = BI;
3096  Next = BI->getNextNode();
3097  }
3098 
3099  // Check the return.
3100  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3101  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3102  &CI);
3103  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3104  "musttail call result must be returned", Ret);
3105 }
3106 
3107 void Verifier::visitCallInst(CallInst &CI) {
3108  visitCallBase(CI);
3109 
3110  if (CI.isMustTailCall())
3111  verifyMustTailCall(CI);
3112 }
3113 
3114 void Verifier::visitInvokeInst(InvokeInst &II) {
3115  visitCallBase(II);
3116 
3117  // Verify that the first non-PHI instruction of the unwind destination is an
3118  // exception handling instruction.
3119  Assert(
3120  II.getUnwindDest()->isEHPad(),
3121  "The unwind destination does not have an exception handling instruction!",
3122  &II);
3123 
3124  visitTerminator(II);
3125 }
3126 
3127 /// visitUnaryOperator - Check the argument to the unary operator.
3128 ///
3129 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3130  Assert(U.getType() == U.getOperand(0)->getType(),
3131  "Unary operators must have same type for"
3132  "operands and result!",
3133  &U);
3134 
3135  switch (U.getOpcode()) {
3136  // Check that floating-point arithmetic operators are only used with
3137  // floating-point operands.
3138  case Instruction::FNeg:
3140  "FNeg operator only works with float types!", &U);
3141  break;
3142  default:
3143  llvm_unreachable("Unknown UnaryOperator opcode!");
3144  }
3145 
3146  visitInstruction(U);
3147 }
3148 
3149 /// visitBinaryOperator - Check that both arguments to the binary operator are
3150 /// of the same type!
3151 ///
3152 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3153  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3154  "Both operands to a binary operator are not of the same type!", &B);
3155 
3156  switch (B.getOpcode()) {
3157  // Check that integer arithmetic operators are only used with
3158  // integral operands.
3159  case Instruction::Add:
3160  case Instruction::Sub:
3161  case Instruction::Mul:
3162  case Instruction::SDiv:
3163  case Instruction::UDiv:
3164  case Instruction::SRem:
3165  case Instruction::URem:
3167  "Integer arithmetic operators only work with integral types!", &B);
3168  Assert(B.getType() == B.getOperand(0)->getType(),
3169  "Integer arithmetic operators must have same type "
3170  "for operands and result!",
3171  &B);
3172  break;
3173  // Check that floating-point arithmetic operators are only used with
3174  // floating-point operands.
3175  case Instruction::FAdd:
3176  case Instruction::FSub:
3177  case Instruction::FMul:
3178  case Instruction::FDiv:
3179  case Instruction::FRem:
3181  "Floating-point arithmetic operators only work with "
3182  "floating-point types!",
3183  &B);
3184  Assert(B.getType() == B.getOperand(0)->getType(),
3185  "Floating-point arithmetic operators must have same type "
3186  "for operands and result!",
3187  &B);
3188  break;
3189  // Check that logical operators are only used with integral operands.
3190  case Instruction::And:
3191  case Instruction::Or:
3192  case Instruction::Xor:
3194  "Logical operators only work with integral types!", &B);
3195  Assert(B.getType() == B.getOperand(0)->getType(),
3196  "Logical operators must have same type for operands and result!",
3197  &B);
3198  break;
3199  case Instruction::Shl:
3200  case Instruction::LShr:
3201  case Instruction::AShr:
3203  "Shifts only work with integral types!", &B);
3204  Assert(B.getType() == B.getOperand(0)->getType(),
3205  "Shift return type must be same as operands!", &B);
3206  break;
3207  default:
3208  llvm_unreachable("Unknown BinaryOperator opcode!");
3209  }
3210 
3211  visitInstruction(B);
3212 }
3213 
3214 void Verifier::visitICmpInst(ICmpInst &IC) {
3215  // Check that the operands are the same type
3216  Type *Op0Ty = IC.getOperand(0)->getType();
3217  Type *Op1Ty = IC.getOperand(1)->getType();
3218  Assert(Op0Ty == Op1Ty,
3219  "Both operands to ICmp instruction are not of the same type!", &IC);
3220  // Check that the operands are the right type
3221  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3222  "Invalid operand types for ICmp instruction", &IC);
3223  // Check that the predicate is valid.
3224  Assert(IC.isIntPredicate(),
3225  "Invalid predicate in ICmp instruction!", &IC);
3226 
3227  visitInstruction(IC);
3228 }
3229 
3230 void Verifier::visitFCmpInst(FCmpInst &FC) {
3231  // Check that the operands are the same type
3232  Type *Op0Ty = FC.getOperand(0)->getType();
3233  Type *Op1Ty = FC.getOperand(1)->getType();
3234  Assert(Op0Ty == Op1Ty,
3235  "Both operands to FCmp instruction are not of the same type!", &FC);
3236  // Check that the operands are the right type
3237  Assert(Op0Ty->isFPOrFPVectorTy(),
3238  "Invalid operand types for FCmp instruction", &FC);
3239  // Check that the predicate is valid.
3240  Assert(FC.isFPPredicate(),
3241  "Invalid predicate in FCmp instruction!", &FC);
3242 
3243  visitInstruction(FC);
3244 }
3245 
3246 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3247  Assert(
3249  "Invalid extractelement operands!", &EI);
3250  visitInstruction(EI);
3251 }
3252 
3253 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3255  IE.getOperand(2)),
3256  "Invalid insertelement operands!", &IE);
3257  visitInstruction(IE);
3258 }
3259 
3260 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3262  SV.getOperand(2)),
3263  "Invalid shufflevector operands!", &SV);
3264  visitInstruction(SV);
3265 }
3266 
3267 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3268  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3269 
3270  Assert(isa<PointerType>(TargetTy),
3271  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3272  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3273 
3274  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3275  Assert(all_of(
3276  Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3277  "GEP indexes must be integers", &GEP);
3278  Type *ElTy =
3280  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3281 
3282  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3283  GEP.getResultElementType() == ElTy,
3284  "GEP is not of right type for indices!", &GEP, ElTy);
3285 
3286  if (GEP.getType()->isVectorTy()) {
3287  // Additional checks for vector GEPs.
3288  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3289  if (GEP.getPointerOperandType()->isVectorTy())
3290  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3291  "Vector GEP result width doesn't match operand's", &GEP);
3292  for (Value *Idx : Idxs) {
3293  Type *IndexTy = Idx->getType();
3294  if (IndexTy->isVectorTy()) {
3295  unsigned IndexWidth = IndexTy->getVectorNumElements();
3296  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3297  }
3298  Assert(IndexTy->isIntOrIntVectorTy(),
3299  "All GEP indices should be of integer type");
3300  }
3301  }
3302 
3303  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3304  Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3305  "GEP address space doesn't match type", &GEP);
3306  }
3307 
3308  visitInstruction(GEP);
3309 }
3310 
3311 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3312  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3313 }
3314 
3315 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3316  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3317  "precondition violation");
3318 
3319  unsigned NumOperands = Range->getNumOperands();
3320  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3321  unsigned NumRanges = NumOperands / 2;
3322  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3323 
3324  ConstantRange LastRange(1, true); // Dummy initial value
3325  for (unsigned i = 0; i < NumRanges; ++i) {
3326  ConstantInt *Low =
3327  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3328  Assert(Low, "The lower limit must be an integer!", Low);
3329  ConstantInt *High =
3330  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3331  Assert(High, "The upper limit must be an integer!", High);
3332  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3333  "Range types must match instruction type!", &I);
3334 
3335  APInt HighV = High->getValue();
3336  APInt LowV = Low->getValue();
3337  ConstantRange CurRange(LowV, HighV);
3338  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3339  "Range must not be empty!", Range);
3340  if (i != 0) {
3341  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3342  "Intervals are overlapping", Range);
3343  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3344  Range);
3345  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3346  Range);
3347  }
3348  LastRange = ConstantRange(LowV, HighV);
3349  }
3350  if (NumRanges > 2) {
3351  APInt FirstLow =
3352  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3353  APInt FirstHigh =
3354  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3355  ConstantRange FirstRange(FirstLow, FirstHigh);
3356  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3357  "Intervals are overlapping", Range);
3358  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3359  Range);
3360  }
3361 }
3362 
3363 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3364  unsigned Size = DL.getTypeSizeInBits(Ty);
3365  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3366  Assert(!(Size & (Size - 1)),
3367  "atomic memory access' operand must have a power-of-two size", Ty, I);
3368 }
3369 
3370 void Verifier::visitLoadInst(LoadInst &LI) {
3372  Assert(PTy, "Load operand must be a pointer.", &LI);
3373  Type *ElTy = LI.getType();
3375  "huge alignment values are unsupported", &LI);
3376  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3377  if (LI.isAtomic()) {
3380  "Load cannot have Release ordering", &LI);
3381  Assert(LI.getAlignment() != 0,
3382  "Atomic load must specify explicit alignment", &LI);
3383  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3384  "atomic load operand must have integer, pointer, or floating point "
3385  "type!",
3386  ElTy, &LI);
3387  checkAtomicMemAccessSize(ElTy, &LI);
3388  } else {
3390  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3391  }
3392 
3393  visitInstruction(LI);
3394 }
3395 
3396 void Verifier::visitStoreInst(StoreInst &SI) {
3398  Assert(PTy, "Store operand must be a pointer.", &SI);
3399  Type *ElTy = PTy->getElementType();
3400  Assert(ElTy == SI.getOperand(0)->getType(),
3401  "Stored value type does not match pointer operand type!", &SI, ElTy);
3403  "huge alignment values are unsupported", &SI);
3404  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3405  if (SI.isAtomic()) {
3408  "Store cannot have Acquire ordering", &SI);
3409  Assert(SI.getAlignment() != 0,
3410  "Atomic store must specify explicit alignment", &SI);
3411  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3412  "atomic store operand must have integer, pointer, or floating point "
3413  "type!",
3414  ElTy, &SI);
3415  checkAtomicMemAccessSize(ElTy, &SI);
3416  } else {
3418  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3419  }
3420  visitInstruction(SI);
3421 }
3422 
3423 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3424 void Verifier::verifySwiftErrorCall(CallBase &Call,
3425  const Value *SwiftErrorVal) {
3426  unsigned Idx = 0;
3427  for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3428  if (*I == SwiftErrorVal) {
3429  Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3430  "swifterror value when used in a callsite should be marked "
3431  "with swifterror attribute",
3432  SwiftErrorVal, Call);
3433  }
3434  }
3435 }
3436 
3437 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3438  // Check that swifterror value is only used by loads, stores, or as
3439  // a swifterror argument.
3440  for (const User *U : SwiftErrorVal->users()) {
3441  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3442  isa<InvokeInst>(U),
3443  "swifterror value can only be loaded and stored from, or "
3444  "as a swifterror argument!",
3445  SwiftErrorVal, U);
3446  // If it is used by a store, check it is the second operand.
3447  if (auto StoreI = dyn_cast<StoreInst>(U))
3448  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3449  "swifterror value should be the second operand when used "
3450  "by stores", SwiftErrorVal, U);
3451  if (auto *Call = dyn_cast<CallBase>(U))
3452  verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3453  }
3454 }
3455 
3456 void Verifier::visitAllocaInst(AllocaInst &AI) {
3457  SmallPtrSet<Type*, 4> Visited;
3458  PointerType *PTy = AI.getType();
3459  // TODO: Relax this restriction?
3461  "Allocation instruction pointer not in the stack address space!",
3462  &AI);
3463  Assert(AI.getAllocatedType()->isSized(&Visited),
3464  "Cannot allocate unsized type", &AI);
3466  "Alloca array size must have integer type", &AI);
3468  "huge alignment values are unsupported", &AI);
3469 
3470  if (AI.isSwiftError()) {
3471  verifySwiftErrorValue(&AI);
3472  }
3473 
3474  visitInstruction(AI);
3475 }
3476 
3477 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3478 
3479  // FIXME: more conditions???
3481  "cmpxchg instructions must be atomic.", &CXI);
3483  "cmpxchg instructions must be atomic.", &CXI);
3485  "cmpxchg instructions cannot be unordered.", &CXI);
3487  "cmpxchg instructions cannot be unordered.", &CXI);
3489  "cmpxchg instructions failure argument shall be no stronger than the "
3490  "success argument",
3491  &CXI);
3494  "cmpxchg failure ordering cannot include release semantics", &CXI);
3495 
3496  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3497  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3498  Type *ElTy = PTy->getElementType();
3499  Assert(ElTy->isIntOrPtrTy(),
3500  "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3501  checkAtomicMemAccessSize(ElTy, &CXI);
3502  Assert(ElTy == CXI.getOperand(1)->getType(),
3503  "Expected value type does not match pointer operand type!", &CXI,
3504  ElTy);
3505  Assert(ElTy == CXI.getOperand(2)->getType(),
3506  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3507  visitInstruction(CXI);
3508 }
3509 
3510 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3512  "atomicrmw instructions must be atomic.", &RMWI);
3514  "atomicrmw instructions cannot be unordered.", &RMWI);
3515  auto Op = RMWI.getOperation();
3516  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3517  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3518  Type *ElTy = PTy->getElementType();
3519  if (Op == AtomicRMWInst::Xchg) {
3520  Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3522  " operand must have integer or floating point type!",
3523  &RMWI, ElTy);
3524  } else if (AtomicRMWInst::isFPOperation(Op)) {
3525  Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3527  " operand must have floating point type!",
3528  &RMWI, ElTy);
3529  } else {
3530  Assert(ElTy->isIntegerTy(), "atomicrmw " +
3532  " operand must have integer type!",
3533  &RMWI, ElTy);
3534  }
3535  checkAtomicMemAccessSize(ElTy, &RMWI);
3536  Assert(ElTy == RMWI.getOperand(1)->getType(),
3537  "Argument value type does not match pointer operand type!", &RMWI,
3538  ElTy);
3540  "Invalid binary operation!", &RMWI);
3541  visitInstruction(RMWI);
3542 }
3543 
3544 void Verifier::visitFenceInst(FenceInst &FI) {
3545  const AtomicOrdering Ordering = FI.getOrdering();
3546  Assert(Ordering == AtomicOrdering::Acquire ||
3547  Ordering == AtomicOrdering::Release ||
3548  Ordering == AtomicOrdering::AcquireRelease ||
3550  "fence instructions may only have acquire, release, acq_rel, or "
3551  "seq_cst ordering.",
3552  &FI);
3553  visitInstruction(FI);
3554 }
3555 
3556 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3558  EVI.getIndices()) == EVI.getType(),
3559  "Invalid ExtractValueInst operands!", &EVI);
3560 
3561  visitInstruction(EVI);
3562 }
3563 
3564 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3566  IVI.getIndices()) ==
3567  IVI.getOperand(1)->getType(),
3568  "Invalid InsertValueInst operands!", &IVI);
3569 
3570  visitInstruction(IVI);
3571 }
3572 
3573 static Value *getParentPad(Value *EHPad) {
3574  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3575  return FPI->getParentPad();
3576 
3577  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3578 }
3579 
3580 void Verifier::visitEHPadPredecessors(Instruction &I) {
3581  assert(I.isEHPad());
3582 
3583  BasicBlock *BB = I.getParent();
3584  Function *F = BB->getParent();
3585 
3586  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3587 
3588  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3589  // The landingpad instruction defines its parent as a landing pad block. The
3590  // landing pad block may be branched to only by the unwind edge of an
3591  // invoke.
3592  for (BasicBlock *PredBB : predecessors(BB)) {
3593  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3594  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3595  "Block containing LandingPadInst must be jumped to "
3596  "only by the unwind edge of an invoke.",
3597  LPI);
3598  }
3599  return;
3600  }
3601  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3602  if (!pred_empty(BB))
3603  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3604  "Block containg CatchPadInst must be jumped to "
3605  "only by its catchswitch.",
3606  CPI);
3607  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3608  "Catchswitch cannot unwind to one of its catchpads",
3609  CPI->getCatchSwitch(), CPI);
3610  return;
3611  }
3612 
3613  // Verify that each pred has a legal terminator with a legal to/from EH
3614  // pad relationship.
3615  Instruction *ToPad = &I;
3616  Value *ToPadParent = getParentPad(ToPad);
3617  for (BasicBlock *PredBB : predecessors(BB)) {
3618  Instruction *TI = PredBB->getTerminator();
3619  Value *FromPad;
3620  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3621  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3622  "EH pad must be jumped to via an unwind edge", ToPad, II);
3623  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3624  FromPad = Bundle->Inputs[0];
3625  else
3626  FromPad = ConstantTokenNone::get(II->getContext());
3627  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3628  FromPad = CRI->getOperand(0);
3629  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3630  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3631  FromPad = CSI;
3632  } else {
3633  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3634  }
3635 
3636  // The edge may exit from zero or more nested pads.
3637  SmallSet<Value *, 8> Seen;
3638  for (;; FromPad = getParentPad(FromPad)) {
3639  Assert(FromPad != ToPad,
3640  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3641  if (FromPad == ToPadParent) {
3642  // This is a legal unwind edge.
3643  break;
3644  }
3645  Assert(!isa<ConstantTokenNone>(FromPad),
3646  "A single unwind edge may only enter one EH pad", TI);
3647  Assert(Seen.insert(FromPad).second,
3648  "EH pad jumps through a cycle of pads", FromPad);
3649  }
3650  }
3651 }
3652 
3653 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3654  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3655  // isn't a cleanup.
3656  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3657  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3658 
3659  visitEHPadPredecessors(LPI);
3660 
3661  if (!LandingPadResultTy)
3662  LandingPadResultTy = LPI.getType();
3663  else
3664  Assert(LandingPadResultTy == LPI.getType(),
3665  "The landingpad instruction should have a consistent result type "
3666  "inside a function.",
3667  &LPI);
3668 
3669  Function *F = LPI.getParent()->getParent();
3670  Assert(F->hasPersonalityFn(),
3671  "LandingPadInst needs to be in a function with a personality.", &LPI);
3672 
3673  // The landingpad instruction must be the first non-PHI instruction in the
3674  // block.
3675  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3676  "LandingPadInst not the first non-PHI instruction in the block.",
3677  &LPI);
3678 
3679  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3680  Constant *Clause = LPI.getClause(i);
3681  if (LPI.isCatch(i)) {
3682  Assert(isa<PointerType>(Clause->getType()),
3683  "Catch operand does not have pointer type!", &LPI);
3684  } else {
3685  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3686  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3687  "Filter operand is not an array of constants!", &LPI);
3688  }
3689  }
3690 
3691  visitInstruction(LPI);
3692 }
3693 
3694 void Verifier::visitResumeInst(ResumeInst &RI) {
3696  "ResumeInst needs to be in a function with a personality.", &RI);
3697 
3698  if (!LandingPadResultTy)
3699  LandingPadResultTy = RI.getValue()->getType();
3700  else
3701  Assert(LandingPadResultTy == RI.getValue()->getType(),
3702  "The resume instruction should have a consistent result type "
3703  "inside a function.",
3704  &RI);
3705 
3706  visitTerminator(RI);
3707 }
3708 
3709 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3710  BasicBlock *BB = CPI.getParent();
3711 
3712  Function *F = BB->getParent();
3713  Assert(F->hasPersonalityFn(),
3714  "CatchPadInst needs to be in a function with a personality.", &CPI);
3715 
3716  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3717  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3718  CPI.getParentPad());
3719 
3720  // The catchpad instruction must be the first non-PHI instruction in the
3721  // block.
3722  Assert(BB->getFirstNonPHI() == &CPI,
3723  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3724 
3725  visitEHPadPredecessors(CPI);
3726  visitFuncletPadInst(CPI);
3727 }
3728 
3729 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3730  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3731  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3732  CatchReturn.getOperand(0));
3733 
3734  visitTerminator(CatchReturn);
3735 }
3736 
3737 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3738  BasicBlock *BB = CPI.getParent();
3739 
3740  Function *F = BB->getParent();
3741  Assert(F->hasPersonalityFn(),
3742  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3743 
3744  // The cleanuppad instruction must be the first non-PHI instruction in the
3745  // block.
3746  Assert(BB->getFirstNonPHI() == &CPI,
3747  "CleanupPadInst not the first non-PHI instruction in the block.",
3748  &CPI);
3749 
3750  auto *ParentPad = CPI.getParentPad();
3751  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3752  "CleanupPadInst has an invalid parent.", &CPI);
3753 
3754  visitEHPadPredecessors(CPI);
3755  visitFuncletPadInst(CPI);
3756 }
3757 
3758 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3759  User *FirstUser = nullptr;
3760  Value *FirstUnwindPad = nullptr;
3761  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3763 
3764  while (!Worklist.empty()) {
3765  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3766  Assert(Seen.insert(CurrentPad).second,
3767  "FuncletPadInst must not be nested within itself", CurrentPad);
3768  Value *UnresolvedAncestorPad = nullptr;
3769  for (User *U : CurrentPad->users()) {
3770  BasicBlock *UnwindDest;
3771  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3772  UnwindDest = CRI->getUnwindDest();
3773  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3774  // We allow catchswitch unwind to caller to nest
3775  // within an outer pad that unwinds somewhere else,
3776  // because catchswitch doesn't have a nounwind variant.
3777  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3778  if (CSI->unwindsToCaller())
3779  continue;
3780  UnwindDest = CSI->getUnwindDest();
3781  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3782  UnwindDest = II->getUnwindDest();
3783  } else if (isa<CallInst>(U)) {
3784  // Calls which don't unwind may be found inside funclet
3785  // pads that unwind somewhere else. We don't *require*
3786  // such calls to be annotated nounwind.
3787  continue;
3788  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3789  // The unwind dest for a cleanup can only be found by
3790  // recursive search. Add it to the worklist, and we'll
3791  // search for its first use that determines where it unwinds.
3792  Worklist.push_back(CPI);
3793  continue;
3794  } else {
3795  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3796  continue;
3797  }
3798 
3799  Value *UnwindPad;
3800  bool ExitsFPI;
3801  if (UnwindDest) {
3802  UnwindPad = UnwindDest->getFirstNonPHI();
3803  if (!cast<Instruction>(UnwindPad)->isEHPad())
3804  continue;
3805  Value *UnwindParent = getParentPad(UnwindPad);
3806  // Ignore unwind edges that don't exit CurrentPad.
3807  if (UnwindParent == CurrentPad)
3808  continue;
3809  // Determine whether the original funclet pad is exited,
3810  // and if we are scanning nested pads determine how many
3811  // of them are exited so we can stop searching their
3812  // children.
3813  Value *ExitedPad = CurrentPad;
3814  ExitsFPI = false;
3815  do {
3816  if (ExitedPad == &FPI) {
3817  ExitsFPI = true;
3818  // Now we can resolve any ancestors of CurrentPad up to
3819  // FPI, but not including FPI since we need to make sure
3820  // to check all direct users of FPI for consistency.
3821  UnresolvedAncestorPad = &FPI;
3822  break;
3823  }
3824  Value *ExitedParent = getParentPad(ExitedPad);
3825  if (ExitedParent == UnwindParent) {
3826  // ExitedPad is the ancestor-most pad which this unwind
3827  // edge exits, so we can resolve up to it, meaning that
3828  // ExitedParent is the first ancestor still unresolved.
3829  UnresolvedAncestorPad = ExitedParent;
3830  break;
3831  }
3832  ExitedPad = ExitedParent;
3833  } while (!isa<ConstantTokenNone>(ExitedPad));
3834  } else {
3835  // Unwinding to caller exits all pads.
3836  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3837  ExitsFPI = true;
3838  UnresolvedAncestorPad = &FPI;
3839  }
3840 
3841  if (ExitsFPI) {
3842  // This unwind edge exits FPI. Make sure it agrees with other
3843  // such edges.
3844  if (FirstUser) {
3845  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3846  "pad must have the same unwind "
3847  "dest",
3848  &FPI, U, FirstUser);
3849  } else {
3850  FirstUser = U;
3851  FirstUnwindPad = UnwindPad;
3852  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3853  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3854  getParentPad(UnwindPad) == getParentPad(&FPI))
3855  SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3856  }
3857  }
3858  // Make sure we visit all uses of FPI, but for nested pads stop as
3859  // soon as we know where they unwind to.
3860  if (CurrentPad != &FPI)
3861  break;
3862  }
3863  if (UnresolvedAncestorPad) {
3864  if (CurrentPad == UnresolvedAncestorPad) {
3865  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3866  // we've found an unwind edge that exits it, because we need to verify
3867  // all direct uses of FPI.
3868  assert(CurrentPad == &FPI);
3869  continue;
3870  }
3871  // Pop off the worklist any nested pads that we've found an unwind
3872  // destination for. The pads on the worklist are the uncles,
3873  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3874  // for all ancestors of CurrentPad up to but not including
3875  // UnresolvedAncestorPad.
3876  Value *ResolvedPad = CurrentPad;
3877  while (!Worklist.empty()) {
3878  Value *UnclePad = Worklist.back();
3879  Value *AncestorPad = getParentPad(UnclePad);
3880  // Walk ResolvedPad up the ancestor list until we either find the
3881  // uncle's parent or the last resolved ancestor.
3882  while (ResolvedPad != AncestorPad) {
3883  Value *ResolvedParent = getParentPad(ResolvedPad);
3884  if (ResolvedParent == UnresolvedAncestorPad) {
3885  break;
3886  }
3887  ResolvedPad = ResolvedParent;
3888  }
3889  // If the resolved ancestor search didn't find the uncle's parent,
3890  // then the uncle is not yet resolved.
3891  if (ResolvedPad != AncestorPad)
3892  break;
3893  // This uncle is resolved, so pop it from the worklist.
3894  Worklist.pop_back();
3895  }
3896  }
3897  }
3898 
3899  if (FirstUnwindPad) {
3900  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3901  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3902  Value *SwitchUnwindPad;
3903  if (SwitchUnwindDest)
3904  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3905  else
3906  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3907  Assert(SwitchUnwindPad == FirstUnwindPad,
3908  "Unwind edges out of a catch must have the same unwind dest as "
3909  "the parent catchswitch",
3910  &FPI, FirstUser, CatchSwitch);
3911  }
3912  }
3913 
3914  visitInstruction(FPI);
3915 }
3916 
3917 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3918  BasicBlock *BB = CatchSwitch.getParent();
3919 
3920  Function *F = BB->getParent();
3921  Assert(F->hasPersonalityFn(),
3922  "CatchSwitchInst needs to be in a function with a personality.",
3923  &CatchSwitch);
3924 
3925  // The catchswitch instruction must be the first non-PHI instruction in the
3926  // block.
3927  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3928  "CatchSwitchInst not the first non-PHI instruction in the block.",
3929  &CatchSwitch);
3930 
3931  auto *ParentPad = CatchSwitch.getParentPad();
3932  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3933  "CatchSwitchInst has an invalid parent.", ParentPad);
3934 
3935  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3936  Instruction *I = UnwindDest->getFirstNonPHI();
3937  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3938  "CatchSwitchInst must unwind to an EH block which is not a "
3939  "landingpad.",
3940  &CatchSwitch);
3941 
3942  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3943  if (getParentPad(I) == ParentPad)
3944  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3945  }
3946 
3947  Assert(CatchSwitch.getNumHandlers() != 0,
3948  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3949 
3950  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3951  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3952  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3953  }
3954 
3955  visitEHPadPredecessors(CatchSwitch);
3956  visitTerminator(CatchSwitch);
3957 }
3958 
3959 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3960  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3961  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3962  CRI.getOperand(0));
3963 
3964  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3965  Instruction *I = UnwindDest->getFirstNonPHI();
3966  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3967  "CleanupReturnInst must unwind to an EH block which is not a "
3968  "landingpad.",
3969  &CRI);
3970  }
3971 
3972  visitTerminator(CRI);
3973 }
3974 
3975 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3976  Instruction *Op = cast<Instruction>(I.getOperand(i));
3977  // If the we have an invalid invoke, don't try to compute the dominance.
3978  // We already reject it in the invoke specific checks and the dominance
3979  // computation doesn't handle multiple edges.
3980  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3981  if (II->getNormalDest() == II->getUnwindDest())
3982  return;
3983  }
3984 
3985  // Quick check whether the def has already been encountered in the same block.
3986  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3987  // uses are defined to happen on the incoming edge, not at the instruction.
3988  //
3989  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3990  // wrapping an SSA value, assert that we've already encountered it. See
3991  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3992  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3993  return;
3994 
3995  const Use &U = I.getOperandUse(i);
3996  Assert(DT.dominates(Op, U),
3997  "Instruction does not dominate all uses!", Op, &I);
3998 }
3999 
4000 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4001  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4002  "apply only to pointer types", &I);
4003  Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4004  "dereferenceable, dereferenceable_or_null apply only to load"
4005  " and inttoptr instructions, use attributes for calls or invokes", &I);
4006  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4007  "take one operand!", &I);
4008  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4009  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4010  "dereferenceable_or_null metadata value must be an i64!", &I);
4011 }
4012 
4013 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4014  Assert(MD->getNumOperands() >= 2,
4015  "!prof annotations should have no less than 2 operands", MD);
4016 
4017  // Check first operand.
4018  Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4019  Assert(isa<MDString>(MD->getOperand(0)),
4020  "expected string with name of the !prof annotation", MD);
4021  MDString *MDS = cast<MDString>(MD->getOperand(0));
4022  StringRef ProfName = MDS->getString();
4023 
4024  // Check consistency of !prof branch_weights metadata.
4025  if (ProfName.equals("branch_weights")) {
4026  unsigned ExpectedNumOperands = 0;
4027  if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4028  ExpectedNumOperands = BI->getNumSuccessors();
4029  else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4030  ExpectedNumOperands = SI->getNumSuccessors();
4031  else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
4032  ExpectedNumOperands = 1;
4033  else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4034  ExpectedNumOperands = IBI->getNumDestinations();
4035  else if (isa<SelectInst>(&I))
4036  ExpectedNumOperands = 2;
4037  else
4038  CheckFailed("!prof branch_weights are not allowed for this instruction",
4039  MD);
4040 
4041  Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4042  "Wrong number of operands", MD);
4043  for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4044  auto &MDO = MD->getOperand(i);
4045  Assert(MDO, "second operand should not be null", MD);
4046  Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4047  "!prof brunch_weights operand is not a const int");
4048  }
4049  }
4050 }
4051 
4052 /// verifyInstruction - Verify that an instruction is well formed.
4053 ///
4054 void Verifier::visitInstruction(Instruction &I) {
4055  BasicBlock *BB = I.getParent();
4056  Assert(BB, "Instruction not embedded in basic block!", &I);
4057 
4058  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4059  for (User *U : I.users()) {
4060  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4061  "Only PHI nodes may reference their own value!", &I);
4062  }
4063  }
4064 
4065  // Check that void typed values don't have names
4066  Assert(!I.getType()->isVoidTy() || !I.hasName(),
4067  "Instruction has a name, but provides a void value!", &I);
4068 
4069  // Check that the return value of the instruction is either void or a legal
4070  // value type.
4071  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4072  "Instruction returns a non-scalar type!", &I);
4073 
4074  // Check that the instruction doesn't produce metadata. Calls are already
4075  // checked against the callee type.
4076  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4077  "Invalid use of metadata!", &I);
4078 
4079  // Check that all uses of the instruction, if they are instructions
4080  // themselves, actually have parent basic blocks. If the use is not an
4081  // instruction, it is an error!
4082  for (Use &U : I.uses()) {
4083  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4084  Assert(Used->getParent() != nullptr,
4085  "Instruction referencing"
4086  " instruction not embedded in a basic block!",
4087  &I, Used);
4088  else {
4089  CheckFailed("Use of instruction is not an instruction!", U);
4090  return;
4091  }
4092  }
4093 
4094  // Get a pointer to the call base of the instruction if it is some form of
4095  // call.
4096  const CallBase *CBI = dyn_cast<CallBase>(&I);
4097 
4098  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4099  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4100 
4101  // Check to make sure that only first-class-values are operands to
4102  // instructions.
4103  if (!I.getOperand(i)->getType()->isFirstClassType()) {
4104  Assert(false, "Instruction operands must be first-class values!", &I);
4105  }
4106 
4107  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4108  // Check to make sure that the "address of" an intrinsic function is never
4109  // taken.
4110  Assert(!F->isIntrinsic() ||
4111  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4112  "Cannot take the address of an intrinsic!", &I);
4113  Assert(
4114  !F->isIntrinsic() || isa<CallInst>(I) ||
4115  F->getIntrinsicID() == Intrinsic::donothing ||
4116  F->getIntrinsicID() == Intrinsic::coro_resume ||
4117  F->getIntrinsicID() == Intrinsic::coro_destroy ||
4118  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4119  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4120  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4121  F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4122  "Cannot invoke an intrinsic other than donothing, patchpoint, "
4123  "statepoint, coro_resume or coro_destroy",
4124  &I);
4125  Assert(F->getParent() == &M, "Referencing function in another module!",
4126  &I, &M, F, F->getParent());
4127  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4128  Assert(OpBB->getParent() == BB->getParent(),
4129  "Referring to a basic block in another function!", &I);
4130  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4131  Assert(OpArg->getParent() == BB->getParent(),
4132  "Referring to an argument in another function!", &I);
4133  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4134  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4135  &M, GV, GV->getParent());
4136  } else if (isa<Instruction>(I.getOperand(i))) {
4137  verifyDominatesUse(I, i);
4138  } else if (isa<InlineAsm>(I.getOperand(i))) {
4139  Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4140  "Cannot take the address of an inline asm!", &I);
4141  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4142  if (CE->getType()->isPtrOrPtrVectorTy() ||
4144  // If we have a ConstantExpr pointer, we need to see if it came from an
4145  // illegal bitcast. If the datalayout string specifies non-integral
4146  // address spaces then we also need to check for illegal ptrtoint and
4147  // inttoptr expressions.
4148  visitConstantExprsRecursively(CE);
4149  }
4150  }
4151  }
4152 
4153  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4155  "fpmath requires a floating point result!", &I);
4156  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4157  if (ConstantFP *CFP0 =
4158  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4159  const APFloat &Accuracy = CFP0->getValueAPF();
4160  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4161  "fpmath accuracy must have float type", &I);
4162  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4163  "fpmath accuracy not a positive number!", &I);
4164  } else {
4165  Assert(false, "invalid fpmath accuracy!", &I);
4166  }
4167  }
4168 
4169  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4170  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4171  "Ranges are only for loads, calls and invokes!", &I);
4172  visitRangeMetadata(I, Range, I.getType());
4173  }
4174 
4175  if (I.getMetadata(LLVMContext::MD_nonnull)) {
4176  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4177  &I);
4178  Assert(isa<LoadInst>(I),
4179  "nonnull applies only to load instructions, use attributes"
4180  " for calls or invokes",
4181  &I);
4182  }
4183 
4184  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4185  visitDereferenceableMetadata(I, MD);
4186 
4187  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4188  visitDereferenceableMetadata(I, MD);
4189 
4190  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4191  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4192 
4193  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4194  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4195  &I);
4196  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4197  "use attributes for calls or invokes", &I);
4198  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4199  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4200  Assert(CI && CI->getType()->isIntegerTy(64),
4201  "align metadata value must be an i64!", &I);
4202  uint64_t Align = CI->getZExtValue();
4203  Assert(isPowerOf2_64(Align),
4204  "align metadata value must be a power of 2!", &I);
4206  "alignment is larger that implementation defined limit", &I);
4207  }
4208 
4209  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4210  visitProfMetadata(I, MD);
4211 
4212  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4213  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4214  visitMDNode(*N);
4215  }
4216 
4217  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4218  verifyFragmentExpression(*DII);
4219  verifyNotEntryValue(*DII);
4220  }
4221 
4222  InstsInThisBlock.insert(&I);
4223 }
4224 
4225 /// Allow intrinsics to be verified in different ways.
4226 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4227  Function *IF = Call.getCalledFunction();
4228  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4229  IF);
4230 
4231  // Verify that the intrinsic prototype lines up with what the .td files
4232  // describe.
4233  FunctionType *IFTy = IF->getFunctionType();
4234  bool IsVarArg = IFTy->isVarArg();
4235 
4237  getIntrinsicInfoTableEntries(ID, Table);
4239 
4240  // Walk the descriptors to extract overloaded types.
4241  SmallVector<Type *, 4> ArgTys;
4243  Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4245  "Intrinsic has incorrect return type!", IF);
4247  "Intrinsic has incorrect argument type!", IF);
4248 
4249  // Verify if the intrinsic call matches the vararg property.
4250  if (IsVarArg)
4251  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4252  "Intrinsic was not defined with variable arguments!", IF);
4253  else
4254  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4255  "Callsite was not defined with variable arguments!", IF);
4256 
4257  // All descriptors should be absorbed by now.
4258  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4259 
4260  // Now that we have the intrinsic ID and the actual argument types (and we
4261  // know they are legal for the intrinsic!) get the intrinsic name through the
4262  // usual means. This allows us to verify the mangling of argument types into
4263  // the name.
4264  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4265  Assert(ExpectedName == IF->getName(),
4266  "Intrinsic name not mangled correctly for type arguments! "
4267  "Should be: " +
4268  ExpectedName,
4269  IF);
4270 
4271  // If the intrinsic takes MDNode arguments, verify that they are either global
4272  // or are local to *this* function.
4273  for (Value *V : Call.args())
4274  if (auto *MD = dyn_cast<MetadataAsValue>(V))
4275  visitMetadataAsValue(*MD, Call.getCaller());
4276 
4277  switch (ID) {
4278  default:
4279  break;
4280  case Intrinsic::coro_id: {
4281  auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4282  if (isa<ConstantPointerNull>(InfoArg))
4283  break;
4284  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4285  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4286  "info argument of llvm.coro.begin must refer to an initialized "
4287  "constant");
4288  Constant *Init = GV->getInitializer();
4289  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4290  "info argument of llvm.coro.begin must refer to either a struct or "
4291  "an array");
4292  break;
4293  }
4294  case Intrinsic::experimental_constrained_fadd:
4295  case Intrinsic::experimental_constrained_fsub:
4296  case Intrinsic::experimental_constrained_fmul:
4297  case Intrinsic::experimental_constrained_fdiv:
4298  case Intrinsic::experimental_constrained_frem:
4299  case Intrinsic::experimental_constrained_fma:
4300  case Intrinsic::experimental_constrained_fptosi:
4301  case Intrinsic::experimental_constrained_fptoui:
4302  case Intrinsic::experimental_constrained_fptrunc:
4303  case Intrinsic::experimental_constrained_fpext:
4304  case Intrinsic::experimental_constrained_sqrt:
4305  case Intrinsic::experimental_constrained_pow:
4306  case Intrinsic::experimental_constrained_powi:
4307  case Intrinsic::experimental_constrained_sin:
4308  case Intrinsic::experimental_constrained_cos:
4309  case Intrinsic::experimental_constrained_exp:
4310  case Intrinsic::experimental_constrained_exp2:
4311  case Intrinsic::experimental_constrained_log:
4312  case Intrinsic::experimental_constrained_log10:
4313  case Intrinsic::experimental_constrained_log2:
4314  case Intrinsic::experimental_constrained_lrint:
4315  case Intrinsic::experimental_constrained_llrint:
4316  case Intrinsic::experimental_constrained_rint:
4317  case Intrinsic::experimental_constrained_nearbyint:
4318  case Intrinsic::experimental_constrained_maxnum:
4319  case Intrinsic::experimental_constrained_minnum:
4320  case Intrinsic::experimental_constrained_ceil:
4321  case Intrinsic::experimental_constrained_floor:
4322  case Intrinsic::experimental_constrained_lround:
4323  case Intrinsic::experimental_constrained_llround:
4324  case Intrinsic::experimental_constrained_round:
4325  case Intrinsic::experimental_constrained_trunc:
4326  visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4327  break;
4328  case Intrinsic::dbg_declare: // llvm.dbg.declare
4329  Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4330  "invalid llvm.dbg.declare intrinsic call 1", Call);
4331  visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4332  break;
4333  case Intrinsic::dbg_addr: // llvm.dbg.addr
4334  visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4335  break;
4336  case Intrinsic::dbg_value: // llvm.dbg.value
4337  visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4338  break;
4339  case Intrinsic::dbg_label: // llvm.dbg.label
4340  visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4341  break;
4342  case Intrinsic::memcpy:
4343  case Intrinsic::memmove:
4344  case Intrinsic::memset: {
4345  const auto *MI = cast<MemIntrinsic>(&Call);
4346  auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4347  return Alignment == 0 || isPowerOf2_32(Alignment);
4348  };
4349  Assert(IsValidAlignment(MI->getDestAlignment()),
4350  "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4351  Call);
4352  if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4353  Assert(IsValidAlignment(MTI->getSourceAlignment()),
4354  "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4355  Call);
4356  }
4357 
4358  break;
4359  }
4360  case Intrinsic::memcpy_element_unordered_atomic:
4361  case Intrinsic::memmove_element_unordered_atomic:
4362  case Intrinsic::memset_element_unordered_atomic: {
4363  const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4364 
4365  ConstantInt *ElementSizeCI =
4366  cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4367  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4368  Assert(ElementSizeVal.isPowerOf2(),
4369  "element size of the element-wise atomic memory intrinsic "
4370  "must be a power of 2",
4371  Call);
4372 
4373  if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4374  uint64_t Length = LengthCI->getZExtValue();
4375  uint64_t ElementSize = AMI->getElementSizeInBytes();
4376  Assert((Length % ElementSize) == 0,
4377  "constant length must be a multiple of the element size in the "
4378  "element-wise atomic memory intrinsic",
4379  Call);
4380  }
4381 
4382  auto IsValidAlignment = [&](uint64_t Alignment) {
4383  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4384  };
4385  uint64_t DstAlignment = AMI->getDestAlignment();
4386  Assert(IsValidAlignment(DstAlignment),
4387  "incorrect alignment of the destination argument", Call);
4388  if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4389  uint64_t SrcAlignment = AMT->getSourceAlignment();
4390  Assert(IsValidAlignment(SrcAlignment),
4391  "incorrect alignment of the source argument", Call);
4392  }
4393  break;
4394  }
4395  case Intrinsic::gcroot:
4396  case Intrinsic::gcwrite:
4397  case Intrinsic::gcread:
4398  if (ID == Intrinsic::gcroot) {
4399  AllocaInst *AI =
4401  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4402  Assert(isa<Constant>(Call.getArgOperand(1)),
4403  "llvm.gcroot parameter #2 must be a constant.", Call);
4404  if (!AI->getAllocatedType()->isPointerTy()) {
4405  Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4406  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4407  "or argument #2 must be a non-null constant.",
4408  Call);
4409  }
4410  }
4411 
4412  Assert(Call.getParent()->getParent()->hasGC(),
4413  "Enclosing function does not use GC.", Call);
4414  break;
4415  case Intrinsic::init_trampoline:
4416  Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4417  "llvm.init_trampoline parameter #2 must resolve to a function.",
4418  Call);
4419  break;
4420  case Intrinsic::prefetch:
4421  Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4422  cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4423  "invalid arguments to llvm.prefetch", Call);
4424  break;
4425  case Intrinsic::stackprotector:
4426  Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4427  "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4428  break;
4429  case Intrinsic::localescape: {
4430  BasicBlock *BB = Call.getParent();
4431  Assert(BB == &BB->getParent()->front(),
4432  "llvm.localescape used outside of entry block", Call);
4433  Assert(!SawFrameEscape,
4434  "multiple calls to llvm.localescape in one function", Call);
4435  for (Value *Arg : Call.args()) {
4436  if (isa<ConstantPointerNull>(Arg))
4437  continue; // Null values are allowed as placeholders.
4438  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4439  Assert(AI && AI->isStaticAlloca(),
4440  "llvm.localescape only accepts static allocas", Call);
4441  }
4442  FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4443  SawFrameEscape = true;
4444  break;
4445  }
4446  case Intrinsic::localrecover: {
4447  Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4448  Function *Fn = dyn_cast<Function>(FnArg);
4449  Assert(Fn && !Fn->isDeclaration(),
4450  "llvm.localrecover first "
4451  "argument must be function defined in this module",
4452  Call);
4453  auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4454  auto &Entry = FrameEscapeInfo[Fn];
4455  Entry.second = unsigned(
4456  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4457  break;
4458  }
4459 
4460  case Intrinsic::experimental_gc_statepoint:
4461  if (auto *CI = dyn_cast<CallInst>(&Call))
4462  Assert(!CI->isInlineAsm(),
4463  "gc.statepoint support for inline assembly unimplemented", CI);
4464  Assert(Call.getParent()->getParent()->hasGC(),
4465  "Enclosing function does not use GC.", Call);
4466 
4467  verifyStatepoint(Call);
4468  break;
4469  case Intrinsic::experimental_gc_result: {
4470  Assert(Call.getParent()->getParent()->hasGC(),
4471  "Enclosing function does not use GC.", Call);
4472  // Are we tied to a statepoint properly?
4473  const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4474  const Function *StatepointFn =
4475  StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4476  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4477  StatepointFn->getIntrinsicID() ==
4478  Intrinsic::experimental_gc_statepoint,
4479  "gc.result operand #1 must be from a statepoint", Call,
4480  Call.getArgOperand(0));
4481 
4482  // Assert that result type matches wrapped callee.
4483  const Value *Target = StatepointCall->getArgOperand(2);
4484  auto *PT = cast<PointerType>(Target->getType());
4485  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4486  Assert(Call.getType() == TargetFuncType->getReturnType(),
4487  "gc.result result type does not match wrapped callee", Call);
4488  break;
4489  }
4490  case Intrinsic::experimental_gc_relocate: {
4491  Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4492 
4493  Assert(isa<PointerType>(Call.getType()->getScalarType()),
4494  "gc.relocate must return a pointer or a vector of pointers", Call);
4495 
4496  // Check that this relocate is correctly tied to the statepoint
4497 
4498  // This is case for relocate on the unwinding path of an invoke statepoint
4499  if (LandingPadInst *LandingPad =
4500  dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4501 
4502  const BasicBlock *InvokeBB =
4503  LandingPad->getParent()->getUniquePredecessor();
4504 
4505  // Landingpad relocates should have only one predecessor with invoke
4506  // statepoint terminator
4507  Assert(InvokeBB, "safepoints should have unique landingpads",
4508  LandingPad->getParent());
4509  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4510  InvokeBB);
4511  Assert(isStatepoint(InvokeBB->getTerminator()),
4512  "gc relocate should be linked to a statepoint", InvokeBB);
4513  } else {
4514  // In all other cases relocate should be tied to the statepoint directly.
4515  // This covers relocates on a normal return path of invoke statepoint and
4516  // relocates of a call statepoint.
4517  auto Token = Call.getArgOperand(0);
4518  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4519  "gc relocate is incorrectly tied to the statepoint", Call, Token);
4520  }
4521 
4522  // Verify rest of the relocate arguments.
4523  const CallBase &StatepointCall =
4524  *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4525 
4526  // Both the base and derived must be piped through the safepoint.
4527  Value *Base = Call.getArgOperand(1);
4528  Assert(isa<ConstantInt>(Base),
4529  "gc.relocate operand #2 must be integer offset", Call);
4530 
4531  Value *Derived = Call.getArgOperand(2);
4532  Assert(isa<ConstantInt>(Derived),
4533  "gc.relocate operand #3 must be integer offset", Call);
4534 
4535  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4536  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4537  // Check the bounds
4538  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4539  "gc.relocate: statepoint base index out of bounds", Call);
4540  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4541  "gc.relocate: statepoint derived index out of bounds", Call);
4542 
4543  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4544  // section of the statepoint's argument.
4545  Assert(StatepointCall.arg_size() > 0,
4546  "gc.statepoint: insufficient arguments");
4547  Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4548  "gc.statement: number of call arguments must be constant integer");
4549  const unsigned NumCallArgs =
4550  cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4551  Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4552  "gc.statepoint: mismatch in number of call arguments");
4553  Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4554  "gc.statepoint: number of transition arguments must be "
4555  "a constant integer");
4556  const int NumTransitionArgs =
4557  cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4558  ->getZExtValue();
4559  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4560  Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4561  "gc.statepoint: number of deoptimization arguments must be "
4562  "a constant integer");
4563  const int NumDeoptArgs =
4564  cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4565  ->getZExtValue();
4566  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4567  const int GCParamArgsEnd = StatepointCall.arg_size();
4568  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4569  "gc.relocate: statepoint base index doesn't fall within the "
4570  "'gc parameters' section of the statepoint call",
4571  Call);
4572  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4573  "gc.relocate: statepoint derived index doesn't fall within the "
4574  "'gc parameters' section of the statepoint call",
4575  Call);
4576 
4577  // Relocated value must be either a pointer type or vector-of-pointer type,
4578  // but gc_relocate does not need to return the same pointer type as the
4579  // relocated pointer. It can be casted to the correct type later if it's
4580  // desired. However, they must have the same address space and 'vectorness'
4581  GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4583  "gc.relocate: relocated value must be a gc pointer", Call);
4584 
4585  auto ResultType = Call.getType();
4586  auto DerivedType = Relocate.getDerivedPtr()->getType();
4587  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4588  "gc.relocate: vector relocates to vector and pointer to pointer",
4589  Call);
4590  Assert(
4591  ResultType->getPointerAddressSpace() ==
4592  DerivedType->getPointerAddressSpace(),
4593  "gc.relocate: relocating a pointer shouldn't change its address space",
4594  Call);
4595  break;
4596  }
4597  case Intrinsic::eh_exceptioncode:
4598  case Intrinsic::eh_exceptionpointer: {
4599  Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4600  "eh.exceptionpointer argument must be a catchpad", Call);
4601  break;
4602  }
4603  case Intrinsic::masked_load: {
4604  Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4605  Call);
4606 
4607  Value *Ptr = Call.getArgOperand(0);
4608  ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4609  Value *Mask = Call.getArgOperand(2);
4610  Value *PassThru = Call.getArgOperand(3);
4611  Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4612  Call);
4613  Assert(Alignment->getValue().isPowerOf2(),
4614  "masked_load: alignment must be a power of 2", Call);
4615 
4616  // DataTy is the overloaded type
4617  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4618  Assert(DataTy == Call.getType(),
4619  "masked_load: return must match pointer type", Call);
4620  Assert(PassThru->getType() == DataTy,
4621  "masked_load: pass through and data type must match", Call);
4622  Assert(Mask->getType()->getVectorNumElements() ==
4623  DataTy->getVectorNumElements(),
4624  "masked_load: vector mask must be same length as data", Call);
4625  break;
4626  }
4627  case Intrinsic::masked_store: {
4628  Value *Val = Call.getArgOperand(0);
4629  Value *Ptr = Call.getArgOperand(1);
4630  ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4631  Value *Mask = Call.getArgOperand(3);
4632  Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4633  Call);
4634  Assert(Alignment->getValue().isPowerOf2(),
4635  "masked_store: alignment must be a power of 2", Call);
4636 
4637  // DataTy is the overloaded type
4638  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4639  Assert(DataTy == Val->getType(),
4640  "masked_store: storee must match pointer type", Call);
4641  Assert(Mask->getType()->getVectorNumElements() ==
4642  DataTy->getVectorNumElements(),
4643  "masked_store: vector mask must be same length as data", Call);
4644  break;
4645  }
4646 
4647  case Intrinsic::experimental_guard: {
4648  Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4650  "experimental_guard must have exactly one "
4651  "\"deopt\" operand bundle");
4652  break;
4653  }
4654 
4655  case Intrinsic::experimental_deoptimize: {
4656  Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4657  Call);
4659  "experimental_deoptimize must have exactly one "
4660  "\"deopt\" operand bundle");
4661  Assert(Call.getType() == Call.getFunction()->getReturnType(),
4662  "experimental_deoptimize return type must match caller return type");
4663 
4664  if (isa<CallInst>(Call)) {
4665  auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4666  Assert(RI,
4667  "calls to experimental_deoptimize must be followed by a return");
4668 
4669  if (!Call.getType()->isVoidTy() && RI)
4670  Assert(RI->getReturnValue() == &Call,
4671  "calls to experimental_deoptimize must be followed by a return "
4672  "of the value computed by experimental_deoptimize");
4673  }
4674 
4675  break;
4676  }
4677  case Intrinsic::sadd_sat:
4678  case Intrinsic::uadd_sat:
4679  case Intrinsic::ssub_sat:
4680  case Intrinsic::usub_sat: {
4681  Value *Op1 = Call.getArgOperand(0);
4682  Value *Op2 = Call.getArgOperand(1);
4683  Assert(Op1->getType()->isIntOrIntVectorTy(),
4684  "first operand of [us][add|sub]_sat must be an int type or vector "
4685  "of ints");
4686  Assert(Op2->getType()->isIntOrIntVectorTy(),
4687  "second operand of [us][add|sub]_sat must be an int type or vector "
4688  "of ints");
4689  break;
4690  }
4691  case Intrinsic::smul_fix:
4692  case Intrinsic::smul_fix_sat:
4693  case Intrinsic::umul_fix:
4694  case Intrinsic::umul_fix_sat: {
4695  Value *Op1 = Call.getArgOperand(0);
4696  Value *Op2 = Call.getArgOperand(1);
4697  Assert(Op1->getType()->isIntOrIntVectorTy(),
4698  "first operand of [us]mul_fix[_sat] must be an int type or vector "
4699  "of ints");
4700  Assert(Op2->getType()->isIntOrIntVectorTy(),
4701  "second operand of [us]mul_fix_[sat] must be an int type or vector "
4702  "of ints");
4703 
4704  auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4705  Assert(Op3->getType()->getBitWidth() <= 32,
4706  "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4707 
4708  if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4709  Assert(
4710  Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4711  "the scale of smul_fix[_sat] must be less than the width of the operands");
4712  } else {
4713  Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4714  "the scale of umul_fix[_sat] must be less than or equal to the width of "
4715  "the operands");
4716  }
4717  break;
4718  }
4719  case Intrinsic::lround:
4720  case Intrinsic::llround:
4721  case Intrinsic::lrint:
4722  case Intrinsic::llrint: {
4723  Type *ValTy = Call.getArgOperand(0)->getType();
4724  Type *ResultTy = Call.getType();
4725  Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4726  "Intrinsic does not support vectors", &Call);
4727  break;
4728  }
4729  };
4730 }
4731 
4732 /// Carefully grab the subprogram from a local scope.
4733 ///
4734 /// This carefully grabs the subprogram from a local scope, avoiding the
4735 /// built-in assertions that would typically fire.
4736 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4737  if (!LocalScope)
4738  return nullptr;
4739 
4740  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4741  return SP;
4742 
4743  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4744  return getSubprogram(LB->getRawScope());
4745 
4746  // Just return null; broken scope chains are checked elsewhere.
4747  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4748  return nullptr;
4749 }
4750 
4751 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4752  unsigned NumOperands = FPI.getNumArgOperands();
4753  bool HasExceptionMD = false;
4754  bool HasRoundingMD = false;
4755  switch (FPI.getIntrinsicID()) {
4756  case Intrinsic::experimental_constrained_sqrt:
4757  case Intrinsic::experimental_constrained_sin:
4758  case Intrinsic::experimental_constrained_cos:
4759  case Intrinsic::experimental_constrained_exp:
4760  case Intrinsic::experimental_constrained_exp2:
4761  case Intrinsic::experimental_constrained_log:
4762  case Intrinsic::experimental_constrained_log10:
4763  case Intrinsic::experimental_constrained_log2:
4764  case Intrinsic::experimental_constrained_rint:
4765  case Intrinsic::experimental_constrained_nearbyint:
4766  case Intrinsic::experimental_constrained_ceil:
4767  case Intrinsic::experimental_constrained_floor:
4768  case Intrinsic::experimental_constrained_round:
4769  case Intrinsic::experimental_constrained_trunc:
4770  Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4771  &FPI);
4772  HasExceptionMD = true;
4773  HasRoundingMD = true;
4774  break;
4775 
4776  case Intrinsic::experimental_constrained_lrint:
4777  case Intrinsic::experimental_constrained_llrint: {
4778  Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4779  &FPI);
4780  Type *ValTy = FPI.getArgOperand(0)->getType();
4781  Type *ResultTy = FPI.getType();
4782  Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4783  "Intrinsic does not support vectors", &FPI);
4784  HasExceptionMD = true;
4785  HasRoundingMD = true;
4786  }
4787  break;
4788 
4789  case Intrinsic::experimental_constrained_lround:
4790  case Intrinsic::experimental_constrained_llround: {
4791  Assert((NumOperands == 2), "invalid arguments for constrained FP intrinsic",
4792  &FPI);
4793  Type *ValTy = FPI.getArgOperand(0)->getType();
4794  Type *ResultTy = FPI.getType();
4795  Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4796  "Intrinsic does not support vectors", &FPI);
4797  HasExceptionMD = true;
4798  break;
4799  }
4800 
4801  case Intrinsic::experimental_constrained_fma:
4802  Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4803  &FPI);
4804  HasExceptionMD = true;
4805  HasRoundingMD = true;
4806  break;
4807 
4808  case Intrinsic::experimental_constrained_fadd:
4809  case Intrinsic::experimental_constrained_fsub:
4810  case Intrinsic::experimental_constrained_fmul:
4811  case Intrinsic::experimental_constrained_fdiv:
4812  case Intrinsic::experimental_constrained_frem:
4813  case Intrinsic::experimental_constrained_pow:
4814  case Intrinsic::experimental_constrained_powi:
4815  case Intrinsic::experimental_constrained_maxnum:
4816  case Intrinsic::experimental_constrained_minnum:
4817  Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4818  &FPI);
4819  HasExceptionMD = true;
4820  HasRoundingMD = true;
4821  break;
4822 
4823  case Intrinsic::experimental_constrained_fptosi:
4824  case Intrinsic::experimental_constrained_fptoui: {
4825  Assert((NumOperands == 2),
4826  "invalid arguments for constrained FP intrinsic", &FPI);
4827  HasExceptionMD = true;
4828 
4829  Value *Operand = FPI.getArgOperand(0);
4830  uint64_t NumSrcElem = 0;
4831  Assert(Operand->getType()->isFPOrFPVectorTy(),
4832  "Intrinsic first argument must be floating point", &FPI);
4833  if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4834  NumSrcElem = OperandT->getNumElements();
4835  }
4836 
4837  Operand = &FPI;
4838  Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
4839  "Intrinsic first argument and result disagree on vector use", &FPI);
4840  Assert(Operand->getType()->isIntOrIntVectorTy(),
4841  "Intrinsic result must be an integer", &FPI);
4842  if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4843  Assert(NumSrcElem == OperandT->getNumElements(),
4844  "Intrinsic first argument and result vector lengths must be equal",
4845  &FPI);
4846  }
4847  }
4848  break;
4849 
4850  case Intrinsic::experimental_constrained_fptrunc:
4851  case Intrinsic::experimental_constrained_fpext: {
4852  if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4853  Assert((NumOperands == 3),
4854  "invalid arguments for constrained FP intrinsic", &FPI);
4855  HasRoundingMD = true;
4856  } else {
4857  Assert((NumOperands == 2),
4858  "invalid arguments for constrained FP intrinsic", &FPI);
4859  }
4860  HasExceptionMD = true;
4861 
4862  Value *Operand = FPI.getArgOperand(0);
4863  Type *OperandTy = Operand->getType();
4864  Value *Result = &FPI;
4865  Type *ResultTy = Result->getType();
4866  Assert(OperandTy->isFPOrFPVectorTy(),
4867  "Intrinsic first argument must be FP or FP vector", &FPI);
4868  Assert(ResultTy->isFPOrFPVectorTy(),
4869  "Intrinsic result must be FP or FP vector", &FPI);
4870  Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4871  "Intrinsic first argument and result disagree on vector use", &FPI);
4872  if (OperandTy->isVectorTy()) {
4873  auto *OperandVecTy = cast<VectorType>(OperandTy);
4874  auto *ResultVecTy = cast<VectorType>(ResultTy);
4875  Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4876  "Intrinsic first argument and result vector lengths must be equal",
4877  &FPI);
4878  }
4879  if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4880  Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4881  "Intrinsic first argument's type must be larger than result type",
4882  &FPI);
4883  } else {
4884  Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4885  "Intrinsic first argument's type must be smaller than result type",
4886  &FPI);
4887  }
4888  }
4889  break;
4890 
4891  default:
4892  llvm_unreachable("Invalid constrained FP intrinsic!");
4893  }
4894 
4895  // If a non-metadata argument is passed in a metadata slot then the
4896  // error will be caught earlier when the incorrect argument doesn't
4897  // match the specification in the intrinsic call table. Thus, no
4898  // argument type check is needed here.
4899 
4900  if (HasExceptionMD) {
4901  Assert(FPI.getExceptionBehavior().hasValue(),
4902  "invalid exception behavior argument", &FPI);
4903  }
4904  if (HasRoundingMD) {
4905  Assert(FPI.getRoundingMode().hasValue(),
4906  "invalid rounding mode argument", &FPI);
4907  }
4908 }
4909 
4910 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4911  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4912  AssertDI(isa<ValueAsMetadata>(MD) ||
4913  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4914  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4915  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4916  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4917  DII.getRawVariable());
4918  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4919  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4920  DII.getRawExpression());
4921 
4922  // Ignore broken !dbg attachments; they're checked elsewhere.
4923  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4924  if (!isa<DILocation>(N))
4925  return;
4926 
4927  BasicBlock *BB = DII.getParent();
4928  Function *F = BB ? BB->getParent() : nullptr;
4929 
4930  // The scopes for variables and !dbg attachments must agree.
4931  DILocalVariable *Var = DII.getVariable();
4932  DILocation *Loc = DII.getDebugLoc();
4933  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4934  &DII, BB, F);
4935 
4936  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4937  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4938  if (!VarSP || !LocSP)
4939  return; // Broken scope chains are checked elsewhere.
4940 
4941  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4942  " variable and !dbg attachment",
4943  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4944  Loc->getScope()->getSubprogram());
4945 
4946  // This check is redundant with one in visitLocalVariable().
4947  AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4948  Var->getRawType());
4949  verifyFnArgs(DII);
4950 }
4951 
4952 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4953  AssertDI(isa<DILabel>(DLI.getRawLabel()),
4954  "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4955  DLI.getRawLabel());
4956 
4957  // Ignore broken !dbg attachments; they're checked elsewhere.
4958  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4959  if (!isa<DILocation>(N))
4960  return;
4961 
4962  BasicBlock *BB = DLI.getParent();
4963  Function *F = BB ? BB->getParent() : nullptr;
4964 
4965  // The scopes for variables and !dbg attachments must agree.
4966  DILabel *Label = DLI.getLabel();
4967  DILocation *Loc = DLI.getDebugLoc();
4968  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4969  &DLI, BB, F);
4970 
4971  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4972  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4973  if (!LabelSP || !LocSP)
4974  return;
4975 
4976  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4977  " label and !dbg attachment",
4978  &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4979  Loc->getScope()->getSubprogram());
4980 }
4981 
4982 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4983  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4984  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4985 
4986  // We don't know whether this intrinsic verified correctly.
4987  if (!V || !E || !E->isValid())
4988  return;
4989 
4990  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4991  auto Fragment = E->getFragmentInfo();
4992  if (!Fragment)
4993  return;
4994 
4995  // The frontend helps out GDB by emitting the members of local anonymous
4996  // unions as artificial local variables with shared storage. When SROA splits
4997  // the storage for artificial local variables that are smaller than the entire
4998  // union, the overhang piece will be outside of the allotted space for the
4999  // variable and this check fails.
5000  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5001  if (V->isArtificial())
5002  return;
5003 
5004  verifyFragmentExpression(*V, *Fragment, &I);
5005 }
5006 
5007 template <typename ValueOrMetadata>
5008 void Verifier::verifyFragmentExpression(const DIVariable &V,
5009  DIExpression::FragmentInfo Fragment,
5010  ValueOrMetadata *Desc) {
5011  // If there's no size, the type is broken, but that should be checked
5012  // elsewhere.
5013  auto VarSize = V.getSizeInBits();
5014  if (!VarSize)
5015  return;
5016 
5017  unsigned FragSize = Fragment.SizeInBits;
5018  unsigned FragOffset = Fragment.OffsetInBits;
5019  AssertDI(FragSize + FragOffset <= *VarSize,
5020  "fragment is larger than or outside of variable", Desc, &V);
5021  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5022 }
5023 
5024 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5025  // This function does not take the scope of noninlined function arguments into
5026  // account. Don't run it if current function is nodebug, because it may
5027  // contain inlined debug intrinsics.
5028  if (!HasDebugInfo)
5029  return;
5030 
5031  // For performance reasons only check non-inlined ones.
5032  if (I.getDebugLoc()->getInlinedAt())
5033  return;
5034 
5035  DILocalVariable *Var = I.getVariable();
5036  AssertDI(Var, "dbg intrinsic without variable");
5037 
5038  unsigned ArgNo = Var->getArg();
5039  if (!ArgNo)
5040  return;
5041 
5042  // Verify there are no duplicate function argument debug info entries.
5043  // These will cause hard-to-debug assertions in the DWARF backend.
5044  if (DebugFnArgs.size() < ArgNo)
5045  DebugFnArgs.resize(ArgNo, nullptr);
5046 
5047  auto *Prev = DebugFnArgs[ArgNo - 1];
5048  DebugFnArgs[ArgNo - 1] = Var;
5049  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5050  Prev, Var);
5051 }
5052 
5053 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5054  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5055 
5056  // We don't know whether this intrinsic verified correctly.
5057  if (!E || !E->isValid())
5058  return;
5059 
5060  AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5061 }
5062 
5063 void Verifier::verifyCompileUnits() {
5064  // When more than one Module is imported into the same context, such as during
5065  // an LTO build before linking the modules, ODR type uniquing may cause types
5066  // to point to a different CU. This check does not make sense in this case.
5068  return;
5069  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5071  if (CUs)
5072  Listed.insert(CUs->op_begin(), CUs->op_end());
5073  for (auto *CU : CUVisited)
5074  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5075  CUVisited.clear();
5076 }
5077 
5078 void Verifier::verifyDeoptimizeCallingConvs() {
5079  if (DeoptimizeDeclarations.empty())
5080  return;
5081 
5082  const Function *First = DeoptimizeDeclarations[0];
5083  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5084  Assert(First->getCallingConv() == F->getCallingConv(),
5085  "All llvm.experimental.deoptimize declarations must have the same "
5086  "calling convention",
5087  First, F);
5088  }
5089 }
5090 
5091 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5092  bool HasSource = F.getSource().hasValue();
5093  if (!HasSourceDebugInfo.count(&U))
5094  HasSourceDebugInfo[&U] = HasSource;
5095  AssertDI(HasSource == HasSourceDebugInfo[&U],
5096  "inconsistent use of embedded source");
5097 }
5098 
5099 //===----------------------------------------------------------------------===//
5100 // Implement the public interfaces to this file...
5101 //===----------------------------------------------------------------------===//
5102 
5104  Function &F = const_cast<Function &>(f);
5105 
5106  // Don't use a raw_null_ostream. Printing IR is expensive.
5107  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5108 
5109  // Note that this function's return value is inverted from what you would
5110  // expect of a function called "verify".
5111  return !V.verify(F);
5112 }
5113 
5115  bool *BrokenDebugInfo) {
5116  // Don't use a raw_null_ostream. Printing IR is expensive.
5117  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5118 
5119  bool Broken = false;
5120  for (const Function &F : M)
5121  Broken |= !V.verify(F);
5122 
5123  Broken |= !V.verify();
5124  if (BrokenDebugInfo)
5125  *BrokenDebugInfo = V.hasBrokenDebugInfo();
5126  // Note that this function's return value is inverted from what you would
5127  // expect of a function called "verify".
5128  return Broken;
5129 }
5130 
5131 namespace {
5132 
5133 struct VerifierLegacyPass : public FunctionPass {
5134  static char ID;
5135 
5136  std::unique_ptr<Verifier> V;
5137  bool FatalErrors = true;
5138 
5139  VerifierLegacyPass() : FunctionPass(ID) {
5141  }
5142  explicit VerifierLegacyPass(bool FatalErrors)
5143  : FunctionPass(ID),
5144  FatalErrors(FatalErrors) {
5146  }
5147 
5148  bool doInitialization(Module &M) override {
5149  V = std::make_unique<Verifier>(
5150  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5151  return false;
5152  }
5153 
5154  bool runOnFunction(Function &F) override {
5155  if (!V->verify(F) && FatalErrors) {
5156  errs() << "in function " << F.getName() << '\n';
5157  report_fatal_error("Broken function found, compilation aborted!");
5158  }
5159  return false;
5160  }
5161 
5162  bool doFinalization(Module &M) override {
5163  bool HasErrors = false;
5164  for (Function &F : M)
5165  if (F.isDeclaration())
5166  HasErrors |= !V->verify(F);
5167 
5168  HasErrors |= !V->verify();
5169  if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5170  report_fatal_error("Broken module found, compilation aborted!");
5171  return false;
5172  }
5173 
5174  void getAnalysisUsage(AnalysisUsage &AU) const override {
5175  AU.setPreservesAll();
5176  }
5177 };
5178 
5179 } // end anonymous namespace
5180 
5181 /// Helper to issue failure from the TBAA verification
5182 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5183  if (Diagnostic)
5184  return Diagnostic->CheckFailed(Args...);
5185 }
5186 
5187 #define AssertTBAA(C, ...)