LCOV - code coverage report
Current view: top level - include/llvm/ADT - APInt.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 356 370 96.2 %
Date: 2018-10-20 13:21:21 Functions: 54 62 87.1 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : ///
      10             : /// \file
      11             : /// This file implements a class to represent arbitrary precision
      12             : /// integral constant values and operations on them.
      13             : ///
      14             : //===----------------------------------------------------------------------===//
      15             : 
      16             : #ifndef LLVM_ADT_APINT_H
      17             : #define LLVM_ADT_APINT_H
      18             : 
      19             : #include "llvm/Support/Compiler.h"
      20             : #include "llvm/Support/MathExtras.h"
      21             : #include <cassert>
      22             : #include <climits>
      23             : #include <cstring>
      24             : #include <string>
      25             : 
      26             : namespace llvm {
      27             : class FoldingSetNodeID;
      28             : class StringRef;
      29             : class hash_code;
      30             : class raw_ostream;
      31             : 
      32             : template <typename T> class SmallVectorImpl;
      33             : template <typename T> class ArrayRef;
      34             : template <typename T> class Optional;
      35             : 
      36             : class APInt;
      37             : 
      38             : inline APInt operator-(APInt);
      39             : 
      40             : //===----------------------------------------------------------------------===//
      41             : //                              APInt Class
      42             : //===----------------------------------------------------------------------===//
      43             : 
      44             : /// Class for arbitrary precision integers.
      45             : ///
      46             : /// APInt is a functional replacement for common case unsigned integer type like
      47             : /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
      48             : /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
      49             : /// than 64-bits of precision. APInt provides a variety of arithmetic operators
      50             : /// and methods to manipulate integer values of any bit-width. It supports both
      51             : /// the typical integer arithmetic and comparison operations as well as bitwise
      52             : /// manipulation.
      53             : ///
      54             : /// The class has several invariants worth noting:
      55             : ///   * All bit, byte, and word positions are zero-based.
      56             : ///   * Once the bit width is set, it doesn't change except by the Truncate,
      57             : ///     SignExtend, or ZeroExtend operations.
      58             : ///   * All binary operators must be on APInt instances of the same bit width.
      59             : ///     Attempting to use these operators on instances with different bit
      60             : ///     widths will yield an assertion.
      61             : ///   * The value is stored canonically as an unsigned value. For operations
      62             : ///     where it makes a difference, there are both signed and unsigned variants
      63             : ///     of the operation. For example, sdiv and udiv. However, because the bit
      64             : ///     widths must be the same, operations such as Mul and Add produce the same
      65             : ///     results regardless of whether the values are interpreted as signed or
      66             : ///     not.
      67             : ///   * In general, the class tries to follow the style of computation that LLVM
      68             : ///     uses in its IR. This simplifies its use for LLVM.
      69             : ///
      70             : class LLVM_NODISCARD APInt {
      71             : public:
      72             :   typedef uint64_t WordType;
      73             : 
      74             :   /// This enum is used to hold the constants we needed for APInt.
      75             :   enum : unsigned {
      76             :     /// Byte size of a word.
      77             :     APINT_WORD_SIZE = sizeof(WordType),
      78             :     /// Bits in a word.
      79             :     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
      80             :   };
      81             : 
      82             :   enum class Rounding {
      83             :     DOWN,
      84             :     TOWARD_ZERO,
      85             :     UP,
      86             :   };
      87             : 
      88             :   static const WordType WORDTYPE_MAX = ~WordType(0);
      89             : 
      90             : private:
      91             :   /// This union is used to store the integer value. When the
      92             :   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
      93             :   union {
      94             :     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
      95             :     uint64_t *pVal; ///< Used to store the >64 bits integer value.
      96             :   } U;
      97             : 
      98             :   unsigned BitWidth; ///< The number of bits in this APInt.
      99             : 
     100             :   friend struct DenseMapAPIntKeyInfo;
     101             : 
     102             :   friend class APSInt;
     103             : 
     104             :   /// Fast internal constructor
     105             :   ///
     106             :   /// This constructor is used only internally for speed of construction of
     107             :   /// temporaries. It is unsafe for general use so it is not public.
     108   193641961 :   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
     109    99553035 :     U.pVal = val;
     110             :   }
     111             : 
     112             :   /// Determine if this APInt just has one word to store value.
     113             :   ///
     114             :   /// \returns true if the number of bits <= 64, false otherwise.
     115           0 :   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
     116             : 
     117             :   /// Determine which word a bit is in.
     118             :   ///
     119             :   /// \returns the word position for the specified bit position.
     120             :   static unsigned whichWord(unsigned bitPosition) {
     121     5748248 :     return bitPosition / APINT_BITS_PER_WORD;
     122             :   }
     123             : 
     124             :   /// Determine which bit in a word a bit is in.
     125             :   ///
     126             :   /// \returns the bit position in a word for the specified bit position
     127             :   /// in the APInt.
     128             :   static unsigned whichBit(unsigned bitPosition) {
     129   163911810 :     return bitPosition % APINT_BITS_PER_WORD;
     130             :   }
     131             : 
     132             :   /// Get a single bit mask.
     133             :   ///
     134             :   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
     135             :   /// This method generates and returns a uint64_t (word) mask for a single
     136             :   /// bit at a specific bit position. This is used to mask the bit in the
     137             :   /// corresponding word.
     138             :   static uint64_t maskBit(unsigned bitPosition) {
     139   245414168 :     return 1ULL << whichBit(bitPosition);
     140             :   }
     141             : 
     142             :   /// Clear unused high order bits
     143             :   ///
     144             :   /// This method is used internally to clear the top "N" bits in the high order
     145             :   /// word that are not used by the APInt. This is needed after the most
     146             :   /// significant word is assigned a value to ensure that those bits are
     147             :   /// zero'd out.
     148  1466124386 :   APInt &clearUnusedBits() {
     149             :     // Compute how many bits are used in the final word
     150  1466124386 :     unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
     151             : 
     152             :     // Mask out the high bits.
     153  1466124386 :     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
     154  1466124386 :     if (isSingleWord())
     155  1454951194 :       U.VAL &= mask;
     156             :     else
     157    22346384 :       U.pVal[getNumWords() - 1] &= mask;
     158  1466124386 :     return *this;
     159             :   }
     160             : 
     161             :   /// Get the word corresponding to a bit position
     162             :   /// \returns the corresponding word for the specified bit position.
     163             :   uint64_t getWord(unsigned bitPosition) const {
     164    44086023 :     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
     165             :   }
     166             : 
     167             :   /// Utility method to change the bit width of this APInt to new bit width,
     168             :   /// allocating and/or deallocating as necessary. There is no guarantee on the
     169             :   /// value of any bits upon return. Caller should populate the bits after.
     170             :   void reallocate(unsigned NewBitWidth);
     171             : 
     172             :   /// Convert a char array into an APInt
     173             :   ///
     174             :   /// \param radix 2, 8, 10, 16, or 36
     175             :   /// Converts a string into a number.  The string must be non-empty
     176             :   /// and well-formed as a number of the given base. The bit-width
     177             :   /// must be sufficient to hold the result.
     178             :   ///
     179             :   /// This is used by the constructors that take string arguments.
     180             :   ///
     181             :   /// StringRef::getAsInteger is superficially similar but (1) does
     182             :   /// not assume that the string is well-formed and (2) grows the
     183             :   /// result to hold the input.
     184             :   void fromString(unsigned numBits, StringRef str, uint8_t radix);
     185             : 
     186             :   /// An internal division function for dividing APInts.
     187             :   ///
     188             :   /// This is used by the toString method to divide by the radix. It simply
     189             :   /// provides a more convenient form of divide for internal use since KnuthDiv
     190             :   /// has specific constraints on its inputs. If those constraints are not met
     191             :   /// then it provides a simpler form of divide.
     192             :   static void divide(const WordType *LHS, unsigned lhsWords,
     193             :                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
     194             :                      WordType *Remainder);
     195             : 
     196             :   /// out-of-line slow case for inline constructor
     197             :   void initSlowCase(uint64_t val, bool isSigned);
     198             : 
     199             :   /// shared code between two array constructors
     200             :   void initFromArray(ArrayRef<uint64_t> array);
     201             : 
     202             :   /// out-of-line slow case for inline copy constructor
     203             :   void initSlowCase(const APInt &that);
     204             : 
     205             :   /// out-of-line slow case for shl
     206             :   void shlSlowCase(unsigned ShiftAmt);
     207             : 
     208             :   /// out-of-line slow case for lshr.
     209             :   void lshrSlowCase(unsigned ShiftAmt);
     210             : 
     211             :   /// out-of-line slow case for ashr.
     212             :   void ashrSlowCase(unsigned ShiftAmt);
     213             : 
     214             :   /// out-of-line slow case for operator=
     215             :   void AssignSlowCase(const APInt &RHS);
     216             : 
     217             :   /// out-of-line slow case for operator==
     218             :   bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
     219             : 
     220             :   /// out-of-line slow case for countLeadingZeros
     221             :   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
     222             : 
     223             :   /// out-of-line slow case for countLeadingOnes.
     224             :   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
     225             : 
     226             :   /// out-of-line slow case for countTrailingZeros.
     227             :   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
     228             : 
     229             :   /// out-of-line slow case for countTrailingOnes
     230             :   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
     231             : 
     232             :   /// out-of-line slow case for countPopulation
     233             :   unsigned countPopulationSlowCase() const LLVM_READONLY;
     234             : 
     235             :   /// out-of-line slow case for intersects.
     236             :   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
     237             : 
     238             :   /// out-of-line slow case for isSubsetOf.
     239             :   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
     240             : 
     241             :   /// out-of-line slow case for setBits.
     242             :   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
     243             : 
     244             :   /// out-of-line slow case for flipAllBits.
     245             :   void flipAllBitsSlowCase();
     246             : 
     247             :   /// out-of-line slow case for operator&=.
     248             :   void AndAssignSlowCase(const APInt& RHS);
     249             : 
     250             :   /// out-of-line slow case for operator|=.
     251             :   void OrAssignSlowCase(const APInt& RHS);
     252             : 
     253             :   /// out-of-line slow case for operator^=.
     254             :   void XorAssignSlowCase(const APInt& RHS);
     255             : 
     256             :   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
     257             :   /// to, or greater than RHS.
     258             :   int compare(const APInt &RHS) const LLVM_READONLY;
     259             : 
     260             :   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
     261             :   /// to, or greater than RHS.
     262             :   int compareSigned(const APInt &RHS) const LLVM_READONLY;
     263             : 
     264             : public:
     265             :   /// \name Constructors
     266             :   /// @{
     267             : 
     268             :   /// Create a new APInt of numBits width, initialized as val.
     269             :   ///
     270             :   /// If isSigned is true then val is treated as if it were a signed value
     271             :   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
     272             :   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
     273             :   /// the range of val are zero filled).
     274             :   ///
     275             :   /// \param numBits the bit width of the constructed APInt
     276             :   /// \param val the initial value of the APInt
     277             :   /// \param isSigned how to treat signedness of val
     278             :   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
     279  1012407270 :       : BitWidth(numBits) {
     280             :     assert(BitWidth && "bitwidth too small");
     281   556492663 :     if (isSingleWord()) {
     282  1009305916 :       U.VAL = val;
     283  1008932972 :       clearUnusedBits();
     284             :     } else {
     285     3075464 :       initSlowCase(val, isSigned);
     286             :     }
     287             :   }
     288             : 
     289             :   /// Construct an APInt of numBits width, initialized as bigVal[].
     290             :   ///
     291             :   /// Note that bigVal.size() can be smaller or larger than the corresponding
     292             :   /// bit width but any extraneous bits will be dropped.
     293             :   ///
     294             :   /// \param numBits the bit width of the constructed APInt
     295             :   /// \param bigVal a sequence of words to form the initial value of the APInt
     296             :   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
     297             : 
     298             :   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
     299             :   /// deprecated because this constructor is prone to ambiguity with the
     300             :   /// APInt(unsigned, uint64_t, bool) constructor.
     301             :   ///
     302             :   /// If this overload is ever deleted, care should be taken to prevent calls
     303             :   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
     304             :   /// constructor.
     305             :   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
     306             : 
     307             :   /// Construct an APInt from a string representation.
     308             :   ///
     309             :   /// This constructor interprets the string \p str in the given radix. The
     310             :   /// interpretation stops when the first character that is not suitable for the
     311             :   /// radix is encountered, or the end of the string. Acceptable radix values
     312             :   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
     313             :   /// string to require more bits than numBits.
     314             :   ///
     315             :   /// \param numBits the bit width of the constructed APInt
     316             :   /// \param str the string to be interpreted
     317             :   /// \param radix the radix to use for the conversion
     318             :   APInt(unsigned numBits, StringRef str, uint8_t radix);
     319             : 
     320             :   /// Simply makes *this a copy of that.
     321             :   /// Copy Constructor.
     322   415070218 :   APInt(const APInt &that) : BitWidth(that.BitWidth) {
     323   392647307 :     if (isSingleWord())
     324   411031491 :       U.VAL = that.U.VAL;
     325             :     else
     326     4038727 :       initSlowCase(that);
     327             :   }
     328             : 
     329             :   /// Move Constructor.
     330   570597707 :   APInt(APInt &&that) : BitWidth(that.BitWidth) {
     331   198012093 :     memcpy(&U, &that.U, sizeof(U));
     332   159107184 :     that.BitWidth = 0;
     333             :   }
     334             : 
     335             :   /// Destructor.
     336    61082313 :   ~APInt() {
     337   347147957 :     if (needsCleanup())
     338     5466273 :       delete[] U.pVal;
     339             :   }
     340             : 
     341             :   /// Default constructor that creates an uninteresting APInt
     342             :   /// representing a 1-bit zero value.
     343             :   ///
     344             :   /// This is useful for object deserialization (pair this with the static
     345             :   ///  method Read).
     346   134292544 :   explicit APInt() : BitWidth(1) { U.VAL = 0; }
     347             : 
     348             :   /// Returns whether this instance allocated memory.
     349  1030109119 :   bool needsCleanup() const { return !isSingleWord(); }
     350             : 
     351             :   /// Used to insert APInt objects, or objects that contain APInt objects, into
     352             :   ///  FoldingSets.
     353             :   void Profile(FoldingSetNodeID &id) const;
     354             : 
     355             :   /// @}
     356             :   /// \name Value Tests
     357             :   /// @{
     358             : 
     359             :   /// Determine sign of this APInt.
     360             :   ///
     361             :   /// This tests the high bit of this APInt to determine if it is set.
     362             :   ///
     363             :   /// \returns true if this APInt is negative, false otherwise
     364   113642698 :   bool isNegative() const { return (*this)[BitWidth - 1]; }
     365             : 
     366             :   /// Determine if this APInt Value is non-negative (>= 0)
     367             :   ///
     368             :   /// This tests the high bit of the APInt to determine if it is unset.
     369     3530426 :   bool isNonNegative() const { return !isNegative(); }
     370             : 
     371             :   /// Determine if sign bit of this APInt is set.
     372             :   ///
     373             :   /// This tests the high bit of this APInt to determine if it is set.
     374             :   ///
     375             :   /// \returns true if this APInt has its sign bit set, false otherwise.
     376    48345562 :   bool isSignBitSet() const { return (*this)[BitWidth-1]; }
     377             : 
     378             :   /// Determine if sign bit of this APInt is clear.
     379             :   ///
     380             :   /// This tests the high bit of this APInt to determine if it is clear.
     381             :   ///
     382             :   /// \returns true if this APInt has its sign bit clear, false otherwise.
     383     4987261 :   bool isSignBitClear() const { return !isSignBitSet(); }
     384             : 
     385             :   /// Determine if this APInt Value is positive.
     386             :   ///
     387             :   /// This tests if the value of this APInt is positive (> 0). Note
     388             :   /// that 0 is not a positive value.
     389             :   ///
     390             :   /// \returns true if this APInt is positive.
     391     1864006 :   bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
     392             : 
     393             :   /// Determine if all bits are set
     394             :   ///
     395             :   /// This checks to see if the value has all bits of the APInt are set or not.
     396             :   bool isAllOnesValue() const {
     397    28666328 :     if (isSingleWord())
     398    28409054 :       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
     399      257274 :     return countTrailingOnesSlowCase() == BitWidth;
     400             :   }
     401             : 
     402             :   /// Determine if all bits are clear
     403             :   ///
     404             :   /// This checks to see if the value has all bits of the APInt are clear or
     405             :   /// not.
     406             :   bool isNullValue() const { return !*this; }
     407             : 
     408             :   /// Determine if this is a value of 1.
     409             :   ///
     410             :   /// This checks to see if the value of this APInt is one.
     411             :   bool isOneValue() const {
     412    17705863 :     if (isSingleWord())
     413    17700013 :       return U.VAL == 1;
     414        5850 :     return countLeadingZerosSlowCase() == BitWidth - 1;
     415             :   }
     416             : 
     417             :   /// Determine if this is the largest unsigned value.
     418             :   ///
     419             :   /// This checks to see if the value of this APInt is the maximum unsigned
     420             :   /// value for the APInt's bit width.
     421             :   bool isMaxValue() const { return isAllOnesValue(); }
     422             : 
     423             :   /// Determine if this is the largest signed value.
     424             :   ///
     425             :   /// This checks to see if the value of this APInt is the maximum signed
     426             :   /// value for the APInt's bit width.
     427      275954 :   bool isMaxSignedValue() const {
     428      275954 :     if (isSingleWord())
     429      275521 :       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
     430         214 :     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
     431             :   }
     432             : 
     433             :   /// Determine if this is the smallest unsigned value.
     434             :   ///
     435             :   /// This checks to see if the value of this APInt is the minimum unsigned
     436             :   /// value for the APInt's bit width.
     437             :   bool isMinValue() const { return isNullValue(); }
     438             : 
     439             :   /// Determine if this is the smallest signed value.
     440             :   ///
     441             :   /// This checks to see if the value of this APInt is the minimum signed
     442             :   /// value for the APInt's bit width.
     443    39957413 :   bool isMinSignedValue() const {
     444    39957413 :     if (isSingleWord())
     445    39954851 :       return U.VAL == (WordType(1) << (BitWidth - 1));
     446         554 :     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
     447             :   }
     448             : 
     449             :   /// Check if this APInt has an N-bits unsigned integer value.
     450             :   bool isIntN(unsigned N) const {
     451             :     assert(N && "N == 0 ???");
     452          18 :     return getActiveBits() <= N;
     453             :   }
     454             : 
     455             :   /// Check if this APInt has an N-bits signed integer value.
     456             :   bool isSignedIntN(unsigned N) const {
     457             :     assert(N && "N == 0 ???");
     458       11813 :     return getMinSignedBits() <= N;
     459             :   }
     460             : 
     461             :   /// Check if this APInt's value is a power of two greater than zero.
     462             :   ///
     463             :   /// \returns true if the argument APInt value is a power of two > 0.
     464      669335 :   bool isPowerOf2() const {
     465      669335 :     if (isSingleWord())
     466      667126 :       return isPowerOf2_64(U.VAL);
     467        2209 :     return countPopulationSlowCase() == 1;
     468             :   }
     469             : 
     470             :   /// Check if the APInt's value is returned by getSignMask.
     471             :   ///
     472             :   /// \returns true if this is the value returned by getSignMask.
     473     5294712 :   bool isSignMask() const { return isMinSignedValue(); }
     474             : 
     475             :   /// Convert APInt to a boolean value.
     476             :   ///
     477             :   /// This converts the APInt to a boolean value as a test against zero.
     478     9934185 :   bool getBoolValue() const { return !!*this; }
     479             : 
     480             :   /// If this value is smaller than the specified limit, return it, otherwise
     481             :   /// return the limit value.  This causes the value to saturate to the limit.
     482             :   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
     483    13189730 :     return ugt(Limit) ? Limit : getZExtValue();
     484             :   }
     485             : 
     486             :   /// Check if the APInt consists of a repeated bit pattern.
     487             :   ///
     488             :   /// e.g. 0x01010101 satisfies isSplat(8).
     489             :   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
     490             :   /// width without remainder.
     491             :   bool isSplat(unsigned SplatSizeInBits) const;
     492             : 
     493             :   /// \returns true if this APInt value is a sequence of \param numBits ones
     494             :   /// starting at the least significant bit with the remainder zero.
     495        4697 :   bool isMask(unsigned numBits) const {
     496             :     assert(numBits != 0 && "numBits must be non-zero");
     497             :     assert(numBits <= BitWidth && "numBits out of range");
     498        4697 :     if (isSingleWord())
     499        4038 :       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
     500         659 :     unsigned Ones = countTrailingOnesSlowCase();
     501         659 :     return (numBits == Ones) &&
     502         651 :            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
     503             :   }
     504             : 
     505             :   /// \returns true if this APInt is a non-empty sequence of ones starting at
     506             :   /// the least significant bit with the remainder zero.
     507             :   /// Ex. isMask(0x0000FFFFU) == true.
     508      410316 :   bool isMask() const {
     509      410316 :     if (isSingleWord())
     510      409551 :       return isMask_64(U.VAL);
     511         765 :     unsigned Ones = countTrailingOnesSlowCase();
     512         765 :     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
     513             :   }
     514             : 
     515             :   /// Return true if this APInt value contains a sequence of ones with
     516             :   /// the remainder zero.
     517       11121 :   bool isShiftedMask() const {
     518       11121 :     if (isSingleWord())
     519        9206 :       return isShiftedMask_64(U.VAL);
     520        1915 :     unsigned Ones = countPopulationSlowCase();
     521        1915 :     unsigned LeadZ = countLeadingZerosSlowCase();
     522        1915 :     return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
     523             :   }
     524             : 
     525             :   /// @}
     526             :   /// \name Value Generators
     527             :   /// @{
     528             : 
     529             :   /// Gets maximum unsigned value of APInt for specific bit width.
     530             :   static APInt getMaxValue(unsigned numBits) {
     531    14044944 :     return getAllOnesValue(numBits);
     532             :   }
     533             : 
     534             :   /// Gets maximum signed value of APInt for a specific bit width.
     535     3303551 :   static APInt getSignedMaxValue(unsigned numBits) {
     536     3303551 :     APInt API = getAllOnesValue(numBits);
     537     3303551 :     API.clearBit(numBits - 1);
     538     3303551 :     return API;
     539             :   }
     540             : 
     541             :   /// Gets minimum unsigned value of APInt for a specific bit width.
     542     4263405 :   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
     543             : 
     544             :   /// Gets minimum signed value of APInt for a specific bit width.
     545     4682317 :   static APInt getSignedMinValue(unsigned numBits) {
     546             :     APInt API(numBits, 0);
     547     4682317 :     API.setBit(numBits - 1);
     548     4682317 :     return API;
     549             :   }
     550             : 
     551             :   /// Get the SignMask for a specific bit width.
     552             :   ///
     553             :   /// This is just a wrapper function of getSignedMinValue(), and it helps code
     554             :   /// readability when we want to get a SignMask.
     555             :   static APInt getSignMask(unsigned BitWidth) {
     556      190747 :     return getSignedMinValue(BitWidth);
     557             :   }
     558             : 
     559             :   /// Get the all-ones value.
     560             :   ///
     561             :   /// \returns the all-ones value for an APInt of the specified bit-width.
     562    29871705 :   static APInt getAllOnesValue(unsigned numBits) {
     563    29871705 :     return APInt(numBits, WORDTYPE_MAX, true);
     564             :   }
     565             : 
     566             :   /// Get the '0' value.
     567             :   ///
     568             :   /// \returns the '0' value for an APInt of the specified bit-width.
     569    29010278 :   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
     570             : 
     571             :   /// Compute an APInt containing numBits highbits from this APInt.
     572             :   ///
     573             :   /// Get an APInt with the same BitWidth as this APInt, just zero mask
     574             :   /// the low bits and right shift to the least significant bit.
     575             :   ///
     576             :   /// \returns the high "numBits" bits of this APInt.
     577             :   APInt getHiBits(unsigned numBits) const;
     578             : 
     579             :   /// Compute an APInt containing numBits lowbits from this APInt.
     580             :   ///
     581             :   /// Get an APInt with the same BitWidth as this APInt, just zero mask
     582             :   /// the high bits.
     583             :   ///
     584             :   /// \returns the low "numBits" bits of this APInt.
     585             :   APInt getLoBits(unsigned numBits) const;
     586             : 
     587             :   /// Return an APInt with exactly one bit set in the result.
     588     1051884 :   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
     589             :     APInt Res(numBits, 0);
     590             :     Res.setBit(BitNo);
     591     1051884 :     return Res;
     592             :   }
     593             : 
     594             :   /// Get a value with a block of bits set.
     595             :   ///
     596             :   /// Constructs an APInt value that has a contiguous range of bits set. The
     597             :   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
     598             :   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
     599             :   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
     600             :   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
     601             :   ///
     602             :   /// \param numBits the intended bit width of the result
     603             :   /// \param loBit the index of the lowest bit set.
     604             :   /// \param hiBit the index of the highest bit set.
     605             :   ///
     606             :   /// \returns An APInt value with the requested bits set.
     607       50701 :   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
     608             :     APInt Res(numBits, 0);
     609       51036 :     Res.setBits(loBit, hiBit);
     610       50701 :     return Res;
     611             :   }
     612             : 
     613             :   /// Get a value with upper bits starting at loBit set.
     614             :   ///
     615             :   /// Constructs an APInt value that has a contiguous range of bits set. The
     616             :   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
     617             :   /// bits will be zero. For example, with parameters(32, 12) you would get
     618             :   /// 0xFFFFF000.
     619             :   ///
     620             :   /// \param numBits the intended bit width of the result
     621             :   /// \param loBit the index of the lowest bit to set.
     622             :   ///
     623             :   /// \returns An APInt value with the requested bits set.
     624      120135 :   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
     625             :     APInt Res(numBits, 0);
     626             :     Res.setBitsFrom(loBit);
     627      120135 :     return Res;
     628             :   }
     629             : 
     630             :   /// Get a value with high bits set
     631             :   ///
     632             :   /// Constructs an APInt value that has the top hiBitsSet bits set.
     633             :   ///
     634             :   /// \param numBits the bitwidth of the result
     635             :   /// \param hiBitsSet the number of high-order bits set in the result.
     636     3739986 :   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
     637             :     APInt Res(numBits, 0);
     638             :     Res.setHighBits(hiBitsSet);
     639     3739986 :     return Res;
     640             :   }
     641             : 
     642             :   /// Get a value with low bits set
     643             :   ///
     644             :   /// Constructs an APInt value that has the bottom loBitsSet bits set.
     645             :   ///
     646             :   /// \param numBits the bitwidth of the result
     647             :   /// \param loBitsSet the number of low-order bits set in the result.
     648     6887398 :   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
     649             :     APInt Res(numBits, 0);
     650             :     Res.setLowBits(loBitsSet);
     651     6887398 :     return Res;
     652             :   }
     653             : 
     654             :   /// Return a value containing V broadcasted over NewLen bits.
     655             :   static APInt getSplat(unsigned NewLen, const APInt &V);
     656             : 
     657             :   /// Determine if two APInts have the same value, after zero-extending
     658             :   /// one of them (if needed!) to ensure that the bit-widths match.
     659          66 :   static bool isSameValue(const APInt &I1, const APInt &I2) {
     660          66 :     if (I1.getBitWidth() == I2.getBitWidth())
     661             :       return I1 == I2;
     662             : 
     663           0 :     if (I1.getBitWidth() > I2.getBitWidth())
     664           0 :       return I1 == I2.zext(I1.getBitWidth());
     665             : 
     666           0 :     return I1.zext(I2.getBitWidth()) == I2;
     667             :   }
     668             : 
     669             :   /// Overload to compute a hash_code for an APInt value.
     670             :   friend hash_code hash_value(const APInt &Arg);
     671             : 
     672             :   /// This function returns a pointer to the internal storage of the APInt.
     673             :   /// This is useful for writing out the APInt in binary form without any
     674             :   /// conversions.
     675             :   const uint64_t *getRawData() const {
     676    51421977 :     if (isSingleWord())
     677    49580280 :       return &U.VAL;
     678     1747627 :     return &U.pVal[0];
     679             :   }
     680             : 
     681             :   /// @}
     682             :   /// \name Unary Operators
     683             :   /// @{
     684             : 
     685             :   /// Postfix increment operator.
     686             :   ///
     687             :   /// Increments *this by 1.
     688             :   ///
     689             :   /// \returns a new APInt value representing the original value of *this.
     690           0 :   const APInt operator++(int) {
     691             :     APInt API(*this);
     692           0 :     ++(*this);
     693           0 :     return API;
     694             :   }
     695             : 
     696             :   /// Prefix increment operator.
     697             :   ///
     698             :   /// \returns *this incremented by one
     699             :   APInt &operator++();
     700             : 
     701             :   /// Postfix decrement operator.
     702             :   ///
     703             :   /// Decrements *this by 1.
     704             :   ///
     705             :   /// \returns a new APInt value representing the original value of *this.
     706             :   const APInt operator--(int) {
     707             :     APInt API(*this);
     708             :     --(*this);
     709             :     return API;
     710             :   }
     711             : 
     712             :   /// Prefix decrement operator.
     713             :   ///
     714             :   /// \returns *this decremented by one.
     715             :   APInt &operator--();
     716             : 
     717             :   /// Logical negation operator.
     718             :   ///
     719             :   /// Performs logical negation operation on this APInt.
     720             :   ///
     721             :   /// \returns true if *this is zero, false otherwise.
     722             :   bool operator!() const {
     723   394620763 :     if (isSingleWord())
     724   393083997 :       return U.VAL == 0;
     725     1536766 :     return countLeadingZerosSlowCase() == BitWidth;
     726             :   }
     727             : 
     728             :   /// @}
     729             :   /// \name Assignment Operators
     730             :   /// @{
     731             : 
     732             :   /// Copy assignment operator.
     733             :   ///
     734             :   /// \returns *this after assignment of RHS.
     735   117289546 :   APInt &operator=(const APInt &RHS) {
     736             :     // If the bitwidths are the same, we can avoid mucking with memory
     737   117289546 :     if (isSingleWord() && RHS.isSingleWord()) {
     738   117187095 :       U.VAL = RHS.U.VAL;
     739   117187095 :       BitWidth = RHS.BitWidth;
     740   117187095 :       return clearUnusedBits();
     741             :     }
     742             : 
     743      102451 :     AssignSlowCase(RHS);
     744      102451 :     return *this;
     745             :   }
     746             : 
     747             :   /// Move assignment operator.
     748             :   APInt &operator=(APInt &&that) {
     749             : #ifdef _MSC_VER
     750             :     // The MSVC std::shuffle implementation still does self-assignment.
     751             :     if (this == &that)
     752             :       return *this;
     753             : #endif
     754             :     assert(this != &that && "Self-move not supported");
     755   159885814 :     if (!isSingleWord())
     756     1523794 :       delete[] U.pVal;
     757             : 
     758             :     // Use memcpy so that type based alias analysis sees both VAL and pVal
     759             :     // as modified.
     760   161363243 :     memcpy(&U, &that.U, sizeof(U));
     761             : 
     762   134885558 :     BitWidth = that.BitWidth;
     763    26341457 :     that.BitWidth = 0;
     764             : 
     765             :     return *this;
     766             :   }
     767             : 
     768             :   /// Assignment operator.
     769             :   ///
     770             :   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
     771             :   /// the bit width, the excess bits are truncated. If the bit width is larger
     772             :   /// than 64, the value is zero filled in the unspecified high order bits.
     773             :   ///
     774             :   /// \returns *this after assignment of RHS value.
     775    48534101 :   APInt &operator=(uint64_t RHS) {
     776    48534101 :     if (isSingleWord()) {
     777    46922919 :       U.VAL = RHS;
     778    46922919 :       clearUnusedBits();
     779             :     } else {
     780     1611182 :       U.pVal[0] = RHS;
     781     1619642 :       memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
     782             :     }
     783    48534101 :     return *this;
     784             :   }
     785             : 
     786             :   /// Bitwise AND assignment operator.
     787             :   ///
     788             :   /// Performs a bitwise AND operation on this APInt and RHS. The result is
     789             :   /// assigned to *this.
     790             :   ///
     791             :   /// \returns *this after ANDing with RHS.
     792             :   APInt &operator&=(const APInt &RHS) {
     793             :     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
     794    45835281 :     if (isSingleWord())
     795    45719042 :       U.VAL &= RHS.U.VAL;
     796             :     else
     797      116239 :       AndAssignSlowCase(RHS);
     798             :     return *this;
     799             :   }
     800             : 
     801             :   /// Bitwise AND assignment operator.
     802             :   ///
     803             :   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
     804             :   /// logically zero-extended or truncated to match the bit-width of
     805             :   /// the LHS.
     806        3437 :   APInt &operator&=(uint64_t RHS) {
     807        3437 :     if (isSingleWord()) {
     808        3428 :       U.VAL &= RHS;
     809        3428 :       return *this;
     810             :     }
     811           9 :     U.pVal[0] &= RHS;
     812           9 :     memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
     813           9 :     return *this;
     814             :   }
     815             : 
     816             :   /// Bitwise OR assignment operator.
     817             :   ///
     818             :   /// Performs a bitwise OR operation on this APInt and RHS. The result is
     819             :   /// assigned *this;
     820             :   ///
     821             :   /// \returns *this after ORing with RHS.
     822             :   APInt &operator|=(const APInt &RHS) {
     823             :     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
     824    48789901 :     if (isSingleWord())
     825    48685407 :       U.VAL |= RHS.U.VAL;
     826             :     else
     827      104494 :       OrAssignSlowCase(RHS);
     828             :     return *this;
     829             :   }
     830             : 
     831             :   /// Bitwise OR assignment operator.
     832             :   ///
     833             :   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
     834             :   /// logically zero-extended or truncated to match the bit-width of
     835             :   /// the LHS.
     836             :   APInt &operator|=(uint64_t RHS) {
     837     1297322 :     if (isSingleWord()) {
     838       16515 :       U.VAL |= RHS;
     839       16515 :       clearUnusedBits();
     840             :     } else {
     841     1281184 :       U.pVal[0] |= RHS;
     842             :     }
     843             :     return *this;
     844             :   }
     845             : 
     846             :   /// Bitwise XOR assignment operator.
     847             :   ///
     848             :   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
     849             :   /// assigned to *this.
     850             :   ///
     851             :   /// \returns *this after XORing with RHS.
     852             :   APInt &operator^=(const APInt &RHS) {
     853             :     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
     854    18019096 :     if (isSingleWord())
     855    18008461 :       U.VAL ^= RHS.U.VAL;
     856             :     else
     857       10635 :       XorAssignSlowCase(RHS);
     858             :     return *this;
     859             :   }
     860             : 
     861             :   /// Bitwise XOR assignment operator.
     862             :   ///
     863             :   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
     864             :   /// logically zero-extended or truncated to match the bit-width of
     865             :   /// the LHS.
     866             :   APInt &operator^=(uint64_t RHS) {
     867          14 :     if (isSingleWord()) {
     868           5 :       U.VAL ^= RHS;
     869           5 :       clearUnusedBits();
     870             :     } else {
     871           9 :       U.pVal[0] ^= RHS;
     872             :     }
     873             :     return *this;
     874             :   }
     875             : 
     876             :   /// Multiplication assignment operator.
     877             :   ///
     878             :   /// Multiplies this APInt by RHS and assigns the result to *this.
     879             :   ///
     880             :   /// \returns *this
     881             :   APInt &operator*=(const APInt &RHS);
     882             :   APInt &operator*=(uint64_t RHS);
     883             : 
     884             :   /// Addition assignment operator.
     885             :   ///
     886             :   /// Adds RHS to *this and assigns the result to *this.
     887             :   ///
     888             :   /// \returns *this
     889             :   APInt &operator+=(const APInt &RHS);
     890             :   APInt &operator+=(uint64_t RHS);
     891             : 
     892             :   /// Subtraction assignment operator.
     893             :   ///
     894             :   /// Subtracts RHS from *this and assigns the result to *this.
     895             :   ///
     896             :   /// \returns *this
     897             :   APInt &operator-=(const APInt &RHS);
     898             :   APInt &operator-=(uint64_t RHS);
     899             : 
     900             :   /// Left-shift assignment function.
     901             :   ///
     902             :   /// Shifts *this left by shiftAmt and assigns the result to *this.
     903             :   ///
     904             :   /// \returns *this after shifting left by ShiftAmt
     905    12022855 :   APInt &operator<<=(unsigned ShiftAmt) {
     906             :     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
     907    12022855 :     if (isSingleWord()) {
     908    10587882 :       if (ShiftAmt == BitWidth)
     909        9884 :         U.VAL = 0;
     910             :       else
     911    10577998 :         U.VAL <<= ShiftAmt;
     912    10587882 :       return clearUnusedBits();
     913             :     }
     914     1434973 :     shlSlowCase(ShiftAmt);
     915     1434973 :     return *this;
     916             :   }
     917             : 
     918             :   /// Left-shift assignment function.
     919             :   ///
     920             :   /// Shifts *this left by shiftAmt and assigns the result to *this.
     921             :   ///
     922             :   /// \returns *this after shifting left by ShiftAmt
     923             :   APInt &operator<<=(const APInt &ShiftAmt);
     924             : 
     925             :   /// @}
     926             :   /// \name Binary Operators
     927             :   /// @{
     928             : 
     929             :   /// Multiplication operator.
     930             :   ///
     931             :   /// Multiplies this APInt by RHS and returns the result.
     932             :   APInt operator*(const APInt &RHS) const;
     933             : 
     934             :   /// Left logical shift operator.
     935             :   ///
     936             :   /// Shifts this APInt left by \p Bits and returns the result.
     937     1302277 :   APInt operator<<(unsigned Bits) const { return shl(Bits); }
     938             : 
     939             :   /// Left logical shift operator.
     940             :   ///
     941             :   /// Shifts this APInt left by \p Bits and returns the result.
     942      863724 :   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
     943             : 
     944             :   /// Arithmetic right-shift function.
     945             :   ///
     946             :   /// Arithmetic right-shift this APInt by shiftAmt.
     947      718325 :   APInt ashr(unsigned ShiftAmt) const {
     948             :     APInt R(*this);
     949      718325 :     R.ashrInPlace(ShiftAmt);
     950      718325 :     return R;
     951             :   }
     952             : 
     953             :   /// Arithmetic right-shift this APInt by ShiftAmt in place.
     954      855266 :   void ashrInPlace(unsigned ShiftAmt) {
     955             :     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
     956      855266 :     if (isSingleWord()) {
     957      850682 :       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
     958      850682 :       if (ShiftAmt == BitWidth)
     959        4910 :         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
     960             :       else
     961      845772 :         U.VAL = SExtVAL >> ShiftAmt;
     962      850682 :       clearUnusedBits();
     963      850682 :       return;
     964             :     }
     965        4584 :     ashrSlowCase(ShiftAmt);
     966             :   }
     967             : 
     968             :   /// Logical right-shift function.
     969             :   ///
     970             :   /// Logical right-shift this APInt by shiftAmt.
     971     2587336 :   APInt lshr(unsigned shiftAmt) const {
     972             :     APInt R(*this);
     973             :     R.lshrInPlace(shiftAmt);
     974     2587336 :     return R;
     975             :   }
     976             : 
     977             :   /// Logical right-shift this APInt by ShiftAmt in place.
     978             :   void lshrInPlace(unsigned ShiftAmt) {
     979             :     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
     980     6964945 :     if (isSingleWord()) {
     981     4804435 :       if (ShiftAmt == BitWidth)
     982        4927 :         U.VAL = 0;
     983             :       else
     984     4799508 :         U.VAL >>= ShiftAmt;
     985             :       return;
     986             :     }
     987     2197397 :     lshrSlowCase(ShiftAmt);
     988             :   }
     989             : 
     990             :   /// Left-shift function.
     991             :   ///
     992             :   /// Left-shift this APInt by shiftAmt.
     993     7738480 :   APInt shl(unsigned shiftAmt) const {
     994             :     APInt R(*this);
     995     7738480 :     R <<= shiftAmt;
     996     7738480 :     return R;
     997             :   }
     998             : 
     999             :   /// Rotate left by rotateAmt.
    1000             :   APInt rotl(unsigned rotateAmt) const;
    1001             : 
    1002             :   /// Rotate right by rotateAmt.
    1003             :   APInt rotr(unsigned rotateAmt) const;
    1004             : 
    1005             :   /// Arithmetic right-shift function.
    1006             :   ///
    1007             :   /// Arithmetic right-shift this APInt by shiftAmt.
    1008       12730 :   APInt ashr(const APInt &ShiftAmt) const {
    1009             :     APInt R(*this);
    1010       12730 :     R.ashrInPlace(ShiftAmt);
    1011       12730 :     return R;
    1012             :   }
    1013             : 
    1014             :   /// Arithmetic right-shift this APInt by shiftAmt in place.
    1015             :   void ashrInPlace(const APInt &shiftAmt);
    1016             : 
    1017             :   /// Logical right-shift function.
    1018             :   ///
    1019             :   /// Logical right-shift this APInt by shiftAmt.
    1020       34039 :   APInt lshr(const APInt &ShiftAmt) const {
    1021             :     APInt R(*this);
    1022       34039 :     R.lshrInPlace(ShiftAmt);
    1023       34039 :     return R;
    1024             :   }
    1025             : 
    1026             :   /// Logical right-shift this APInt by ShiftAmt in place.
    1027             :   void lshrInPlace(const APInt &ShiftAmt);
    1028             : 
    1029             :   /// Left-shift function.
    1030             :   ///
    1031             :   /// Left-shift this APInt by shiftAmt.
    1032      947116 :   APInt shl(const APInt &ShiftAmt) const {
    1033             :     APInt R(*this);
    1034      947116 :     R <<= ShiftAmt;
    1035      947116 :     return R;
    1036             :   }
    1037             : 
    1038             :   /// Rotate left by rotateAmt.
    1039             :   APInt rotl(const APInt &rotateAmt) const;
    1040             : 
    1041             :   /// Rotate right by rotateAmt.
    1042             :   APInt rotr(const APInt &rotateAmt) const;
    1043             : 
    1044             :   /// Unsigned division operation.
    1045             :   ///
    1046             :   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
    1047             :   /// RHS are treated as unsigned quantities for purposes of this division.
    1048             :   ///
    1049             :   /// \returns a new APInt value containing the division result, rounded towards
    1050             :   /// zero.
    1051             :   APInt udiv(const APInt &RHS) const;
    1052             :   APInt udiv(uint64_t RHS) const;
    1053             : 
    1054             :   /// Signed division function for APInt.
    1055             :   ///
    1056             :   /// Signed divide this APInt by APInt RHS.
    1057             :   ///
    1058             :   /// The result is rounded towards zero.
    1059             :   APInt sdiv(const APInt &RHS) const;
    1060             :   APInt sdiv(int64_t RHS) const;
    1061             : 
    1062             :   /// Unsigned remainder operation.
    1063             :   ///
    1064             :   /// Perform an unsigned remainder operation on this APInt with RHS being the
    1065             :   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
    1066             :   /// of this operation. Note that this is a true remainder operation and not a
    1067             :   /// modulo operation because the sign follows the sign of the dividend which
    1068             :   /// is *this.
    1069             :   ///
    1070             :   /// \returns a new APInt value containing the remainder result
    1071             :   APInt urem(const APInt &RHS) const;
    1072             :   uint64_t urem(uint64_t RHS) const;
    1073             : 
    1074             :   /// Function for signed remainder operation.
    1075             :   ///
    1076             :   /// Signed remainder operation on APInt.
    1077             :   APInt srem(const APInt &RHS) const;
    1078             :   int64_t srem(int64_t RHS) const;
    1079             : 
    1080             :   /// Dual division/remainder interface.
    1081             :   ///
    1082             :   /// Sometimes it is convenient to divide two APInt values and obtain both the
    1083             :   /// quotient and remainder. This function does both operations in the same
    1084             :   /// computation making it a little more efficient. The pair of input arguments
    1085             :   /// may overlap with the pair of output arguments. It is safe to call
    1086             :   /// udivrem(X, Y, X, Y), for example.
    1087             :   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    1088             :                       APInt &Remainder);
    1089             :   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
    1090             :                       uint64_t &Remainder);
    1091             : 
    1092             :   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    1093             :                       APInt &Remainder);
    1094             :   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
    1095             :                       int64_t &Remainder);
    1096             : 
    1097             :   // Operations that return overflow indicators.
    1098             :   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
    1099             :   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
    1100             :   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
    1101             :   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
    1102             :   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
    1103             :   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
    1104             :   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
    1105             :   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
    1106             :   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
    1107             : 
    1108             :   /// Array-indexing support.
    1109             :   ///
    1110             :   /// \returns the bit value at bitPosition
    1111             :   bool operator[](unsigned bitPosition) const {
    1112             :     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    1113   212626243 :     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
    1114             :   }
    1115             : 
    1116             :   /// @}
    1117             :   /// \name Comparison Operators
    1118             :   /// @{
    1119             : 
    1120             :   /// Equality operator.
    1121             :   ///
    1122             :   /// Compares this APInt with RHS for the validity of the equality
    1123             :   /// relationship.
    1124             :   bool operator==(const APInt &RHS) const {
    1125             :     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    1126   203469290 :     if (isSingleWord())
    1127   200459179 :       return U.VAL == RHS.U.VAL;
    1128     3057428 :     return EqualSlowCase(RHS);
    1129             :   }
    1130             : 
    1131             :   /// Equality operator.
    1132             :   ///
    1133             :   /// Compares this APInt with a uint64_t for the validity of the equality
    1134             :   /// relationship.
    1135             :   ///
    1136             :   /// \returns true if *this == Val
    1137    93011480 :   bool operator==(uint64_t Val) const {
    1138   184927525 :     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
    1139             :   }
    1140             : 
    1141             :   /// Equality comparison.
    1142             :   ///
    1143             :   /// Compares this APInt with RHS for the validity of the equality
    1144             :   /// relationship.
    1145             :   ///
    1146             :   /// \returns true if *this == Val
    1147             :   bool eq(const APInt &RHS) const { return (*this) == RHS; }
    1148             : 
    1149             :   /// Inequality operator.
    1150             :   ///
    1151             :   /// Compares this APInt with RHS for the validity of the inequality
    1152             :   /// relationship.
    1153             :   ///
    1154             :   /// \returns true if *this != Val
    1155      296466 :   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
    1156             : 
    1157             :   /// Inequality operator.
    1158             :   ///
    1159             :   /// Compares this APInt with a uint64_t for the validity of the inequality
    1160             :   /// relationship.
    1161             :   ///
    1162             :   /// \returns true if *this != Val
    1163    38231760 :   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
    1164             : 
    1165             :   /// Inequality comparison
    1166             :   ///
    1167             :   /// Compares this APInt with RHS for the validity of the inequality
    1168             :   /// relationship.
    1169             :   ///
    1170             :   /// \returns true if *this != Val
    1171           2 :   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
    1172             : 
    1173             :   /// Unsigned less than comparison
    1174             :   ///
    1175             :   /// Regards both *this and RHS as unsigned quantities and compares them for
    1176             :   /// the validity of the less-than relationship.
    1177             :   ///
    1178             :   /// \returns true if *this < RHS when both are considered unsigned.
    1179    33178841 :   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
    1180             : 
    1181             :   /// Unsigned less than comparison
    1182             :   ///
    1183             :   /// Regards both *this as an unsigned quantity and compares it with RHS for
    1184             :   /// the validity of the less-than relationship.
    1185             :   ///
    1186             :   /// \returns true if *this < RHS when considered unsigned.
    1187     8499704 :   bool ult(uint64_t RHS) const {
    1188             :     // Only need to check active bits if not a single word.
    1189    16948251 :     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
    1190             :   }
    1191             : 
    1192             :   /// Signed less than comparison
    1193             :   ///
    1194             :   /// Regards both *this and RHS as signed quantities and compares them for
    1195             :   /// validity of the less-than relationship.
    1196             :   ///
    1197             :   /// \returns true if *this < RHS when both are considered signed.
    1198     1576600 :   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
    1199             : 
    1200             :   /// Signed less than comparison
    1201             :   ///
    1202             :   /// Regards both *this as a signed quantity and compares it with RHS for
    1203             :   /// the validity of the less-than relationship.
    1204             :   ///
    1205             :   /// \returns true if *this < RHS when considered signed.
    1206        9540 :   bool slt(int64_t RHS) const {
    1207       19072 :     return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
    1208        9540 :                                                         : getSExtValue() < RHS;
    1209             :   }
    1210             : 
    1211             :   /// Unsigned less or equal comparison
    1212             :   ///
    1213             :   /// Regards both *this and RHS as unsigned quantities and compares them for
    1214             :   /// validity of the less-or-equal relationship.
    1215             :   ///
    1216             :   /// \returns true if *this <= RHS when both are considered unsigned.
    1217     5629396 :   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
    1218             : 
    1219             :   /// Unsigned less or equal comparison
    1220             :   ///
    1221             :   /// Regards both *this as an unsigned quantity and compares it with RHS for
    1222             :   /// the validity of the less-or-equal relationship.
    1223             :   ///
    1224             :   /// \returns true if *this <= RHS when considered unsigned.
    1225      402976 :   bool ule(uint64_t RHS) const { return !ugt(RHS); }
    1226             : 
    1227             :   /// Signed less or equal comparison
    1228             :   ///
    1229             :   /// Regards both *this and RHS as signed quantities and compares them for
    1230             :   /// validity of the less-or-equal relationship.
    1231             :   ///
    1232             :   /// \returns true if *this <= RHS when both are considered signed.
    1233     8622160 :   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
    1234             : 
    1235             :   /// Signed less or equal comparison
    1236             :   ///
    1237             :   /// Regards both *this as a signed quantity and compares it with RHS for the
    1238             :   /// validity of the less-or-equal relationship.
    1239             :   ///
    1240             :   /// \returns true if *this <= RHS when considered signed.
    1241         189 :   bool sle(uint64_t RHS) const { return !sgt(RHS); }
    1242             : 
    1243             :   /// Unsigned greather than comparison
    1244             :   ///
    1245             :   /// Regards both *this and RHS as unsigned quantities and compares them for
    1246             :   /// the validity of the greater-than relationship.
    1247             :   ///
    1248             :   /// \returns true if *this > RHS when both are considered unsigned.
    1249    16905225 :   bool ugt(const APInt &RHS) const { return !ule(RHS); }
    1250             : 
    1251             :   /// Unsigned greater than comparison
    1252             :   ///
    1253             :   /// Regards both *this as an unsigned quantity and compares it with RHS for
    1254             :   /// the validity of the greater-than relationship.
    1255             :   ///
    1256             :   /// \returns true if *this > RHS when considered unsigned.
    1257    14470784 :   bool ugt(uint64_t RHS) const {
    1258             :     // Only need to check active bits if not a single word.
    1259    28941320 :     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
    1260             :   }
    1261             : 
    1262             :   /// Signed greather than comparison
    1263             :   ///
    1264             :   /// Regards both *this and RHS as signed quantities and compares them for the
    1265             :   /// validity of the greater-than relationship.
    1266             :   ///
    1267             :   /// \returns true if *this > RHS when both are considered signed.
    1268     1665498 :   bool sgt(const APInt &RHS) const { return !sle(RHS); }
    1269             : 
    1270             :   /// Signed greater than comparison
    1271             :   ///
    1272             :   /// Regards both *this as a signed quantity and compares it with RHS for
    1273             :   /// the validity of the greater-than relationship.
    1274             :   ///
    1275             :   /// \returns true if *this > RHS when considered signed.
    1276         909 :   bool sgt(int64_t RHS) const {
    1277        1810 :     return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
    1278         909 :                                                         : getSExtValue() > RHS;
    1279             :   }
    1280             : 
    1281             :   /// Unsigned greater or equal comparison
    1282             :   ///
    1283             :   /// Regards both *this and RHS as unsigned quantities and compares them for
    1284             :   /// validity of the greater-or-equal relationship.
    1285             :   ///
    1286             :   /// \returns true if *this >= RHS when both are considered unsigned.
    1287        3997 :   bool uge(const APInt &RHS) const { return !ult(RHS); }
    1288             : 
    1289             :   /// Unsigned greater or equal comparison
    1290             :   ///
    1291             :   /// Regards both *this as an unsigned quantity and compares it with RHS for
    1292             :   /// the validity of the greater-or-equal relationship.
    1293             :   ///
    1294             :   /// \returns true if *this >= RHS when considered unsigned.
    1295     4722069 :   bool uge(uint64_t RHS) const { return !ult(RHS); }
    1296             : 
    1297             :   /// Signed greater or equal comparison
    1298             :   ///
    1299             :   /// Regards both *this and RHS as signed quantities and compares them for
    1300             :   /// validity of the greater-or-equal relationship.
    1301             :   ///
    1302             :   /// \returns true if *this >= RHS when both are considered signed.
    1303     1205931 :   bool sge(const APInt &RHS) const { return !slt(RHS); }
    1304             : 
    1305             :   /// Signed greater or equal comparison
    1306             :   ///
    1307             :   /// Regards both *this as a signed quantity and compares it with RHS for
    1308             :   /// the validity of the greater-or-equal relationship.
    1309             :   ///
    1310             :   /// \returns true if *this >= RHS when considered signed.
    1311        8397 :   bool sge(int64_t RHS) const { return !slt(RHS); }
    1312             : 
    1313             :   /// This operation tests if there are any pairs of corresponding bits
    1314             :   /// between this APInt and RHS that are both set.
    1315             :   bool intersects(const APInt &RHS) const {
    1316             :     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    1317    64482740 :     if (isSingleWord())
    1318    64450076 :       return (U.VAL & RHS.U.VAL) != 0;
    1319       32664 :     return intersectsSlowCase(RHS);
    1320             :   }
    1321             : 
    1322             :   /// This operation checks that all bits set in this APInt are also set in RHS.
    1323             :   bool isSubsetOf(const APInt &RHS) const {
    1324             :     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    1325    15605005 :     if (isSingleWord())
    1326    15579303 :       return (U.VAL & ~RHS.U.VAL) == 0;
    1327       25701 :     return isSubsetOfSlowCase(RHS);
    1328             :   }
    1329             : 
    1330             :   /// @}
    1331             :   /// \name Resizing Operators
    1332             :   /// @{
    1333             : 
    1334             :   /// Truncate to new width.
    1335             :   ///
    1336             :   /// Truncate the APInt to a specified width. It is an error to specify a width
    1337             :   /// that is greater than or equal to the current width.
    1338             :   APInt trunc(unsigned width) const;
    1339             : 
    1340             :   /// Sign extend to a new width.
    1341             :   ///
    1342             :   /// This operation sign extends the APInt to a new width. If the high order
    1343             :   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
    1344             :   /// It is an error to specify a width that is less than or equal to the
    1345             :   /// current width.
    1346             :   APInt sext(unsigned width) const;
    1347             : 
    1348             :   /// Zero extend to a new width.
    1349             :   ///
    1350             :   /// This operation zero extends the APInt to a new width. The high order bits
    1351             :   /// are filled with 0 bits.  It is an error to specify a width that is less
    1352             :   /// than or equal to the current width.
    1353             :   APInt zext(unsigned width) const;
    1354             : 
    1355             :   /// Sign extend or truncate to width
    1356             :   ///
    1357             :   /// Make this APInt have the bit width given by \p width. The value is sign
    1358             :   /// extended, truncated, or left alone to make it that width.
    1359             :   APInt sextOrTrunc(unsigned width) const;
    1360             : 
    1361             :   /// Zero extend or truncate to width
    1362             :   ///
    1363             :   /// Make this APInt have the bit width given by \p width. The value is zero
    1364             :   /// extended, truncated, or left alone to make it that width.
    1365             :   APInt zextOrTrunc(unsigned width) const;
    1366             : 
    1367             :   /// Sign extend or truncate to width
    1368             :   ///
    1369             :   /// Make this APInt have the bit width given by \p width. The value is sign
    1370             :   /// extended, or left alone to make it that width.
    1371             :   APInt sextOrSelf(unsigned width) const;
    1372             : 
    1373             :   /// Zero extend or truncate to width
    1374             :   ///
    1375             :   /// Make this APInt have the bit width given by \p width. The value is zero
    1376             :   /// extended, or left alone to make it that width.
    1377             :   APInt zextOrSelf(unsigned width) const;
    1378             : 
    1379             :   /// @}
    1380             :   /// \name Bit Manipulation Operators
    1381             :   /// @{
    1382             : 
    1383             :   /// Set every bit to 1.
    1384    11309863 :   void setAllBits() {
    1385    11309863 :     if (isSingleWord())
    1386    11262639 :       U.VAL = WORDTYPE_MAX;
    1387             :     else
    1388             :       // Set all the bits in all the words.
    1389       47224 :       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
    1390             :     // Clear the unused ones
    1391    11309863 :     clearUnusedBits();
    1392    11309863 :   }
    1393             : 
    1394             :   /// Set a given bit to 1.
    1395             :   ///
    1396             :   /// Set the given bit to 1 whose position is given as "bitPosition".
    1397             :   void setBit(unsigned BitPosition) {
    1398             :     assert(BitPosition <= BitWidth && "BitPosition out of range");
    1399             :     WordType Mask = maskBit(BitPosition);
    1400    16469379 :     if (isSingleWord())
    1401    15979907 :       U.VAL |= Mask;
    1402             :     else
    1403      763059 :       U.pVal[whichWord(BitPosition)] |= Mask;
    1404             :   }
    1405             : 
    1406             :   /// Set the sign bit to 1.
    1407           0 :   void setSignBit() {
    1408      306013 :     setBit(BitWidth - 1);
    1409           0 :   }
    1410             : 
    1411             :   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
    1412    48537036 :   void setBits(unsigned loBit, unsigned hiBit) {
    1413             :     assert(hiBit <= BitWidth && "hiBit out of range");
    1414             :     assert(loBit <= BitWidth && "loBit out of range");
    1415             :     assert(loBit <= hiBit && "loBit greater than hiBit");
    1416    48537036 :     if (loBit == hiBit)
    1417             :       return;
    1418    36985172 :     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
    1419    36897712 :       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
    1420    36897712 :       mask <<= loBit;
    1421    36897712 :       if (isSingleWord())
    1422    36867048 :         U.VAL |= mask;
    1423             :       else
    1424       30664 :         U.pVal[0] |= mask;
    1425             :     } else {
    1426       87460 :       setBitsSlowCase(loBit, hiBit);
    1427             :     }
    1428             :   }
    1429             : 
    1430             :   /// Set the top bits starting from loBit.
    1431             :   void setBitsFrom(unsigned loBit) {
    1432     1618015 :     return setBits(loBit, BitWidth);
    1433             :   }
    1434             : 
    1435             :   /// Set the bottom loBits bits.
    1436             :   void setLowBits(unsigned loBits) {
    1437    40238194 :     return setBits(0, loBits);
    1438             :   }
    1439             : 
    1440             :   /// Set the top hiBits bits.
    1441             :   void setHighBits(unsigned hiBits) {
    1442     5901433 :     return setBits(BitWidth - hiBits, BitWidth);
    1443             :   }
    1444             : 
    1445             :   /// Set every bit to 0.
    1446   167559583 :   void clearAllBits() {
    1447   167559583 :     if (isSingleWord())
    1448   167468948 :       U.VAL = 0;
    1449             :     else
    1450       90635 :       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
    1451   167559583 :   }
    1452             : 
    1453             :   /// Set a given bit to 0.
    1454             :   ///
    1455             :   /// Set the given bit to 0 whose position is given as "bitPosition".
    1456             :   void clearBit(unsigned BitPosition) {
    1457             :     assert(BitPosition <= BitWidth && "BitPosition out of range");
    1458    13736768 :     WordType Mask = ~maskBit(BitPosition);
    1459     3721358 :     if (isSingleWord())
    1460    13379100 :       U.VAL &= Mask;
    1461             :     else
    1462      393263 :       U.pVal[whichWord(BitPosition)] &= Mask;
    1463             :   }
    1464             : 
    1465             :   /// Set the sign bit to 0.
    1466           0 :   void clearSignBit() {
    1467    10051005 :     clearBit(BitWidth - 1);
    1468           0 :   }
    1469             : 
    1470             :   /// Toggle every bit to its opposite value.
    1471    91051818 :   void flipAllBits() {
    1472    91051818 :     if (isSingleWord()) {
    1473    90787718 :       U.VAL ^= WORDTYPE_MAX;
    1474    90787718 :       clearUnusedBits();
    1475             :     } else {
    1476      264100 :       flipAllBitsSlowCase();
    1477             :     }
    1478    91051818 :   }
    1479             : 
    1480             :   /// Toggles a given bit to its opposite value.
    1481             :   ///
    1482             :   /// Toggle a given bit to its opposite value whose position is given
    1483             :   /// as "bitPosition".
    1484             :   void flipBit(unsigned bitPosition);
    1485             : 
    1486             :   /// Negate this APInt in place.
    1487             :   void negate() {
    1488     4642104 :     flipAllBits();
    1489     5199252 :     ++(*this);
    1490             :   }
    1491             : 
    1492             :   /// Insert the bits from a smaller APInt starting at bitPosition.
    1493             :   void insertBits(const APInt &SubBits, unsigned bitPosition);
    1494             : 
    1495             :   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
    1496             :   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
    1497             : 
    1498             :   /// @}
    1499             :   /// \name Value Characterization Functions
    1500             :   /// @{
    1501             : 
    1502             :   /// Return the number of bits in the APInt.
    1503           0 :   unsigned getBitWidth() const { return BitWidth; }
    1504             : 
    1505             :   /// Get the number of words.
    1506             :   ///
    1507             :   /// Here one word's bitwidth equals to that of uint64_t.
    1508             :   ///
    1509             :   /// \returns the number of words to hold the integer value of this APInt.
    1510           0 :   unsigned getNumWords() const { return getNumWords(BitWidth); }
    1511             : 
    1512             :   /// Get the number of words.
    1513             :   ///
    1514             :   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
    1515             :   ///
    1516             :   /// \returns the number of words to hold the integer value with a given bit
    1517             :   /// width.
    1518             :   static unsigned getNumWords(unsigned BitWidth) {
    1519    75431533 :     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
    1520             :   }
    1521             : 
    1522             :   /// Compute the number of active bits in the value
    1523             :   ///
    1524             :   /// This function returns the number of active bits which is defined as the
    1525             :   /// bit width minus the number of leading zeros. This is used in several
    1526             :   /// computations to see how "wide" the value is.
    1527    34492764 :   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
    1528             : 
    1529             :   /// Compute the number of active words in the value of this APInt.
    1530             :   ///
    1531             :   /// This is used in conjunction with getActiveData to extract the raw value of
    1532             :   /// the APInt.
    1533             :   unsigned getActiveWords() const {
    1534             :     unsigned numActiveBits = getActiveBits();
    1535          23 :     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
    1536             :   }
    1537             : 
    1538             :   /// Get the minimum bit size for this signed APInt
    1539             :   ///
    1540             :   /// Computes the minimum bit width for this APInt while considering it to be a
    1541             :   /// signed (and probably negative) value. If the value is not negative, this
    1542             :   /// function returns the same value as getActiveBits()+1. Otherwise, it
    1543             :   /// returns the smallest bit width that will retain the negative value. For
    1544             :   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
    1545             :   /// for -1, this function will always return 1.
    1546     3987680 :   unsigned getMinSignedBits() const {
    1547     3989232 :     if (isNegative())
    1548      452325 :       return BitWidth - countLeadingOnes() + 1;
    1549     3535355 :     return getActiveBits() + 1;
    1550             :   }
    1551             : 
    1552             :   /// Get zero extended value
    1553             :   ///
    1554             :   /// This method attempts to return the value of this APInt as a zero extended
    1555             :   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
    1556             :   /// uint64_t. Otherwise an assertion will result.
    1557             :   uint64_t getZExtValue() const {
    1558   292112203 :     if (isSingleWord())
    1559   294886824 :       return U.VAL;
    1560             :     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
    1561     1134394 :     return U.pVal[0];
    1562             :   }
    1563             : 
    1564             :   /// Get sign extended value
    1565             :   ///
    1566             :   /// This method attempts to return the value of this APInt as a sign extended
    1567             :   /// int64_t. The bit width must be <= 64 or the value must fit within an
    1568             :   /// int64_t. Otherwise an assertion will result.
    1569             :   int64_t getSExtValue() const {
    1570   127873529 :     if (isSingleWord())
    1571   129778323 :       return SignExtend64(U.VAL, BitWidth);
    1572             :     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
    1573         744 :     return int64_t(U.pVal[0]);
    1574             :   }
    1575             : 
    1576             :   /// Get bits required for string value.
    1577             :   ///
    1578             :   /// This method determines how many bits are required to hold the APInt
    1579             :   /// equivalent of the string given by \p str.
    1580             :   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
    1581             : 
    1582             :   /// The APInt version of the countLeadingZeros functions in
    1583             :   ///   MathExtras.h.
    1584             :   ///
    1585             :   /// It counts the number of zeros from the most significant bit to the first
    1586             :   /// one bit.
    1587             :   ///
    1588             :   /// \returns BitWidth if the value is zero, otherwise returns the number of
    1589             :   ///   zeros from the most significant bit to the first one bits.
    1590    46364805 :   unsigned countLeadingZeros() const {
    1591    46364805 :     if (isSingleWord()) {
    1592             :       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
    1593    77354655 :       return llvm::countLeadingZeros(U.VAL) - unusedBits;
    1594             :     }
    1595     3142468 :     return countLeadingZerosSlowCase();
    1596             :   }
    1597             : 
    1598             :   /// Count the number of leading one bits.
    1599             :   ///
    1600             :   /// This function is an APInt version of the countLeadingOnes
    1601             :   /// functions in MathExtras.h. It counts the number of ones from the most
    1602             :   /// significant bit to the first zero bit.
    1603             :   ///
    1604             :   /// \returns 0 if the high order bit is not set, otherwise returns the number
    1605             :   /// of 1 bits from the most significant to the least
    1606    10961038 :   unsigned countLeadingOnes() const {
    1607    10961038 :     if (isSingleWord())
    1608    21843184 :       return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
    1609       11866 :     return countLeadingOnesSlowCase();
    1610             :   }
    1611             : 
    1612             :   /// Computes the number of leading bits of this APInt that are equal to its
    1613             :   /// sign bit.
    1614       48878 :   unsigned getNumSignBits() const {
    1615       48940 :     return isNegative() ? countLeadingOnes() : countLeadingZeros();
    1616             :   }
    1617             : 
    1618             :   /// Count the number of trailing zero bits.
    1619             :   ///
    1620             :   /// This function is an APInt version of the countTrailingZeros
    1621             :   /// functions in MathExtras.h. It counts the number of zeros from the least
    1622             :   /// significant bit to the first set bit.
    1623             :   ///
    1624             :   /// \returns BitWidth if the value is zero, otherwise returns the number of
    1625             :   /// zeros from the least significant bit to the first one bit.
    1626     5179580 :   unsigned countTrailingZeros() const {
    1627     5179580 :     if (isSingleWord())
    1628    10280220 :       return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
    1629        5581 :     return countTrailingZerosSlowCase();
    1630             :   }
    1631             : 
    1632             :   /// Count the number of trailing one bits.
    1633             :   ///
    1634             :   /// This function is an APInt version of the countTrailingOnes
    1635             :   /// functions in MathExtras.h. It counts the number of ones from the least
    1636             :   /// significant bit to the first zero bit.
    1637             :   ///
    1638             :   /// \returns BitWidth if the value is all ones, otherwise returns the number
    1639             :   /// of ones from the least significant bit to the first zero bit.
    1640             :   unsigned countTrailingOnes() const {
    1641    61040048 :     if (isSingleWord())
    1642   113733538 :       return llvm::countTrailingOnes(U.VAL);
    1643       60135 :     return countTrailingOnesSlowCase();
    1644             :   }
    1645             : 
    1646             :   /// Count the number of bits set.
    1647             :   ///
    1648             :   /// This function is an APInt version of the countPopulation functions
    1649             :   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
    1650             :   ///
    1651             :   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
    1652             :   unsigned countPopulation() const {
    1653    19115964 :     if (isSingleWord())
    1654    19093888 :       return llvm::countPopulation(U.VAL);
    1655       13152 :     return countPopulationSlowCase();
    1656             :   }
    1657             : 
    1658             :   /// @}
    1659             :   /// \name Conversion Functions
    1660             :   /// @{
    1661             :   void print(raw_ostream &OS, bool isSigned) const;
    1662             : 
    1663             :   /// Converts an APInt to a string and append it to Str.  Str is commonly a
    1664             :   /// SmallString.
    1665             :   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
    1666             :                 bool formatAsCLiteral = false) const;
    1667             : 
    1668             :   /// Considers the APInt to be unsigned and converts it into a string in the
    1669             :   /// radix given. The radix can be 2, 8, 10 16, or 36.
    1670             :   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    1671        1538 :     toString(Str, Radix, false, false);
    1672             :   }
    1673             : 
    1674             :   /// Considers the APInt to be signed and converts it into a string in the
    1675             :   /// radix given. The radix can be 2, 8, 10, 16, or 36.
    1676             :   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
    1677             :     toString(Str, Radix, true, false);
    1678             :   }
    1679             : 
    1680             :   /// Return the APInt as a std::string.
    1681             :   ///
    1682             :   /// Note that this is an inefficient method.  It is better to pass in a
    1683             :   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
    1684             :   /// for the string.
    1685             :   std::string toString(unsigned Radix, bool Signed) const;
    1686             : 
    1687             :   /// \returns a byte-swapped representation of this APInt Value.
    1688             :   APInt byteSwap() const;
    1689             : 
    1690             :   /// \returns the value with the bit representation reversed of this APInt
    1691             :   /// Value.
    1692             :   APInt reverseBits() const;
    1693             : 
    1694             :   /// Converts this APInt to a double value.
    1695             :   double roundToDouble(bool isSigned) const;
    1696             : 
    1697             :   /// Converts this unsigned APInt to a double value.
    1698          25 :   double roundToDouble() const { return roundToDouble(false); }
    1699             : 
    1700             :   /// Converts this signed APInt to a double value.
    1701          25 :   double signedRoundToDouble() const { return roundToDouble(true); }
    1702             : 
    1703             :   /// Converts APInt bits to a double
    1704             :   ///
    1705             :   /// The conversion does not do a translation from integer to double, it just
    1706             :   /// re-interprets the bits as a double. Note that it is valid to do this on
    1707             :   /// any bit width. Exactly 64 bits will be translated.
    1708             :   double bitsToDouble() const {
    1709             :     return BitsToDouble(getWord(0));
    1710             :   }
    1711             : 
    1712             :   /// Converts APInt bits to a double
    1713             :   ///
    1714             :   /// The conversion does not do a translation from integer to float, it just
    1715             :   /// re-interprets the bits as a float. Note that it is valid to do this on
    1716             :   /// any bit width. Exactly 32 bits will be translated.
    1717             :   float bitsToFloat() const {
    1718       11462 :     return BitsToFloat(getWord(0));
    1719             :   }
    1720             : 
    1721             :   /// Converts a double to APInt bits.
    1722             :   ///
    1723             :   /// The conversion does not do a translation from double to integer, it just
    1724             :   /// re-interprets the bits of the double.
    1725             :   static APInt doubleToBits(double V) {
    1726             :     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
    1727             :   }
    1728             : 
    1729             :   /// Converts a float to APInt bits.
    1730             :   ///
    1731             :   /// The conversion does not do a translation from float to integer, it just
    1732             :   /// re-interprets the bits of the float.
    1733             :   static APInt floatToBits(float V) {
    1734       25831 :     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
    1735             :   }
    1736             : 
    1737             :   /// @}
    1738             :   /// \name Mathematics Operations
    1739             :   /// @{
    1740             : 
    1741             :   /// \returns the floor log base 2 of this APInt.
    1742       43379 :   unsigned logBase2() const { return getActiveBits() -  1; }
    1743             : 
    1744             :   /// \returns the ceil log base 2 of this APInt.
    1745       37483 :   unsigned ceilLogBase2() const {
    1746             :     APInt temp(*this);
    1747       37483 :     --temp;
    1748       37483 :     return temp.getActiveBits();
    1749             :   }
    1750             : 
    1751             :   /// \returns the nearest log base 2 of this APInt. Ties round up.
    1752             :   ///
    1753             :   /// NOTE: When we have a BitWidth of 1, we define:
    1754             :   ///
    1755             :   ///   log2(0) = UINT32_MAX
    1756             :   ///   log2(1) = 0
    1757             :   ///
    1758             :   /// to get around any mathematical concerns resulting from
    1759             :   /// referencing 2 in a space where 2 does no exist.
    1760           9 :   unsigned nearestLogBase2() const {
    1761             :     // Special case when we have a bitwidth of 1. If VAL is 1, then we
    1762             :     // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
    1763             :     // UINT32_MAX.
    1764           9 :     if (BitWidth == 1)
    1765           2 :       return U.VAL - 1;
    1766             : 
    1767             :     // Handle the zero case.
    1768           7 :     if (isNullValue())
    1769             :       return UINT32_MAX;
    1770             : 
    1771             :     // The non-zero case is handled by computing:
    1772             :     //
    1773             :     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
    1774             :     //
    1775             :     // where x[i] is referring to the value of the ith bit of x.
    1776             :     unsigned lg = logBase2();
    1777          12 :     return lg + unsigned((*this)[lg - 1]);
    1778             :   }
    1779             : 
    1780             :   /// \returns the log base 2 of this APInt if its an exact power of two, -1
    1781             :   /// otherwise
    1782      109124 :   int32_t exactLogBase2() const {
    1783      109124 :     if (!isPowerOf2())
    1784             :       return -1;
    1785       39889 :     return logBase2();
    1786             :   }
    1787             : 
    1788             :   /// Compute the square root
    1789             :   APInt sqrt() const;
    1790             : 
    1791             :   /// Get the absolute value;
    1792             :   ///
    1793             :   /// If *this is < 0 then return -(*this), otherwise *this;
    1794      644506 :   APInt abs() const {
    1795      678963 :     if (isNegative())
    1796      182940 :       return -(*this);
    1797             :     return *this;
    1798             :   }
    1799             : 
    1800             :   /// \returns the multiplicative inverse for a given modulo.
    1801             :   APInt multiplicativeInverse(const APInt &modulo) const;
    1802             : 
    1803             :   /// @}
    1804             :   /// \name Support for division by constant
    1805             :   /// @{
    1806             : 
    1807             :   /// Calculate the magic number for signed division by a constant.
    1808             :   struct ms;
    1809             :   ms magic() const;
    1810             : 
    1811             :   /// Calculate the magic number for unsigned division by a constant.
    1812             :   struct mu;
    1813             :   mu magicu(unsigned LeadingZeros = 0) const;
    1814             : 
    1815             :   /// @}
    1816             :   /// \name Building-block Operations for APInt and APFloat
    1817             :   /// @{
    1818             : 
    1819             :   // These building block operations operate on a representation of arbitrary
    1820             :   // precision, two's-complement, bignum integer values. They should be
    1821             :   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
    1822             :   // generally a pointer to the base of an array of integer parts, representing
    1823             :   // an unsigned bignum, and a count of how many parts there are.
    1824             : 
    1825             :   /// Sets the least significant part of a bignum to the input value, and zeroes
    1826             :   /// out higher parts.
    1827             :   static void tcSet(WordType *, WordType, unsigned);
    1828             : 
    1829             :   /// Assign one bignum to another.
    1830             :   static void tcAssign(WordType *, const WordType *, unsigned);
    1831             : 
    1832             :   /// Returns true if a bignum is zero, false otherwise.
    1833             :   static bool tcIsZero(const WordType *, unsigned);
    1834             : 
    1835             :   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
    1836             :   static int tcExtractBit(const WordType *, unsigned bit);
    1837             : 
    1838             :   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
    1839             :   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
    1840             :   /// significant bit of DST.  All high bits above srcBITS in DST are
    1841             :   /// zero-filled.
    1842             :   static void tcExtract(WordType *, unsigned dstCount,
    1843             :                         const WordType *, unsigned srcBits,
    1844             :                         unsigned srcLSB);
    1845             : 
    1846             :   /// Set the given bit of a bignum.  Zero-based.
    1847             :   static void tcSetBit(WordType *, unsigned bit);
    1848             : 
    1849             :   /// Clear the given bit of a bignum.  Zero-based.
    1850             :   static void tcClearBit(WordType *, unsigned bit);
    1851             : 
    1852             :   /// Returns the bit number of the least or most significant set bit of a
    1853             :   /// number.  If the input number has no bits set -1U is returned.
    1854             :   static unsigned tcLSB(const WordType *, unsigned n);
    1855             :   static unsigned tcMSB(const WordType *parts, unsigned n);
    1856             : 
    1857             :   /// Negate a bignum in-place.
    1858             :   static void tcNegate(WordType *, unsigned);
    1859             : 
    1860             :   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
    1861             :   static WordType tcAdd(WordType *, const WordType *,
    1862             :                         WordType carry, unsigned);
    1863             :   /// DST += RHS.  Returns the carry flag.
    1864             :   static WordType tcAddPart(WordType *, WordType, unsigned);
    1865             : 
    1866             :   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
    1867             :   static WordType tcSubtract(WordType *, const WordType *,
    1868             :                              WordType carry, unsigned);
    1869             :   /// DST -= RHS.  Returns the carry flag.
    1870             :   static WordType tcSubtractPart(WordType *, WordType, unsigned);
    1871             : 
    1872             :   /// DST += SRC * MULTIPLIER + PART   if add is true
    1873             :   /// DST  = SRC * MULTIPLIER + PART   if add is false
    1874             :   ///
    1875             :   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
    1876             :   /// start at the same point, i.e. DST == SRC.
    1877             :   ///
    1878             :   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
    1879             :   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
    1880             :   /// result, and if all of the omitted higher parts were zero return zero,
    1881             :   /// otherwise overflow occurred and return one.
    1882             :   static int tcMultiplyPart(WordType *dst, const WordType *src,
    1883             :                             WordType multiplier, WordType carry,
    1884             :                             unsigned srcParts, unsigned dstParts,
    1885             :                             bool add);
    1886             : 
    1887             :   /// DST = LHS * RHS, where DST has the same width as the operands and is
    1888             :   /// filled with the least significant parts of the result.  Returns one if
    1889             :   /// overflow occurred, otherwise zero.  DST must be disjoint from both
    1890             :   /// operands.
    1891             :   static int tcMultiply(WordType *, const WordType *, const WordType *,
    1892             :                         unsigned);
    1893             : 
    1894             :   /// DST = LHS * RHS, where DST has width the sum of the widths of the
    1895             :   /// operands. No overflow occurs. DST must be disjoint from both operands.
    1896             :   static void tcFullMultiply(WordType *, const WordType *,
    1897             :                              const WordType *, unsigned, unsigned);
    1898             : 
    1899             :   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
    1900             :   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
    1901             :   /// REMAINDER to the remainder, return zero.  i.e.
    1902             :   ///
    1903             :   ///  OLD_LHS = RHS * LHS + REMAINDER
    1904             :   ///
    1905             :   /// SCRATCH is a bignum of the same size as the operands and result for use by
    1906             :   /// the routine; its contents need not be initialized and are destroyed.  LHS,
    1907             :   /// REMAINDER and SCRATCH must be distinct.
    1908             :   static int tcDivide(WordType *lhs, const WordType *rhs,
    1909             :                       WordType *remainder, WordType *scratch,
    1910             :                       unsigned parts);
    1911             : 
    1912             :   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
    1913             :   /// restrictions on Count.
    1914             :   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
    1915             : 
    1916             :   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
    1917             :   /// restrictions on Count.
    1918             :   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
    1919             : 
    1920             :   /// The obvious AND, OR and XOR and complement operations.
    1921             :   static void tcAnd(WordType *, const WordType *, unsigned);
    1922             :   static void tcOr(WordType *, const WordType *, unsigned);
    1923             :   static void tcXor(WordType *, const WordType *, unsigned);
    1924             :   static void tcComplement(WordType *, unsigned);
    1925             : 
    1926             :   /// Comparison (unsigned) of two bignums.
    1927             :   static int tcCompare(const WordType *, const WordType *, unsigned);
    1928             : 
    1929             :   /// Increment a bignum in-place.  Return the carry flag.
    1930             :   static WordType tcIncrement(WordType *dst, unsigned parts) {
    1931      278446 :     return tcAddPart(dst, 1, parts);
    1932             :   }
    1933             : 
    1934             :   /// Decrement a bignum in-place.  Return the borrow flag.
    1935             :   static WordType tcDecrement(WordType *dst, unsigned parts) {
    1936          37 :     return tcSubtractPart(dst, 1, parts);
    1937             :   }
    1938             : 
    1939             :   /// Set the least significant BITS and clear the rest.
    1940             :   static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
    1941             : 
    1942             :   /// debug method
    1943             :   void dump() const;
    1944             : 
    1945             :   /// @}
    1946             : };
    1947             : 
    1948             : /// Magic data for optimising signed division by a constant.
    1949             : struct APInt::ms {
    1950             :   APInt m;    ///< magic number
    1951             :   unsigned s; ///< shift amount
    1952             : };
    1953             : 
    1954             : /// Magic data for optimising unsigned division by a constant.
    1955             : struct APInt::mu {
    1956             :   APInt m;    ///< magic number
    1957             :   bool a;     ///< add indicator
    1958             :   unsigned s; ///< shift amount
    1959             : };
    1960             : 
    1961        2115 : inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
    1962             : 
    1963             : inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
    1964             : 
    1965             : /// Unary bitwise complement operator.
    1966             : ///
    1967             : /// \returns an APInt that is the bitwise complement of \p v.
    1968             : inline APInt operator~(APInt v) {
    1969    84708113 :   v.flipAllBits();
    1970             :   return v;
    1971             : }
    1972             : 
    1973             : inline APInt operator&(APInt a, const APInt &b) {
    1974             :   a &= b;
    1975             :   return a;
    1976             : }
    1977             : 
    1978             : inline APInt operator&(const APInt &a, APInt &&b) {
    1979             :   b &= a;
    1980             :   return std::move(b);
    1981             : }
    1982             : 
    1983             : inline APInt operator&(APInt a, uint64_t RHS) {
    1984        3298 :   a &= RHS;
    1985             :   return a;
    1986             : }
    1987             : 
    1988             : inline APInt operator&(uint64_t LHS, APInt b) {
    1989           2 :   b &= LHS;
    1990             :   return b;
    1991             : }
    1992             : 
    1993             : inline APInt operator|(APInt a, const APInt &b) {
    1994             :   a |= b;
    1995             :   return a;
    1996             : }
    1997             : 
    1998             : inline APInt operator|(const APInt &a, APInt &&b) {
    1999             :   b |= a;
    2000             :   return std::move(b);
    2001             : }
    2002             : 
    2003        4279 : inline APInt operator|(APInt a, uint64_t RHS) {
    2004             :   a |= RHS;
    2005        4279 :   return a;
    2006             : }
    2007             : 
    2008           2 : inline APInt operator|(uint64_t LHS, APInt b) {
    2009             :   b |= LHS;
    2010           2 :   return b;
    2011             : }
    2012             : 
    2013             : inline APInt operator^(APInt a, const APInt &b) {
    2014             :   a ^= b;
    2015             :   return a;
    2016             : }
    2017             : 
    2018             : inline APInt operator^(const APInt &a, APInt &&b) {
    2019             :   b ^= a;
    2020             :   return std::move(b);
    2021             : }
    2022             : 
    2023          12 : inline APInt operator^(APInt a, uint64_t RHS) {
    2024             :   a ^= RHS;
    2025          12 :   return a;
    2026             : }
    2027             : 
    2028           2 : inline APInt operator^(uint64_t LHS, APInt b) {
    2029             :   b ^= LHS;
    2030           2 :   return b;
    2031             : }
    2032             : 
    2033             : inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
    2034     1021714 :   I.print(OS, true);
    2035             :   return OS;
    2036             : }
    2037             : 
    2038             : inline APInt operator-(APInt v) {
    2039             :   v.negate();
    2040             :   return v;
    2041             : }
    2042             : 
    2043             : inline APInt operator+(APInt a, const APInt &b) {
    2044     8987908 :   a += b;
    2045             :   return a;
    2046             : }
    2047             : 
    2048             : inline APInt operator+(const APInt &a, APInt &&b) {
    2049    10818002 :   b += a;
    2050             :   return std::move(b);
    2051             : }
    2052             : 
    2053             : inline APInt operator+(APInt a, uint64_t RHS) {
    2054    22279636 :   a += RHS;
    2055             :   return a;
    2056             : }
    2057             : 
    2058             : inline APInt operator+(uint64_t LHS, APInt b) {
    2059           4 :   b += LHS;
    2060             :   return b;
    2061             : }
    2062             : 
    2063             : inline APInt operator-(APInt a, const APInt &b) {
    2064    25433175 :   a -= b;
    2065             :   return a;
    2066             : }
    2067             : 
    2068      556997 : inline APInt operator-(const APInt &a, APInt &&b) {
    2069             :   b.negate();
    2070      556997 :   b += a;
    2071      556997 :   return std::move(b);
    2072             : }
    2073             : 
    2074             : inline APInt operator-(APInt a, uint64_t RHS) {
    2075     9953915 :   a -= RHS;
    2076             :   return a;
    2077             : }
    2078             : 
    2079         459 : inline APInt operator-(uint64_t LHS, APInt b) {
    2080             :   b.negate();
    2081         459 :   b += LHS;
    2082         459 :   return b;
    2083             : }
    2084             : 
    2085             : inline APInt operator*(APInt a, uint64_t RHS) {
    2086      140664 :   a *= RHS;
    2087             :   return a;
    2088             : }
    2089             : 
    2090             : inline APInt operator*(uint64_t LHS, APInt b) {
    2091      719526 :   b *= LHS;
    2092             :   return b;
    2093             : }
    2094             : 
    2095             : 
    2096             : namespace APIntOps {
    2097             : 
    2098             : /// Determine the smaller of two APInts considered to be signed.
    2099             : inline const APInt &smin(const APInt &A, const APInt &B) {
    2100        2246 :   return A.slt(B) ? A : B;
    2101             : }
    2102             : 
    2103             : /// Determine the larger of two APInts considered to be signed.
    2104             : inline const APInt &smax(const APInt &A, const APInt &B) {
    2105       34868 :   return A.sgt(B) ? A : B;
    2106             : }
    2107             : 
    2108             : /// Determine the smaller of two APInts considered to be signed.
    2109             : inline const APInt &umin(const APInt &A, const APInt &B) {
    2110        6156 :   return A.ult(B) ? A : B;
    2111             : }
    2112             : 
    2113             : /// Determine the larger of two APInts considered to be unsigned.
    2114             : inline const APInt &umax(const APInt &A, const APInt &B) {
    2115        4835 :   return A.ugt(B) ? A : B;
    2116             : }
    2117             : 
    2118             : /// Compute GCD of two unsigned APInt values.
    2119             : ///
    2120             : /// This function returns the greatest common divisor of the two APInt values
    2121             : /// using Stein's algorithm.
    2122             : ///
    2123             : /// \returns the greatest common divisor of A and B.
    2124             : APInt GreatestCommonDivisor(APInt A, APInt B);
    2125             : 
    2126             : /// Converts the given APInt to a double value.
    2127             : ///
    2128             : /// Treats the APInt as an unsigned value for conversion purposes.
    2129             : inline double RoundAPIntToDouble(const APInt &APIVal) {
    2130             :   return APIVal.roundToDouble();
    2131             : }
    2132             : 
    2133             : /// Converts the given APInt to a double value.
    2134             : ///
    2135             : /// Treats the APInt as a signed value for conversion purposes.
    2136             : inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
    2137             :   return APIVal.signedRoundToDouble();
    2138             : }
    2139             : 
    2140             : /// Converts the given APInt to a float vlalue.
    2141             : inline float RoundAPIntToFloat(const APInt &APIVal) {
    2142          15 :   return float(RoundAPIntToDouble(APIVal));
    2143             : }
    2144             : 
    2145             : /// Converts the given APInt to a float value.
    2146             : ///
    2147             : /// Treast the APInt as a signed value for conversion purposes.
    2148             : inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
    2149          15 :   return float(APIVal.signedRoundToDouble());
    2150             : }
    2151             : 
    2152             : /// Converts the given double value into a APInt.
    2153             : ///
    2154             : /// This function convert a double value to an APInt value.
    2155             : APInt RoundDoubleToAPInt(double Double, unsigned width);
    2156             : 
    2157             : /// Converts a float value into a APInt.
    2158             : ///
    2159             : /// Converts a float value into an APInt value.
    2160             : inline APInt RoundFloatToAPInt(float Float, unsigned width) {
    2161           0 :   return RoundDoubleToAPInt(double(Float), width);
    2162             : }
    2163             : 
    2164             : /// Return A unsign-divided by B, rounded by the given rounding mode.
    2165             : APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
    2166             : 
    2167             : /// Return A sign-divided by B, rounded by the given rounding mode.
    2168             : APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
    2169             : 
    2170             : /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
    2171             : /// (e.g. 32 for i32).
    2172             : /// This function finds the smallest number n, such that
    2173             : /// (a) n >= 0 and q(n) = 0, or
    2174             : /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
    2175             : ///     integers, belong to two different intervals [Rk, Rk+R),
    2176             : ///     where R = 2^BW, and k is an integer.
    2177             : /// The idea here is to find when q(n) "overflows" 2^BW, while at the
    2178             : /// same time "allowing" subtraction. In unsigned modulo arithmetic a
    2179             : /// subtraction (treated as addition of negated numbers) would always
    2180             : /// count as an overflow, but here we want to allow values to decrease
    2181             : /// and increase as long as they are within the same interval.
    2182             : /// Specifically, adding of two negative numbers should not cause an
    2183             : /// overflow (as long as the magnitude does not exceed the bith width).
    2184             : /// On the other hand, given a positive number, adding a negative
    2185             : /// number to it can give a negative result, which would cause the
    2186             : /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
    2187             : /// treated as a special case of an overflow.
    2188             : ///
    2189             : /// This function returns None if after finding k that minimizes the
    2190             : /// positive solution to q(n) = kR, both solutions are contained between
    2191             : /// two consecutive integers.
    2192             : ///
    2193             : /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
    2194             : /// in arithmetic modulo 2^BW, and treating the values as signed) by the
    2195             : /// virtue of *signed* overflow. This function will *not* find such an n,
    2196             : /// however it may find a value of n satisfying the inequalities due to
    2197             : /// an *unsigned* overflow (if the values are treated as unsigned).
    2198             : /// To find a solution for a signed overflow, treat it as a problem of
    2199             : /// finding an unsigned overflow with a range with of BW-1.
    2200             : ///
    2201             : /// The returned value may have a different bit width from the input
    2202             : /// coefficients.
    2203             : Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
    2204             :                                            unsigned RangeWidth);
    2205             : } // End of APIntOps namespace
    2206             : 
    2207             : // See friend declaration above. This additional declaration is required in
    2208             : // order to compile LLVM with IBM xlC compiler.
    2209             : hash_code hash_value(const APInt &Arg);
    2210             : } // End of llvm namespace
    2211             : 
    2212             : #endif

Generated by: LCOV version 1.13