LCOV - code coverage report
Current view: top level - lib/Analysis - VectorUtils.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 274 281 97.5 %
Date: 2018-10-20 13:21:21 Functions: 20 20 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file defines vectorizer utilities.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "llvm/Analysis/VectorUtils.h"
      15             : #include "llvm/ADT/EquivalenceClasses.h"
      16             : #include "llvm/Analysis/DemandedBits.h"
      17             : #include "llvm/Analysis/LoopInfo.h"
      18             : #include "llvm/Analysis/LoopIterator.h"
      19             : #include "llvm/Analysis/ScalarEvolution.h"
      20             : #include "llvm/Analysis/ScalarEvolutionExpressions.h"
      21             : #include "llvm/Analysis/TargetTransformInfo.h"
      22             : #include "llvm/Analysis/ValueTracking.h"
      23             : #include "llvm/IR/Constants.h"
      24             : #include "llvm/IR/GetElementPtrTypeIterator.h"
      25             : #include "llvm/IR/IRBuilder.h"
      26             : #include "llvm/IR/PatternMatch.h"
      27             : #include "llvm/IR/Value.h"
      28             : 
      29             : #define DEBUG_TYPE "vectorutils"
      30             : 
      31             : using namespace llvm;
      32             : using namespace llvm::PatternMatch;
      33             : 
      34             : /// Maximum factor for an interleaved memory access.
      35             : static cl::opt<unsigned> MaxInterleaveGroupFactor(
      36             :     "max-interleave-group-factor", cl::Hidden,
      37             :     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
      38             :     cl::init(8));
      39             : 
      40             : /// Identify if the intrinsic is trivially vectorizable.
      41             : /// This method returns true if the intrinsic's argument types are all
      42             : /// scalars for the scalar form of the intrinsic and all vectors for
      43             : /// the vector form of the intrinsic.
      44       14645 : bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
      45       14645 :   switch (ID) {
      46             :   case Intrinsic::sqrt:
      47             :   case Intrinsic::sin:
      48             :   case Intrinsic::cos:
      49             :   case Intrinsic::exp:
      50             :   case Intrinsic::exp2:
      51             :   case Intrinsic::log:
      52             :   case Intrinsic::log10:
      53             :   case Intrinsic::log2:
      54             :   case Intrinsic::fabs:
      55             :   case Intrinsic::minnum:
      56             :   case Intrinsic::maxnum:
      57             :   case Intrinsic::copysign:
      58             :   case Intrinsic::floor:
      59             :   case Intrinsic::ceil:
      60             :   case Intrinsic::trunc:
      61             :   case Intrinsic::rint:
      62             :   case Intrinsic::nearbyint:
      63             :   case Intrinsic::round:
      64             :   case Intrinsic::bswap:
      65             :   case Intrinsic::bitreverse:
      66             :   case Intrinsic::ctpop:
      67             :   case Intrinsic::pow:
      68             :   case Intrinsic::fma:
      69             :   case Intrinsic::fmuladd:
      70             :   case Intrinsic::ctlz:
      71             :   case Intrinsic::cttz:
      72             :   case Intrinsic::powi:
      73             :   case Intrinsic::canonicalize:
      74             :     return true;
      75        4795 :   default:
      76        4795 :     return false;
      77             :   }
      78             : }
      79             : 
      80             : /// Identifies if the intrinsic has a scalar operand. It check for
      81             : /// ctlz,cttz and powi special intrinsics whose argument is scalar.
      82        9724 : bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
      83             :                                         unsigned ScalarOpdIdx) {
      84        9724 :   switch (ID) {
      85        2161 :   case Intrinsic::ctlz:
      86             :   case Intrinsic::cttz:
      87             :   case Intrinsic::powi:
      88        2161 :     return (ScalarOpdIdx == 1);
      89             :   default:
      90             :     return false;
      91             :   }
      92             : }
      93             : 
      94             : /// Returns intrinsic ID for call.
      95             : /// For the input call instruction it finds mapping intrinsic and returns
      96             : /// its ID, in case it does not found it return not_intrinsic.
      97       14331 : Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
      98             :                                                 const TargetLibraryInfo *TLI) {
      99       14331 :   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
     100       14331 :   if (ID == Intrinsic::not_intrinsic)
     101             :     return Intrinsic::not_intrinsic;
     102             : 
     103       18369 :   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
     104       13575 :       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
     105        4717 :       ID == Intrinsic::sideeffect)
     106        8890 :     return ID;
     107             :   return Intrinsic::not_intrinsic;
     108             : }
     109             : 
     110             : /// Find the operand of the GEP that should be checked for consecutive
     111             : /// stores. This ignores trailing indices that have no effect on the final
     112             : /// pointer.
     113        4146 : unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
     114        4146 :   const DataLayout &DL = Gep->getModule()->getDataLayout();
     115        4146 :   unsigned LastOperand = Gep->getNumOperands() - 1;
     116        4146 :   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
     117             : 
     118             :   // Walk backwards and try to peel off zeros.
     119        5908 :   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
     120             :     // Find the type we're currently indexing into.
     121         402 :     gep_type_iterator GEPTI = gep_type_begin(Gep);
     122         402 :     std::advance(GEPTI, LastOperand - 2);
     123             : 
     124             :     // If it's a type with the same allocation size as the result of the GEP we
     125             :     // can peel off the zero index.
     126         402 :     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
     127             :       break;
     128         173 :     --LastOperand;
     129             :   }
     130             : 
     131        4146 :   return LastOperand;
     132             : }
     133             : 
     134             : /// If the argument is a GEP, then returns the operand identified by
     135             : /// getGEPInductionOperand. However, if there is some other non-loop-invariant
     136             : /// operand, it returns that instead.
     137        9454 : Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
     138             :   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
     139             :   if (!GEP)
     140             :     return Ptr;
     141             : 
     142        4146 :   unsigned InductionOperand = getGEPInductionOperand(GEP);
     143             : 
     144             :   // Check that all of the gep indices are uniform except for our induction
     145             :   // operand.
     146       12832 :   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
     147       16022 :     if (i != InductionOperand &&
     148        6404 :         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
     149             :       return Ptr;
     150             :   return GEP->getOperand(InductionOperand);
     151             : }
     152             : 
     153             : /// If a value has only one user that is a CastInst, return it.
     154           1 : Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
     155             :   Value *UniqueCast = nullptr;
     156           3 :   for (User *U : Ptr->users()) {
     157             :     CastInst *CI = dyn_cast<CastInst>(U);
     158           1 :     if (CI && CI->getType() == Ty) {
     159           1 :       if (!UniqueCast)
     160             :         UniqueCast = CI;
     161             :       else
     162             :         return nullptr;
     163             :     }
     164             :   }
     165             :   return UniqueCast;
     166             : }
     167             : 
     168             : /// Get the stride of a pointer access in a loop. Looks for symbolic
     169             : /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
     170        9454 : Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
     171        9454 :   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
     172             :   if (!PtrTy || PtrTy->isAggregateType())
     173             :     return nullptr;
     174             : 
     175             :   // Try to remove a gep instruction to make the pointer (actually index at this
     176             :   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
     177             :   // pointer, otherwise, we are analyzing the index.
     178             :   Value *OrigPtr = Ptr;
     179             : 
     180             :   // The size of the pointer access.
     181             :   int64_t PtrAccessSize = 1;
     182             : 
     183        9454 :   Ptr = stripGetElementPtr(Ptr, SE, Lp);
     184        9454 :   const SCEV *V = SE->getSCEV(Ptr);
     185             : 
     186        9454 :   if (Ptr != OrigPtr)
     187             :     // Strip off casts.
     188             :     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
     189         103 :       V = C->getOperand();
     190             : 
     191             :   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
     192             :   if (!S)
     193             :     return nullptr;
     194             : 
     195        4579 :   V = S->getStepRecurrence(*SE);
     196        4579 :   if (!V)
     197             :     return nullptr;
     198             : 
     199             :   // Strip off the size of access multiplication if we are still analyzing the
     200             :   // pointer.
     201        4579 :   if (OrigPtr == Ptr) {
     202             :     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
     203          18 :       if (M->getOperand(0)->getSCEVType() != scConstant)
     204             :         return nullptr;
     205             : 
     206             :       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
     207             : 
     208             :       // Huge step value - give up.
     209           9 :       if (APStepVal.getBitWidth() > 64)
     210             :         return nullptr;
     211             : 
     212             :       int64_t StepVal = APStepVal.getSExtValue();
     213           9 :       if (PtrAccessSize != StepVal)
     214             :         return nullptr;
     215             :       V = M->getOperand(1);
     216             :     }
     217             :   }
     218             : 
     219             :   // Strip off casts.
     220             :   Type *StripedOffRecurrenceCast = nullptr;
     221             :   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
     222           1 :     StripedOffRecurrenceCast = C->getType();
     223           1 :     V = C->getOperand();
     224             :   }
     225             : 
     226             :   // Look for the loop invariant symbolic value.
     227             :   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
     228          15 :   if (!U)
     229             :     return nullptr;
     230             : 
     231             :   Value *Stride = U->getValue();
     232          15 :   if (!Lp->isLoopInvariant(Stride))
     233             :     return nullptr;
     234             : 
     235             :   // If we have stripped off the recurrence cast we have to make sure that we
     236             :   // return the value that is used in this loop so that we can replace it later.
     237          15 :   if (StripedOffRecurrenceCast)
     238           1 :     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
     239             : 
     240             :   return Stride;
     241             : }
     242             : 
     243             : /// Given a vector and an element number, see if the scalar value is
     244             : /// already around as a register, for example if it were inserted then extracted
     245             : /// from the vector.
     246       28517 : Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
     247             :   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
     248       28517 :   VectorType *VTy = cast<VectorType>(V->getType());
     249       28517 :   unsigned Width = VTy->getNumElements();
     250       28517 :   if (EltNo >= Width)  // Out of range access.
     251           0 :     return UndefValue::get(VTy->getElementType());
     252             : 
     253             :   if (Constant *C = dyn_cast<Constant>(V))
     254          18 :     return C->getAggregateElement(EltNo);
     255             : 
     256             :   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
     257             :     // If this is an insert to a variable element, we don't know what it is.
     258        3597 :     if (!isa<ConstantInt>(III->getOperand(2)))
     259             :       return nullptr;
     260         459 :     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
     261             : 
     262             :     // If this is an insert to the element we are looking for, return the
     263             :     // inserted value.
     264         459 :     if (EltNo == IIElt)
     265             :       return III->getOperand(1);
     266             : 
     267             :     // Otherwise, the insertelement doesn't modify the value, recurse on its
     268             :     // vector input.
     269         214 :     return findScalarElement(III->getOperand(0), EltNo);
     270             :   }
     271             : 
     272             :   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
     273         646 :     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
     274             :     int InEl = SVI->getMaskValue(EltNo);
     275         646 :     if (InEl < 0)
     276           0 :       return UndefValue::get(VTy->getElementType());
     277         646 :     if (InEl < (int)LHSWidth)
     278         403 :       return findScalarElement(SVI->getOperand(0), InEl);
     279         243 :     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
     280             :   }
     281             : 
     282             :   // Extract a value from a vector add operation with a constant zero.
     283             :   // TODO: Use getBinOpIdentity() to generalize this.
     284             :   Value *Val; Constant *C;
     285       24256 :   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
     286         493 :     if (Constant *Elt = C->getAggregateElement(EltNo))
     287         492 :       if (Elt->isNullValue())
     288           4 :         return findScalarElement(Val, EltNo);
     289             : 
     290             :   // Otherwise, we don't know.
     291             :   return nullptr;
     292             : }
     293             : 
     294             : /// Get splat value if the input is a splat vector or return nullptr.
     295             : /// This function is not fully general. It checks only 2 cases:
     296             : /// the input value is (1) a splat constants vector or (2) a sequence
     297             : /// of instructions that broadcast a single value into a vector.
     298             : ///
     299      152745 : const llvm::Value *llvm::getSplatValue(const Value *V) {
     300             : 
     301             :   if (auto *C = dyn_cast<Constant>(V))
     302       25692 :     if (isa<VectorType>(V->getType()))
     303       10812 :       return C->getSplatValue();
     304             : 
     305             :   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
     306             :   if (!ShuffleInst)
     307             :     return nullptr;
     308             :   // All-zero (or undef) shuffle mask elements.
     309       12208 :   for (int MaskElt : ShuffleInst->getShuffleMask())
     310       11509 :     if (MaskElt != 0 && MaskElt != -1)
     311             :       return nullptr;
     312             :   // The first shuffle source is 'insertelement' with index 0.
     313             :   auto *InsertEltInst =
     314             :     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
     315        1288 :   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
     316             :       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
     317             :     return nullptr;
     318             : 
     319             :   return InsertEltInst->getOperand(1);
     320             : }
     321             : 
     322             : MapVector<Instruction *, uint64_t>
     323         983 : llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
     324             :                                const TargetTransformInfo *TTI) {
     325             : 
     326             :   // DemandedBits will give us every value's live-out bits. But we want
     327             :   // to ensure no extra casts would need to be inserted, so every DAG
     328             :   // of connected values must have the same minimum bitwidth.
     329             :   EquivalenceClasses<Value *> ECs;
     330             :   SmallVector<Value *, 16> Worklist;
     331             :   SmallPtrSet<Value *, 4> Roots;
     332             :   SmallPtrSet<Value *, 16> Visited;
     333             :   DenseMap<Value *, uint64_t> DBits;
     334             :   SmallPtrSet<Instruction *, 4> InstructionSet;
     335         983 :   MapVector<Instruction *, uint64_t> MinBWs;
     336             : 
     337             :   // Determine the roots. We work bottom-up, from truncs or icmps.
     338             :   bool SeenExtFromIllegalType = false;
     339        2321 :   for (auto *BB : Blocks)
     340       13630 :     for (auto &I : *BB) {
     341       12292 :       InstructionSet.insert(&I);
     342             : 
     343       12480 :       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
     344         376 :           !TTI->isTypeLegal(I.getOperand(0)->getType()))
     345             :         SeenExtFromIllegalType = true;
     346             : 
     347             :       // Only deal with non-vector integers up to 64-bits wide.
     348       12292 :       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
     349       13466 :           !I.getType()->isVectorTy() &&
     350        3178 :           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
     351             :         // Don't make work for ourselves. If we know the loaded type is legal,
     352             :         // don't add it to the worklist.
     353        1584 :         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
     354             :           continue;
     355             : 
     356        1465 :         Worklist.push_back(&I);
     357        1465 :         Roots.insert(&I);
     358             :       }
     359             :     }
     360             :   // Early exit.
     361         983 :   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
     362             :     return MinBWs;
     363             : 
     364             :   // Now proceed breadth-first, unioning values together.
     365         811 :   while (!Worklist.empty()) {
     366             :     Value *Val = Worklist.pop_back_val();
     367         701 :     Value *Leader = ECs.getOrInsertLeaderValue(Val);
     368             : 
     369         701 :     if (Visited.count(Val))
     370         415 :       continue;
     371         633 :     Visited.insert(Val);
     372             : 
     373             :     // Non-instructions terminate a chain successfully.
     374         633 :     if (!isa<Instruction>(Val))
     375             :       continue;
     376             :     Instruction *I = cast<Instruction>(Val);
     377             : 
     378             :     // If we encounter a type that is larger than 64 bits, we can't represent
     379             :     // it so bail out.
     380         464 :     if (DB.getDemandedBits(I).getBitWidth() > 64)
     381           0 :       return MapVector<Instruction *, uint64_t>();
     382             : 
     383         928 :     uint64_t V = DB.getDemandedBits(I).getZExtValue();
     384         464 :     DBits[Leader] |= V;
     385         464 :     DBits[I] = V;
     386             : 
     387             :     // Casts, loads and instructions outside of our range terminate a chain
     388             :     // successfully.
     389         881 :     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
     390         417 :         !InstructionSet.count(I))
     391          54 :       continue;
     392             : 
     393             :     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
     394             :     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
     395             :     // transform anything that relies on them.
     396         410 :     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
     397         410 :         !I->getType()->isIntegerTy()) {
     398           6 :       DBits[Leader] |= ~0ULL;
     399           6 :       continue;
     400             :     }
     401             : 
     402             :     // We don't modify the types of PHIs. Reductions will already have been
     403             :     // truncated if possible, and inductions' sizes will have been chosen by
     404             :     // indvars.
     405         404 :     if (isa<PHINode>(I))
     406             :       continue;
     407             : 
     408         340 :     if (DBits[Leader] == ~0ULL)
     409             :       // All bits demanded, no point continuing.
     410             :       continue;
     411             : 
     412         790 :     for (Value *O : cast<User>(I)->operands()) {
     413         504 :       ECs.unionSets(Leader, O);
     414         504 :       Worklist.push_back(O);
     415             :     }
     416             :   }
     417             : 
     418             :   // Now we've discovered all values, walk them to see if there are
     419             :   // any users we didn't see. If there are, we can't optimize that
     420             :   // chain.
     421         574 :   for (auto &I : DBits)
     422        1169 :     for (auto *U : I.first->users())
     423        1774 :       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
     424         322 :         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
     425             : 
     426         743 :   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
     427             :     uint64_t LeaderDemandedBits = 0;
     428        1266 :     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
     429         633 :       LeaderDemandedBits |= DBits[*MI];
     430             : 
     431             :     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
     432         633 :                      llvm::countLeadingZeros(LeaderDemandedBits);
     433             :     // Round up to a power of 2
     434             :     if (!isPowerOf2_64((uint64_t)MinBW))
     435             :       MinBW = NextPowerOf2(MinBW);
     436             : 
     437             :     // We don't modify the types of PHIs. Reductions will already have been
     438             :     // truncated if possible, and inductions' sizes will have been chosen by
     439             :     // indvars.
     440             :     // If we are required to shrink a PHI, abandon this entire equivalence class.
     441             :     bool Abort = false;
     442        1266 :     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
     443         698 :       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
     444             :         Abort = true;
     445             :         break;
     446             :       }
     447         633 :     if (Abort)
     448             :       continue;
     449             : 
     450        1266 :     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
     451        1266 :       if (!isa<Instruction>(*MI))
     452             :         continue;
     453         464 :       Type *Ty = (*MI)->getType();
     454         464 :       if (Roots.count(*MI))
     455         394 :         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
     456         464 :       if (MinBW < Ty->getScalarSizeInBits())
     457          58 :         MinBWs[cast<Instruction>(*MI)] = MinBW;
     458             :     }
     459             :   }
     460             : 
     461             :   return MinBWs;
     462             : }
     463             : 
     464             : /// \returns \p I after propagating metadata from \p VL.
     465      295931 : Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
     466      295931 :   Instruction *I0 = cast<Instruction>(VL[0]);
     467             :   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
     468             :   I0->getAllMetadataOtherThanDebugLoc(Metadata);
     469             : 
     470     3551172 :   for (auto Kind :
     471             :        {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
     472             :         LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
     473     2071517 :         LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
     474             :     MDNode *MD = I0->getMetadata(Kind);
     475             : 
     476     1798636 :     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
     477       46100 :       const Instruction *IJ = cast<Instruction>(VL[J]);
     478             :       MDNode *IMD = IJ->getMetadata(Kind);
     479       23050 :       switch (Kind) {
     480         787 :       case LLVMContext::MD_tbaa:
     481         787 :         MD = MDNode::getMostGenericTBAA(MD, IMD);
     482         787 :         break;
     483           9 :       case LLVMContext::MD_alias_scope:
     484           9 :         MD = MDNode::getMostGenericAliasScope(MD, IMD);
     485           9 :         break;
     486           2 :       case LLVMContext::MD_fpmath:
     487           2 :         MD = MDNode::getMostGenericFPMath(MD, IMD);
     488           2 :         break;
     489       22252 :       case LLVMContext::MD_noalias:
     490             :       case LLVMContext::MD_nontemporal:
     491             :       case LLVMContext::MD_invariant_load:
     492       22252 :         MD = MDNode::intersect(MD, IMD);
     493       22252 :         break;
     494           0 :       default:
     495           0 :         llvm_unreachable("unhandled metadata");
     496             :       }
     497             :     }
     498             : 
     499     1775586 :     Inst->setMetadata(Kind, MD);
     500             :   }
     501             : 
     502      295931 :   return Inst;
     503             : }
     504             : 
     505           3 : Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 
     506             :                                      unsigned ReplicationFactor, unsigned VF) {
     507             :   SmallVector<Constant *, 16> MaskVec;
     508          27 :   for (unsigned i = 0; i < VF; i++)
     509          72 :     for (unsigned j = 0; j < ReplicationFactor; j++)
     510          48 :       MaskVec.push_back(Builder.getInt32(i));
     511             : 
     512           3 :   return ConstantVector::get(MaskVec);
     513             : }
     514             : 
     515          18 : Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
     516             :                                      unsigned NumVecs) {
     517             :   SmallVector<Constant *, 16> Mask;
     518         110 :   for (unsigned i = 0; i < VF; i++)
     519         292 :     for (unsigned j = 0; j < NumVecs; j++)
     520         200 :       Mask.push_back(Builder.getInt32(j * VF + i));
     521             : 
     522          18 :   return ConstantVector::get(Mask);
     523             : }
     524             : 
     525          79 : Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
     526             :                                  unsigned Stride, unsigned VF) {
     527             :   SmallVector<Constant *, 16> Mask;
     528         467 :   for (unsigned i = 0; i < VF; i++)
     529         388 :     Mask.push_back(Builder.getInt32(Start + i * Stride));
     530             : 
     531          79 :   return ConstantVector::get(Mask);
     532             : }
     533             : 
     534         460 : Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
     535             :                                      unsigned NumInts, unsigned NumUndefs) {
     536             :   SmallVector<Constant *, 16> Mask;
     537       11628 :   for (unsigned i = 0; i < NumInts; i++)
     538       11168 :     Mask.push_back(Builder.getInt32(Start + i));
     539             : 
     540         460 :   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
     541         932 :   for (unsigned i = 0; i < NumUndefs; i++)
     542         472 :     Mask.push_back(Undef);
     543             : 
     544         460 :   return ConstantVector::get(Mask);
     545             : }
     546             : 
     547             : /// A helper function for concatenating vectors. This function concatenates two
     548             : /// vectors having the same element type. If the second vector has fewer
     549             : /// elements than the first, it is padded with undefs.
     550         146 : static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
     551             :                                     Value *V2) {
     552         146 :   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
     553         146 :   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
     554             :   assert(VecTy1 && VecTy2 &&
     555             :          VecTy1->getScalarType() == VecTy2->getScalarType() &&
     556             :          "Expect two vectors with the same element type");
     557             : 
     558         146 :   unsigned NumElts1 = VecTy1->getNumElements();
     559         146 :   unsigned NumElts2 = VecTy2->getNumElements();
     560             :   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
     561             : 
     562         146 :   if (NumElts1 > NumElts2) {
     563             :     // Extend with UNDEFs.
     564             :     Constant *ExtMask =
     565          18 :         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
     566          18 :     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
     567             :   }
     568             : 
     569         146 :   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
     570         146 :   return Builder.CreateShuffleVector(V1, V2, Mask);
     571             : }
     572             : 
     573          82 : Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
     574          82 :   unsigned NumVecs = Vecs.size();
     575             :   assert(NumVecs > 1 && "Should be at least two vectors");
     576             : 
     577             :   SmallVector<Value *, 8> ResList;
     578          82 :   ResList.append(Vecs.begin(), Vecs.end());
     579             :   do {
     580             :     SmallVector<Value *, 8> TmpList;
     581         269 :     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
     582         292 :       Value *V0 = ResList[i], *V1 = ResList[i + 1];
     583             :       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
     584             :              "Only the last vector may have a different type");
     585             : 
     586         146 :       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
     587             :     }
     588             : 
     589             :     // Push the last vector if the total number of vectors is odd.
     590         123 :     if (NumVecs % 2 != 0)
     591          36 :       TmpList.push_back(ResList[NumVecs - 1]);
     592             : 
     593             :     ResList = TmpList;
     594         123 :     NumVecs = ResList.size();
     595         123 :   } while (NumVecs > 1);
     596             : 
     597          82 :   return ResList[0];
     598             : }
     599             : 
     600        2671 : bool InterleavedAccessInfo::isStrided(int Stride) {
     601        2671 :   unsigned Factor = std::abs(Stride);
     602        2671 :   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
     603             : }
     604             : 
     605         475 : void InterleavedAccessInfo::collectConstStrideAccesses(
     606             :     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
     607             :     const ValueToValueMap &Strides) {
     608         475 :   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
     609             : 
     610             :   // Since it's desired that the load/store instructions be maintained in
     611             :   // "program order" for the interleaved access analysis, we have to visit the
     612             :   // blocks in the loop in reverse postorder (i.e., in a topological order).
     613             :   // Such an ordering will ensure that any load/store that may be executed
     614             :   // before a second load/store will precede the second load/store in
     615             :   // AccessStrideInfo.
     616         950 :   LoopBlocksDFS DFS(TheLoop);
     617         475 :   DFS.perform(LI);
     618        1137 :   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
     619        7244 :     for (auto &I : *BB) {
     620             :       auto *LI = dyn_cast<LoadInst>(&I);
     621             :       auto *SI = dyn_cast<StoreInst>(&I);
     622        6582 :       if (!LI && !SI)
     623             :         continue;
     624             : 
     625             :       Value *Ptr = getLoadStorePointerOperand(&I);
     626             :       // We don't check wrapping here because we don't know yet if Ptr will be
     627             :       // part of a full group or a group with gaps. Checking wrapping for all
     628             :       // pointers (even those that end up in groups with no gaps) will be overly
     629             :       // conservative. For full groups, wrapping should be ok since if we would
     630             :       // wrap around the address space we would do a memory access at nullptr
     631             :       // even without the transformation. The wrapping checks are therefore
     632             :       // deferred until after we've formed the interleaved groups.
     633        1056 :       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
     634             :                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
     635             : 
     636        1056 :       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
     637        1056 :       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
     638        1056 :       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
     639             : 
     640             :       // An alignment of 0 means target ABI alignment.
     641             :       unsigned Align = getLoadStoreAlignment(&I);
     642        1056 :       if (!Align)
     643          32 :         Align = DL.getABITypeAlignment(PtrTy->getElementType());
     644             : 
     645        1056 :       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
     646             :     }
     647         475 : }
     648             : 
     649             : // Analyze interleaved accesses and collect them into interleaved load and
     650             : // store groups.
     651             : //
     652             : // When generating code for an interleaved load group, we effectively hoist all
     653             : // loads in the group to the location of the first load in program order. When
     654             : // generating code for an interleaved store group, we sink all stores to the
     655             : // location of the last store. This code motion can change the order of load
     656             : // and store instructions and may break dependences.
     657             : //
     658             : // The code generation strategy mentioned above ensures that we won't violate
     659             : // any write-after-read (WAR) dependences.
     660             : //
     661             : // E.g., for the WAR dependence:  a = A[i];      // (1)
     662             : //                                A[i] = b;      // (2)
     663             : //
     664             : // The store group of (2) is always inserted at or below (2), and the load
     665             : // group of (1) is always inserted at or above (1). Thus, the instructions will
     666             : // never be reordered. All other dependences are checked to ensure the
     667             : // correctness of the instruction reordering.
     668             : //
     669             : // The algorithm visits all memory accesses in the loop in bottom-up program
     670             : // order. Program order is established by traversing the blocks in the loop in
     671             : // reverse postorder when collecting the accesses.
     672             : //
     673             : // We visit the memory accesses in bottom-up order because it can simplify the
     674             : // construction of store groups in the presence of write-after-write (WAW)
     675             : // dependences.
     676             : //
     677             : // E.g., for the WAW dependence:  A[i] = a;      // (1)
     678             : //                                A[i] = b;      // (2)
     679             : //                                A[i + 1] = c;  // (3)
     680             : //
     681             : // We will first create a store group with (3) and (2). (1) can't be added to
     682             : // this group because it and (2) are dependent. However, (1) can be grouped
     683             : // with other accesses that may precede it in program order. Note that a
     684             : // bottom-up order does not imply that WAW dependences should not be checked.
     685         475 : void InterleavedAccessInfo::analyzeInterleaving(
     686             :                                  bool EnablePredicatedInterleavedMemAccesses) {
     687             :   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
     688         475 :   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
     689             : 
     690             :   // Holds all accesses with a constant stride.
     691         457 :   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
     692         475 :   collectConstStrideAccesses(AccessStrideInfo, Strides);
     693             : 
     694         475 :   if (AccessStrideInfo.empty())
     695          18 :     return;
     696             : 
     697             :   // Collect the dependences in the loop.
     698         457 :   collectDependences();
     699             : 
     700             :   // Holds all interleaved store groups temporarily.
     701             :   SmallSetVector<InterleaveGroup *, 4> StoreGroups;
     702             :   // Holds all interleaved load groups temporarily.
     703             :   SmallSetVector<InterleaveGroup *, 4> LoadGroups;
     704             : 
     705             :   // Search in bottom-up program order for pairs of accesses (A and B) that can
     706             :   // form interleaved load or store groups. In the algorithm below, access A
     707             :   // precedes access B in program order. We initialize a group for B in the
     708             :   // outer loop of the algorithm, and then in the inner loop, we attempt to
     709             :   // insert each A into B's group if:
     710             :   //
     711             :   //  1. A and B have the same stride,
     712             :   //  2. A and B have the same memory object size, and
     713             :   //  3. A belongs in B's group according to its distance from B.
     714             :   //
     715             :   // Special care is taken to ensure group formation will not break any
     716             :   // dependences.
     717             :   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
     718        1513 :        BI != E; ++BI) {
     719        1056 :     Instruction *B = BI->first;
     720        1056 :     StrideDescriptor DesB = BI->second;
     721             : 
     722             :     // Initialize a group for B if it has an allowable stride. Even if we don't
     723             :     // create a group for B, we continue with the bottom-up algorithm to ensure
     724             :     // we don't break any of B's dependences.
     725        1056 :     InterleaveGroup *Group = nullptr;
     726        1236 :     if (isStrided(DesB.Stride) && 
     727         211 :         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
     728         157 :       Group = getInterleaveGroup(B);
     729         157 :       if (!Group) {
     730             :         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
     731             :                           << '\n');
     732          99 :         Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
     733             :       }
     734         157 :       if (B->mayWriteToMemory())
     735          64 :         StoreGroups.insert(Group);
     736             :       else
     737          93 :         LoadGroups.insert(Group);
     738             :     }
     739             : 
     740        2225 :     for (auto AI = std::next(BI); AI != E; ++AI) {
     741        1176 :       Instruction *A = AI->first;
     742        1176 :       StrideDescriptor DesA = AI->second;
     743             : 
     744             :       // Our code motion strategy implies that we can't have dependences
     745             :       // between accesses in an interleaved group and other accesses located
     746             :       // between the first and last member of the group. Note that this also
     747             :       // means that a group can't have more than one member at a given offset.
     748             :       // The accesses in a group can have dependences with other accesses, but
     749             :       // we must ensure we don't extend the boundaries of the group such that
     750             :       // we encompass those dependent accesses.
     751             :       //
     752             :       // For example, assume we have the sequence of accesses shown below in a
     753             :       // stride-2 loop:
     754             :       //
     755             :       //  (1, 2) is a group | A[i]   = a;  // (1)
     756             :       //                    | A[i-1] = b;  // (2) |
     757             :       //                      A[i-3] = c;  // (3)
     758             :       //                      A[i]   = d;  // (4) | (2, 4) is not a group
     759             :       //
     760             :       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
     761             :       // but not with (4). If we did, the dependent access (3) would be within
     762             :       // the boundaries of the (2, 4) group.
     763        1176 :       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
     764             :         // If a dependence exists and A is already in a group, we know that A
     765             :         // must be a store since A precedes B and WAR dependences are allowed.
     766             :         // Thus, A would be sunk below B. We release A's group to prevent this
     767             :         // illegal code motion. A will then be free to form another group with
     768             :         // instructions that precede it.
     769           7 :         if (isInterleaved(A)) {
     770           3 :           InterleaveGroup *StoreGroup = getInterleaveGroup(A);
     771           3 :           StoreGroups.remove(StoreGroup);
     772           3 :           releaseGroup(StoreGroup);
     773             :         }
     774             : 
     775             :         // If a dependence exists and A is not already in a group (or it was
     776             :         // and we just released it), B might be hoisted above A (if B is a
     777             :         // load) or another store might be sunk below A (if B is a store). In
     778             :         // either case, we can't add additional instructions to B's group. B
     779             :         // will only form a group with instructions that it precedes.
     780           7 :         break;
     781             :       }
     782             : 
     783             :       // At this point, we've checked for illegal code motion. If either A or B
     784             :       // isn't strided, there's nothing left to do.
     785        1169 :       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
     786        1101 :         continue;
     787             : 
     788             :       // Ignore A if it's already in a group or isn't the same kind of memory
     789             :       // operation as B.
     790             :       // Note that mayReadFromMemory() isn't mutually exclusive to
     791             :       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
     792             :       // here, canVectorizeMemory() should have returned false - except for the
     793             :       // case we asked for optimization remarks.
     794         374 :       if (isInterleaved(A) ||
     795         302 :           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
     796          94 :           (A->mayWriteToMemory() != B->mayWriteToMemory()))
     797         114 :         continue;
     798             : 
     799             :       // Check rules 1 and 2. Ignore A if its stride or size is different from
     800             :       // that of B.
     801          94 :       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
     802             :         continue;
     803             : 
     804             :       // Ignore A if the memory object of A and B don't belong to the same
     805             :       // address space
     806          94 :       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
     807             :         continue;
     808             : 
     809             :       // Calculate the distance from A to B.
     810          93 :       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
     811          93 :           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
     812             :       if (!DistToB)
     813             :         continue;
     814             :       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
     815             : 
     816             :       // Check rule 3. Ignore A if its distance to B is not a multiple of the
     817             :       // size.
     818          89 :       if (DistanceToB % static_cast<int64_t>(DesB.Size))
     819             :         continue;
     820             : 
     821             :       // All members of a predicated interleave-group must have the same predicate,
     822             :       // and currently must reside in the same BB.
     823          89 :       BasicBlock *BlockA = A->getParent();  
     824          89 :       BasicBlock *BlockB = B->getParent();  
     825          89 :       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
     826          23 :           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
     827             :         continue;
     828             : 
     829             :       // The index of A is the index of B plus A's distance to B in multiples
     830             :       // of the size.
     831             :       int IndexA =
     832          68 :           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
     833             : 
     834             :       // Try to insert A into B's group.
     835          68 :       if (Group->insertMember(A, IndexA, DesA.Align)) {
     836             :         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
     837             :                           << "    into the interleave group with" << *B
     838             :                           << '\n');
     839          61 :         InterleaveGroupMap[A] = Group;
     840             : 
     841             :         // Set the first load in program order as the insert position.
     842          61 :         if (A->mayReadFromMemory())
     843          36 :           Group->setInsertPos(A);
     844             :       }
     845             :     } // Iteration over A accesses.
     846             :   }   // Iteration over B accesses.
     847             : 
     848             :   // Remove interleaved store groups with gaps.
     849         496 :   for (InterleaveGroup *Group : StoreGroups)
     850          39 :     if (Group->getNumMembers() != Group->getFactor()) {
     851             :       LLVM_DEBUG(
     852             :           dbgs() << "LV: Invalidate candidate interleaved store group due "
     853             :                     "to gaps.\n");
     854          22 :       releaseGroup(Group);
     855             :     }
     856             :   // Remove interleaved groups with gaps (currently only loads) whose memory
     857             :   // accesses may wrap around. We have to revisit the getPtrStride analysis,
     858             :   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
     859             :   // not check wrapping (see documentation there).
     860             :   // FORNOW we use Assume=false;
     861             :   // TODO: Change to Assume=true but making sure we don't exceed the threshold
     862             :   // of runtime SCEV assumptions checks (thereby potentially failing to
     863             :   // vectorize altogether).
     864             :   // Additional optional optimizations:
     865             :   // TODO: If we are peeling the loop and we know that the first pointer doesn't
     866             :   // wrap then we can deduce that all pointers in the group don't wrap.
     867             :   // This means that we can forcefully peel the loop in order to only have to
     868             :   // check the first pointer for no-wrap. When we'll change to use Assume=true
     869             :   // we'll only need at most one runtime check per interleaved group.
     870         514 :   for (InterleaveGroup *Group : LoadGroups) {
     871             :     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
     872             :     // load would wrap around the address space we would do a memory access at
     873             :     // nullptr even without the transformation.
     874          57 :     if (Group->getNumMembers() == Group->getFactor())
     875             :       continue;
     876             : 
     877             :     // Case 2: If first and last members of the group don't wrap this implies
     878             :     // that all the pointers in the group don't wrap.
     879             :     // So we check only group member 0 (which is always guaranteed to exist),
     880             :     // and group member Factor - 1; If the latter doesn't exist we rely on
     881             :     // peeling (if it is a non-reveresed accsess -- see Case 3).
     882          32 :     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
     883          32 :     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
     884             :                       /*ShouldCheckWrap=*/true)) {
     885             :       LLVM_DEBUG(
     886             :           dbgs() << "LV: Invalidate candidate interleaved group due to "
     887             :                     "first group member potentially pointer-wrapping.\n");
     888           5 :       releaseGroup(Group);
     889           5 :       continue;
     890             :     }
     891          27 :     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
     892          27 :     if (LastMember) {
     893             :       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
     894           0 :       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
     895             :                         /*ShouldCheckWrap=*/true)) {
     896             :         LLVM_DEBUG(
     897             :             dbgs() << "LV: Invalidate candidate interleaved group due to "
     898             :                       "last group member potentially pointer-wrapping.\n");
     899           0 :         releaseGroup(Group);
     900             :       }
     901             :     } else {
     902             :       // Case 3: A non-reversed interleaved load group with gaps: We need
     903             :       // to execute at least one scalar epilogue iteration. This will ensure
     904             :       // we don't speculatively access memory out-of-bounds. We only need
     905             :       // to look for a member at index factor - 1, since every group must have
     906             :       // a member at index zero.
     907          27 :       if (Group->isReverse()) {
     908             :         LLVM_DEBUG(
     909             :             dbgs() << "LV: Invalidate candidate interleaved group due to "
     910             :                       "a reverse access with gaps.\n");
     911           1 :         releaseGroup(Group);
     912           1 :         continue;
     913             :       }
     914             :       LLVM_DEBUG(
     915             :           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
     916          26 :       RequiresScalarEpilogue = true;
     917             :     }
     918             :   }
     919             : }

Generated by: LCOV version 1.13