Bug Summary

File:tools/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 1435, column 5
Value stored to 'Off' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn361194/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn361194/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn361194/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn361194/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn361194/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn361194/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn361194=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-21-060711-3714-1 -x c++ /build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp -faddrsig
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CGOpenCLRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "PatternInit.h"
21#include "TargetInfo.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/OSLog.h"
25#include "clang/Basic/TargetBuiltins.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/CodeGen/CGFunctionInfo.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/Support/ConvertUTF.h"
35#include "llvm/Support/ScopedPrinter.h"
36#include "llvm/Support/TargetParser.h"
37#include <sstream>
38
39using namespace clang;
40using namespace CodeGen;
41using namespace llvm;
42
43static
44int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
45 return std::min(High, std::max(Low, Value));
46}
47
48static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
49 ConstantInt *Byte;
50 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
51 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
52 // Nothing to initialize.
53 return;
54 case LangOptions::TrivialAutoVarInitKind::Zero:
55 Byte = CGF.Builder.getInt8(0x00);
56 break;
57 case LangOptions::TrivialAutoVarInitKind::Pattern: {
58 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
59 Byte = llvm::dyn_cast<llvm::ConstantInt>(
60 initializationPatternFor(CGF.CGM, Int8));
61 break;
62 }
63 }
64 CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
65}
66
67/// getBuiltinLibFunction - Given a builtin id for a function like
68/// "__builtin_fabsf", return a Function* for "fabsf".
69llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
70 unsigned BuiltinID) {
71 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))((Context.BuiltinInfo.isLibFunction(BuiltinID)) ? static_cast
<void> (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 71, __PRETTY_FUNCTION__))
;
72
73 // Get the name, skip over the __builtin_ prefix (if necessary).
74 StringRef Name;
75 GlobalDecl D(FD);
76
77 // If the builtin has been declared explicitly with an assembler label,
78 // use the mangled name. This differs from the plain label on platforms
79 // that prefix labels.
80 if (FD->hasAttr<AsmLabelAttr>())
81 Name = getMangledName(D);
82 else
83 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
84
85 llvm::FunctionType *Ty =
86 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
87
88 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
89}
90
91/// Emit the conversions required to turn the given value into an
92/// integer of the given size.
93static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
94 QualType T, llvm::IntegerType *IntType) {
95 V = CGF.EmitToMemory(V, T);
96
97 if (V->getType()->isPointerTy())
98 return CGF.Builder.CreatePtrToInt(V, IntType);
99
100 assert(V->getType() == IntType)((V->getType() == IntType) ? static_cast<void> (0) :
__assert_fail ("V->getType() == IntType", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 100, __PRETTY_FUNCTION__))
;
101 return V;
102}
103
104static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
105 QualType T, llvm::Type *ResultType) {
106 V = CGF.EmitFromMemory(V, T);
107
108 if (ResultType->isPointerTy())
109 return CGF.Builder.CreateIntToPtr(V, ResultType);
110
111 assert(V->getType() == ResultType)((V->getType() == ResultType) ? static_cast<void> (0
) : __assert_fail ("V->getType() == ResultType", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 111, __PRETTY_FUNCTION__))
;
112 return V;
113}
114
115/// Utility to insert an atomic instruction based on Intrinsic::ID
116/// and the expression node.
117static Value *MakeBinaryAtomicValue(
118 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
119 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
120 QualType T = E->getType();
121 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 121, __PRETTY_FUNCTION__))
;
122 assert(CGF.getContext().hasSameUnqualifiedType(T,((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 123, __PRETTY_FUNCTION__))
123 E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 123, __PRETTY_FUNCTION__))
;
124 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->
getType())) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 124, __PRETTY_FUNCTION__))
;
125
126 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
127 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
128
129 llvm::IntegerType *IntType =
130 llvm::IntegerType::get(CGF.getLLVMContext(),
131 CGF.getContext().getTypeSize(T));
132 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
133
134 llvm::Value *Args[2];
135 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
136 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
137 llvm::Type *ValueType = Args[1]->getType();
138 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
139
140 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
141 Kind, Args[0], Args[1], Ordering);
142 return EmitFromInt(CGF, Result, T, ValueType);
143}
144
145static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
146 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
147 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
148
149 // Convert the type of the pointer to a pointer to the stored type.
150 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
151 Value *BC = CGF.Builder.CreateBitCast(
152 Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
153 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
154 LV.setNontemporal(true);
155 CGF.EmitStoreOfScalar(Val, LV, false);
156 return nullptr;
157}
158
159static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
160 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
161
162 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
163 LV.setNontemporal(true);
164 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
165}
166
167static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
168 llvm::AtomicRMWInst::BinOp Kind,
169 const CallExpr *E) {
170 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
171}
172
173/// Utility to insert an atomic instruction based Intrinsic::ID and
174/// the expression node, where the return value is the result of the
175/// operation.
176static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
177 llvm::AtomicRMWInst::BinOp Kind,
178 const CallExpr *E,
179 Instruction::BinaryOps Op,
180 bool Invert = false) {
181 QualType T = E->getType();
182 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 182, __PRETTY_FUNCTION__))
;
183 assert(CGF.getContext().hasSameUnqualifiedType(T,((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 184, __PRETTY_FUNCTION__))
184 E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->
getType()->getPointeeType())) ? static_cast<void> (0
) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 184, __PRETTY_FUNCTION__))
;
185 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->
getType())) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 185, __PRETTY_FUNCTION__))
;
186
187 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
188 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
189
190 llvm::IntegerType *IntType =
191 llvm::IntegerType::get(CGF.getLLVMContext(),
192 CGF.getContext().getTypeSize(T));
193 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
194
195 llvm::Value *Args[2];
196 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
197 llvm::Type *ValueType = Args[1]->getType();
198 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
199 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
200
201 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
202 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
203 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
204 if (Invert)
205 Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
206 llvm::ConstantInt::get(IntType, -1));
207 Result = EmitFromInt(CGF, Result, T, ValueType);
208 return RValue::get(Result);
209}
210
211/// Utility to insert an atomic cmpxchg instruction.
212///
213/// @param CGF The current codegen function.
214/// @param E Builtin call expression to convert to cmpxchg.
215/// arg0 - address to operate on
216/// arg1 - value to compare with
217/// arg2 - new value
218/// @param ReturnBool Specifies whether to return success flag of
219/// cmpxchg result or the old value.
220///
221/// @returns result of cmpxchg, according to ReturnBool
222///
223/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
224/// invoke the function EmitAtomicCmpXchgForMSIntrin.
225static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
226 bool ReturnBool) {
227 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
228 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
229 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
230
231 llvm::IntegerType *IntType = llvm::IntegerType::get(
232 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
233 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
234
235 Value *Args[3];
236 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
237 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
238 llvm::Type *ValueType = Args[1]->getType();
239 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
240 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
241
242 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
243 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
244 llvm::AtomicOrdering::SequentiallyConsistent);
245 if (ReturnBool)
246 // Extract boolean success flag and zext it to int.
247 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
248 CGF.ConvertType(E->getType()));
249 else
250 // Extract old value and emit it using the same type as compare value.
251 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
252 ValueType);
253}
254
255/// This function should be invoked to emit atomic cmpxchg for Microsoft's
256/// _InterlockedCompareExchange* intrinsics which have the following signature:
257/// T _InterlockedCompareExchange(T volatile *Destination,
258/// T Exchange,
259/// T Comparand);
260///
261/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
262/// cmpxchg *Destination, Comparand, Exchange.
263/// So we need to swap Comparand and Exchange when invoking
264/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
265/// function MakeAtomicCmpXchgValue since it expects the arguments to be
266/// already swapped.
267
268static
269Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
270 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
271 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 271, __PRETTY_FUNCTION__))
;
272 assert(CGF.getContext().hasSameUnqualifiedType(((CGF.getContext().hasSameUnqualifiedType( E->getType(), E
->getArg(0)->getType()->getPointeeType())) ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 273, __PRETTY_FUNCTION__))
273 E->getType(), E->getArg(0)->getType()->getPointeeType()))((CGF.getContext().hasSameUnqualifiedType( E->getType(), E
->getArg(0)->getType()->getPointeeType())) ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 273, __PRETTY_FUNCTION__))
;
274 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(1)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 275, __PRETTY_FUNCTION__))
275 E->getArg(1)->getType()))((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(1)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 275, __PRETTY_FUNCTION__))
;
276 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(2)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 277, __PRETTY_FUNCTION__))
277 E->getArg(2)->getType()))((CGF.getContext().hasSameUnqualifiedType(E->getType(), E->
getArg(2)->getType())) ? static_cast<void> (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 277, __PRETTY_FUNCTION__))
;
278
279 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
280 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
281 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
282
283 // For Release ordering, the failure ordering should be Monotonic.
284 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
285 AtomicOrdering::Monotonic :
286 SuccessOrdering;
287
288 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
289 Destination, Comparand, Exchange,
290 SuccessOrdering, FailureOrdering);
291 Result->setVolatile(true);
292 return CGF.Builder.CreateExtractValue(Result, 0);
293}
294
295static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
296 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
297 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 297, __PRETTY_FUNCTION__))
;
298
299 auto *IntTy = CGF.ConvertType(E->getType());
300 auto *Result = CGF.Builder.CreateAtomicRMW(
301 AtomicRMWInst::Add,
302 CGF.EmitScalarExpr(E->getArg(0)),
303 ConstantInt::get(IntTy, 1),
304 Ordering);
305 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
306}
307
308static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
309 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
310 assert(E->getArg(0)->getType()->isPointerType())((E->getArg(0)->getType()->isPointerType()) ? static_cast
<void> (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 310, __PRETTY_FUNCTION__))
;
311
312 auto *IntTy = CGF.ConvertType(E->getType());
313 auto *Result = CGF.Builder.CreateAtomicRMW(
314 AtomicRMWInst::Sub,
315 CGF.EmitScalarExpr(E->getArg(0)),
316 ConstantInt::get(IntTy, 1),
317 Ordering);
318 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
319}
320
321// Build a plain volatile load.
322static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
323 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
324 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
325 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
326 llvm::Type *ITy =
327 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
328 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
329 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
330 Load->setVolatile(true);
331 return Load;
332}
333
334// Build a plain volatile store.
335static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
336 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
337 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
338 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
339 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
340 llvm::Type *ITy =
341 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
342 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
343 llvm::StoreInst *Store =
344 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
345 Store->setVolatile(true);
346 return Store;
347}
348
349// Emit a simple mangled intrinsic that has 1 argument and a return type
350// matching the argument type.
351static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
352 const CallExpr *E,
353 unsigned IntrinsicID) {
354 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
355
356 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
357 return CGF.Builder.CreateCall(F, Src0);
358}
359
360// Emit an intrinsic that has 2 operands of the same type as its result.
361static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
362 const CallExpr *E,
363 unsigned IntrinsicID) {
364 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
365 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
366
367 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
368 return CGF.Builder.CreateCall(F, { Src0, Src1 });
369}
370
371// Emit an intrinsic that has 3 operands of the same type as its result.
372static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
373 const CallExpr *E,
374 unsigned IntrinsicID) {
375 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
376 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
377 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
378
379 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
381}
382
383// Emit an intrinsic that has 1 float or double operand, and 1 integer.
384static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
385 const CallExpr *E,
386 unsigned IntrinsicID) {
387 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
388 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
389
390 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
391 return CGF.Builder.CreateCall(F, {Src0, Src1});
392}
393
394// Emit an intrinsic that has overloaded integer result and fp operand.
395static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
396 const CallExpr *E,
397 unsigned IntrinsicID) {
398 llvm::Type *ResultType = CGF.ConvertType(E->getType());
399 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
400
401 Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
402 {ResultType, Src0->getType()});
403 return CGF.Builder.CreateCall(F, Src0);
404}
405
406/// EmitFAbs - Emit a call to @llvm.fabs().
407static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
408 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
409 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
410 Call->setDoesNotAccessMemory();
411 return Call;
412}
413
414/// Emit the computation of the sign bit for a floating point value. Returns
415/// the i1 sign bit value.
416static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
417 LLVMContext &C = CGF.CGM.getLLVMContext();
418
419 llvm::Type *Ty = V->getType();
420 int Width = Ty->getPrimitiveSizeInBits();
421 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
422 V = CGF.Builder.CreateBitCast(V, IntTy);
423 if (Ty->isPPC_FP128Ty()) {
424 // We want the sign bit of the higher-order double. The bitcast we just
425 // did works as if the double-double was stored to memory and then
426 // read as an i128. The "store" will put the higher-order double in the
427 // lower address in both little- and big-Endian modes, but the "load"
428 // will treat those bits as a different part of the i128: the low bits in
429 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
430 // we need to shift the high bits down to the low before truncating.
431 Width >>= 1;
432 if (CGF.getTarget().isBigEndian()) {
433 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
434 V = CGF.Builder.CreateLShr(V, ShiftCst);
435 }
436 // We are truncating value in order to extract the higher-order
437 // double, which we will be using to extract the sign from.
438 IntTy = llvm::IntegerType::get(C, Width);
439 V = CGF.Builder.CreateTrunc(V, IntTy);
440 }
441 Value *Zero = llvm::Constant::getNullValue(IntTy);
442 return CGF.Builder.CreateICmpSLT(V, Zero);
443}
444
445static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
446 const CallExpr *E, llvm::Constant *calleeValue) {
447 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
448 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
449}
450
451/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
452/// depending on IntrinsicID.
453///
454/// \arg CGF The current codegen function.
455/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
456/// \arg X The first argument to the llvm.*.with.overflow.*.
457/// \arg Y The second argument to the llvm.*.with.overflow.*.
458/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
459/// \returns The result (i.e. sum/product) returned by the intrinsic.
460static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
461 const llvm::Intrinsic::ID IntrinsicID,
462 llvm::Value *X, llvm::Value *Y,
463 llvm::Value *&Carry) {
464 // Make sure we have integers of the same width.
465 assert(X->getType() == Y->getType() &&((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
466 "Arguments must be the same type. (Did you forget to make sure both "((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
467 "arguments have the same integer width?)")((X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? static_cast<
void> (0) : __assert_fail ("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 467, __PRETTY_FUNCTION__))
;
468
469 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
470 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
471 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
472 return CGF.Builder.CreateExtractValue(Tmp, 0);
473}
474
475static Value *emitRangedBuiltin(CodeGenFunction &CGF,
476 unsigned IntrinsicID,
477 int low, int high) {
478 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
479 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
480 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
481 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
482 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
483 return Call;
484}
485
486namespace {
487 struct WidthAndSignedness {
488 unsigned Width;
489 bool Signed;
490 };
491}
492
493static WidthAndSignedness
494getIntegerWidthAndSignedness(const clang::ASTContext &context,
495 const clang::QualType Type) {
496 assert(Type->isIntegerType() && "Given type is not an integer.")((Type->isIntegerType() && "Given type is not an integer."
) ? static_cast<void> (0) : __assert_fail ("Type->isIntegerType() && \"Given type is not an integer.\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 496, __PRETTY_FUNCTION__))
;
497 unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
498 bool Signed = Type->isSignedIntegerType();
499 return {Width, Signed};
500}
501
502// Given one or more integer types, this function produces an integer type that
503// encompasses them: any value in one of the given types could be expressed in
504// the encompassing type.
505static struct WidthAndSignedness
506EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
507 assert(Types.size() > 0 && "Empty list of types.")((Types.size() > 0 && "Empty list of types.") ? static_cast
<void> (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 507, __PRETTY_FUNCTION__))
;
508
509 // If any of the given types is signed, we must return a signed type.
510 bool Signed = false;
511 for (const auto &Type : Types) {
512 Signed |= Type.Signed;
513 }
514
515 // The encompassing type must have a width greater than or equal to the width
516 // of the specified types. Additionally, if the encompassing type is signed,
517 // its width must be strictly greater than the width of any unsigned types
518 // given.
519 unsigned Width = 0;
520 for (const auto &Type : Types) {
521 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
522 if (Width < MinWidth) {
523 Width = MinWidth;
524 }
525 }
526
527 return {Width, Signed};
528}
529
530Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
531 llvm::Type *DestType = Int8PtrTy;
532 if (ArgValue->getType() != DestType)
533 ArgValue =
534 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
535
536 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
537 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
538}
539
540/// Checks if using the result of __builtin_object_size(p, @p From) in place of
541/// __builtin_object_size(p, @p To) is correct
542static bool areBOSTypesCompatible(int From, int To) {
543 // Note: Our __builtin_object_size implementation currently treats Type=0 and
544 // Type=2 identically. Encoding this implementation detail here may make
545 // improving __builtin_object_size difficult in the future, so it's omitted.
546 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
547}
548
549static llvm::Value *
550getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
551 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
552}
553
554llvm::Value *
555CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
556 llvm::IntegerType *ResType,
557 llvm::Value *EmittedE,
558 bool IsDynamic) {
559 uint64_t ObjectSize;
560 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
561 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
562 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
563}
564
565/// Returns a Value corresponding to the size of the given expression.
566/// This Value may be either of the following:
567/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
568/// it)
569/// - A call to the @llvm.objectsize intrinsic
570///
571/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
572/// and we wouldn't otherwise try to reference a pass_object_size parameter,
573/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
574llvm::Value *
575CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
576 llvm::IntegerType *ResType,
577 llvm::Value *EmittedE, bool IsDynamic) {
578 // We need to reference an argument if the pointer is a parameter with the
579 // pass_object_size attribute.
580 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
581 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
582 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
583 if (Param != nullptr && PS != nullptr &&
584 areBOSTypesCompatible(PS->getType(), Type)) {
585 auto Iter = SizeArguments.find(Param);
586 assert(Iter != SizeArguments.end())((Iter != SizeArguments.end()) ? static_cast<void> (0) :
__assert_fail ("Iter != SizeArguments.end()", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 586, __PRETTY_FUNCTION__))
;
587
588 const ImplicitParamDecl *D = Iter->second;
589 auto DIter = LocalDeclMap.find(D);
590 assert(DIter != LocalDeclMap.end())((DIter != LocalDeclMap.end()) ? static_cast<void> (0) :
__assert_fail ("DIter != LocalDeclMap.end()", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 590, __PRETTY_FUNCTION__))
;
591
592 return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
593 getContext().getSizeType(), E->getBeginLoc());
594 }
595 }
596
597 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
598 // evaluate E for side-effects. In either case, we shouldn't lower to
599 // @llvm.objectsize.
600 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
601 return getDefaultBuiltinObjectSizeResult(Type, ResType);
602
603 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
604 assert(Ptr->getType()->isPointerTy() &&((Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 605, __PRETTY_FUNCTION__))
605 "Non-pointer passed to __builtin_object_size?")((Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 605, __PRETTY_FUNCTION__))
;
606
607 Function *F =
608 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
609
610 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
611 Value *Min = Builder.getInt1((Type & 2) != 0);
612 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
613 Value *NullIsUnknown = Builder.getTrue();
614 Value *Dynamic = Builder.getInt1(IsDynamic);
615 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
616}
617
618namespace {
619/// A struct to generically describe a bit test intrinsic.
620struct BitTest {
621 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
622 enum InterlockingKind : uint8_t {
623 Unlocked,
624 Sequential,
625 Acquire,
626 Release,
627 NoFence
628 };
629
630 ActionKind Action;
631 InterlockingKind Interlocking;
632 bool Is64Bit;
633
634 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
635};
636} // namespace
637
638BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
639 switch (BuiltinID) {
640 // Main portable variants.
641 case Builtin::BI_bittest:
642 return {TestOnly, Unlocked, false};
643 case Builtin::BI_bittestandcomplement:
644 return {Complement, Unlocked, false};
645 case Builtin::BI_bittestandreset:
646 return {Reset, Unlocked, false};
647 case Builtin::BI_bittestandset:
648 return {Set, Unlocked, false};
649 case Builtin::BI_interlockedbittestandreset:
650 return {Reset, Sequential, false};
651 case Builtin::BI_interlockedbittestandset:
652 return {Set, Sequential, false};
653
654 // X86-specific 64-bit variants.
655 case Builtin::BI_bittest64:
656 return {TestOnly, Unlocked, true};
657 case Builtin::BI_bittestandcomplement64:
658 return {Complement, Unlocked, true};
659 case Builtin::BI_bittestandreset64:
660 return {Reset, Unlocked, true};
661 case Builtin::BI_bittestandset64:
662 return {Set, Unlocked, true};
663 case Builtin::BI_interlockedbittestandreset64:
664 return {Reset, Sequential, true};
665 case Builtin::BI_interlockedbittestandset64:
666 return {Set, Sequential, true};
667
668 // ARM/AArch64-specific ordering variants.
669 case Builtin::BI_interlockedbittestandset_acq:
670 return {Set, Acquire, false};
671 case Builtin::BI_interlockedbittestandset_rel:
672 return {Set, Release, false};
673 case Builtin::BI_interlockedbittestandset_nf:
674 return {Set, NoFence, false};
675 case Builtin::BI_interlockedbittestandreset_acq:
676 return {Reset, Acquire, false};
677 case Builtin::BI_interlockedbittestandreset_rel:
678 return {Reset, Release, false};
679 case Builtin::BI_interlockedbittestandreset_nf:
680 return {Reset, NoFence, false};
681 }
682 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 682)
;
683}
684
685static char bitActionToX86BTCode(BitTest::ActionKind A) {
686 switch (A) {
687 case BitTest::TestOnly: return '\0';
688 case BitTest::Complement: return 'c';
689 case BitTest::Reset: return 'r';
690 case BitTest::Set: return 's';
691 }
692 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 692)
;
693}
694
695static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
696 BitTest BT,
697 const CallExpr *E, Value *BitBase,
698 Value *BitPos) {
699 char Action = bitActionToX86BTCode(BT.Action);
700 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
701
702 // Build the assembly.
703 SmallString<64> Asm;
704 raw_svector_ostream AsmOS(Asm);
705 if (BT.Interlocking != BitTest::Unlocked)
706 AsmOS << "lock ";
707 AsmOS << "bt";
708 if (Action)
709 AsmOS << Action;
710 AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
711
712 // Build the constraints. FIXME: We should support immediates when possible.
713 std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
714 llvm::IntegerType *IntType = llvm::IntegerType::get(
715 CGF.getLLVMContext(),
716 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
717 llvm::Type *IntPtrType = IntType->getPointerTo();
718 llvm::FunctionType *FTy =
719 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
720
721 llvm::InlineAsm *IA =
722 llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
723 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
724}
725
726static llvm::AtomicOrdering
727getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
728 switch (I) {
729 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
730 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
731 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
732 case BitTest::Release: return llvm::AtomicOrdering::Release;
733 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
734 }
735 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 735)
;
736}
737
738/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
739/// bits and a bit position and read and optionally modify the bit at that
740/// position. The position index can be arbitrarily large, i.e. it can be larger
741/// than 31 or 63, so we need an indexed load in the general case.
742static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
743 unsigned BuiltinID,
744 const CallExpr *E) {
745 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
746 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
747
748 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
749
750 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
751 // indexing operation internally. Use them if possible.
752 llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
753 if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
754 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
755
756 // Otherwise, use generic code to load one byte and test the bit. Use all but
757 // the bottom three bits as the array index, and the bottom three bits to form
758 // a mask.
759 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
760 Value *ByteIndex = CGF.Builder.CreateAShr(
761 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
762 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
763 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
764 ByteIndex, "bittest.byteaddr"),
765 CharUnits::One());
766 Value *PosLow =
767 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
768 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
769
770 // The updating instructions will need a mask.
771 Value *Mask = nullptr;
772 if (BT.Action != BitTest::TestOnly) {
773 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
774 "bittest.mask");
775 }
776
777 // Check the action and ordering of the interlocked intrinsics.
778 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
779
780 Value *OldByte = nullptr;
781 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
782 // Emit a combined atomicrmw load/store operation for the interlocked
783 // intrinsics.
784 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
785 if (BT.Action == BitTest::Reset) {
786 Mask = CGF.Builder.CreateNot(Mask);
787 RMWOp = llvm::AtomicRMWInst::And;
788 }
789 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
790 Ordering);
791 } else {
792 // Emit a plain load for the non-interlocked intrinsics.
793 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
794 Value *NewByte = nullptr;
795 switch (BT.Action) {
796 case BitTest::TestOnly:
797 // Don't store anything.
798 break;
799 case BitTest::Complement:
800 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
801 break;
802 case BitTest::Reset:
803 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
804 break;
805 case BitTest::Set:
806 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
807 break;
808 }
809 if (NewByte)
810 CGF.Builder.CreateStore(NewByte, ByteAddr);
811 }
812
813 // However we loaded the old byte, either by plain load or atomicrmw, shift
814 // the bit into the low position and mask it to 0 or 1.
815 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
816 return CGF.Builder.CreateAnd(
817 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
818}
819
820namespace {
821enum class MSVCSetJmpKind {
822 _setjmpex,
823 _setjmp3,
824 _setjmp
825};
826}
827
828/// MSVC handles setjmp a bit differently on different platforms. On every
829/// architecture except 32-bit x86, the frame address is passed. On x86, extra
830/// parameters can be passed as variadic arguments, but we always pass none.
831static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
832 const CallExpr *E) {
833 llvm::Value *Arg1 = nullptr;
834 llvm::Type *Arg1Ty = nullptr;
835 StringRef Name;
836 bool IsVarArg = false;
837 if (SJKind == MSVCSetJmpKind::_setjmp3) {
838 Name = "_setjmp3";
839 Arg1Ty = CGF.Int32Ty;
840 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
841 IsVarArg = true;
842 } else {
843 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
844 Arg1Ty = CGF.Int8PtrTy;
845 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
846 Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::sponentry));
847 } else
848 Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::frameaddress),
849 llvm::ConstantInt::get(CGF.Int32Ty, 0));
850 }
851
852 // Mark the call site and declaration with ReturnsTwice.
853 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
854 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
855 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
856 llvm::Attribute::ReturnsTwice);
857 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
858 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
859 ReturnsTwiceAttr, /*Local=*/true);
860
861 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
862 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
863 llvm::Value *Args[] = {Buf, Arg1};
864 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
865 CB->setAttributes(ReturnsTwiceAttr);
866 return RValue::get(CB);
867}
868
869// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
870// we handle them here.
871enum class CodeGenFunction::MSVCIntrin {
872 _BitScanForward,
873 _BitScanReverse,
874 _InterlockedAnd,
875 _InterlockedDecrement,
876 _InterlockedExchange,
877 _InterlockedExchangeAdd,
878 _InterlockedExchangeSub,
879 _InterlockedIncrement,
880 _InterlockedOr,
881 _InterlockedXor,
882 _InterlockedExchangeAdd_acq,
883 _InterlockedExchangeAdd_rel,
884 _InterlockedExchangeAdd_nf,
885 _InterlockedExchange_acq,
886 _InterlockedExchange_rel,
887 _InterlockedExchange_nf,
888 _InterlockedCompareExchange_acq,
889 _InterlockedCompareExchange_rel,
890 _InterlockedCompareExchange_nf,
891 _InterlockedOr_acq,
892 _InterlockedOr_rel,
893 _InterlockedOr_nf,
894 _InterlockedXor_acq,
895 _InterlockedXor_rel,
896 _InterlockedXor_nf,
897 _InterlockedAnd_acq,
898 _InterlockedAnd_rel,
899 _InterlockedAnd_nf,
900 _InterlockedIncrement_acq,
901 _InterlockedIncrement_rel,
902 _InterlockedIncrement_nf,
903 _InterlockedDecrement_acq,
904 _InterlockedDecrement_rel,
905 _InterlockedDecrement_nf,
906 __fastfail,
907};
908
909Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
910 const CallExpr *E) {
911 switch (BuiltinID) {
912 case MSVCIntrin::_BitScanForward:
913 case MSVCIntrin::_BitScanReverse: {
914 Value *ArgValue = EmitScalarExpr(E->getArg(1));
915
916 llvm::Type *ArgType = ArgValue->getType();
917 llvm::Type *IndexType =
918 EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
919 llvm::Type *ResultType = ConvertType(E->getType());
920
921 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
922 Value *ResZero = llvm::Constant::getNullValue(ResultType);
923 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
924
925 BasicBlock *Begin = Builder.GetInsertBlock();
926 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
927 Builder.SetInsertPoint(End);
928 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
929
930 Builder.SetInsertPoint(Begin);
931 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
932 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
933 Builder.CreateCondBr(IsZero, End, NotZero);
934 Result->addIncoming(ResZero, Begin);
935
936 Builder.SetInsertPoint(NotZero);
937 Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
938
939 if (BuiltinID == MSVCIntrin::_BitScanForward) {
940 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
941 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
942 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
943 Builder.CreateStore(ZeroCount, IndexAddress, false);
944 } else {
945 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
946 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
947
948 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
949 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
950 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
951 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
952 Builder.CreateStore(Index, IndexAddress, false);
953 }
954 Builder.CreateBr(End);
955 Result->addIncoming(ResOne, NotZero);
956
957 Builder.SetInsertPoint(End);
958 return Result;
959 }
960 case MSVCIntrin::_InterlockedAnd:
961 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
962 case MSVCIntrin::_InterlockedExchange:
963 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
964 case MSVCIntrin::_InterlockedExchangeAdd:
965 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
966 case MSVCIntrin::_InterlockedExchangeSub:
967 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
968 case MSVCIntrin::_InterlockedOr:
969 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
970 case MSVCIntrin::_InterlockedXor:
971 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
972 case MSVCIntrin::_InterlockedExchangeAdd_acq:
973 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
974 AtomicOrdering::Acquire);
975 case MSVCIntrin::_InterlockedExchangeAdd_rel:
976 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
977 AtomicOrdering::Release);
978 case MSVCIntrin::_InterlockedExchangeAdd_nf:
979 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
980 AtomicOrdering::Monotonic);
981 case MSVCIntrin::_InterlockedExchange_acq:
982 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
983 AtomicOrdering::Acquire);
984 case MSVCIntrin::_InterlockedExchange_rel:
985 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
986 AtomicOrdering::Release);
987 case MSVCIntrin::_InterlockedExchange_nf:
988 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
989 AtomicOrdering::Monotonic);
990 case MSVCIntrin::_InterlockedCompareExchange_acq:
991 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
992 case MSVCIntrin::_InterlockedCompareExchange_rel:
993 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
994 case MSVCIntrin::_InterlockedCompareExchange_nf:
995 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
996 case MSVCIntrin::_InterlockedOr_acq:
997 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
998 AtomicOrdering::Acquire);
999 case MSVCIntrin::_InterlockedOr_rel:
1000 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1001 AtomicOrdering::Release);
1002 case MSVCIntrin::_InterlockedOr_nf:
1003 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1004 AtomicOrdering::Monotonic);
1005 case MSVCIntrin::_InterlockedXor_acq:
1006 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1007 AtomicOrdering::Acquire);
1008 case MSVCIntrin::_InterlockedXor_rel:
1009 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1010 AtomicOrdering::Release);
1011 case MSVCIntrin::_InterlockedXor_nf:
1012 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1013 AtomicOrdering::Monotonic);
1014 case MSVCIntrin::_InterlockedAnd_acq:
1015 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1016 AtomicOrdering::Acquire);
1017 case MSVCIntrin::_InterlockedAnd_rel:
1018 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1019 AtomicOrdering::Release);
1020 case MSVCIntrin::_InterlockedAnd_nf:
1021 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1022 AtomicOrdering::Monotonic);
1023 case MSVCIntrin::_InterlockedIncrement_acq:
1024 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1025 case MSVCIntrin::_InterlockedIncrement_rel:
1026 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1027 case MSVCIntrin::_InterlockedIncrement_nf:
1028 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1029 case MSVCIntrin::_InterlockedDecrement_acq:
1030 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1031 case MSVCIntrin::_InterlockedDecrement_rel:
1032 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1033 case MSVCIntrin::_InterlockedDecrement_nf:
1034 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1035
1036 case MSVCIntrin::_InterlockedDecrement:
1037 return EmitAtomicDecrementValue(*this, E);
1038 case MSVCIntrin::_InterlockedIncrement:
1039 return EmitAtomicIncrementValue(*this, E);
1040
1041 case MSVCIntrin::__fastfail: {
1042 // Request immediate process termination from the kernel. The instruction
1043 // sequences to do this are documented on MSDN:
1044 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1045 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1046 StringRef Asm, Constraints;
1047 switch (ISA) {
1048 default:
1049 ErrorUnsupported(E, "__fastfail call for this architecture");
1050 break;
1051 case llvm::Triple::x86:
1052 case llvm::Triple::x86_64:
1053 Asm = "int $$0x29";
1054 Constraints = "{cx}";
1055 break;
1056 case llvm::Triple::thumb:
1057 Asm = "udf #251";
1058 Constraints = "{r0}";
1059 break;
1060 case llvm::Triple::aarch64:
1061 Asm = "brk #0xF003";
1062 Constraints = "{w0}";
1063 }
1064 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1065 llvm::InlineAsm *IA =
1066 llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
1067 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1068 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1069 llvm::Attribute::NoReturn);
1070 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1071 CI->setAttributes(NoReturnAttr);
1072 return CI;
1073 }
1074 }
1075 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1075)
;
1076}
1077
1078namespace {
1079// ARC cleanup for __builtin_os_log_format
1080struct CallObjCArcUse final : EHScopeStack::Cleanup {
1081 CallObjCArcUse(llvm::Value *object) : object(object) {}
1082 llvm::Value *object;
1083
1084 void Emit(CodeGenFunction &CGF, Flags flags) override {
1085 CGF.EmitARCIntrinsicUse(object);
1086 }
1087};
1088}
1089
1090Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1091 BuiltinCheckKind Kind) {
1092 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) &&
"Unsupported builtin check kind") ? static_cast<void> (
0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1093, __PRETTY_FUNCTION__))
1093 && "Unsupported builtin check kind")(((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) &&
"Unsupported builtin check kind") ? static_cast<void> (
0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1093, __PRETTY_FUNCTION__))
;
1094
1095 Value *ArgValue = EmitScalarExpr(E);
1096 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1097 return ArgValue;
1098
1099 SanitizerScope SanScope(this);
1100 Value *Cond = Builder.CreateICmpNE(
1101 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1102 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1103 SanitizerHandler::InvalidBuiltin,
1104 {EmitCheckSourceLocation(E->getExprLoc()),
1105 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1106 None);
1107 return ArgValue;
1108}
1109
1110/// Get the argument type for arguments to os_log_helper.
1111static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1112 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1113 return C.getCanonicalType(UnsignedTy);
1114}
1115
1116llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1117 const analyze_os_log::OSLogBufferLayout &Layout,
1118 CharUnits BufferAlignment) {
1119 ASTContext &Ctx = getContext();
1120
1121 llvm::SmallString<64> Name;
1122 {
1123 raw_svector_ostream OS(Name);
1124 OS << "__os_log_helper";
1125 OS << "_" << BufferAlignment.getQuantity();
1126 OS << "_" << int(Layout.getSummaryByte());
1127 OS << "_" << int(Layout.getNumArgsByte());
1128 for (const auto &Item : Layout.Items)
1129 OS << "_" << int(Item.getSizeByte()) << "_"
1130 << int(Item.getDescriptorByte());
1131 }
1132
1133 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1134 return F;
1135
1136 llvm::SmallVector<QualType, 4> ArgTys;
1137 llvm::SmallVector<ImplicitParamDecl, 4> Params;
1138 Params.emplace_back(Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"),
1139 Ctx.VoidPtrTy, ImplicitParamDecl::Other);
1140 ArgTys.emplace_back(Ctx.VoidPtrTy);
1141
1142 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1143 char Size = Layout.Items[I].getSizeByte();
1144 if (!Size)
1145 continue;
1146
1147 QualType ArgTy = getOSLogArgType(Ctx, Size);
1148 Params.emplace_back(
1149 Ctx, nullptr, SourceLocation(),
1150 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1151 ImplicitParamDecl::Other);
1152 ArgTys.emplace_back(ArgTy);
1153 }
1154
1155 FunctionArgList Args;
1156 for (auto &P : Params)
1157 Args.push_back(&P);
1158
1159 QualType ReturnTy = Ctx.VoidTy;
1160 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1161
1162 // The helper function has linkonce_odr linkage to enable the linker to merge
1163 // identical functions. To ensure the merging always happens, 'noinline' is
1164 // attached to the function when compiling with -Oz.
1165 const CGFunctionInfo &FI =
1166 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1167 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1168 llvm::Function *Fn = llvm::Function::Create(
1169 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1170 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1171 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1172 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1173 Fn->setDoesNotThrow();
1174
1175 // Attach 'noinline' at -Oz.
1176 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1177 Fn->addFnAttr(llvm::Attribute::NoInline);
1178
1179 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1180 IdentifierInfo *II = &Ctx.Idents.get(Name);
1181 FunctionDecl *FD = FunctionDecl::Create(
1182 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1183 FuncionTy, nullptr, SC_PrivateExtern, false, false);
1184
1185 StartFunction(FD, ReturnTy, Fn, FI, Args);
1186
1187 // Create a scope with an artificial location for the body of this function.
1188 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1189
1190 CharUnits Offset;
1191 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(&Params[0]), "buf"),
1192 BufferAlignment);
1193 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1194 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1195 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1196 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1197
1198 unsigned I = 1;
1199 for (const auto &Item : Layout.Items) {
1200 Builder.CreateStore(
1201 Builder.getInt8(Item.getDescriptorByte()),
1202 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1203 Builder.CreateStore(
1204 Builder.getInt8(Item.getSizeByte()),
1205 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1206
1207 CharUnits Size = Item.size();
1208 if (!Size.getQuantity())
1209 continue;
1210
1211 Address Arg = GetAddrOfLocalVar(&Params[I]);
1212 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1213 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1214 "argDataCast");
1215 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1216 Offset += Size;
1217 ++I;
1218 }
1219
1220 FinishFunction();
1221
1222 return Fn;
1223}
1224
1225RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1226 assert(E.getNumArgs() >= 2 &&((E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1227, __PRETTY_FUNCTION__))
1227 "__builtin_os_log_format takes at least 2 arguments")((E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1227, __PRETTY_FUNCTION__))
;
1228 ASTContext &Ctx = getContext();
1229 analyze_os_log::OSLogBufferLayout Layout;
1230 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1231 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1232 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1233
1234 // Ignore argument 1, the format string. It is not currently used.
1235 CallArgList Args;
1236 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1237
1238 for (const auto &Item : Layout.Items) {
1239 int Size = Item.getSizeByte();
1240 if (!Size)
1241 continue;
1242
1243 llvm::Value *ArgVal;
1244
1245 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1246 uint64_t Val = 0;
1247 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1248 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1249 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1250 } else if (const Expr *TheExpr = Item.getExpr()) {
1251 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1252
1253 // Check if this is a retainable type.
1254 if (TheExpr->getType()->isObjCRetainableType()) {
1255 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&((getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type") ? static_cast<
void> (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1256, __PRETTY_FUNCTION__))
1256 "Only scalar can be a ObjC retainable type")((getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
"Only scalar can be a ObjC retainable type") ? static_cast<
void> (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1256, __PRETTY_FUNCTION__))
;
1257 // Check if the object is constant, if not, save it in
1258 // RetainableOperands.
1259 if (!isa<Constant>(ArgVal))
1260 RetainableOperands.push_back(ArgVal);
1261 }
1262 } else {
1263 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1264 }
1265
1266 unsigned ArgValSize =
1267 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1268 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1269 ArgValSize);
1270 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1271 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1272 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1273 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1274 Args.add(RValue::get(ArgVal), ArgTy);
1275 }
1276
1277 const CGFunctionInfo &FI =
1278 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1279 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1280 Layout, BufAddr.getAlignment());
1281 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1282
1283 // Push a clang.arc.use cleanup for each object in RetainableOperands. The
1284 // cleanup will cause the use to appear after the final log call, keeping
1285 // the object valid while it’s held in the log buffer. Note that if there’s
1286 // a release cleanup on the object, it will already be active; since
1287 // cleanups are emitted in reverse order, the use will occur before the
1288 // object is released.
1289 if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
1290 CGM.getCodeGenOpts().OptimizationLevel != 0)
1291 for (llvm::Value *Object : RetainableOperands)
1292 pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
1293
1294 return RValue::get(BufAddr.getPointer());
1295}
1296
1297/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1298static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1299 WidthAndSignedness Op1Info,
1300 WidthAndSignedness Op2Info,
1301 WidthAndSignedness ResultInfo) {
1302 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1303 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1304 Op1Info.Signed != Op2Info.Signed;
1305}
1306
1307/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1308/// the generic checked-binop irgen.
1309static RValue
1310EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1311 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1312 WidthAndSignedness Op2Info,
1313 const clang::Expr *ResultArg, QualType ResultQTy,
1314 WidthAndSignedness ResultInfo) {
1315 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1317, __PRETTY_FUNCTION__))
1316 Op2Info, ResultInfo) &&((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1317, __PRETTY_FUNCTION__))
1317 "Not a mixed-sign multipliction we can specialize")((isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow
, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"
) ? static_cast<void> (0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1317, __PRETTY_FUNCTION__))
;
1318
1319 // Emit the signed and unsigned operands.
1320 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1321 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1322 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1323 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1324 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1325 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1326
1327 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1328 if (SignedOpWidth < UnsignedOpWidth)
1329 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1330 if (UnsignedOpWidth < SignedOpWidth)
1331 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1332
1333 llvm::Type *OpTy = Signed->getType();
1334 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1335 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1336 llvm::Type *ResTy = ResultPtr.getElementType();
1337 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1338
1339 // Take the absolute value of the signed operand.
1340 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1341 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1342 llvm::Value *AbsSigned =
1343 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1344
1345 // Perform a checked unsigned multiplication.
1346 llvm::Value *UnsignedOverflow;
1347 llvm::Value *UnsignedResult =
1348 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1349 Unsigned, UnsignedOverflow);
1350
1351 llvm::Value *Overflow, *Result;
1352 if (ResultInfo.Signed) {
1353 // Signed overflow occurs if the result is greater than INT_MAX or lesser
1354 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1355 auto IntMax =
1356 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1357 llvm::Value *MaxResult =
1358 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1359 CGF.Builder.CreateZExt(IsNegative, OpTy));
1360 llvm::Value *SignedOverflow =
1361 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1362 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1363
1364 // Prepare the signed result (possibly by negating it).
1365 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1366 llvm::Value *SignedResult =
1367 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1368 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1369 } else {
1370 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1371 llvm::Value *Underflow = CGF.Builder.CreateAnd(
1372 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1373 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1374 if (ResultInfo.Width < OpWidth) {
1375 auto IntMax =
1376 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1377 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1378 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1379 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1380 }
1381
1382 // Negate the product if it would be negative in infinite precision.
1383 Result = CGF.Builder.CreateSelect(
1384 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1385
1386 Result = CGF.Builder.CreateTrunc(Result, ResTy);
1387 }
1388 assert(Overflow && Result && "Missing overflow or result")((Overflow && Result && "Missing overflow or result"
) ? static_cast<void> (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1388, __PRETTY_FUNCTION__))
;
1389
1390 bool isVolatile =
1391 ResultArg->getType()->getPointeeType().isVolatileQualified();
1392 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1393 isVolatile);
1394 return RValue::get(Overflow);
1395}
1396
1397static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1398 Value *&RecordPtr, CharUnits Align,
1399 llvm::FunctionCallee Func, int Lvl) {
1400 const auto *RT = RType->getAs<RecordType>();
1401 ASTContext &Context = CGF.getContext();
1402 RecordDecl *RD = RT->getDecl()->getDefinition();
1403 ASTContext &Ctx = RD->getASTContext();
1404 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(RD);
1405 std::string Pad = std::string(Lvl * 4, ' ');
1406
1407 Value *GString =
1408 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1409 Value *Res = CGF.Builder.CreateCall(Func, {GString});
1410
1411 static llvm::DenseMap<QualType, const char *> Types;
1412 if (Types.empty()) {
1413 Types[Context.CharTy] = "%c";
1414 Types[Context.BoolTy] = "%d";
1415 Types[Context.SignedCharTy] = "%hhd";
1416 Types[Context.UnsignedCharTy] = "%hhu";
1417 Types[Context.IntTy] = "%d";
1418 Types[Context.UnsignedIntTy] = "%u";
1419 Types[Context.LongTy] = "%ld";
1420 Types[Context.UnsignedLongTy] = "%lu";
1421 Types[Context.LongLongTy] = "%lld";
1422 Types[Context.UnsignedLongLongTy] = "%llu";
1423 Types[Context.ShortTy] = "%hd";
1424 Types[Context.UnsignedShortTy] = "%hu";
1425 Types[Context.VoidPtrTy] = "%p";
1426 Types[Context.FloatTy] = "%f";
1427 Types[Context.DoubleTy] = "%f";
1428 Types[Context.LongDoubleTy] = "%Lf";
1429 Types[Context.getPointerType(Context.CharTy)] = "%s";
1430 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1431 }
1432
1433 for (const auto *FD : RD->fields()) {
1434 uint64_t Off = RL.getFieldOffset(FD->getFieldIndex());
1435 Off = Ctx.toCharUnitsFromBits(Off).getQuantity();
Value stored to 'Off' is never read
1436
1437 Value *FieldPtr = RecordPtr;
1438 if (RD->isUnion())
1439 FieldPtr = CGF.Builder.CreatePointerCast(
1440 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1441 else
1442 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1443 FD->getFieldIndex());
1444
1445 GString = CGF.Builder.CreateGlobalStringPtr(
1446 llvm::Twine(Pad)
1447 .concat(FD->getType().getAsString())
1448 .concat(llvm::Twine(' '))
1449 .concat(FD->getNameAsString())
1450 .concat(" : ")
1451 .str());
1452 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1453 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1454
1455 QualType CanonicalType =
1456 FD->getType().getUnqualifiedType().getCanonicalType();
1457
1458 // We check whether we are in a recursive type
1459 if (CanonicalType->isRecordType()) {
1460 Value *TmpRes =
1461 dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1462 Res = CGF.Builder.CreateAdd(TmpRes, Res);
1463 continue;
1464 }
1465
1466 // We try to determine the best format to print the current field
1467 llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1468 ? Types[Context.VoidPtrTy]
1469 : Types[CanonicalType];
1470
1471 Address FieldAddress = Address(FieldPtr, Align);
1472 FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1473
1474 // FIXME Need to handle bitfield here
1475 GString = CGF.Builder.CreateGlobalStringPtr(
1476 Format.concat(llvm::Twine('\n')).str());
1477 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1478 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1479 }
1480
1481 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1482 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1483 Res = CGF.Builder.CreateAdd(Res, TmpRes);
1484 return Res;
1485}
1486
1487static bool
1488TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1489 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1490 if (const auto *Arr = Ctx.getAsArrayType(Ty))
1491 Ty = Ctx.getBaseElementType(Arr);
1492
1493 const auto *Record = Ty->getAsCXXRecordDecl();
1494 if (!Record)
1495 return false;
1496
1497 // We've already checked this type, or are in the process of checking it.
1498 if (!Seen.insert(Record).second)
1499 return false;
1500
1501 assert(Record->hasDefinition() &&((Record->hasDefinition() && "Incomplete types should already be diagnosed"
) ? static_cast<void> (0) : __assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1502, __PRETTY_FUNCTION__))
1502 "Incomplete types should already be diagnosed")((Record->hasDefinition() && "Incomplete types should already be diagnosed"
) ? static_cast<void> (0) : __assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 1502, __PRETTY_FUNCTION__))
;
1503
1504 if (Record->isDynamicClass())
1505 return true;
1506
1507 for (FieldDecl *F : Record->fields()) {
1508 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1509 return true;
1510 }
1511 return false;
1512}
1513
1514/// Determine if the specified type requires laundering by checking if it is a
1515/// dynamic class type or contains a subobject which is a dynamic class type.
1516static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1517 if (!CGM.getCodeGenOpts().StrictVTablePointers)
1518 return false;
1519 llvm::SmallPtrSet<const Decl *, 16> Seen;
1520 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1521}
1522
1523RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1524 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1525 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1526
1527 // The builtin's shift arg may have a different type than the source arg and
1528 // result, but the LLVM intrinsic uses the same type for all values.
1529 llvm::Type *Ty = Src->getType();
1530 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1531
1532 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1533 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1534 Function *F = CGM.getIntrinsic(IID, Ty);
1535 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1536}
1537
1538RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1539 const CallExpr *E,
1540 ReturnValueSlot ReturnValue) {
1541 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1542 // See if we can constant fold this builtin. If so, don't emit it at all.
1543 Expr::EvalResult Result;
1544 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1545 !Result.hasSideEffects()) {
1546 if (Result.Val.isInt())
1547 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1548 Result.Val.getInt()));
1549 if (Result.Val.isFloat())
1550 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1551 Result.Val.getFloat()));
1552 }
1553
1554 // There are LLVM math intrinsics/instructions corresponding to math library
1555 // functions except the LLVM op will never set errno while the math library
1556 // might. Also, math builtins have the same semantics as their math library
1557 // twins. Thus, we can transform math library and builtin calls to their
1558 // LLVM counterparts if the call is marked 'const' (known to never set errno).
1559 if (FD->hasAttr<ConstAttr>()) {
1560 switch (BuiltinID) {
1561 case Builtin::BIceil:
1562 case Builtin::BIceilf:
1563 case Builtin::BIceill:
1564 case Builtin::BI__builtin_ceil:
1565 case Builtin::BI__builtin_ceilf:
1566 case Builtin::BI__builtin_ceill:
1567 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
1568
1569 case Builtin::BIcopysign:
1570 case Builtin::BIcopysignf:
1571 case Builtin::BIcopysignl:
1572 case Builtin::BI__builtin_copysign:
1573 case Builtin::BI__builtin_copysignf:
1574 case Builtin::BI__builtin_copysignl:
1575 case Builtin::BI__builtin_copysignf128:
1576 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1577
1578 case Builtin::BIcos:
1579 case Builtin::BIcosf:
1580 case Builtin::BIcosl:
1581 case Builtin::BI__builtin_cos:
1582 case Builtin::BI__builtin_cosf:
1583 case Builtin::BI__builtin_cosl:
1584 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
1585
1586 case Builtin::BIexp:
1587 case Builtin::BIexpf:
1588 case Builtin::BIexpl:
1589 case Builtin::BI__builtin_exp:
1590 case Builtin::BI__builtin_expf:
1591 case Builtin::BI__builtin_expl:
1592 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
1593
1594 case Builtin::BIexp2:
1595 case Builtin::BIexp2f:
1596 case Builtin::BIexp2l:
1597 case Builtin::BI__builtin_exp2:
1598 case Builtin::BI__builtin_exp2f:
1599 case Builtin::BI__builtin_exp2l:
1600 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
1601
1602 case Builtin::BIfabs:
1603 case Builtin::BIfabsf:
1604 case Builtin::BIfabsl:
1605 case Builtin::BI__builtin_fabs:
1606 case Builtin::BI__builtin_fabsf:
1607 case Builtin::BI__builtin_fabsl:
1608 case Builtin::BI__builtin_fabsf128:
1609 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1610
1611 case Builtin::BIfloor:
1612 case Builtin::BIfloorf:
1613 case Builtin::BIfloorl:
1614 case Builtin::BI__builtin_floor:
1615 case Builtin::BI__builtin_floorf:
1616 case Builtin::BI__builtin_floorl:
1617 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1618
1619 case Builtin::BIfma:
1620 case Builtin::BIfmaf:
1621 case Builtin::BIfmal:
1622 case Builtin::BI__builtin_fma:
1623 case Builtin::BI__builtin_fmaf:
1624 case Builtin::BI__builtin_fmal:
1625 return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1626
1627 case Builtin::BIfmax:
1628 case Builtin::BIfmaxf:
1629 case Builtin::BIfmaxl:
1630 case Builtin::BI__builtin_fmax:
1631 case Builtin::BI__builtin_fmaxf:
1632 case Builtin::BI__builtin_fmaxl:
1633 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1634
1635 case Builtin::BIfmin:
1636 case Builtin::BIfminf:
1637 case Builtin::BIfminl:
1638 case Builtin::BI__builtin_fmin:
1639 case Builtin::BI__builtin_fminf:
1640 case Builtin::BI__builtin_fminl:
1641 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1642
1643 // fmod() is a special-case. It maps to the frem instruction rather than an
1644 // LLVM intrinsic.
1645 case Builtin::BIfmod:
1646 case Builtin::BIfmodf:
1647 case Builtin::BIfmodl:
1648 case Builtin::BI__builtin_fmod:
1649 case Builtin::BI__builtin_fmodf:
1650 case Builtin::BI__builtin_fmodl: {
1651 Value *Arg1 = EmitScalarExpr(E->getArg(0));
1652 Value *Arg2 = EmitScalarExpr(E->getArg(1));
1653 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1654 }
1655
1656 case Builtin::BIlog:
1657 case Builtin::BIlogf:
1658 case Builtin::BIlogl:
1659 case Builtin::BI__builtin_log:
1660 case Builtin::BI__builtin_logf:
1661 case Builtin::BI__builtin_logl:
1662 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1663
1664 case Builtin::BIlog10:
1665 case Builtin::BIlog10f:
1666 case Builtin::BIlog10l:
1667 case Builtin::BI__builtin_log10:
1668 case Builtin::BI__builtin_log10f:
1669 case Builtin::BI__builtin_log10l:
1670 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1671
1672 case Builtin::BIlog2:
1673 case Builtin::BIlog2f:
1674 case Builtin::BIlog2l:
1675 case Builtin::BI__builtin_log2:
1676 case Builtin::BI__builtin_log2f:
1677 case Builtin::BI__builtin_log2l:
1678 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1679
1680 case Builtin::BInearbyint:
1681 case Builtin::BInearbyintf:
1682 case Builtin::BInearbyintl:
1683 case Builtin::BI__builtin_nearbyint:
1684 case Builtin::BI__builtin_nearbyintf:
1685 case Builtin::BI__builtin_nearbyintl:
1686 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1687
1688 case Builtin::BIpow:
1689 case Builtin::BIpowf:
1690 case Builtin::BIpowl:
1691 case Builtin::BI__builtin_pow:
1692 case Builtin::BI__builtin_powf:
1693 case Builtin::BI__builtin_powl:
1694 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1695
1696 case Builtin::BIrint:
1697 case Builtin::BIrintf:
1698 case Builtin::BIrintl:
1699 case Builtin::BI__builtin_rint:
1700 case Builtin::BI__builtin_rintf:
1701 case Builtin::BI__builtin_rintl:
1702 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1703
1704 case Builtin::BIround:
1705 case Builtin::BIroundf:
1706 case Builtin::BIroundl:
1707 case Builtin::BI__builtin_round:
1708 case Builtin::BI__builtin_roundf:
1709 case Builtin::BI__builtin_roundl:
1710 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1711
1712 case Builtin::BIsin:
1713 case Builtin::BIsinf:
1714 case Builtin::BIsinl:
1715 case Builtin::BI__builtin_sin:
1716 case Builtin::BI__builtin_sinf:
1717 case Builtin::BI__builtin_sinl:
1718 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1719
1720 case Builtin::BIsqrt:
1721 case Builtin::BIsqrtf:
1722 case Builtin::BIsqrtl:
1723 case Builtin::BI__builtin_sqrt:
1724 case Builtin::BI__builtin_sqrtf:
1725 case Builtin::BI__builtin_sqrtl:
1726 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1727
1728 case Builtin::BItrunc:
1729 case Builtin::BItruncf:
1730 case Builtin::BItruncl:
1731 case Builtin::BI__builtin_trunc:
1732 case Builtin::BI__builtin_truncf:
1733 case Builtin::BI__builtin_truncl:
1734 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1735
1736 case Builtin::BIlround:
1737 case Builtin::BIlroundf:
1738 case Builtin::BIlroundl:
1739 case Builtin::BI__builtin_lround:
1740 case Builtin::BI__builtin_lroundf:
1741 case Builtin::BI__builtin_lroundl:
1742 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
1743
1744 case Builtin::BIllround:
1745 case Builtin::BIllroundf:
1746 case Builtin::BIllroundl:
1747 case Builtin::BI__builtin_llround:
1748 case Builtin::BI__builtin_llroundf:
1749 case Builtin::BI__builtin_llroundl:
1750 return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
1751
1752 default:
1753 break;
1754 }
1755 }
1756
1757 switch (BuiltinID) {
1758 default: break;
1759 case Builtin::BI__builtin___CFStringMakeConstantString:
1760 case Builtin::BI__builtin___NSStringMakeConstantString:
1761 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1762 case Builtin::BI__builtin_stdarg_start:
1763 case Builtin::BI__builtin_va_start:
1764 case Builtin::BI__va_start:
1765 case Builtin::BI__builtin_va_end:
1766 return RValue::get(
1767 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1768 ? EmitScalarExpr(E->getArg(0))
1769 : EmitVAListRef(E->getArg(0)).getPointer(),
1770 BuiltinID != Builtin::BI__builtin_va_end));
1771 case Builtin::BI__builtin_va_copy: {
1772 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1773 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1774
1775 llvm::Type *Type = Int8PtrTy;
1776
1777 DstPtr = Builder.CreateBitCast(DstPtr, Type);
1778 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1779 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1780 {DstPtr, SrcPtr}));
1781 }
1782 case Builtin::BI__builtin_abs:
1783 case Builtin::BI__builtin_labs:
1784 case Builtin::BI__builtin_llabs: {
1785 // X < 0 ? -X : X
1786 // The negation has 'nsw' because abs of INT_MIN is undefined.
1787 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1788 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1789 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1790 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1791 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1792 return RValue::get(Result);
1793 }
1794 case Builtin::BI__builtin_conj:
1795 case Builtin::BI__builtin_conjf:
1796 case Builtin::BI__builtin_conjl: {
1797 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1798 Value *Real = ComplexVal.first;
1799 Value *Imag = ComplexVal.second;
1800 Value *Zero =
1801 Imag->getType()->isFPOrFPVectorTy()
1802 ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1803 : llvm::Constant::getNullValue(Imag->getType());
1804
1805 Imag = Builder.CreateFSub(Zero, Imag, "sub");
1806 return RValue::getComplex(std::make_pair(Real, Imag));
1807 }
1808 case Builtin::BI__builtin_creal:
1809 case Builtin::BI__builtin_crealf:
1810 case Builtin::BI__builtin_creall:
1811 case Builtin::BIcreal:
1812 case Builtin::BIcrealf:
1813 case Builtin::BIcreall: {
1814 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1815 return RValue::get(ComplexVal.first);
1816 }
1817
1818 case Builtin::BI__builtin_dump_struct: {
1819 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
1820 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
1821 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
1822
1823 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
1824 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
1825
1826 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
1827 QualType Arg0Type = Arg0->getType()->getPointeeType();
1828
1829 Value *RecordPtr = EmitScalarExpr(Arg0);
1830 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
1831 {LLVMFuncType, Func}, 0);
1832 return RValue::get(Res);
1833 }
1834
1835 case Builtin::BI__builtin_cimag:
1836 case Builtin::BI__builtin_cimagf:
1837 case Builtin::BI__builtin_cimagl:
1838 case Builtin::BIcimag:
1839 case Builtin::BIcimagf:
1840 case Builtin::BIcimagl: {
1841 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1842 return RValue::get(ComplexVal.second);
1843 }
1844
1845 case Builtin::BI__builtin_clrsb:
1846 case Builtin::BI__builtin_clrsbl:
1847 case Builtin::BI__builtin_clrsbll: {
1848 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
1849 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1850
1851 llvm::Type *ArgType = ArgValue->getType();
1852 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1853
1854 llvm::Type *ResultType = ConvertType(E->getType());
1855 Value *Zero = llvm::Constant::getNullValue(ArgType);
1856 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
1857 Value *Inverse = Builder.CreateNot(ArgValue, "not");
1858 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
1859 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
1860 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
1861 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1862 "cast");
1863 return RValue::get(Result);
1864 }
1865 case Builtin::BI__builtin_ctzs:
1866 case Builtin::BI__builtin_ctz:
1867 case Builtin::BI__builtin_ctzl:
1868 case Builtin::BI__builtin_ctzll: {
1869 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1870
1871 llvm::Type *ArgType = ArgValue->getType();
1872 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1873
1874 llvm::Type *ResultType = ConvertType(E->getType());
1875 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1876 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1877 if (Result->getType() != ResultType)
1878 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1879 "cast");
1880 return RValue::get(Result);
1881 }
1882 case Builtin::BI__builtin_clzs:
1883 case Builtin::BI__builtin_clz:
1884 case Builtin::BI__builtin_clzl:
1885 case Builtin::BI__builtin_clzll: {
1886 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1887
1888 llvm::Type *ArgType = ArgValue->getType();
1889 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1890
1891 llvm::Type *ResultType = ConvertType(E->getType());
1892 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1893 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1894 if (Result->getType() != ResultType)
1895 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1896 "cast");
1897 return RValue::get(Result);
1898 }
1899 case Builtin::BI__builtin_ffs:
1900 case Builtin::BI__builtin_ffsl:
1901 case Builtin::BI__builtin_ffsll: {
1902 // ffs(x) -> x ? cttz(x) + 1 : 0
1903 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1904
1905 llvm::Type *ArgType = ArgValue->getType();
1906 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1907
1908 llvm::Type *ResultType = ConvertType(E->getType());
1909 Value *Tmp =
1910 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1911 llvm::ConstantInt::get(ArgType, 1));
1912 Value *Zero = llvm::Constant::getNullValue(ArgType);
1913 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1914 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1915 if (Result->getType() != ResultType)
1916 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1917 "cast");
1918 return RValue::get(Result);
1919 }
1920 case Builtin::BI__builtin_parity:
1921 case Builtin::BI__builtin_parityl:
1922 case Builtin::BI__builtin_parityll: {
1923 // parity(x) -> ctpop(x) & 1
1924 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1925
1926 llvm::Type *ArgType = ArgValue->getType();
1927 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1928
1929 llvm::Type *ResultType = ConvertType(E->getType());
1930 Value *Tmp = Builder.CreateCall(F, ArgValue);
1931 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1932 if (Result->getType() != ResultType)
1933 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1934 "cast");
1935 return RValue::get(Result);
1936 }
1937 case Builtin::BI__lzcnt16:
1938 case Builtin::BI__lzcnt:
1939 case Builtin::BI__lzcnt64: {
1940 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1941
1942 llvm::Type *ArgType = ArgValue->getType();
1943 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1944
1945 llvm::Type *ResultType = ConvertType(E->getType());
1946 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
1947 if (Result->getType() != ResultType)
1948 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1949 "cast");
1950 return RValue::get(Result);
1951 }
1952 case Builtin::BI__popcnt16:
1953 case Builtin::BI__popcnt:
1954 case Builtin::BI__popcnt64:
1955 case Builtin::BI__builtin_popcount:
1956 case Builtin::BI__builtin_popcountl:
1957 case Builtin::BI__builtin_popcountll: {
1958 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1959
1960 llvm::Type *ArgType = ArgValue->getType();
1961 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1962
1963 llvm::Type *ResultType = ConvertType(E->getType());
1964 Value *Result = Builder.CreateCall(F, ArgValue);
1965 if (Result->getType() != ResultType)
1966 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1967 "cast");
1968 return RValue::get(Result);
1969 }
1970 case Builtin::BI__builtin_unpredictable: {
1971 // Always return the argument of __builtin_unpredictable. LLVM does not
1972 // handle this builtin. Metadata for this builtin should be added directly
1973 // to instructions such as branches or switches that use it.
1974 return RValue::get(EmitScalarExpr(E->getArg(0)));
1975 }
1976 case Builtin::BI__builtin_expect: {
1977 Value *ArgValue = EmitScalarExpr(E->getArg(0));
1978 llvm::Type *ArgType = ArgValue->getType();
1979
1980 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
1981 // Don't generate llvm.expect on -O0 as the backend won't use it for
1982 // anything.
1983 // Note, we still IRGen ExpectedValue because it could have side-effects.
1984 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1985 return RValue::get(ArgValue);
1986
1987 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
1988 Value *Result =
1989 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
1990 return RValue::get(Result);
1991 }
1992 case Builtin::BI__builtin_assume_aligned: {
1993 const Expr *Ptr = E->getArg(0);
1994 Value *PtrValue = EmitScalarExpr(Ptr);
1995 Value *OffsetValue =
1996 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
1997
1998 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
1999 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2000 unsigned Alignment = (unsigned)AlignmentCI->getZExtValue();
2001
2002 EmitAlignmentAssumption(PtrValue, Ptr,
2003 /*The expr loc is sufficient.*/ SourceLocation(),
2004 Alignment, OffsetValue);
2005 return RValue::get(PtrValue);
2006 }
2007 case Builtin::BI__assume:
2008 case Builtin::BI__builtin_assume: {
2009 if (E->getArg(0)->HasSideEffects(getContext()))
2010 return RValue::get(nullptr);
2011
2012 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2013 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2014 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2015 }
2016 case Builtin::BI__builtin_bswap16:
2017 case Builtin::BI__builtin_bswap32:
2018 case Builtin::BI__builtin_bswap64: {
2019 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2020 }
2021 case Builtin::BI__builtin_bitreverse8:
2022 case Builtin::BI__builtin_bitreverse16:
2023 case Builtin::BI__builtin_bitreverse32:
2024 case Builtin::BI__builtin_bitreverse64: {
2025 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2026 }
2027 case Builtin::BI__builtin_rotateleft8:
2028 case Builtin::BI__builtin_rotateleft16:
2029 case Builtin::BI__builtin_rotateleft32:
2030 case Builtin::BI__builtin_rotateleft64:
2031 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2032 case Builtin::BI_rotl16:
2033 case Builtin::BI_rotl:
2034 case Builtin::BI_lrotl:
2035 case Builtin::BI_rotl64:
2036 return emitRotate(E, false);
2037
2038 case Builtin::BI__builtin_rotateright8:
2039 case Builtin::BI__builtin_rotateright16:
2040 case Builtin::BI__builtin_rotateright32:
2041 case Builtin::BI__builtin_rotateright64:
2042 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2043 case Builtin::BI_rotr16:
2044 case Builtin::BI_rotr:
2045 case Builtin::BI_lrotr:
2046 case Builtin::BI_rotr64:
2047 return emitRotate(E, true);
2048
2049 case Builtin::BI__builtin_constant_p: {
2050 llvm::Type *ResultType = ConvertType(E->getType());
2051 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2052 // At -O0, we don't perform inlining, so we don't need to delay the
2053 // processing.
2054 return RValue::get(ConstantInt::get(ResultType, 0));
2055
2056 const Expr *Arg = E->getArg(0);
2057 QualType ArgType = Arg->getType();
2058 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2059 // and likely a mistake.
2060 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2061 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2062 // Per the GCC documentation, only numeric constants are recognized after
2063 // inlining.
2064 return RValue::get(ConstantInt::get(ResultType, 0));
2065
2066 if (Arg->HasSideEffects(getContext()))
2067 // The argument is unevaluated, so be conservative if it might have
2068 // side-effects.
2069 return RValue::get(ConstantInt::get(ResultType, 0));
2070
2071 Value *ArgValue = EmitScalarExpr(Arg);
2072 if (ArgType->isObjCObjectPointerType()) {
2073 // Convert Objective-C objects to id because we cannot distinguish between
2074 // LLVM types for Obj-C classes as they are opaque.
2075 ArgType = CGM.getContext().getObjCIdType();
2076 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2077 }
2078 Function *F =
2079 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2080 Value *Result = Builder.CreateCall(F, ArgValue);
2081 if (Result->getType() != ResultType)
2082 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2083 return RValue::get(Result);
2084 }
2085 case Builtin::BI__builtin_dynamic_object_size:
2086 case Builtin::BI__builtin_object_size: {
2087 unsigned Type =
2088 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2089 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2090
2091 // We pass this builtin onto the optimizer so that it can figure out the
2092 // object size in more complex cases.
2093 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2094 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2095 /*EmittedE=*/nullptr, IsDynamic));
2096 }
2097 case Builtin::BI__builtin_prefetch: {
2098 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2099 // FIXME: Technically these constants should of type 'int', yes?
2100 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2101 llvm::ConstantInt::get(Int32Ty, 0);
2102 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2103 llvm::ConstantInt::get(Int32Ty, 3);
2104 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2105 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
2106 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2107 }
2108 case Builtin::BI__builtin_readcyclecounter: {
2109 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2110 return RValue::get(Builder.CreateCall(F));
2111 }
2112 case Builtin::BI__builtin___clear_cache: {
2113 Value *Begin = EmitScalarExpr(E->getArg(0));
2114 Value *End = EmitScalarExpr(E->getArg(1));
2115 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2116 return RValue::get(Builder.CreateCall(F, {Begin, End}));
2117 }
2118 case Builtin::BI__builtin_trap:
2119 return RValue::get(EmitTrapCall(Intrinsic::trap));
2120 case Builtin::BI__debugbreak:
2121 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2122 case Builtin::BI__builtin_unreachable: {
2123 EmitUnreachable(E->getExprLoc());
2124
2125 // We do need to preserve an insertion point.
2126 EmitBlock(createBasicBlock("unreachable.cont"));
2127
2128 return RValue::get(nullptr);
2129 }
2130
2131 case Builtin::BI__builtin_powi:
2132 case Builtin::BI__builtin_powif:
2133 case Builtin::BI__builtin_powil: {
2134 Value *Base = EmitScalarExpr(E->getArg(0));
2135 Value *Exponent = EmitScalarExpr(E->getArg(1));
2136 llvm::Type *ArgType = Base->getType();
2137 Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
2138 return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
2139 }
2140
2141 case Builtin::BI__builtin_isgreater:
2142 case Builtin::BI__builtin_isgreaterequal:
2143 case Builtin::BI__builtin_isless:
2144 case Builtin::BI__builtin_islessequal:
2145 case Builtin::BI__builtin_islessgreater:
2146 case Builtin::BI__builtin_isunordered: {
2147 // Ordered comparisons: we know the arguments to these are matching scalar
2148 // floating point values.
2149 Value *LHS = EmitScalarExpr(E->getArg(0));
2150 Value *RHS = EmitScalarExpr(E->getArg(1));
2151
2152 switch (BuiltinID) {
2153 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2153)
;
2154 case Builtin::BI__builtin_isgreater:
2155 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2156 break;
2157 case Builtin::BI__builtin_isgreaterequal:
2158 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2159 break;
2160 case Builtin::BI__builtin_isless:
2161 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2162 break;
2163 case Builtin::BI__builtin_islessequal:
2164 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2165 break;
2166 case Builtin::BI__builtin_islessgreater:
2167 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2168 break;
2169 case Builtin::BI__builtin_isunordered:
2170 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2171 break;
2172 }
2173 // ZExt bool to int type.
2174 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2175 }
2176 case Builtin::BI__builtin_isnan: {
2177 Value *V = EmitScalarExpr(E->getArg(0));
2178 V = Builder.CreateFCmpUNO(V, V, "cmp");
2179 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2180 }
2181
2182 case Builtin::BIfinite:
2183 case Builtin::BI__finite:
2184 case Builtin::BIfinitef:
2185 case Builtin::BI__finitef:
2186 case Builtin::BIfinitel:
2187 case Builtin::BI__finitel:
2188 case Builtin::BI__builtin_isinf:
2189 case Builtin::BI__builtin_isfinite: {
2190 // isinf(x) --> fabs(x) == infinity
2191 // isfinite(x) --> fabs(x) != infinity
2192 // x != NaN via the ordered compare in either case.
2193 Value *V = EmitScalarExpr(E->getArg(0));
2194 Value *Fabs = EmitFAbs(*this, V);
2195 Constant *Infinity = ConstantFP::getInfinity(V->getType());
2196 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2197 ? CmpInst::FCMP_OEQ
2198 : CmpInst::FCMP_ONE;
2199 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2200 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2201 }
2202
2203 case Builtin::BI__builtin_isinf_sign: {
2204 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2205 Value *Arg = EmitScalarExpr(E->getArg(0));
2206 Value *AbsArg = EmitFAbs(*this, Arg);
2207 Value *IsInf = Builder.CreateFCmpOEQ(
2208 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2209 Value *IsNeg = EmitSignBit(*this, Arg);
2210
2211 llvm::Type *IntTy = ConvertType(E->getType());
2212 Value *Zero = Constant::getNullValue(IntTy);
2213 Value *One = ConstantInt::get(IntTy, 1);
2214 Value *NegativeOne = ConstantInt::get(IntTy, -1);
2215 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2216 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2217 return RValue::get(Result);
2218 }
2219
2220 case Builtin::BI__builtin_isnormal: {
2221 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2222 Value *V = EmitScalarExpr(E->getArg(0));
2223 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2224
2225 Value *Abs = EmitFAbs(*this, V);
2226 Value *IsLessThanInf =
2227 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2228 APFloat Smallest = APFloat::getSmallestNormalized(
2229 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2230 Value *IsNormal =
2231 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2232 "isnormal");
2233 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2234 V = Builder.CreateAnd(V, IsNormal, "and");
2235 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2236 }
2237
2238 case Builtin::BI__builtin_flt_rounds: {
2239 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2240
2241 llvm::Type *ResultType = ConvertType(E->getType());
2242 Value *Result = Builder.CreateCall(F);
2243 if (Result->getType() != ResultType)
2244 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2245 "cast");
2246 return RValue::get(Result);
2247 }
2248
2249 case Builtin::BI__builtin_fpclassify: {
2250 Value *V = EmitScalarExpr(E->getArg(5));
2251 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2252
2253 // Create Result
2254 BasicBlock *Begin = Builder.GetInsertBlock();
2255 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2256 Builder.SetInsertPoint(End);
2257 PHINode *Result =
2258 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2259 "fpclassify_result");
2260
2261 // if (V==0) return FP_ZERO
2262 Builder.SetInsertPoint(Begin);
2263 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2264 "iszero");
2265 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2266 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2267 Builder.CreateCondBr(IsZero, End, NotZero);
2268 Result->addIncoming(ZeroLiteral, Begin);
2269
2270 // if (V != V) return FP_NAN
2271 Builder.SetInsertPoint(NotZero);
2272 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2273 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2274 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2275 Builder.CreateCondBr(IsNan, End, NotNan);
2276 Result->addIncoming(NanLiteral, NotZero);
2277
2278 // if (fabs(V) == infinity) return FP_INFINITY
2279 Builder.SetInsertPoint(NotNan);
2280 Value *VAbs = EmitFAbs(*this, V);
2281 Value *IsInf =
2282 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2283 "isinf");
2284 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2285 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2286 Builder.CreateCondBr(IsInf, End, NotInf);
2287 Result->addIncoming(InfLiteral, NotNan);
2288
2289 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2290 Builder.SetInsertPoint(NotInf);
2291 APFloat Smallest = APFloat::getSmallestNormalized(
2292 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2293 Value *IsNormal =
2294 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2295 "isnormal");
2296 Value *NormalResult =
2297 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2298 EmitScalarExpr(E->getArg(3)));
2299 Builder.CreateBr(End);
2300 Result->addIncoming(NormalResult, NotInf);
2301
2302 // return Result
2303 Builder.SetInsertPoint(End);
2304 return RValue::get(Result);
2305 }
2306
2307 case Builtin::BIalloca:
2308 case Builtin::BI_alloca:
2309 case Builtin::BI__builtin_alloca: {
2310 Value *Size = EmitScalarExpr(E->getArg(0));
2311 const TargetInfo &TI = getContext().getTargetInfo();
2312 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2313 unsigned SuitableAlignmentInBytes =
2314 CGM.getContext()
2315 .toCharUnitsFromBits(TI.getSuitableAlign())
2316 .getQuantity();
2317 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2318 AI->setAlignment(SuitableAlignmentInBytes);
2319 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2320 return RValue::get(AI);
2321 }
2322
2323 case Builtin::BI__builtin_alloca_with_align: {
2324 Value *Size = EmitScalarExpr(E->getArg(0));
2325 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2326 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2327 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2328 unsigned AlignmentInBytes =
2329 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
2330 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2331 AI->setAlignment(AlignmentInBytes);
2332 initializeAlloca(*this, AI, Size, AlignmentInBytes);
2333 return RValue::get(AI);
2334 }
2335
2336 case Builtin::BIbzero:
2337 case Builtin::BI__builtin_bzero: {
2338 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2339 Value *SizeVal = EmitScalarExpr(E->getArg(1));
2340 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2341 E->getArg(0)->getExprLoc(), FD, 0);
2342 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2343 return RValue::get(nullptr);
2344 }
2345 case Builtin::BImemcpy:
2346 case Builtin::BI__builtin_memcpy: {
2347 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2348 Address Src = EmitPointerWithAlignment(E->getArg(1));
2349 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2350 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2351 E->getArg(0)->getExprLoc(), FD, 0);
2352 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2353 E->getArg(1)->getExprLoc(), FD, 1);
2354 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2355 return RValue::get(Dest.getPointer());
2356 }
2357
2358 case Builtin::BI__builtin_char_memchr:
2359 BuiltinID = Builtin::BI__builtin_memchr;
2360 break;
2361
2362 case Builtin::BI__builtin___memcpy_chk: {
2363 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2364 Expr::EvalResult SizeResult, DstSizeResult;
2365 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2366 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2367 break;
2368 llvm::APSInt Size = SizeResult.Val.getInt();
2369 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2370 if (Size.ugt(DstSize))
2371 break;
2372 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2373 Address Src = EmitPointerWithAlignment(E->getArg(1));
2374 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2375 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2376 return RValue::get(Dest.getPointer());
2377 }
2378
2379 case Builtin::BI__builtin_objc_memmove_collectable: {
2380 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2381 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2382 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2383 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2384 DestAddr, SrcAddr, SizeVal);
2385 return RValue::get(DestAddr.getPointer());
2386 }
2387
2388 case Builtin::BI__builtin___memmove_chk: {
2389 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2390 Expr::EvalResult SizeResult, DstSizeResult;
2391 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2392 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2393 break;
2394 llvm::APSInt Size = SizeResult.Val.getInt();
2395 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2396 if (Size.ugt(DstSize))
2397 break;
2398 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2399 Address Src = EmitPointerWithAlignment(E->getArg(1));
2400 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2401 Builder.CreateMemMove(Dest, Src, SizeVal, false);
2402 return RValue::get(Dest.getPointer());
2403 }
2404
2405 case Builtin::BImemmove:
2406 case Builtin::BI__builtin_memmove: {
2407 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2408 Address Src = EmitPointerWithAlignment(E->getArg(1));
2409 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2410 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2411 E->getArg(0)->getExprLoc(), FD, 0);
2412 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2413 E->getArg(1)->getExprLoc(), FD, 1);
2414 Builder.CreateMemMove(Dest, Src, SizeVal, false);
2415 return RValue::get(Dest.getPointer());
2416 }
2417 case Builtin::BImemset:
2418 case Builtin::BI__builtin_memset: {
2419 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2420 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2421 Builder.getInt8Ty());
2422 Value *SizeVal = EmitScalarExpr(E->getArg(2));
2423 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2424 E->getArg(0)->getExprLoc(), FD, 0);
2425 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2426 return RValue::get(Dest.getPointer());
2427 }
2428 case Builtin::BI__builtin___memset_chk: {
2429 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2430 Expr::EvalResult SizeResult, DstSizeResult;
2431 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2432 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2433 break;
2434 llvm::APSInt Size = SizeResult.Val.getInt();
2435 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2436 if (Size.ugt(DstSize))
2437 break;
2438 Address Dest = EmitPointerWithAlignment(E->getArg(0));
2439 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2440 Builder.getInt8Ty());
2441 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2442 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2443 return RValue::get(Dest.getPointer());
2444 }
2445 case Builtin::BI__builtin_wmemcmp: {
2446 // The MSVC runtime library does not provide a definition of wmemcmp, so we
2447 // need an inline implementation.
2448 if (!getTarget().getTriple().isOSMSVCRT())
2449 break;
2450
2451 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2452
2453 Value *Dst = EmitScalarExpr(E->getArg(0));
2454 Value *Src = EmitScalarExpr(E->getArg(1));
2455 Value *Size = EmitScalarExpr(E->getArg(2));
2456
2457 BasicBlock *Entry = Builder.GetInsertBlock();
2458 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2459 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2460 BasicBlock *Next = createBasicBlock("wmemcmp.next");
2461 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2462 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2463 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2464
2465 EmitBlock(CmpGT);
2466 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2467 DstPhi->addIncoming(Dst, Entry);
2468 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2469 SrcPhi->addIncoming(Src, Entry);
2470 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2471 SizePhi->addIncoming(Size, Entry);
2472 CharUnits WCharAlign =
2473 getContext().getTypeAlignInChars(getContext().WCharTy);
2474 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2475 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2476 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2477 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2478
2479 EmitBlock(CmpLT);
2480 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2481 Builder.CreateCondBr(DstLtSrc, Exit, Next);
2482
2483 EmitBlock(Next);
2484 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2485 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2486 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2487 Value *NextSizeEq0 =
2488 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2489 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2490 DstPhi->addIncoming(NextDst, Next);
2491 SrcPhi->addIncoming(NextSrc, Next);
2492 SizePhi->addIncoming(NextSize, Next);
2493
2494 EmitBlock(Exit);
2495 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2496 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2497 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2498 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2499 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2500 return RValue::get(Ret);
2501 }
2502 case Builtin::BI__builtin_dwarf_cfa: {
2503 // The offset in bytes from the first argument to the CFA.
2504 //
2505 // Why on earth is this in the frontend? Is there any reason at
2506 // all that the backend can't reasonably determine this while
2507 // lowering llvm.eh.dwarf.cfa()?
2508 //
2509 // TODO: If there's a satisfactory reason, add a target hook for
2510 // this instead of hard-coding 0, which is correct for most targets.
2511 int32_t Offset = 0;
2512
2513 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2514 return RValue::get(Builder.CreateCall(F,
2515 llvm::ConstantInt::get(Int32Ty, Offset)));
2516 }
2517 case Builtin::BI__builtin_return_address: {
2518 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2519 getContext().UnsignedIntTy);
2520 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2521 return RValue::get(Builder.CreateCall(F, Depth));
2522 }
2523 case Builtin::BI_ReturnAddress: {
2524 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2525 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2526 }
2527 case Builtin::BI__builtin_frame_address: {
2528 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2529 getContext().UnsignedIntTy);
2530 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress);
2531 return RValue::get(Builder.CreateCall(F, Depth));
2532 }
2533 case Builtin::BI__builtin_extract_return_addr: {
2534 Value *Address = EmitScalarExpr(E->getArg(0));
2535 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2536 return RValue::get(Result);
2537 }
2538 case Builtin::BI__builtin_frob_return_addr: {
2539 Value *Address = EmitScalarExpr(E->getArg(0));
2540 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2541 return RValue::get(Result);
2542 }
2543 case Builtin::BI__builtin_dwarf_sp_column: {
2544 llvm::IntegerType *Ty
2545 = cast<llvm::IntegerType>(ConvertType(E->getType()));
2546 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2547 if (Column == -1) {
2548 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2549 return RValue::get(llvm::UndefValue::get(Ty));
2550 }
2551 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2552 }
2553 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2554 Value *Address = EmitScalarExpr(E->getArg(0));
2555 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2556 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2557 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2558 }
2559 case Builtin::BI__builtin_eh_return: {
2560 Value *Int = EmitScalarExpr(E->getArg(0));
2561 Value *Ptr = EmitScalarExpr(E->getArg(1));
2562
2563 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2564 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() ==
64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? static_cast<void> (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2565, __PRETTY_FUNCTION__))
2565 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() ==
64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? static_cast<void> (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2565, __PRETTY_FUNCTION__))
;
2566 Function *F =
2567 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2568 : Intrinsic::eh_return_i64);
2569 Builder.CreateCall(F, {Int, Ptr});
2570 Builder.CreateUnreachable();
2571
2572 // We do need to preserve an insertion point.
2573 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2574
2575 return RValue::get(nullptr);
2576 }
2577 case Builtin::BI__builtin_unwind_init: {
2578 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2579 return RValue::get(Builder.CreateCall(F));
2580 }
2581 case Builtin::BI__builtin_extend_pointer: {
2582 // Extends a pointer to the size of an _Unwind_Word, which is
2583 // uint64_t on all platforms. Generally this gets poked into a
2584 // register and eventually used as an address, so if the
2585 // addressing registers are wider than pointers and the platform
2586 // doesn't implicitly ignore high-order bits when doing
2587 // addressing, we need to make sure we zext / sext based on
2588 // the platform's expectations.
2589 //
2590 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2591
2592 // Cast the pointer to intptr_t.
2593 Value *Ptr = EmitScalarExpr(E->getArg(0));
2594 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2595
2596 // If that's 64 bits, we're done.
2597 if (IntPtrTy->getBitWidth() == 64)
2598 return RValue::get(Result);
2599
2600 // Otherwise, ask the codegen data what to do.
2601 if (getTargetHooks().extendPointerWithSExt())
2602 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2603 else
2604 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2605 }
2606 case Builtin::BI__builtin_setjmp: {
2607 // Buffer is a void**.
2608 Address Buf = EmitPointerWithAlignment(E->getArg(0));
2609
2610 // Store the frame pointer to the setjmp buffer.
2611 Value *FrameAddr =
2612 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
2613 ConstantInt::get(Int32Ty, 0));
2614 Builder.CreateStore(FrameAddr, Buf);
2615
2616 // Store the stack pointer to the setjmp buffer.
2617 Value *StackAddr =
2618 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2619 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2620 Builder.CreateStore(StackAddr, StackSaveSlot);
2621
2622 // Call LLVM's EH setjmp, which is lightweight.
2623 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2624 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2625 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2626 }
2627 case Builtin::BI__builtin_longjmp: {
2628 Value *Buf = EmitScalarExpr(E->getArg(0));
2629 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2630
2631 // Call LLVM's EH longjmp, which is lightweight.
2632 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2633
2634 // longjmp doesn't return; mark this as unreachable.
2635 Builder.CreateUnreachable();
2636
2637 // We do need to preserve an insertion point.
2638 EmitBlock(createBasicBlock("longjmp.cont"));
2639
2640 return RValue::get(nullptr);
2641 }
2642 case Builtin::BI__builtin_launder: {
2643 const Expr *Arg = E->getArg(0);
2644 QualType ArgTy = Arg->getType()->getPointeeType();
2645 Value *Ptr = EmitScalarExpr(Arg);
2646 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2647 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2648
2649 return RValue::get(Ptr);
2650 }
2651 case Builtin::BI__sync_fetch_and_add:
2652 case Builtin::BI__sync_fetch_and_sub:
2653 case Builtin::BI__sync_fetch_and_or:
2654 case Builtin::BI__sync_fetch_and_and:
2655 case Builtin::BI__sync_fetch_and_xor:
2656 case Builtin::BI__sync_fetch_and_nand:
2657 case Builtin::BI__sync_add_and_fetch:
2658 case Builtin::BI__sync_sub_and_fetch:
2659 case Builtin::BI__sync_and_and_fetch:
2660 case Builtin::BI__sync_or_and_fetch:
2661 case Builtin::BI__sync_xor_and_fetch:
2662 case Builtin::BI__sync_nand_and_fetch:
2663 case Builtin::BI__sync_val_compare_and_swap:
2664 case Builtin::BI__sync_bool_compare_and_swap:
2665 case Builtin::BI__sync_lock_test_and_set:
2666 case Builtin::BI__sync_lock_release:
2667 case Builtin::BI__sync_swap:
2668 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 2668)
;
2669 case Builtin::BI__sync_fetch_and_add_1:
2670 case Builtin::BI__sync_fetch_and_add_2:
2671 case Builtin::BI__sync_fetch_and_add_4:
2672 case Builtin::BI__sync_fetch_and_add_8:
2673 case Builtin::BI__sync_fetch_and_add_16:
2674 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2675 case Builtin::BI__sync_fetch_and_sub_1:
2676 case Builtin::BI__sync_fetch_and_sub_2:
2677 case Builtin::BI__sync_fetch_and_sub_4:
2678 case Builtin::BI__sync_fetch_and_sub_8:
2679 case Builtin::BI__sync_fetch_and_sub_16:
2680 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2681 case Builtin::BI__sync_fetch_and_or_1:
2682 case Builtin::BI__sync_fetch_and_or_2:
2683 case Builtin::BI__sync_fetch_and_or_4:
2684 case Builtin::BI__sync_fetch_and_or_8:
2685 case Builtin::BI__sync_fetch_and_or_16:
2686 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2687 case Builtin::BI__sync_fetch_and_and_1:
2688 case Builtin::BI__sync_fetch_and_and_2:
2689 case Builtin::BI__sync_fetch_and_and_4:
2690 case Builtin::BI__sync_fetch_and_and_8:
2691 case Builtin::BI__sync_fetch_and_and_16:
2692 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2693 case Builtin::BI__sync_fetch_and_xor_1:
2694 case Builtin::BI__sync_fetch_and_xor_2:
2695 case Builtin::BI__sync_fetch_and_xor_4:
2696 case Builtin::BI__sync_fetch_and_xor_8:
2697 case Builtin::BI__sync_fetch_and_xor_16:
2698 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2699 case Builtin::BI__sync_fetch_and_nand_1:
2700 case Builtin::BI__sync_fetch_and_nand_2:
2701 case Builtin::BI__sync_fetch_and_nand_4:
2702 case Builtin::BI__sync_fetch_and_nand_8:
2703 case Builtin::BI__sync_fetch_and_nand_16:
2704 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2705
2706 // Clang extensions: not overloaded yet.
2707 case Builtin::BI__sync_fetch_and_min:
2708 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2709 case Builtin::BI__sync_fetch_and_max:
2710 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2711 case Builtin::BI__sync_fetch_and_umin:
2712 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2713 case Builtin::BI__sync_fetch_and_umax:
2714 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2715
2716 case Builtin::BI__sync_add_and_fetch_1:
2717 case Builtin::BI__sync_add_and_fetch_2:
2718 case Builtin::BI__sync_add_and_fetch_4:
2719 case Builtin::BI__sync_add_and_fetch_8:
2720 case Builtin::BI__sync_add_and_fetch_16:
2721 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2722 llvm::Instruction::Add);
2723 case Builtin::BI__sync_sub_and_fetch_1:
2724 case Builtin::BI__sync_sub_and_fetch_2:
2725 case Builtin::BI__sync_sub_and_fetch_4:
2726 case Builtin::BI__sync_sub_and_fetch_8:
2727 case Builtin::BI__sync_sub_and_fetch_16:
2728 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2729 llvm::Instruction::Sub);
2730 case Builtin::BI__sync_and_and_fetch_1:
2731 case Builtin::BI__sync_and_and_fetch_2:
2732 case Builtin::BI__sync_and_and_fetch_4:
2733 case Builtin::BI__sync_and_and_fetch_8:
2734 case Builtin::BI__sync_and_and_fetch_16:
2735 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2736 llvm::Instruction::And);
2737 case Builtin::BI__sync_or_and_fetch_1:
2738 case Builtin::BI__sync_or_and_fetch_2:
2739 case Builtin::BI__sync_or_and_fetch_4:
2740 case Builtin::BI__sync_or_and_fetch_8:
2741 case Builtin::BI__sync_or_and_fetch_16:
2742 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2743 llvm::Instruction::Or);
2744 case Builtin::BI__sync_xor_and_fetch_1:
2745 case Builtin::BI__sync_xor_and_fetch_2:
2746 case Builtin::BI__sync_xor_and_fetch_4:
2747 case Builtin::BI__sync_xor_and_fetch_8:
2748 case Builtin::BI__sync_xor_and_fetch_16:
2749 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2750 llvm::Instruction::Xor);
2751 case Builtin::BI__sync_nand_and_fetch_1:
2752 case Builtin::BI__sync_nand_and_fetch_2:
2753 case Builtin::BI__sync_nand_and_fetch_4:
2754 case Builtin::BI__sync_nand_and_fetch_8:
2755 case Builtin::BI__sync_nand_and_fetch_16:
2756 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2757 llvm::Instruction::And, true);
2758
2759 case Builtin::BI__sync_val_compare_and_swap_1:
2760 case Builtin::BI__sync_val_compare_and_swap_2:
2761 case Builtin::BI__sync_val_compare_and_swap_4:
2762 case Builtin::BI__sync_val_compare_and_swap_8:
2763 case Builtin::BI__sync_val_compare_and_swap_16:
2764 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2765
2766 case Builtin::BI__sync_bool_compare_and_swap_1:
2767 case Builtin::BI__sync_bool_compare_and_swap_2:
2768 case Builtin::BI__sync_bool_compare_and_swap_4:
2769 case Builtin::BI__sync_bool_compare_and_swap_8:
2770 case Builtin::BI__sync_bool_compare_and_swap_16:
2771 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2772
2773 case Builtin::BI__sync_swap_1:
2774 case Builtin::BI__sync_swap_2:
2775 case Builtin::BI__sync_swap_4:
2776 case Builtin::BI__sync_swap_8:
2777 case Builtin::BI__sync_swap_16:
2778 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2779
2780 case Builtin::BI__sync_lock_test_and_set_1:
2781 case Builtin::BI__sync_lock_test_and_set_2:
2782 case Builtin::BI__sync_lock_test_and_set_4:
2783 case Builtin::BI__sync_lock_test_and_set_8:
2784 case Builtin::BI__sync_lock_test_and_set_16:
2785 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2786
2787 case Builtin::BI__sync_lock_release_1:
2788 case Builtin::BI__sync_lock_release_2:
2789 case Builtin::BI__sync_lock_release_4:
2790 case Builtin::BI__sync_lock_release_8:
2791 case Builtin::BI__sync_lock_release_16: {
2792 Value *Ptr = EmitScalarExpr(E->getArg(0));
2793 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2794 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2795 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2796 StoreSize.getQuantity() * 8);
2797 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2798 llvm::StoreInst *Store =
2799 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2800 StoreSize);
2801 Store->setAtomic(llvm::AtomicOrdering::Release);
2802 return RValue::get(nullptr);
2803 }
2804
2805 case Builtin::BI__sync_synchronize: {
2806 // We assume this is supposed to correspond to a C++0x-style
2807 // sequentially-consistent fence (i.e. this is only usable for
2808 // synchronization, not device I/O or anything like that). This intrinsic
2809 // is really badly designed in the sense that in theory, there isn't
2810 // any way to safely use it... but in practice, it mostly works
2811 // to use it with non-atomic loads and stores to get acquire/release
2812 // semantics.
2813 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2814 return RValue::get(nullptr);
2815 }
2816
2817 case Builtin::BI__builtin_nontemporal_load:
2818 return RValue::get(EmitNontemporalLoad(*this, E));
2819 case Builtin::BI__builtin_nontemporal_store:
2820 return RValue::get(EmitNontemporalStore(*this, E));
2821 case Builtin::BI__c11_atomic_is_lock_free:
2822 case Builtin::BI__atomic_is_lock_free: {
2823 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2824 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2825 // _Atomic(T) is always properly-aligned.
2826 const char *LibCallName = "__atomic_is_lock_free";
2827 CallArgList Args;
2828 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2829 getContext().getSizeType());
2830 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2831 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2832 getContext().VoidPtrTy);
2833 else
2834 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2835 getContext().VoidPtrTy);
2836 const CGFunctionInfo &FuncInfo =
2837 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2838 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2839 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2840 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2841 ReturnValueSlot(), Args);
2842 }
2843
2844 case Builtin::BI__atomic_test_and_set: {
2845 // Look at the argument type to determine whether this is a volatile
2846 // operation. The parameter type is always volatile.
2847 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2848 bool Volatile =
2849 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2850
2851 Value *Ptr = EmitScalarExpr(E->getArg(0));
2852 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2853 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2854 Value *NewVal = Builder.getInt8(1);
2855 Value *Order = EmitScalarExpr(E->getArg(1));
2856 if (isa<llvm::ConstantInt>(Order)) {
2857 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2858 AtomicRMWInst *Result = nullptr;
2859 switch (ord) {
2860 case 0: // memory_order_relaxed
2861 default: // invalid order
2862 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2863 llvm::AtomicOrdering::Monotonic);
2864 break;
2865 case 1: // memory_order_consume
2866 case 2: // memory_order_acquire
2867 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2868 llvm::AtomicOrdering::Acquire);
2869 break;
2870 case 3: // memory_order_release
2871 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2872 llvm::AtomicOrdering::Release);
2873 break;
2874 case 4: // memory_order_acq_rel
2875
2876 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2877 llvm::AtomicOrdering::AcquireRelease);
2878 break;
2879 case 5: // memory_order_seq_cst
2880 Result = Builder.CreateAtomicRMW(
2881 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2882 llvm::AtomicOrdering::SequentiallyConsistent);
2883 break;
2884 }
2885 Result->setVolatile(Volatile);
2886 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2887 }
2888
2889 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2890
2891 llvm::BasicBlock *BBs[5] = {
2892 createBasicBlock("monotonic", CurFn),
2893 createBasicBlock("acquire", CurFn),
2894 createBasicBlock("release", CurFn),
2895 createBasicBlock("acqrel", CurFn),
2896 createBasicBlock("seqcst", CurFn)
2897 };
2898 llvm::AtomicOrdering Orders[5] = {
2899 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2900 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2901 llvm::AtomicOrdering::SequentiallyConsistent};
2902
2903 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2904 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2905
2906 Builder.SetInsertPoint(ContBB);
2907 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2908
2909 for (unsigned i = 0; i < 5; ++i) {
2910 Builder.SetInsertPoint(BBs[i]);
2911 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2912 Ptr, NewVal, Orders[i]);
2913 RMW->setVolatile(Volatile);
2914 Result->addIncoming(RMW, BBs[i]);
2915 Builder.CreateBr(ContBB);
2916 }
2917
2918 SI->addCase(Builder.getInt32(0), BBs[0]);
2919 SI->addCase(Builder.getInt32(1), BBs[1]);
2920 SI->addCase(Builder.getInt32(2), BBs[1]);
2921 SI->addCase(Builder.getInt32(3), BBs[2]);
2922 SI->addCase(Builder.getInt32(4), BBs[3]);
2923 SI->addCase(Builder.getInt32(5), BBs[4]);
2924
2925 Builder.SetInsertPoint(ContBB);
2926 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2927 }
2928
2929 case Builtin::BI__atomic_clear: {
2930 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2931 bool Volatile =
2932 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2933
2934 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2935 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2936 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2937 Value *NewVal = Builder.getInt8(0);
2938 Value *Order = EmitScalarExpr(E->getArg(1));
2939 if (isa<llvm::ConstantInt>(Order)) {
2940 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2941 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2942 switch (ord) {
2943 case 0: // memory_order_relaxed
2944 default: // invalid order
2945 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2946 break;
2947 case 3: // memory_order_release
2948 Store->setOrdering(llvm::AtomicOrdering::Release);
2949 break;
2950 case 5: // memory_order_seq_cst
2951 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
2952 break;
2953 }
2954 return RValue::get(nullptr);
2955 }
2956
2957 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2958
2959 llvm::BasicBlock *BBs[3] = {
2960 createBasicBlock("monotonic", CurFn),
2961 createBasicBlock("release", CurFn),
2962 createBasicBlock("seqcst", CurFn)
2963 };
2964 llvm::AtomicOrdering Orders[3] = {
2965 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
2966 llvm::AtomicOrdering::SequentiallyConsistent};
2967
2968 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2969 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2970
2971 for (unsigned i = 0; i < 3; ++i) {
2972 Builder.SetInsertPoint(BBs[i]);
2973 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2974 Store->setOrdering(Orders[i]);
2975 Builder.CreateBr(ContBB);
2976 }
2977
2978 SI->addCase(Builder.getInt32(0), BBs[0]);
2979 SI->addCase(Builder.getInt32(3), BBs[1]);
2980 SI->addCase(Builder.getInt32(5), BBs[2]);
2981
2982 Builder.SetInsertPoint(ContBB);
2983 return RValue::get(nullptr);
2984 }
2985
2986 case Builtin::BI__atomic_thread_fence:
2987 case Builtin::BI__atomic_signal_fence:
2988 case Builtin::BI__c11_atomic_thread_fence:
2989 case Builtin::BI__c11_atomic_signal_fence: {
2990 llvm::SyncScope::ID SSID;
2991 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
2992 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
2993 SSID = llvm::SyncScope::SingleThread;
2994 else
2995 SSID = llvm::SyncScope::System;
2996 Value *Order = EmitScalarExpr(E->getArg(0));
2997 if (isa<llvm::ConstantInt>(Order)) {
2998 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2999 switch (ord) {
3000 case 0: // memory_order_relaxed
3001 default: // invalid order
3002 break;
3003 case 1: // memory_order_consume
3004 case 2: // memory_order_acquire
3005 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3006 break;
3007 case 3: // memory_order_release
3008 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3009 break;
3010 case 4: // memory_order_acq_rel
3011 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3012 break;
3013 case 5: // memory_order_seq_cst
3014 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3015 break;
3016 }
3017 return RValue::get(nullptr);
3018 }
3019
3020 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3021 AcquireBB = createBasicBlock("acquire", CurFn);
3022 ReleaseBB = createBasicBlock("release", CurFn);
3023 AcqRelBB = createBasicBlock("acqrel", CurFn);
3024 SeqCstBB = createBasicBlock("seqcst", CurFn);
3025 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3026
3027 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3028 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3029
3030 Builder.SetInsertPoint(AcquireBB);
3031 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3032 Builder.CreateBr(ContBB);
3033 SI->addCase(Builder.getInt32(1), AcquireBB);
3034 SI->addCase(Builder.getInt32(2), AcquireBB);
3035
3036 Builder.SetInsertPoint(ReleaseBB);
3037 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3038 Builder.CreateBr(ContBB);
3039 SI->addCase(Builder.getInt32(3), ReleaseBB);
3040
3041 Builder.SetInsertPoint(AcqRelBB);
3042 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3043 Builder.CreateBr(ContBB);
3044 SI->addCase(Builder.getInt32(4), AcqRelBB);
3045
3046 Builder.SetInsertPoint(SeqCstBB);
3047 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3048 Builder.CreateBr(ContBB);
3049 SI->addCase(Builder.getInt32(5), SeqCstBB);
3050
3051 Builder.SetInsertPoint(ContBB);
3052 return RValue::get(nullptr);
3053 }
3054
3055 case Builtin::BI__builtin_signbit:
3056 case Builtin::BI__builtin_signbitf:
3057 case Builtin::BI__builtin_signbitl: {
3058 return RValue::get(
3059 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3060 ConvertType(E->getType())));
3061 }
3062 case Builtin::BI__annotation: {
3063 // Re-encode each wide string to UTF8 and make an MDString.
3064 SmallVector<Metadata *, 1> Strings;
3065 for (const Expr *Arg : E->arguments()) {
3066 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3067 assert(Str->getCharByteWidth() == 2)((Str->getCharByteWidth() == 2) ? static_cast<void> (
0) : __assert_fail ("Str->getCharByteWidth() == 2", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3067, __PRETTY_FUNCTION__))
;
3068 StringRef WideBytes = Str->getBytes();
3069 std::string StrUtf8;
3070 if (!convertUTF16ToUTF8String(
3071 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3072 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3073 continue;
3074 }
3075 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3076 }
3077
3078 // Build and MDTuple of MDStrings and emit the intrinsic call.
3079 llvm::Function *F =
3080 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3081 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3082 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3083 return RValue::getIgnored();
3084 }
3085 case Builtin::BI__builtin_annotation: {
3086 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3087 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3088 AnnVal->getType());
3089
3090 // Get the annotation string, go through casts. Sema requires this to be a
3091 // non-wide string literal, potentially casted, so the cast<> is safe.
3092 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3093 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3094 return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3095 }
3096 case Builtin::BI__builtin_addcb:
3097 case Builtin::BI__builtin_addcs:
3098 case Builtin::BI__builtin_addc:
3099 case Builtin::BI__builtin_addcl:
3100 case Builtin::BI__builtin_addcll:
3101 case Builtin::BI__builtin_subcb:
3102 case Builtin::BI__builtin_subcs:
3103 case Builtin::BI__builtin_subc:
3104 case Builtin::BI__builtin_subcl:
3105 case Builtin::BI__builtin_subcll: {
3106
3107 // We translate all of these builtins from expressions of the form:
3108 // int x = ..., y = ..., carryin = ..., carryout, result;
3109 // result = __builtin_addc(x, y, carryin, &carryout);
3110 //
3111 // to LLVM IR of the form:
3112 //
3113 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3114 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3115 // %carry1 = extractvalue {i32, i1} %tmp1, 1
3116 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3117 // i32 %carryin)
3118 // %result = extractvalue {i32, i1} %tmp2, 0
3119 // %carry2 = extractvalue {i32, i1} %tmp2, 1
3120 // %tmp3 = or i1 %carry1, %carry2
3121 // %tmp4 = zext i1 %tmp3 to i32
3122 // store i32 %tmp4, i32* %carryout
3123
3124 // Scalarize our inputs.
3125 llvm::Value *X = EmitScalarExpr(E->getArg(0));
3126 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3127 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3128 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3129
3130 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3131 llvm::Intrinsic::ID IntrinsicId;
3132 switch (BuiltinID) {
3133 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3133)
;
3134 case Builtin::BI__builtin_addcb:
3135 case Builtin::BI__builtin_addcs:
3136 case Builtin::BI__builtin_addc:
3137 case Builtin::BI__builtin_addcl:
3138 case Builtin::BI__builtin_addcll:
3139 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3140 break;
3141 case Builtin::BI__builtin_subcb:
3142 case Builtin::BI__builtin_subcs:
3143 case Builtin::BI__builtin_subc:
3144 case Builtin::BI__builtin_subcl:
3145 case Builtin::BI__builtin_subcll:
3146 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3147 break;
3148 }
3149
3150 // Construct our resulting LLVM IR expression.
3151 llvm::Value *Carry1;
3152 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3153 X, Y, Carry1);
3154 llvm::Value *Carry2;
3155 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3156 Sum1, Carryin, Carry2);
3157 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3158 X->getType());
3159 Builder.CreateStore(CarryOut, CarryOutPtr);
3160 return RValue::get(Sum2);
3161 }
3162
3163 case Builtin::BI__builtin_add_overflow:
3164 case Builtin::BI__builtin_sub_overflow:
3165 case Builtin::BI__builtin_mul_overflow: {
3166 const clang::Expr *LeftArg = E->getArg(0);
3167 const clang::Expr *RightArg = E->getArg(1);
3168 const clang::Expr *ResultArg = E->getArg(2);
3169
3170 clang::QualType ResultQTy =
3171 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3172
3173 WidthAndSignedness LeftInfo =
3174 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3175 WidthAndSignedness RightInfo =
3176 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3177 WidthAndSignedness ResultInfo =
3178 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3179
3180 // Handle mixed-sign multiplication as a special case, because adding
3181 // runtime or backend support for our generic irgen would be too expensive.
3182 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3183 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3184 RightInfo, ResultArg, ResultQTy,
3185 ResultInfo);
3186
3187 WidthAndSignedness EncompassingInfo =
3188 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3189
3190 llvm::Type *EncompassingLLVMTy =
3191 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3192
3193 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3194
3195 llvm::Intrinsic::ID IntrinsicId;
3196 switch (BuiltinID) {
3197 default:
3198 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3198)
;
3199 case Builtin::BI__builtin_add_overflow:
3200 IntrinsicId = EncompassingInfo.Signed
3201 ? llvm::Intrinsic::sadd_with_overflow
3202 : llvm::Intrinsic::uadd_with_overflow;
3203 break;
3204 case Builtin::BI__builtin_sub_overflow:
3205 IntrinsicId = EncompassingInfo.Signed
3206 ? llvm::Intrinsic::ssub_with_overflow
3207 : llvm::Intrinsic::usub_with_overflow;
3208 break;
3209 case Builtin::BI__builtin_mul_overflow:
3210 IntrinsicId = EncompassingInfo.Signed
3211 ? llvm::Intrinsic::smul_with_overflow
3212 : llvm::Intrinsic::umul_with_overflow;
3213 break;
3214 }
3215
3216 llvm::Value *Left = EmitScalarExpr(LeftArg);
3217 llvm::Value *Right = EmitScalarExpr(RightArg);
3218 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3219
3220 // Extend each operand to the encompassing type.
3221 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3222 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3223
3224 // Perform the operation on the extended values.
3225 llvm::Value *Overflow, *Result;
3226 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3227
3228 if (EncompassingInfo.Width > ResultInfo.Width) {
3229 // The encompassing type is wider than the result type, so we need to
3230 // truncate it.
3231 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3232
3233 // To see if the truncation caused an overflow, we will extend
3234 // the result and then compare it to the original result.
3235 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3236 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3237 llvm::Value *TruncationOverflow =
3238 Builder.CreateICmpNE(Result, ResultTruncExt);
3239
3240 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3241 Result = ResultTrunc;
3242 }
3243
3244 // Finally, store the result using the pointer.
3245 bool isVolatile =
3246 ResultArg->getType()->getPointeeType().isVolatileQualified();
3247 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3248
3249 return RValue::get(Overflow);
3250 }
3251
3252 case Builtin::BI__builtin_uadd_overflow:
3253 case Builtin::BI__builtin_uaddl_overflow:
3254 case Builtin::BI__builtin_uaddll_overflow:
3255 case Builtin::BI__builtin_usub_overflow:
3256 case Builtin::BI__builtin_usubl_overflow:
3257 case Builtin::BI__builtin_usubll_overflow:
3258 case Builtin::BI__builtin_umul_overflow:
3259 case Builtin::BI__builtin_umull_overflow:
3260 case Builtin::BI__builtin_umulll_overflow:
3261 case Builtin::BI__builtin_sadd_overflow:
3262 case Builtin::BI__builtin_saddl_overflow:
3263 case Builtin::BI__builtin_saddll_overflow:
3264 case Builtin::BI__builtin_ssub_overflow:
3265 case Builtin::BI__builtin_ssubl_overflow:
3266 case Builtin::BI__builtin_ssubll_overflow:
3267 case Builtin::BI__builtin_smul_overflow:
3268 case Builtin::BI__builtin_smull_overflow:
3269 case Builtin::BI__builtin_smulll_overflow: {
3270
3271 // We translate all of these builtins directly to the relevant llvm IR node.
3272
3273 // Scalarize our inputs.
3274 llvm::Value *X = EmitScalarExpr(E->getArg(0));
3275 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3276 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3277
3278 // Decide which of the overflow intrinsics we are lowering to:
3279 llvm::Intrinsic::ID IntrinsicId;
3280 switch (BuiltinID) {
3281 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3281)
;
3282 case Builtin::BI__builtin_uadd_overflow:
3283 case Builtin::BI__builtin_uaddl_overflow:
3284 case Builtin::BI__builtin_uaddll_overflow:
3285 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3286 break;
3287 case Builtin::BI__builtin_usub_overflow:
3288 case Builtin::BI__builtin_usubl_overflow:
3289 case Builtin::BI__builtin_usubll_overflow:
3290 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3291 break;
3292 case Builtin::BI__builtin_umul_overflow:
3293 case Builtin::BI__builtin_umull_overflow:
3294 case Builtin::BI__builtin_umulll_overflow:
3295 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3296 break;
3297 case Builtin::BI__builtin_sadd_overflow:
3298 case Builtin::BI__builtin_saddl_overflow:
3299 case Builtin::BI__builtin_saddll_overflow:
3300 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3301 break;
3302 case Builtin::BI__builtin_ssub_overflow:
3303 case Builtin::BI__builtin_ssubl_overflow:
3304 case Builtin::BI__builtin_ssubll_overflow:
3305 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3306 break;
3307 case Builtin::BI__builtin_smul_overflow:
3308 case Builtin::BI__builtin_smull_overflow:
3309 case Builtin::BI__builtin_smulll_overflow:
3310 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3311 break;
3312 }
3313
3314
3315 llvm::Value *Carry;
3316 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3317 Builder.CreateStore(Sum, SumOutPtr);
3318
3319 return RValue::get(Carry);
3320 }
3321 case Builtin::BI__builtin_addressof:
3322 return RValue::get(EmitLValue(E->getArg(0)).getPointer());
3323 case Builtin::BI__builtin_operator_new:
3324 return EmitBuiltinNewDeleteCall(
3325 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3326 case Builtin::BI__builtin_operator_delete:
3327 return EmitBuiltinNewDeleteCall(
3328 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3329
3330 case Builtin::BI__noop:
3331 // __noop always evaluates to an integer literal zero.
3332 return RValue::get(ConstantInt::get(IntTy, 0));
3333 case Builtin::BI__builtin_call_with_static_chain: {
3334 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3335 const Expr *Chain = E->getArg(1);
3336 return EmitCall(Call->getCallee()->getType(),
3337 EmitCallee(Call->getCallee()), Call, ReturnValue,
3338 EmitScalarExpr(Chain));
3339 }
3340 case Builtin::BI_InterlockedExchange8:
3341 case Builtin::BI_InterlockedExchange16:
3342 case Builtin::BI_InterlockedExchange:
3343 case Builtin::BI_InterlockedExchangePointer:
3344 return RValue::get(
3345 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3346 case Builtin::BI_InterlockedCompareExchangePointer:
3347 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3348 llvm::Type *RTy;
3349 llvm::IntegerType *IntType =
3350 IntegerType::get(getLLVMContext(),
3351 getContext().getTypeSize(E->getType()));
3352 llvm::Type *IntPtrType = IntType->getPointerTo();
3353
3354 llvm::Value *Destination =
3355 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3356
3357 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3358 RTy = Exchange->getType();
3359 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3360
3361 llvm::Value *Comparand =
3362 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3363
3364 auto Ordering =
3365 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3366 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3367
3368 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3369 Ordering, Ordering);
3370 Result->setVolatile(true);
3371
3372 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3373 0),
3374 RTy));
3375 }
3376 case Builtin::BI_InterlockedCompareExchange8:
3377 case Builtin::BI_InterlockedCompareExchange16:
3378 case Builtin::BI_InterlockedCompareExchange:
3379 case Builtin::BI_InterlockedCompareExchange64:
3380 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3381 case Builtin::BI_InterlockedIncrement16:
3382 case Builtin::BI_InterlockedIncrement:
3383 return RValue::get(
3384 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3385 case Builtin::BI_InterlockedDecrement16:
3386 case Builtin::BI_InterlockedDecrement:
3387 return RValue::get(
3388 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3389 case Builtin::BI_InterlockedAnd8:
3390 case Builtin::BI_InterlockedAnd16:
3391 case Builtin::BI_InterlockedAnd:
3392 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3393 case Builtin::BI_InterlockedExchangeAdd8:
3394 case Builtin::BI_InterlockedExchangeAdd16:
3395 case Builtin::BI_InterlockedExchangeAdd:
3396 return RValue::get(
3397 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3398 case Builtin::BI_InterlockedExchangeSub8:
3399 case Builtin::BI_InterlockedExchangeSub16:
3400 case Builtin::BI_InterlockedExchangeSub:
3401 return RValue::get(
3402 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3403 case Builtin::BI_InterlockedOr8:
3404 case Builtin::BI_InterlockedOr16:
3405 case Builtin::BI_InterlockedOr:
3406 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3407 case Builtin::BI_InterlockedXor8:
3408 case Builtin::BI_InterlockedXor16:
3409 case Builtin::BI_InterlockedXor:
3410 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3411
3412 case Builtin::BI_bittest64:
3413 case Builtin::BI_bittest:
3414 case Builtin::BI_bittestandcomplement64:
3415 case Builtin::BI_bittestandcomplement:
3416 case Builtin::BI_bittestandreset64:
3417 case Builtin::BI_bittestandreset:
3418 case Builtin::BI_bittestandset64:
3419 case Builtin::BI_bittestandset:
3420 case Builtin::BI_interlockedbittestandreset:
3421 case Builtin::BI_interlockedbittestandreset64:
3422 case Builtin::BI_interlockedbittestandset64:
3423 case Builtin::BI_interlockedbittestandset:
3424 case Builtin::BI_interlockedbittestandset_acq:
3425 case Builtin::BI_interlockedbittestandset_rel:
3426 case Builtin::BI_interlockedbittestandset_nf:
3427 case Builtin::BI_interlockedbittestandreset_acq:
3428 case Builtin::BI_interlockedbittestandreset_rel:
3429 case Builtin::BI_interlockedbittestandreset_nf:
3430 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3431
3432 // These builtins exist to emit regular volatile loads and stores not
3433 // affected by the -fms-volatile setting.
3434 case Builtin::BI__iso_volatile_load8:
3435 case Builtin::BI__iso_volatile_load16:
3436 case Builtin::BI__iso_volatile_load32:
3437 case Builtin::BI__iso_volatile_load64:
3438 return RValue::get(EmitISOVolatileLoad(*this, E));
3439 case Builtin::BI__iso_volatile_store8:
3440 case Builtin::BI__iso_volatile_store16:
3441 case Builtin::BI__iso_volatile_store32:
3442 case Builtin::BI__iso_volatile_store64:
3443 return RValue::get(EmitISOVolatileStore(*this, E));
3444
3445 case Builtin::BI__exception_code:
3446 case Builtin::BI_exception_code:
3447 return RValue::get(EmitSEHExceptionCode());
3448 case Builtin::BI__exception_info:
3449 case Builtin::BI_exception_info:
3450 return RValue::get(EmitSEHExceptionInfo());
3451 case Builtin::BI__abnormal_termination:
3452 case Builtin::BI_abnormal_termination:
3453 return RValue::get(EmitSEHAbnormalTermination());
3454 case Builtin::BI_setjmpex:
3455 if (getTarget().getTriple().isOSMSVCRT())
3456 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3457 break;
3458 case Builtin::BI_setjmp:
3459 if (getTarget().getTriple().isOSMSVCRT()) {
3460 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3461 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3462 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3463 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3464 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3465 }
3466 break;
3467
3468 case Builtin::BI__GetExceptionInfo: {
3469 if (llvm::GlobalVariable *GV =
3470 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3471 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3472 break;
3473 }
3474
3475 case Builtin::BI__fastfail:
3476 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3477
3478 case Builtin::BI__builtin_coro_size: {
3479 auto & Context = getContext();
3480 auto SizeTy = Context.getSizeType();
3481 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3482 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3483 return RValue::get(Builder.CreateCall(F));
3484 }
3485
3486 case Builtin::BI__builtin_coro_id:
3487 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3488 case Builtin::BI__builtin_coro_promise:
3489 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3490 case Builtin::BI__builtin_coro_resume:
3491 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3492 case Builtin::BI__builtin_coro_frame:
3493 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3494 case Builtin::BI__builtin_coro_noop:
3495 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3496 case Builtin::BI__builtin_coro_free:
3497 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3498 case Builtin::BI__builtin_coro_destroy:
3499 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3500 case Builtin::BI__builtin_coro_done:
3501 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3502 case Builtin::BI__builtin_coro_alloc:
3503 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3504 case Builtin::BI__builtin_coro_begin:
3505 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3506 case Builtin::BI__builtin_coro_end:
3507 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3508 case Builtin::BI__builtin_coro_suspend:
3509 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3510 case Builtin::BI__builtin_coro_param:
3511 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3512
3513 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3514 case Builtin::BIread_pipe:
3515 case Builtin::BIwrite_pipe: {
3516 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3517 *Arg1 = EmitScalarExpr(E->getArg(1));
3518 CGOpenCLRuntime OpenCLRT(CGM);
3519 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3520 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3521
3522 // Type of the generic packet parameter.
3523 unsigned GenericAS =
3524 getContext().getTargetAddressSpace(LangAS::opencl_generic);
3525 llvm::Type *I8PTy = llvm::PointerType::get(
3526 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3527
3528 // Testing which overloaded version we should generate the call for.
3529 if (2U == E->getNumArgs()) {
3530 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3531 : "__write_pipe_2";
3532 // Creating a generic function type to be able to call with any builtin or
3533 // user defined type.
3534 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3535 llvm::FunctionType *FTy = llvm::FunctionType::get(
3536 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3537 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3538 return RValue::get(
3539 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3540 {Arg0, BCast, PacketSize, PacketAlign}));
3541 } else {
3542 assert(4 == E->getNumArgs() &&((4 == E->getNumArgs() && "Illegal number of parameters to pipe function"
) ? static_cast<void> (0) : __assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3543, __PRETTY_FUNCTION__))
3543 "Illegal number of parameters to pipe function")((4 == E->getNumArgs() && "Illegal number of parameters to pipe function"
) ? static_cast<void> (0) : __assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3543, __PRETTY_FUNCTION__))
;
3544 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3545 : "__write_pipe_4";
3546
3547 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3548 Int32Ty, Int32Ty};
3549 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3550 *Arg3 = EmitScalarExpr(E->getArg(3));
3551 llvm::FunctionType *FTy = llvm::FunctionType::get(
3552 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3553 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3554 // We know the third argument is an integer type, but we may need to cast
3555 // it to i32.
3556 if (Arg2->getType() != Int32Ty)
3557 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3558 return RValue::get(Builder.CreateCall(
3559 CGM.CreateRuntimeFunction(FTy, Name),
3560 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3561 }
3562 }
3563 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3564 // functions
3565 case Builtin::BIreserve_read_pipe:
3566 case Builtin::BIreserve_write_pipe:
3567 case Builtin::BIwork_group_reserve_read_pipe:
3568 case Builtin::BIwork_group_reserve_write_pipe:
3569 case Builtin::BIsub_group_reserve_read_pipe:
3570 case Builtin::BIsub_group_reserve_write_pipe: {
3571 // Composing the mangled name for the function.
3572 const char *Name;
3573 if (BuiltinID == Builtin::BIreserve_read_pipe)
3574 Name = "__reserve_read_pipe";
3575 else if (BuiltinID == Builtin::BIreserve_write_pipe)
3576 Name = "__reserve_write_pipe";
3577 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3578 Name = "__work_group_reserve_read_pipe";
3579 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3580 Name = "__work_group_reserve_write_pipe";
3581 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3582 Name = "__sub_group_reserve_read_pipe";
3583 else
3584 Name = "__sub_group_reserve_write_pipe";
3585
3586 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3587 *Arg1 = EmitScalarExpr(E->getArg(1));
3588 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3589 CGOpenCLRuntime OpenCLRT(CGM);
3590 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3591 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3592
3593 // Building the generic function prototype.
3594 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3595 llvm::FunctionType *FTy = llvm::FunctionType::get(
3596 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3597 // We know the second argument is an integer type, but we may need to cast
3598 // it to i32.
3599 if (Arg1->getType() != Int32Ty)
3600 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3601 return RValue::get(
3602 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3603 {Arg0, Arg1, PacketSize, PacketAlign}));
3604 }
3605 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3606 // functions
3607 case Builtin::BIcommit_read_pipe:
3608 case Builtin::BIcommit_write_pipe:
3609 case Builtin::BIwork_group_commit_read_pipe:
3610 case Builtin::BIwork_group_commit_write_pipe:
3611 case Builtin::BIsub_group_commit_read_pipe:
3612 case Builtin::BIsub_group_commit_write_pipe: {
3613 const char *Name;
3614 if (BuiltinID == Builtin::BIcommit_read_pipe)
3615 Name = "__commit_read_pipe";
3616 else if (BuiltinID == Builtin::BIcommit_write_pipe)
3617 Name = "__commit_write_pipe";
3618 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3619 Name = "__work_group_commit_read_pipe";
3620 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3621 Name = "__work_group_commit_write_pipe";
3622 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3623 Name = "__sub_group_commit_read_pipe";
3624 else
3625 Name = "__sub_group_commit_write_pipe";
3626
3627 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3628 *Arg1 = EmitScalarExpr(E->getArg(1));
3629 CGOpenCLRuntime OpenCLRT(CGM);
3630 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3631 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3632
3633 // Building the generic function prototype.
3634 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3635 llvm::FunctionType *FTy =
3636 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3637 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3638
3639 return RValue::get(
3640 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3641 {Arg0, Arg1, PacketSize, PacketAlign}));
3642 }
3643 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3644 case Builtin::BIget_pipe_num_packets:
3645 case Builtin::BIget_pipe_max_packets: {
3646 const char *BaseName;
3647 const PipeType *PipeTy = E->getArg(0)->getType()->getAs<PipeType>();
3648 if (BuiltinID == Builtin::BIget_pipe_num_packets)
3649 BaseName = "__get_pipe_num_packets";
3650 else
3651 BaseName = "__get_pipe_max_packets";
3652 auto Name = std::string(BaseName) +
3653 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3654
3655 // Building the generic function prototype.
3656 Value *Arg0 = EmitScalarExpr(E->getArg(0));
3657 CGOpenCLRuntime OpenCLRT(CGM);
3658 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3659 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3660 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3661 llvm::FunctionType *FTy = llvm::FunctionType::get(
3662 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3663
3664 return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3665 {Arg0, PacketSize, PacketAlign}));
3666 }
3667
3668 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3669 case Builtin::BIto_global:
3670 case Builtin::BIto_local:
3671 case Builtin::BIto_private: {
3672 auto Arg0 = EmitScalarExpr(E->getArg(0));
3673 auto NewArgT = llvm::PointerType::get(Int8Ty,
3674 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3675 auto NewRetT = llvm::PointerType::get(Int8Ty,
3676 CGM.getContext().getTargetAddressSpace(
3677 E->getType()->getPointeeType().getAddressSpace()));
3678 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3679 llvm::Value *NewArg;
3680 if (Arg0->getType()->getPointerAddressSpace() !=
3681 NewArgT->getPointerAddressSpace())
3682 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3683 else
3684 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3685 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3686 auto NewCall =
3687 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3688 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3689 ConvertType(E->getType())));
3690 }
3691
3692 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3693 // It contains four different overload formats specified in Table 6.13.17.1.
3694 case Builtin::BIenqueue_kernel: {
3695 StringRef Name; // Generated function call name
3696 unsigned NumArgs = E->getNumArgs();
3697
3698 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
3699 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3700 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3701
3702 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3703 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3704 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3705 llvm::Value *Range = NDRangeL.getAddress().getPointer();
3706 llvm::Type *RangeTy = NDRangeL.getAddress().getType();
3707
3708 if (NumArgs == 4) {
3709 // The most basic form of the call with parameters:
3710 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3711 Name = "__enqueue_kernel_basic";
3712 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3713 GenericVoidPtrTy};
3714 llvm::FunctionType *FTy = llvm::FunctionType::get(
3715 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3716
3717 auto Info =
3718 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3719 llvm::Value *Kernel =
3720 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3721 llvm::Value *Block =
3722 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3723
3724 AttrBuilder B;
3725 B.addAttribute(Attribute::ByVal);
3726 llvm::AttributeList ByValAttrSet =
3727 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3728
3729 auto RTCall =
3730 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3731 {Queue, Flags, Range, Kernel, Block});
3732 RTCall->setAttributes(ByValAttrSet);
3733 return RValue::get(RTCall);
3734 }
3735 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")((NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? static_cast<void> (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 3735, __PRETTY_FUNCTION__))
;
3736
3737 // Create a temporary array to hold the sizes of local pointer arguments
3738 // for the block. \p First is the position of the first size argument.
3739 auto CreateArrayForSizeVar = [=](unsigned First)
3740 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
3741 llvm::APInt ArraySize(32, NumArgs - First);
3742 QualType SizeArrayTy = getContext().getConstantArrayType(
3743 getContext().getSizeType(), ArraySize, ArrayType::Normal,
3744 /*IndexTypeQuals=*/0);
3745 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
3746 llvm::Value *TmpPtr = Tmp.getPointer();
3747 llvm::Value *TmpSize = EmitLifetimeStart(
3748 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
3749 llvm::Value *ElemPtr;
3750 // Each of the following arguments specifies the size of the corresponding
3751 // argument passed to the enqueued block.
3752 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3753 for (unsigned I = First; I < NumArgs; ++I) {
3754 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3755 auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
3756 if (I == First)
3757 ElemPtr = GEP;
3758 auto *V =
3759 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3760 Builder.CreateAlignedStore(
3761 V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3762 }
3763 return std::tie(ElemPtr, TmpSize, TmpPtr);
3764 };
3765
3766 // Could have events and/or varargs.
3767 if (E->getArg(3)->getType()->isBlockPointerType()) {
3768 // No events passed, but has variadic arguments.
3769 Name = "__enqueue_kernel_varargs";
3770 auto Info =
3771 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3772 llvm::Value *Kernel =
3773 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3774 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3775 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3776 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
3777
3778 // Create a vector of the arguments, as well as a constant value to
3779 // express to the runtime the number of variadic arguments.
3780 std::vector<llvm::Value *> Args = {
3781 Queue, Flags, Range,
3782 Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3783 ElemPtr};
3784 std::vector<llvm::Type *> ArgTys = {
3785 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
3786 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
3787
3788 llvm::FunctionType *FTy = llvm::FunctionType::get(
3789 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3790 auto Call =
3791 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3792 llvm::ArrayRef<llvm::Value *>(Args)));
3793 if (TmpSize)
3794 EmitLifetimeEnd(TmpSize, TmpPtr);
3795 return Call;
3796 }
3797 // Any calls now have event arguments passed.
3798 if (NumArgs >= 7) {
3799 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3800 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
3801 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3802
3803 llvm::Value *NumEvents =
3804 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3805
3806 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
3807 // to be a null pointer constant (including `0` literal), we can take it
3808 // into account and emit null pointer directly.
3809 llvm::Value *EventWaitList = nullptr;
3810 if (E->getArg(4)->isNullPointerConstant(
3811 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3812 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
3813 } else {
3814 EventWaitList = E->getArg(4)->getType()->isArrayType()
3815 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3816 : EmitScalarExpr(E->getArg(4));
3817 // Convert to generic address space.
3818 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
3819 }
3820 llvm::Value *EventRet = nullptr;
3821 if (E->getArg(5)->isNullPointerConstant(
3822 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
3823 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
3824 } else {
3825 EventRet =
3826 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
3827 }
3828
3829 auto Info =
3830 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3831 llvm::Value *Kernel =
3832 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3833 llvm::Value *Block =
3834 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3835
3836 std::vector<llvm::Type *> ArgTys = {
3837 QueueTy, Int32Ty, RangeTy, Int32Ty,
3838 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3839
3840 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
3841 NumEvents, EventWaitList, EventRet,
3842 Kernel, Block};
3843
3844 if (NumArgs == 7) {
3845 // Has events but no variadics.
3846 Name = "__enqueue_kernel_basic_events";
3847 llvm::FunctionType *FTy = llvm::FunctionType::get(
3848 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3849 return RValue::get(
3850 Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3851 llvm::ArrayRef<llvm::Value *>(Args)));
3852 }
3853 // Has event info and variadics
3854 // Pass the number of variadics to the runtime function too.
3855 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3856 ArgTys.push_back(Int32Ty);
3857 Name = "__enqueue_kernel_events_varargs";
3858
3859 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3860 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
3861 Args.push_back(ElemPtr);
3862 ArgTys.push_back(ElemPtr->getType());
3863
3864 llvm::FunctionType *FTy = llvm::FunctionType::get(
3865 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3866 auto Call =
3867 RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3868 llvm::ArrayRef<llvm::Value *>(Args)));
3869 if (TmpSize)
3870 EmitLifetimeEnd(TmpSize, TmpPtr);
3871 return Call;
3872 }
3873 LLVM_FALLTHROUGH[[clang::fallthrough]];
3874 }
3875 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3876 // parameter.
3877 case Builtin::BIget_kernel_work_group_size: {
3878 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3879 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3880 auto Info =
3881 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3882 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3883 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3884 return RValue::get(Builder.CreateCall(
3885 CGM.CreateRuntimeFunction(
3886 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3887 false),
3888 "__get_kernel_work_group_size_impl"),
3889 {Kernel, Arg}));
3890 }
3891 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3892 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3893 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3894 auto Info =
3895 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3896 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3897 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3898 return RValue::get(Builder.CreateCall(
3899 CGM.CreateRuntimeFunction(
3900 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3901 false),
3902 "__get_kernel_preferred_work_group_size_multiple_impl"),
3903 {Kernel, Arg}));
3904 }
3905 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3906 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3907 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3908 getContext().getTargetAddressSpace(LangAS::opencl_generic));
3909 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3910 llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3911 auto Info =
3912 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3913 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3914 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3915 const char *Name =
3916 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3917 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3918 : "__get_kernel_sub_group_count_for_ndrange_impl";
3919 return RValue::get(Builder.CreateCall(
3920 CGM.CreateRuntimeFunction(
3921 llvm::FunctionType::get(
3922 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3923 false),
3924 Name),
3925 {NDRange, Kernel, Block}));
3926 }
3927
3928 case Builtin::BI__builtin_store_half:
3929 case Builtin::BI__builtin_store_halff: {
3930 Value *Val = EmitScalarExpr(E->getArg(0));
3931 Address Address = EmitPointerWithAlignment(E->getArg(1));
3932 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3933 return RValue::get(Builder.CreateStore(HalfVal, Address));
3934 }
3935 case Builtin::BI__builtin_load_half: {
3936 Address Address = EmitPointerWithAlignment(E->getArg(0));
3937 Value *HalfVal = Builder.CreateLoad(Address);
3938 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3939 }
3940 case Builtin::BI__builtin_load_halff: {
3941 Address Address = EmitPointerWithAlignment(E->getArg(0));
3942 Value *HalfVal = Builder.CreateLoad(Address);
3943 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3944 }
3945 case Builtin::BIprintf:
3946 if (getTarget().getTriple().isNVPTX())
3947 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3948 break;
3949 case Builtin::BI__builtin_canonicalize:
3950 case Builtin::BI__builtin_canonicalizef:
3951 case Builtin::BI__builtin_canonicalizel:
3952 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
3953
3954 case Builtin::BI__builtin_thread_pointer: {
3955 if (!getContext().getTargetInfo().isTLSSupported())
3956 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
3957 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
3958 break;
3959 }
3960 case Builtin::BI__builtin_os_log_format:
3961 return emitBuiltinOSLogFormat(*E);
3962
3963 case Builtin::BI__xray_customevent: {
3964 if (!ShouldXRayInstrumentFunction())
3965 return RValue::getIgnored();
3966
3967 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
3968 XRayInstrKind::Custom))
3969 return RValue::getIgnored();
3970
3971 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
3972 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
3973 return RValue::getIgnored();
3974
3975 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
3976 auto FTy = F->getFunctionType();
3977 auto Arg0 = E->getArg(0);
3978 auto Arg0Val = EmitScalarExpr(Arg0);
3979 auto Arg0Ty = Arg0->getType();
3980 auto PTy0 = FTy->getParamType(0);
3981 if (PTy0 != Arg0Val->getType()) {
3982 if (Arg0Ty->isArrayType())
3983 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
3984 else
3985 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
3986 }
3987 auto Arg1 = EmitScalarExpr(E->getArg(1));
3988 auto PTy1 = FTy->getParamType(1);
3989 if (PTy1 != Arg1->getType())
3990 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
3991 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
3992 }
3993
3994 case Builtin::BI__xray_typedevent: {
3995 // TODO: There should be a way to always emit events even if the current
3996 // function is not instrumented. Losing events in a stream can cripple
3997 // a trace.
3998 if (!ShouldXRayInstrumentFunction())
3999 return RValue::getIgnored();
4000
4001 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4002 XRayInstrKind::Typed))
4003 return RValue::getIgnored();
4004
4005 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4006 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4007 return RValue::getIgnored();
4008
4009 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4010 auto FTy = F->getFunctionType();
4011 auto Arg0 = EmitScalarExpr(E->getArg(0));
4012 auto PTy0 = FTy->getParamType(0);
4013 if (PTy0 != Arg0->getType())
4014 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4015 auto Arg1 = E->getArg(1);
4016 auto Arg1Val = EmitScalarExpr(Arg1);
4017 auto Arg1Ty = Arg1->getType();
4018 auto PTy1 = FTy->getParamType(1);
4019 if (PTy1 != Arg1Val->getType()) {
4020 if (Arg1Ty->isArrayType())
4021 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4022 else
4023 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4024 }
4025 auto Arg2 = EmitScalarExpr(E->getArg(2));
4026 auto PTy2 = FTy->getParamType(2);
4027 if (PTy2 != Arg2->getType())
4028 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4029 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4030 }
4031
4032 case Builtin::BI__builtin_ms_va_start:
4033 case Builtin::BI__builtin_ms_va_end:
4034 return RValue::get(
4035 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4036 BuiltinID == Builtin::BI__builtin_ms_va_start));
4037
4038 case Builtin::BI__builtin_ms_va_copy: {
4039 // Lower this manually. We can't reliably determine whether or not any
4040 // given va_copy() is for a Win64 va_list from the calling convention
4041 // alone, because it's legal to do this from a System V ABI function.
4042 // With opaque pointer types, we won't have enough information in LLVM
4043 // IR to determine this from the argument types, either. Best to do it
4044 // now, while we have enough information.
4045 Address DestAddr = EmitMSVAListRef(E->getArg(0));
4046 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4047
4048 llvm::Type *BPP = Int8PtrPtrTy;
4049
4050 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4051 DestAddr.getAlignment());
4052 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4053 SrcAddr.getAlignment());
4054
4055 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4056 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4057 }
4058 }
4059
4060 // If this is an alias for a lib function (e.g. __builtin_sin), emit
4061 // the call using the normal call path, but using the unmangled
4062 // version of the function name.
4063 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4064 return emitLibraryCall(*this, FD, E,
4065 CGM.getBuiltinLibFunction(FD, BuiltinID));
4066
4067 // If this is a predefined lib function (e.g. malloc), emit the call
4068 // using exactly the normal call path.
4069 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4070 return emitLibraryCall(*this, FD, E,
4071 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4072
4073 // Check that a call to a target specific builtin has the correct target
4074 // features.
4075 // This is down here to avoid non-target specific builtins, however, if
4076 // generic builtins start to require generic target features then we
4077 // can move this up to the beginning of the function.
4078 checkTargetFeatures(E, FD);
4079
4080 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4081 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4082
4083 // See if we have a target specific intrinsic.
4084 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4085 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4086 StringRef Prefix =
4087 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4088 if (!Prefix.empty()) {
4089 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4090 // NOTE we don't need to perform a compatibility flag check here since the
4091 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4092 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4093 if (IntrinsicID == Intrinsic::not_intrinsic)
4094 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4095 }
4096
4097 if (IntrinsicID != Intrinsic::not_intrinsic) {
4098 SmallVector<Value*, 16> Args;
4099
4100 // Find out if any arguments are required to be integer constant
4101 // expressions.
4102 unsigned ICEArguments = 0;
4103 ASTContext::GetBuiltinTypeError Error;
4104 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4105 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4105, __PRETTY_FUNCTION__))
;
4106
4107 Function *F = CGM.getIntrinsic(IntrinsicID);
4108 llvm::FunctionType *FTy = F->getFunctionType();
4109
4110 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4111 Value *ArgValue;
4112 // If this is a normal argument, just emit it as a scalar.
4113 if ((ICEArguments & (1 << i)) == 0) {
4114 ArgValue = EmitScalarExpr(E->getArg(i));
4115 } else {
4116 // If this is required to be a constant, constant fold it so that we
4117 // know that the generated intrinsic gets a ConstantInt.
4118 llvm::APSInt Result;
4119 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4120 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4120, __PRETTY_FUNCTION__))
;
4121 (void)IsConst;
4122 ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4123 }
4124
4125 // If the intrinsic arg type is different from the builtin arg type
4126 // we need to do a bit cast.
4127 llvm::Type *PTy = FTy->getParamType(i);
4128 if (PTy != ArgValue->getType()) {
4129 // XXX - vector of pointers?
4130 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4131 if (PtrTy->getAddressSpace() !=
4132 ArgValue->getType()->getPointerAddressSpace()) {
4133 ArgValue = Builder.CreateAddrSpaceCast(
4134 ArgValue,
4135 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4136 }
4137 }
4138
4139 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&((PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param") ? static_cast
<void> (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4140, __PRETTY_FUNCTION__))
4140 "Must be able to losslessly bit cast to param")((PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param") ? static_cast
<void> (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4140, __PRETTY_FUNCTION__))
;
4141 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4142 }
4143
4144 Args.push_back(ArgValue);
4145 }
4146
4147 Value *V = Builder.CreateCall(F, Args);
4148 QualType BuiltinRetType = E->getType();
4149
4150 llvm::Type *RetTy = VoidTy;
4151 if (!BuiltinRetType->isVoidType())
4152 RetTy = ConvertType(BuiltinRetType);
4153
4154 if (RetTy != V->getType()) {
4155 // XXX - vector of pointers?
4156 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4157 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4158 V = Builder.CreateAddrSpaceCast(
4159 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4160 }
4161 }
4162
4163 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&((V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type") ? static_cast
<void> (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4164, __PRETTY_FUNCTION__))
4164 "Must be able to losslessly bit cast result type")((V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type") ? static_cast
<void> (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4164, __PRETTY_FUNCTION__))
;
4165 V = Builder.CreateBitCast(V, RetTy);
4166 }
4167
4168 return RValue::get(V);
4169 }
4170
4171 // See if we have a target specific builtin that needs to be lowered.
4172 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
4173 return RValue::get(V);
4174
4175 ErrorUnsupported(E, "builtin function");
4176
4177 // Unknown builtin, for now just dump it out and return undef.
4178 return GetUndefRValue(E->getType());
4179}
4180
4181static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4182 unsigned BuiltinID, const CallExpr *E,
4183 llvm::Triple::ArchType Arch) {
4184 switch (Arch) {
4185 case llvm::Triple::arm:
4186 case llvm::Triple::armeb:
4187 case llvm::Triple::thumb:
4188 case llvm::Triple::thumbeb:
4189 return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
4190 case llvm::Triple::aarch64:
4191 case llvm::Triple::aarch64_be:
4192 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4193 case llvm::Triple::x86:
4194 case llvm::Triple::x86_64:
4195 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4196 case llvm::Triple::ppc:
4197 case llvm::Triple::ppc64:
4198 case llvm::Triple::ppc64le:
4199 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4200 case llvm::Triple::r600:
4201 case llvm::Triple::amdgcn:
4202 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4203 case llvm::Triple::systemz:
4204 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4205 case llvm::Triple::nvptx:
4206 case llvm::Triple::nvptx64:
4207 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4208 case llvm::Triple::wasm32:
4209 case llvm::Triple::wasm64:
4210 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4211 case llvm::Triple::hexagon:
4212 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4213 default:
4214 return nullptr;
4215 }
4216}
4217
4218Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4219 const CallExpr *E) {
4220 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4221 assert(getContext().getAuxTargetInfo() && "Missing aux target info")((getContext().getAuxTargetInfo() && "Missing aux target info"
) ? static_cast<void> (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4221, __PRETTY_FUNCTION__))
;
4222 return EmitTargetArchBuiltinExpr(
4223 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4224 getContext().getAuxTargetInfo()->getTriple().getArch());
4225 }
4226
4227 return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
4228 getTarget().getTriple().getArch());
4229}
4230
4231static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4232 NeonTypeFlags TypeFlags,
4233 bool HasLegalHalfType=true,
4234 bool V1Ty=false) {
4235 int IsQuad = TypeFlags.isQuad();
4236 switch (TypeFlags.getEltType()) {
4237 case NeonTypeFlags::Int8:
4238 case NeonTypeFlags::Poly8:
4239 return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4240 case NeonTypeFlags::Int16:
4241 case NeonTypeFlags::Poly16:
4242 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4243 case NeonTypeFlags::Float16:
4244 if (HasLegalHalfType)
4245 return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4246 else
4247 return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4248 case NeonTypeFlags::Int32:
4249 return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4250 case NeonTypeFlags::Int64:
4251 case NeonTypeFlags::Poly64:
4252 return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4253 case NeonTypeFlags::Poly128:
4254 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4255 // There is a lot of i128 and f128 API missing.
4256 // so we use v16i8 to represent poly128 and get pattern matched.
4257 return llvm::VectorType::get(CGF->Int8Ty, 16);
4258 case NeonTypeFlags::Float32:
4259 return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4260 case NeonTypeFlags::Float64:
4261 return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4262 }
4263 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4263)
;
4264}
4265
4266static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4267 NeonTypeFlags IntTypeFlags) {
4268 int IsQuad = IntTypeFlags.isQuad();
4269 switch (IntTypeFlags.getEltType()) {
4270 case NeonTypeFlags::Int16:
4271 return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
4272 case NeonTypeFlags::Int32:
4273 return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
4274 case NeonTypeFlags::Int64:
4275 return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
4276 default:
4277 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 4277)
;
4278 }
4279}
4280
4281Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4282 unsigned nElts = V->getType()->getVectorNumElements();
4283 Value* SV = llvm::ConstantVector::getSplat(nElts, C);
4284 return Builder.CreateShuffleVector(V, V, SV, "lane");
4285}
4286
4287Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4288 const char *name,
4289 unsigned shift, bool rightshift) {
4290 unsigned j = 0;
4291 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4292 ai != ae; ++ai, ++j)
4293 if (shift > 0 && shift == j)
4294 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4295 else
4296 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4297
4298 return Builder.CreateCall(F, Ops, name);
4299}
4300
4301Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4302 bool neg) {
4303 int SV = cast<ConstantInt>(V)->getSExtValue();
4304 return ConstantInt::get(Ty, neg ? -SV : SV);
4305}
4306
4307// Right-shift a vector by a constant.
4308Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4309 llvm::Type *Ty, bool usgn,
4310 const char *name) {
4311 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4312
4313 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4314 int EltSize = VTy->getScalarSizeInBits();
4315
4316 Vec = Builder.CreateBitCast(Vec, Ty);
4317
4318 // lshr/ashr are undefined when the shift amount is equal to the vector
4319 // element size.
4320 if (ShiftAmt == EltSize) {
4321 if (usgn) {
4322 // Right-shifting an unsigned value by its size yields 0.
4323 return llvm::ConstantAggregateZero::get(VTy);
4324 } else {
4325 // Right-shifting a signed value by its size is equivalent
4326 // to a shift of size-1.
4327 --ShiftAmt;
4328 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4329 }
4330 }
4331
4332 Shift = EmitNeonShiftVector(Shift, Ty, false);
4333 if (usgn)
4334 return Builder.CreateLShr(Vec, Shift, name);
4335 else
4336 return Builder.CreateAShr(Vec, Shift, name);
4337}
4338
4339enum {
4340 AddRetType = (1 << 0),
4341 Add1ArgType = (1 << 1),
4342 Add2ArgTypes = (1 << 2),
4343
4344 VectorizeRetType = (1 << 3),
4345 VectorizeArgTypes = (1 << 4),
4346
4347 InventFloatType = (1 << 5),
4348 UnsignedAlts = (1 << 6),
4349
4350 Use64BitVectors = (1 << 7),
4351 Use128BitVectors = (1 << 8),
4352
4353 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4354 VectorRet = AddRetType | VectorizeRetType,
4355 VectorRetGetArgs01 =
4356 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4357 FpCmpzModifiers =
4358 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4359};
4360
4361namespace {
4362struct NeonIntrinsicInfo {
4363 const char *NameHint;
4364 unsigned BuiltinID;
4365 unsigned LLVMIntrinsic;
4366 unsigned AltLLVMIntrinsic;
4367 unsigned TypeModifier;
4368
4369 bool operator<(unsigned RHSBuiltinID) const {
4370 return BuiltinID < RHSBuiltinID;
4371 }
4372 bool operator<(const NeonIntrinsicInfo &TE) const {
4373 return BuiltinID < TE.BuiltinID;
4374 }
4375};
4376} // end anonymous namespace
4377
4378#define NEONMAP0(NameBase) \
4379 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4380
4381#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4382 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4383 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4384
4385#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4386 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4387 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4388 TypeModifier }
4389
4390static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4391 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4392 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4393 NEONMAP1(vabs_v, arm_neon_vabs, 0),
4394 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4395 NEONMAP0(vaddhn_v),
4396 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4397 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4398 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4399 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4400 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4401 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4402 NEONMAP1(vcage_v, arm_neon_vacge, 0),
4403 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4404 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4405 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4406 NEONMAP1(vcale_v, arm_neon_vacge, 0),
4407 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4408 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4409 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4410 NEONMAP0(vceqz_v),
4411 NEONMAP0(vceqzq_v),
4412 NEONMAP0(vcgez_v),
4413 NEONMAP0(vcgezq_v),
4414 NEONMAP0(vcgtz_v),
4415 NEONMAP0(vcgtzq_v),
4416 NEONMAP0(vclez_v),
4417 NEONMAP0(vclezq_v),
4418 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4419 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4420 NEONMAP0(vcltz_v),
4421 NEONMAP0(vcltzq_v),
4422 NEONMAP1(vclz_v, ctlz, Add1ArgType),
4423 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4424 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4425 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4426 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4427 NEONMAP0(vcvt_f16_v),
4428 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4429 NEONMAP0(vcvt_f32_v),
4430 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4431 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4432 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4433 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4434 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4435 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4436 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4437 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4438 NEONMAP0(vcvt_s16_v),
4439 NEONMAP0(vcvt_s32_v),
4440 NEONMAP0(vcvt_s64_v),
4441 NEONMAP0(vcvt_u16_v),
4442 NEONMAP0(vcvt_u32_v),
4443 NEONMAP0(vcvt_u64_v),
4444 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4445 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4446 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4447 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4448 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4449 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4450 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4451 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4452 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4453 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4454 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4455 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4456 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4457 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4458 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4459 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4460 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4461 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4462 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4463 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4464 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4465 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4466 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4467 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4468 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4469 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4470 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4471 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4472 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4473 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4474 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4475 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4476 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4477 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4478 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4479 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4480 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4481 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4482 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4483 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4484 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4485 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4486 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4487 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4488 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4489 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4490 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4491 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4492 NEONMAP0(vcvtq_f16_v),
4493 NEONMAP0(vcvtq_f32_v),
4494 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4495 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4496 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4497 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4498 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4499 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4500 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4501 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4502 NEONMAP0(vcvtq_s16_v),
4503 NEONMAP0(vcvtq_s32_v),
4504 NEONMAP0(vcvtq_s64_v),
4505 NEONMAP0(vcvtq_u16_v),
4506 NEONMAP0(vcvtq_u32_v),
4507 NEONMAP0(vcvtq_u64_v),
4508 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4509 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4510 NEONMAP0(vext_v),
4511 NEONMAP0(vextq_v),
4512 NEONMAP0(vfma_v),
4513 NEONMAP0(vfmaq_v),
4514 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4515 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4516 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4517 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4518 NEONMAP0(vld1_dup_v),
4519 NEONMAP1(vld1_v, arm_neon_vld1, 0),
4520 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4521 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4522 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4523 NEONMAP0(vld1q_dup_v),
4524 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4525 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4526 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4527 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4528 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4529 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4530 NEONMAP1(vld2_v, arm_neon_vld2, 0),
4531 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4532 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4533 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4534 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4535 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4536 NEONMAP1(vld3_v, arm_neon_vld3, 0),
4537 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4538 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4539 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4540 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4541 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4542 NEONMAP1(vld4_v, arm_neon_vld4, 0),
4543 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4544 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4545 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4546 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4547 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4548 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4549 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4550 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4551 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4552 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4553 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4554 NEONMAP0(vmovl_v),
4555 NEONMAP0(vmovn_v),
4556 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4557 NEONMAP0(vmull_v),
4558 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4559 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4560 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4561 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4562 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4563 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4564 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4565 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4566 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4567 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4568 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4569 NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4570 NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4571 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
4572 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
4573 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4574 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4575 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4576 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4577 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4578 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4579 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4580 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4581 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4582 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4583 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4584 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4585 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4586 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4587 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4588 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4589 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4590 NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4591 NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4592 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4593 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4594 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4595 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4596 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4597 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4598 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4599 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4600 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4601 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4602 NEONMAP0(vrndi_v),
4603 NEONMAP0(vrndiq_v),
4604 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4605 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4606 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4607 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4608 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4609 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4610 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4611 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4612 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4613 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4614 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4615 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4616 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4617 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4618 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4619 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4620 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4621 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4622 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4623 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4624 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4625 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4626 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4627 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4628 NEONMAP0(vshl_n_v),
4629 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4630 NEONMAP0(vshll_n_v),
4631 NEONMAP0(vshlq_n_v),
4632 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4633 NEONMAP0(vshr_n_v),
4634 NEONMAP0(vshrn_n_v),
4635 NEONMAP0(vshrq_n_v),
4636 NEONMAP1(vst1_v, arm_neon_vst1, 0),
4637 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
4638 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
4639 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
4640 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
4641 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
4642 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
4643 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
4644 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
4645 NEONMAP1(vst2_v, arm_neon_vst2, 0),
4646 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
4647 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
4648 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
4649 NEONMAP1(vst3_v, arm_neon_vst3, 0),
4650 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
4651 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
4652 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
4653 NEONMAP1(vst4_v, arm_neon_vst4, 0),
4654 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
4655 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
4656 NEONMAP0(vsubhn_v),
4657 NEONMAP0(vtrn_v),
4658 NEONMAP0(vtrnq_v),
4659 NEONMAP0(vtst_v),
4660 NEONMAP0(vtstq_v),
4661 NEONMAP0(vuzp_v),
4662 NEONMAP0(vuzpq_v),
4663 NEONMAP0(vzip_v),
4664 NEONMAP0(vzipq_v)
4665};
4666
4667static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
4668 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
4669 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
4670 NEONMAP0(vaddhn_v),
4671 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
4672 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
4673 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
4674 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
4675 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
4676 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
4677 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
4678 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
4679 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
4680 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
4681 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
4682 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
4683 NEONMAP0(vceqz_v),
4684 NEONMAP0(vceqzq_v),
4685 NEONMAP0(vcgez_v),
4686 NEONMAP0(vcgezq_v),
4687 NEONMAP0(vcgtz_v),
4688 NEONMAP0(vcgtzq_v),
4689 NEONMAP0(vclez_v),
4690 NEONMAP0(vclezq_v),
4691 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
4692 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
4693 NEONMAP0(vcltz_v),
4694 NEONMAP0(vcltzq_v),
4695 NEONMAP1(vclz_v, ctlz, Add1ArgType),
4696 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4697 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4698 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4699 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
4700 NEONMAP0(vcvt_f16_v),
4701 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
4702 NEONMAP0(vcvt_f32_v),
4703 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4704 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4705 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4706 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4707 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4708 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4709 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4710 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4711 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4712 NEONMAP0(vcvtq_f16_v),
4713 NEONMAP0(vcvtq_f32_v),
4714 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4715 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4716 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4717 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4718 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4719 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4720 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4721 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4722 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4723 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
4724 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4725 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4726 NEONMAP0(vext_v),
4727 NEONMAP0(vextq_v),
4728 NEONMAP0(vfma_v),
4729 NEONMAP0(vfmaq_v),
4730 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
4731 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
4732 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
4733 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
4734 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
4735 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
4736 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
4737 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
4738 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4739 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4740 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4741 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4742 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
4743 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
4744 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
4745 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
4746 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
4747 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
4748 NEONMAP0(vmovl_v),
4749 NEONMAP0(vmovn_v),
4750 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
4751 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
4752 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
4753 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4754 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4755 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
4756 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
4757 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
4758 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4759 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4760 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
4761 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
4762 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
4763 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
4764 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
4765 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
4766 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
4767 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
4768 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
4769 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
4770 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
4771 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4772 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4773 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
4774 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4775 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
4776 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4777 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
4778 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
4779 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4780 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4781 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
4782 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4783 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4784 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
4785 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
4786 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4787 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4788 NEONMAP0(vrndi_v),
4789 NEONMAP0(vrndiq_v),
4790 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4791 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4792 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4793 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4794 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4795 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4796 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
4797 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
4798 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
4799 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
4800 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
4801 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
4802 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
4803 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
4804 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
4805 NEONMAP0(vshl_n_v),
4806 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4807 NEONMAP0(vshll_n_v),
4808 NEONMAP0(vshlq_n_v),
4809 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4810 NEONMAP0(vshr_n_v),
4811 NEONMAP0(vshrn_n_v),
4812 NEONMAP0(vshrq_n_v),
4813 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
4814 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
4815 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
4816 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
4817 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
4818 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
4819 NEONMAP0(vsubhn_v),
4820 NEONMAP0(vtst_v),
4821 NEONMAP0(vtstq_v),
4822};
4823
4824static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
4825 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
4826 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
4827 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
4828 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4829 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4830 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4831 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4832 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4833 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4834 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4835 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4836 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
4837 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4838 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
4839 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4840 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4841 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4842 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4843 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4844 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4845 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4846 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4847 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4848 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4849 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4850 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4851 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4852 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4853 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4854 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4855 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4856 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4857 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4858 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4859 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4860 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4861 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4862 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4863 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4864 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4865 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4866 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4867 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4868 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4869 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4870 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4871 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4872 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4873 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
4874 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4875 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4876 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4877 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4878 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4879 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4880 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4881 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4882 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4883 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4884 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4885 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4886 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4887 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4888 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4889 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4890 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4891 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4892 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4893 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4894 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
4895 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
4896 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
4897 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4898 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4899 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4900 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4901 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4902 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4903 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4904 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4905 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4906 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4907 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4908 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
4909 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4910 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
4911 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4912 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4913 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
4914 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
4915 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4916 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4917 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
4918 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4919 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4920 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4921 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4922 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4923 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4924 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4925 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4926 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4927 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4928 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4929 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4930 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4931 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4932 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4933 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4934 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4935 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4936 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4937 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4938 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4939 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4940 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4941 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4942 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4943 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4944 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4945 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
4946 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
4947 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
4948 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4949 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4950 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4951 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4952 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
4953 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4954 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4955 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4956 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4957 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4958 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4959 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
4960 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
4961 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4962 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4963 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4964 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4965 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
4966 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
4967 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
4968 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
4969 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4970 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4971 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
4972 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
4973 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
4974 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4975 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4976 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4977 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4978 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
4979 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4980 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4981 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4982 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4983 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
4984 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
4985 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4986 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4987 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
4988 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
4989 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
4990 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
4991 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
4992 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
4993 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
4994 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
4995 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
4996 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
4997 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
4998 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
4999 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5000 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5001 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5002 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5003 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5004 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5005 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5006 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5007 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5008 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5009 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5010 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5011 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5012 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5013 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5014 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5015 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5016 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5017 // FP16 scalar intrinisics go here.
5018 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5019 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5020 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5021 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5022 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5023 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5024 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5025 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5026 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5027 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5028 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5029 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5030 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5031 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5032 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5033 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5034 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5035 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5036 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5037 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5038 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5039 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5040 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5041 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5042 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5043 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5044 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5045 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5046 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5047 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5048};
5049
5050#undef NEONMAP0
5051#undef NEONMAP1
5052#undef NEONMAP2
5053
5054static bool NEONSIMDIntrinsicsProvenSorted = false;
5055
5056static bool AArch64SIMDIntrinsicsProvenSorted = false;
5057static bool AArch64SISDIntrinsicsProvenSorted = false;
5058
5059
5060static const NeonIntrinsicInfo *
5061findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
5062 unsigned BuiltinID, bool &MapProvenSorted) {
5063
5064#ifndef NDEBUG
5065 if (!MapProvenSorted) {
5066 assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)))((std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap
))) ? static_cast<void> (0) : __assert_fail ("std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5066, __PRETTY_FUNCTION__))
;
5067 MapProvenSorted = true;
5068 }
5069#endif
5070
5071 const NeonIntrinsicInfo *Builtin =
5072 std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
5073
5074 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5075 return Builtin;
5076
5077 return nullptr;
5078}
5079
5080Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5081 unsigned Modifier,
5082 llvm::Type *ArgType,
5083 const CallExpr *E) {
5084 int VectorSize = 0;
5085 if (Modifier & Use64BitVectors)
5086 VectorSize = 64;
5087 else if (Modifier & Use128BitVectors)
5088 VectorSize = 128;
5089
5090 // Return type.
5091 SmallVector<llvm::Type *, 3> Tys;
5092 if (Modifier & AddRetType) {
5093 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5094 if (Modifier & VectorizeRetType)
5095 Ty = llvm::VectorType::get(
5096 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5097
5098 Tys.push_back(Ty);
5099 }
5100
5101 // Arguments.
5102 if (Modifier & VectorizeArgTypes) {
5103 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5104 ArgType = llvm::VectorType::get(ArgType, Elts);
5105 }
5106
5107 if (Modifier & (Add1ArgType | Add2ArgTypes))
5108 Tys.push_back(ArgType);
5109
5110 if (Modifier & Add2ArgTypes)
5111 Tys.push_back(ArgType);
5112
5113 if (Modifier & InventFloatType)
5114 Tys.push_back(FloatTy);
5115
5116 return CGM.getIntrinsic(IntrinsicID, Tys);
5117}
5118
5119static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
5120 const NeonIntrinsicInfo &SISDInfo,
5121 SmallVectorImpl<Value *> &Ops,
5122 const CallExpr *E) {
5123 unsigned BuiltinID = SISDInfo.BuiltinID;
5124 unsigned int Int = SISDInfo.LLVMIntrinsic;
5125 unsigned Modifier = SISDInfo.TypeModifier;
5126 const char *s = SISDInfo.NameHint;
5127
5128 switch (BuiltinID) {
5129 case NEON::BI__builtin_neon_vcled_s64:
5130 case NEON::BI__builtin_neon_vcled_u64:
5131 case NEON::BI__builtin_neon_vcles_f32:
5132 case NEON::BI__builtin_neon_vcled_f64:
5133 case NEON::BI__builtin_neon_vcltd_s64:
5134 case NEON::BI__builtin_neon_vcltd_u64:
5135 case NEON::BI__builtin_neon_vclts_f32:
5136 case NEON::BI__builtin_neon_vcltd_f64:
5137 case NEON::BI__builtin_neon_vcales_f32:
5138 case NEON::BI__builtin_neon_vcaled_f64:
5139 case NEON::BI__builtin_neon_vcalts_f32:
5140 case NEON::BI__builtin_neon_vcaltd_f64:
5141 // Only one direction of comparisons actually exist, cmle is actually a cmge
5142 // with swapped operands. The table gives us the right intrinsic but we
5143 // still need to do the swap.
5144 std::swap(Ops[0], Ops[1]);
5145 break;
5146 }
5147
5148 assert(Int && "Generic code assumes a valid intrinsic")((Int && "Generic code assumes a valid intrinsic") ? static_cast
<void> (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5148, __PRETTY_FUNCTION__))
;
5149
5150 // Determine the type(s) of this overloaded AArch64 intrinsic.
5151 const Expr *Arg = E->getArg(0);
5152 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5153 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5154
5155 int j = 0;
5156 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5157 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5158 ai != ae; ++ai, ++j) {
5159 llvm::Type *ArgTy = ai->getType();
5160 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5161 ArgTy->getPrimitiveSizeInBits())
5162 continue;
5163
5164 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())((ArgTy->isVectorTy() && !Ops[j]->getType()->
isVectorTy()) ? static_cast<void> (0) : __assert_fail (
"ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5164, __PRETTY_FUNCTION__))
;
5165 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5166 // it before inserting.
5167 Ops[j] =
5168 CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
5169 Ops[j] =
5170 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5171 }
5172
5173 Value *Result = CGF.EmitNeonCall(F, Ops, s);
5174 llvm::Type *ResultType = CGF.ConvertType(E->getType());
5175 if (ResultType->getPrimitiveSizeInBits() <
5176 Result->getType()->getPrimitiveSizeInBits())
5177 return CGF.Builder.CreateExtractElement(Result, C0);
5178
5179 return CGF.Builder.CreateBitCast(Result, ResultType, s);
5180}
5181
5182Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5183 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5184 const char *NameHint, unsigned Modifier, const CallExpr *E,
5185 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5186 llvm::Triple::ArchType Arch) {
5187 // Get the last argument, which specifies the vector type.
5188 llvm::APSInt NeonTypeConst;
5189 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5190 if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5191 return nullptr;
5192
5193 // Determine the type of this overloaded NEON intrinsic.
5194 NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5195 bool Usgn = Type.isUnsigned();
5196 bool Quad = Type.isQuad();
5197 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5198
5199 llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
5200 llvm::Type *Ty = VTy;
5201 if (!Ty)
5202 return nullptr;
5203
5204 auto getAlignmentValue32 = [&](Address addr) -> Value* {
5205 return Builder.getInt32(addr.getAlignment().getQuantity());
5206 };
5207
5208 unsigned Int = LLVMIntrinsic;
5209 if ((Modifier & UnsignedAlts) && !Usgn)
5210 Int = AltLLVMIntrinsic;
5211
5212 switch (BuiltinID) {
5213 default: break;
5214 case NEON::BI__builtin_neon_vpadd_v:
5215 case NEON::BI__builtin_neon_vpaddq_v:
5216 // We don't allow fp/int overloading of intrinsics.
5217 if (VTy->getElementType()->isFloatingPointTy() &&
5218 Int == Intrinsic::aarch64_neon_addp)
5219 Int = Intrinsic::aarch64_neon_faddp;
5220 break;
5221 case NEON::BI__builtin_neon_vabs_v:
5222 case NEON::BI__builtin_neon_vabsq_v:
5223 if (VTy->getElementType()->isFloatingPointTy())
5224 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5225 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5226 case NEON::BI__builtin_neon_vaddhn_v: {
5227 llvm::VectorType *SrcTy =
5228 llvm::VectorType::getExtendedElementVectorType(VTy);
5229
5230 // %sum = add <4 x i32> %lhs, %rhs
5231 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5232 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5233 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5234
5235 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5236 Constant *ShiftAmt =
5237 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5238 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5239
5240 // %res = trunc <4 x i32> %high to <4 x i16>
5241 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5242 }
5243 case NEON::BI__builtin_neon_vcale_v:
5244 case NEON::BI__builtin_neon_vcaleq_v:
5245 case NEON::BI__builtin_neon_vcalt_v:
5246 case NEON::BI__builtin_neon_vcaltq_v:
5247 std::swap(Ops[0], Ops[1]);
5248 LLVM_FALLTHROUGH[[clang::fallthrough]];
5249 case NEON::BI__builtin_neon_vcage_v:
5250 case NEON::BI__builtin_neon_vcageq_v:
5251 case NEON::BI__builtin_neon_vcagt_v:
5252 case NEON::BI__builtin_neon_vcagtq_v: {
5253 llvm::Type *Ty;
5254 switch (VTy->getScalarSizeInBits()) {
5255 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5255)
;
5256 case 32:
5257 Ty = FloatTy;
5258 break;
5259 case 64:
5260 Ty = DoubleTy;
5261 break;
5262 case 16:
5263 Ty = HalfTy;
5264 break;
5265 }
5266 llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
5267 llvm::Type *Tys[] = { VTy, VecFlt };
5268 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5269 return EmitNeonCall(F, Ops, NameHint);
5270 }
5271 case NEON::BI__builtin_neon_vceqz_v:
5272 case NEON::BI__builtin_neon_vceqzq_v:
5273 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5274 ICmpInst::ICMP_EQ, "vceqz");
5275 case NEON::BI__builtin_neon_vcgez_v:
5276 case NEON::BI__builtin_neon_vcgezq_v:
5277 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5278 ICmpInst::ICMP_SGE, "vcgez");
5279 case NEON::BI__builtin_neon_vclez_v:
5280 case NEON::BI__builtin_neon_vclezq_v:
5281 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5282 ICmpInst::ICMP_SLE, "vclez");
5283 case NEON::BI__builtin_neon_vcgtz_v:
5284 case NEON::BI__builtin_neon_vcgtzq_v:
5285 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5286 ICmpInst::ICMP_SGT, "vcgtz");
5287 case NEON::BI__builtin_neon_vcltz_v:
5288 case NEON::BI__builtin_neon_vcltzq_v:
5289 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5290 ICmpInst::ICMP_SLT, "vcltz");
5291 case NEON::BI__builtin_neon_vclz_v:
5292 case NEON::BI__builtin_neon_vclzq_v:
5293 // We generate target-independent intrinsic, which needs a second argument
5294 // for whether or not clz of zero is undefined; on ARM it isn't.
5295 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5296 break;
5297 case NEON::BI__builtin_neon_vcvt_f32_v:
5298 case NEON::BI__builtin_neon_vcvtq_f32_v:
5299 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5300 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5301 HasLegalHalfType);
5302 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5303 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5304 case NEON::BI__builtin_neon_vcvt_f16_v:
5305 case NEON::BI__builtin_neon_vcvtq_f16_v:
5306 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5307 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5308 HasLegalHalfType);
5309 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5310 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5311 case NEON::BI__builtin_neon_vcvt_n_f16_v:
5312 case NEON::BI__builtin_neon_vcvt_n_f32_v:
5313 case NEON::BI__builtin_neon_vcvt_n_f64_v:
5314 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5315 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5316 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5317 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5318 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5319 Function *F = CGM.getIntrinsic(Int, Tys);
5320 return EmitNeonCall(F, Ops, "vcvt_n");
5321 }
5322 case NEON::BI__builtin_neon_vcvt_n_s16_v:
5323 case NEON::BI__builtin_neon_vcvt_n_s32_v:
5324 case NEON::BI__builtin_neon_vcvt_n_u16_v:
5325 case NEON::BI__builtin_neon_vcvt_n_u32_v:
5326 case NEON::BI__builtin_neon_vcvt_n_s64_v:
5327 case NEON::BI__builtin_neon_vcvt_n_u64_v:
5328 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5329 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5330 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5331 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5332 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5333 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5334 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5335 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5336 return EmitNeonCall(F, Ops, "vcvt_n");
5337 }
5338 case NEON::BI__builtin_neon_vcvt_s32_v:
5339 case NEON::BI__builtin_neon_vcvt_u32_v:
5340 case NEON::BI__builtin_neon_vcvt_s64_v:
5341 case NEON::BI__builtin_neon_vcvt_u64_v:
5342 case NEON::BI__builtin_neon_vcvt_s16_v:
5343 case NEON::BI__builtin_neon_vcvt_u16_v:
5344 case NEON::BI__builtin_neon_vcvtq_s32_v:
5345 case NEON::BI__builtin_neon_vcvtq_u32_v:
5346 case NEON::BI__builtin_neon_vcvtq_s64_v:
5347 case NEON::BI__builtin_neon_vcvtq_u64_v:
5348 case NEON::BI__builtin_neon_vcvtq_s16_v:
5349 case NEON::BI__builtin_neon_vcvtq_u16_v: {
5350 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5351 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5352 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5353 }
5354 case NEON::BI__builtin_neon_vcvta_s16_v:
5355 case NEON::BI__builtin_neon_vcvta_s32_v:
5356 case NEON::BI__builtin_neon_vcvta_s64_v:
5357 case NEON::BI__builtin_neon_vcvta_u16_v:
5358 case NEON::BI__builtin_neon_vcvta_u32_v:
5359 case NEON::BI__builtin_neon_vcvta_u64_v:
5360 case NEON::BI__builtin_neon_vcvtaq_s16_v:
5361 case NEON::BI__builtin_neon_vcvtaq_s32_v:
5362 case NEON::BI__builtin_neon_vcvtaq_s64_v:
5363 case NEON::BI__builtin_neon_vcvtaq_u16_v:
5364 case NEON::BI__builtin_neon_vcvtaq_u32_v:
5365 case NEON::BI__builtin_neon_vcvtaq_u64_v:
5366 case NEON::BI__builtin_neon_vcvtn_s16_v:
5367 case NEON::BI__builtin_neon_vcvtn_s32_v:
5368 case NEON::BI__builtin_neon_vcvtn_s64_v:
5369 case NEON::BI__builtin_neon_vcvtn_u16_v:
5370 case NEON::BI__builtin_neon_vcvtn_u32_v:
5371 case NEON::BI__builtin_neon_vcvtn_u64_v:
5372 case NEON::BI__builtin_neon_vcvtnq_s16_v:
5373 case NEON::BI__builtin_neon_vcvtnq_s32_v:
5374 case NEON::BI__builtin_neon_vcvtnq_s64_v:
5375 case NEON::BI__builtin_neon_vcvtnq_u16_v:
5376 case NEON::BI__builtin_neon_vcvtnq_u32_v:
5377 case NEON::BI__builtin_neon_vcvtnq_u64_v:
5378 case NEON::BI__builtin_neon_vcvtp_s16_v:
5379 case NEON::BI__builtin_neon_vcvtp_s32_v:
5380 case NEON::BI__builtin_neon_vcvtp_s64_v:
5381 case NEON::BI__builtin_neon_vcvtp_u16_v:
5382 case NEON::BI__builtin_neon_vcvtp_u32_v:
5383 case NEON::BI__builtin_neon_vcvtp_u64_v:
5384 case NEON::BI__builtin_neon_vcvtpq_s16_v:
5385 case NEON::BI__builtin_neon_vcvtpq_s32_v:
5386 case NEON::BI__builtin_neon_vcvtpq_s64_v:
5387 case NEON::BI__builtin_neon_vcvtpq_u16_v:
5388 case NEON::BI__builtin_neon_vcvtpq_u32_v:
5389 case NEON::BI__builtin_neon_vcvtpq_u64_v:
5390 case NEON::BI__builtin_neon_vcvtm_s16_v:
5391 case NEON::BI__builtin_neon_vcvtm_s32_v:
5392 case NEON::BI__builtin_neon_vcvtm_s64_v:
5393 case NEON::BI__builtin_neon_vcvtm_u16_v:
5394 case NEON::BI__builtin_neon_vcvtm_u32_v:
5395 case NEON::BI__builtin_neon_vcvtm_u64_v:
5396 case NEON::BI__builtin_neon_vcvtmq_s16_v:
5397 case NEON::BI__builtin_neon_vcvtmq_s32_v:
5398 case NEON::BI__builtin_neon_vcvtmq_s64_v:
5399 case NEON::BI__builtin_neon_vcvtmq_u16_v:
5400 case NEON::BI__builtin_neon_vcvtmq_u32_v:
5401 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5402 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5403 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5404 }
5405 case NEON::BI__builtin_neon_vext_v:
5406 case NEON::BI__builtin_neon_vextq_v: {
5407 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5408 SmallVector<uint32_t, 16> Indices;
5409 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5410 Indices.push_back(i+CV);
5411
5412 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5413 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5414 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5415 }
5416 case NEON::BI__builtin_neon_vfma_v:
5417 case NEON::BI__builtin_neon_vfmaq_v: {
5418 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5419 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5420 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5421 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5422
5423 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5424 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5425 }
5426 case NEON::BI__builtin_neon_vld1_v:
5427 case NEON::BI__builtin_neon_vld1q_v: {
5428 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5429 Ops.push_back(getAlignmentValue32(PtrOp0));
5430 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5431 }
5432 case NEON::BI__builtin_neon_vld1_x2_v:
5433 case NEON::BI__builtin_neon_vld1q_x2_v:
5434 case NEON::BI__builtin_neon_vld1_x3_v:
5435 case NEON::BI__builtin_neon_vld1q_x3_v:
5436 case NEON::BI__builtin_neon_vld1_x4_v:
5437 case NEON::BI__builtin_neon_vld1q_x4_v: {
5438 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5439 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5440 llvm::Type *Tys[2] = { VTy, PTy };
5441 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5442 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5443 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5444 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5445 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5446 }
5447 case NEON::BI__builtin_neon_vld2_v:
5448 case NEON::BI__builtin_neon_vld2q_v:
5449 case NEON::BI__builtin_neon_vld3_v:
5450 case NEON::BI__builtin_neon_vld3q_v:
5451 case NEON::BI__builtin_neon_vld4_v:
5452 case NEON::BI__builtin_neon_vld4q_v:
5453 case NEON::BI__builtin_neon_vld2_dup_v:
5454 case NEON::BI__builtin_neon_vld2q_dup_v:
5455 case NEON::BI__builtin_neon_vld3_dup_v:
5456 case NEON::BI__builtin_neon_vld3q_dup_v:
5457 case NEON::BI__builtin_neon_vld4_dup_v:
5458 case NEON::BI__builtin_neon_vld4q_dup_v: {
5459 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5460 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5461 Value *Align = getAlignmentValue32(PtrOp1);
5462 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5463 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5464 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5465 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5466 }
5467 case NEON::BI__builtin_neon_vld1_dup_v:
5468 case NEON::BI__builtin_neon_vld1q_dup_v: {
5469 Value *V = UndefValue::get(Ty);
5470 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5471 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5472 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5473 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5474 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5475 return EmitNeonSplat(Ops[0], CI);
5476 }
5477 case NEON::BI__builtin_neon_vld2_lane_v:
5478 case NEON::BI__builtin_neon_vld2q_lane_v:
5479 case NEON::BI__builtin_neon_vld3_lane_v:
5480 case NEON::BI__builtin_neon_vld3q_lane_v:
5481 case NEON::BI__builtin_neon_vld4_lane_v:
5482 case NEON::BI__builtin_neon_vld4q_lane_v: {
5483 llvm::Type *Tys[] = {Ty, Int8PtrTy};
5484 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5485 for (unsigned I = 2; I < Ops.size() - 1; ++I)
5486 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5487 Ops.push_back(getAlignmentValue32(PtrOp1));
5488 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5489 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5490 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5491 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5492 }
5493 case NEON::BI__builtin_neon_vmovl_v: {
5494 llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5495 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5496 if (Usgn)
5497 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5498 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5499 }
5500 case NEON::BI__builtin_neon_vmovn_v: {
5501 llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5502 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5503 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5504 }
5505 case NEON::BI__builtin_neon_vmull_v:
5506 // FIXME: the integer vmull operations could be emitted in terms of pure
5507 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5508 // hoisting the exts outside loops. Until global ISel comes along that can
5509 // see through such movement this leads to bad CodeGen. So we need an
5510 // intrinsic for now.
5511 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5512 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5513 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5514 case NEON::BI__builtin_neon_vpadal_v:
5515 case NEON::BI__builtin_neon_vpadalq_v: {
5516 // The source operand type has twice as many elements of half the size.
5517 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5518 llvm::Type *EltTy =
5519 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5520 llvm::Type *NarrowTy =
5521 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5522 llvm::Type *Tys[2] = { Ty, NarrowTy };
5523 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5524 }
5525 case NEON::BI__builtin_neon_vpaddl_v:
5526 case NEON::BI__builtin_neon_vpaddlq_v: {
5527 // The source operand type has twice as many elements of half the size.
5528 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5529 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5530 llvm::Type *NarrowTy =
5531 llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5532 llvm::Type *Tys[2] = { Ty, NarrowTy };
5533 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5534 }
5535 case NEON::BI__builtin_neon_vqdmlal_v:
5536 case NEON::BI__builtin_neon_vqdmlsl_v: {
5537 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5538 Ops[1] =
5539 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5540 Ops.resize(2);
5541 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5542 }
5543 case NEON::BI__builtin_neon_vqshl_n_v:
5544 case NEON::BI__builtin_neon_vqshlq_n_v:
5545 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
5546 1, false);
5547 case NEON::BI__builtin_neon_vqshlu_n_v:
5548 case NEON::BI__builtin_neon_vqshluq_n_v:
5549 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
5550 1, false);
5551 case NEON::BI__builtin_neon_vrecpe_v:
5552 case NEON::BI__builtin_neon_vrecpeq_v:
5553 case NEON::BI__builtin_neon_vrsqrte_v:
5554 case NEON::BI__builtin_neon_vrsqrteq_v:
5555 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
5556 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5557 case NEON::BI__builtin_neon_vrndi_v:
5558 case NEON::BI__builtin_neon_vrndiq_v:
5559 Int = Intrinsic::nearbyint;
5560 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5561 case NEON::BI__builtin_neon_vrshr_n_v:
5562 case NEON::BI__builtin_neon_vrshrq_n_v:
5563 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
5564 1, true);
5565 case NEON::BI__builtin_neon_vshl_n_v:
5566 case NEON::BI__builtin_neon_vshlq_n_v:
5567 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
5568 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
5569 "vshl_n");
5570 case NEON::BI__builtin_neon_vshll_n_v: {
5571 llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
5572 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5573 if (Usgn)
5574 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
5575 else
5576 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
5577 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
5578 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
5579 }
5580 case NEON::BI__builtin_neon_vshrn_n_v: {
5581 llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5582 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5583 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
5584 if (Usgn)
5585 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
5586 else
5587 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
5588 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
5589 }
5590 case NEON::BI__builtin_neon_vshr_n_v:
5591 case NEON::BI__builtin_neon_vshrq_n_v:
5592 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
5593 case NEON::BI__builtin_neon_vst1_v:
5594 case NEON::BI__builtin_neon_vst1q_v:
5595 case NEON::BI__builtin_neon_vst2_v:
5596 case NEON::BI__builtin_neon_vst2q_v:
5597 case NEON::BI__builtin_neon_vst3_v:
5598 case NEON::BI__builtin_neon_vst3q_v:
5599 case NEON::BI__builtin_neon_vst4_v:
5600 case NEON::BI__builtin_neon_vst4q_v:
5601 case NEON::BI__builtin_neon_vst2_lane_v:
5602 case NEON::BI__builtin_neon_vst2q_lane_v:
5603 case NEON::BI__builtin_neon_vst3_lane_v:
5604 case NEON::BI__builtin_neon_vst3q_lane_v:
5605 case NEON::BI__builtin_neon_vst4_lane_v:
5606 case NEON::BI__builtin_neon_vst4q_lane_v: {
5607 llvm::Type *Tys[] = {Int8PtrTy, Ty};
5608 Ops.push_back(getAlignmentValue32(PtrOp0));
5609 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5610 }
5611 case NEON::BI__builtin_neon_vst1_x2_v:
5612 case NEON::BI__builtin_neon_vst1q_x2_v:
5613 case NEON::BI__builtin_neon_vst1_x3_v:
5614 case NEON::BI__builtin_neon_vst1q_x3_v:
5615 case NEON::BI__builtin_neon_vst1_x4_v:
5616 case NEON::BI__builtin_neon_vst1q_x4_v: {
5617 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5618 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
5619 // in AArch64 it comes last. We may want to stick to one or another.
5620 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
5621 llvm::Type *Tys[2] = { VTy, PTy };
5622 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5623 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5624 }
5625 llvm::Type *Tys[2] = { PTy, VTy };
5626 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5627 }
5628 case NEON::BI__builtin_neon_vsubhn_v: {
5629 llvm::VectorType *SrcTy =
5630 llvm::VectorType::getExtendedElementVectorType(VTy);
5631
5632 // %sum = add <4 x i32> %lhs, %rhs
5633 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5634 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5635 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
5636
5637 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5638 Constant *ShiftAmt =
5639 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5640 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
5641
5642 // %res = trunc <4 x i32> %high to <4 x i16>
5643 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
5644 }
5645 case NEON::BI__builtin_neon_vtrn_v:
5646 case NEON::BI__builtin_neon_vtrnq_v: {
5647 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5648 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5649 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5650 Value *SV = nullptr;
5651
5652 for (unsigned vi = 0; vi != 2; ++vi) {
5653 SmallVector<uint32_t, 16> Indices;
5654 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5655 Indices.push_back(i+vi);
5656 Indices.push_back(i+e+vi);
5657 }
5658 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5659 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
5660 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5661 }
5662 return SV;
5663 }
5664 case NEON::BI__builtin_neon_vtst_v:
5665 case NEON::BI__builtin_neon_vtstq_v: {
5666 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5667 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5668 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
5669 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
5670 ConstantAggregateZero::get(Ty));
5671 return Builder.CreateSExt(Ops[0], Ty, "vtst");
5672 }
5673 case NEON::BI__builtin_neon_vuzp_v:
5674 case NEON::BI__builtin_neon_vuzpq_v: {
5675 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5676 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5677 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5678 Value *SV = nullptr;
5679
5680 for (unsigned vi = 0; vi != 2; ++vi) {
5681 SmallVector<uint32_t, 16> Indices;
5682 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5683 Indices.push_back(2*i+vi);
5684
5685 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5686 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
5687 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5688 }
5689 return SV;
5690 }
5691 case NEON::BI__builtin_neon_vzip_v:
5692 case NEON::BI__builtin_neon_vzipq_v: {
5693 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5694 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5695 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5696 Value *SV = nullptr;
5697
5698 for (unsigned vi = 0; vi != 2; ++vi) {
5699 SmallVector<uint32_t, 16> Indices;
5700 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5701 Indices.push_back((i + vi*e) >> 1);
5702 Indices.push_back(((i + vi*e) >> 1)+e);
5703 }
5704 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5705 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
5706 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5707 }
5708 return SV;
5709 }
5710 case NEON::BI__builtin_neon_vdot_v:
5711 case NEON::BI__builtin_neon_vdotq_v: {
5712 llvm::Type *InputTy =
5713 llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
5714 llvm::Type *Tys[2] = { Ty, InputTy };
5715 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5716 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
5717 }
5718 case NEON::BI__builtin_neon_vfmlal_low_v:
5719 case NEON::BI__builtin_neon_vfmlalq_low_v: {
5720 llvm::Type *InputTy =
5721 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5722 llvm::Type *Tys[2] = { Ty, InputTy };
5723 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
5724 }
5725 case NEON::BI__builtin_neon_vfmlsl_low_v:
5726 case NEON::BI__builtin_neon_vfmlslq_low_v: {
5727 llvm::Type *InputTy =
5728 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5729 llvm::Type *Tys[2] = { Ty, InputTy };
5730 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
5731 }
5732 case NEON::BI__builtin_neon_vfmlal_high_v:
5733 case NEON::BI__builtin_neon_vfmlalq_high_v: {
5734 llvm::Type *InputTy =
5735 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5736 llvm::Type *Tys[2] = { Ty, InputTy };
5737 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
5738 }
5739 case NEON::BI__builtin_neon_vfmlsl_high_v:
5740 case NEON::BI__builtin_neon_vfmlslq_high_v: {
5741 llvm::Type *InputTy =
5742 llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5743 llvm::Type *Tys[2] = { Ty, InputTy };
5744 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
5745 }
5746 }
5747
5748 assert(Int && "Expected valid intrinsic number")((Int && "Expected valid intrinsic number") ? static_cast
<void> (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5748, __PRETTY_FUNCTION__))
;
5749
5750 // Determine the type(s) of this overloaded AArch64 intrinsic.
5751 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
5752
5753 Value *Result = EmitNeonCall(F, Ops, NameHint);
5754 llvm::Type *ResultType = ConvertType(E->getType());
5755 // AArch64 intrinsic one-element vector type cast to
5756 // scalar type expected by the builtin
5757 return Builder.CreateBitCast(Result, ResultType, NameHint);
5758}
5759
5760Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
5761 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
5762 const CmpInst::Predicate Ip, const Twine &Name) {
5763 llvm::Type *OTy = Op->getType();
5764
5765 // FIXME: this is utterly horrific. We should not be looking at previous
5766 // codegen context to find out what needs doing. Unfortunately TableGen
5767 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
5768 // (etc).
5769 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
5770 OTy = BI->getOperand(0)->getType();
5771
5772 Op = Builder.CreateBitCast(Op, OTy);
5773 if (OTy->getScalarType()->isFloatingPointTy()) {
5774 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
5775 } else {
5776 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
5777 }
5778 return Builder.CreateSExt(Op, Ty, Name);
5779}
5780
5781static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
5782 Value *ExtOp, Value *IndexOp,
5783 llvm::Type *ResTy, unsigned IntID,
5784 const char *Name) {
5785 SmallVector<Value *, 2> TblOps;
5786 if (ExtOp)
5787 TblOps.push_back(ExtOp);
5788
5789 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
5790 SmallVector<uint32_t, 16> Indices;
5791 llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
5792 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
5793 Indices.push_back(2*i);
5794 Indices.push_back(2*i+1);
5795 }
5796
5797 int PairPos = 0, End = Ops.size() - 1;
5798 while (PairPos < End) {
5799 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5800 Ops[PairPos+1], Indices,
5801 Name));
5802 PairPos += 2;
5803 }
5804
5805 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
5806 // of the 128-bit lookup table with zero.
5807 if (PairPos == End) {
5808 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
5809 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5810 ZeroTbl, Indices, Name));
5811 }
5812
5813 Function *TblF;
5814 TblOps.push_back(IndexOp);
5815 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
5816
5817 return CGF.EmitNeonCall(TblF, TblOps, Name);
5818}
5819
5820Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
5821 unsigned Value;
5822 switch (BuiltinID) {
5823 default:
5824 return nullptr;
5825 case ARM::BI__builtin_arm_nop:
5826 Value = 0;
5827 break;
5828 case ARM::BI__builtin_arm_yield:
5829 case ARM::BI__yield:
5830 Value = 1;
5831 break;
5832 case ARM::BI__builtin_arm_wfe:
5833 case ARM::BI__wfe:
5834 Value = 2;
5835 break;
5836 case ARM::BI__builtin_arm_wfi:
5837 case ARM::BI__wfi:
5838 Value = 3;
5839 break;
5840 case ARM::BI__builtin_arm_sev:
5841 case ARM::BI__sev:
5842 Value = 4;
5843 break;
5844 case ARM::BI__builtin_arm_sevl:
5845 case ARM::BI__sevl:
5846 Value = 5;
5847 break;
5848 }
5849
5850 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
5851 llvm::ConstantInt::get(Int32Ty, Value));
5852}
5853
5854// Generates the IR for the read/write special register builtin,
5855// ValueType is the type of the value that is to be written or read,
5856// RegisterType is the type of the register being written to or read from.
5857static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
5858 const CallExpr *E,
5859 llvm::Type *RegisterType,
5860 llvm::Type *ValueType,
5861 bool IsRead,
5862 StringRef SysReg = "") {
5863 // write and register intrinsics only support 32 and 64 bit operations.
5864 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy
(64)) && "Unsupported size for register.") ? static_cast
<void> (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5865, __PRETTY_FUNCTION__))
5865 && "Unsupported size for register.")(((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy
(64)) && "Unsupported size for register.") ? static_cast
<void> (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5865, __PRETTY_FUNCTION__))
;
5866
5867 CodeGen::CGBuilderTy &Builder = CGF.Builder;
5868 CodeGen::CodeGenModule &CGM = CGF.CGM;
5869 LLVMContext &Context = CGM.getLLVMContext();
5870
5871 if (SysReg.empty()) {
5872 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
5873 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
5874 }
5875
5876 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
5877 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
5878 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
5879
5880 llvm::Type *Types[] = { RegisterType };
5881
5882 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
5883 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))((!(RegisterType->isIntegerTy(32) && ValueType->
isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? static_cast<void> (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5884, __PRETTY_FUNCTION__))
5884 && "Can't fit 64-bit value in 32-bit register")((!(RegisterType->isIntegerTy(32) && ValueType->
isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? static_cast<void> (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5884, __PRETTY_FUNCTION__))
;
5885
5886 if (IsRead) {
5887 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
5888 llvm::Value *Call = Builder.CreateCall(F, Metadata);
5889
5890 if (MixedTypes)
5891 // Read into 64 bit register and then truncate result to 32 bit.
5892 return Builder.CreateTrunc(Call, ValueType);
5893
5894 if (ValueType->isPointerTy())
5895 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
5896 return Builder.CreateIntToPtr(Call, ValueType);
5897
5898 return Call;
5899 }
5900
5901 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
5902 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
5903 if (MixedTypes) {
5904 // Extend 32 bit write value to 64 bit to pass to write.
5905 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
5906 return Builder.CreateCall(F, { Metadata, ArgValue });
5907 }
5908
5909 if (ValueType->isPointerTy()) {
5910 // Have VoidPtrTy ArgValue but want to return an i32/i64.
5911 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
5912 return Builder.CreateCall(F, { Metadata, ArgValue });
5913 }
5914
5915 return Builder.CreateCall(F, { Metadata, ArgValue });
5916}
5917
5918/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
5919/// argument that specifies the vector type.
5920static bool HasExtraNeonArgument(unsigned BuiltinID) {
5921 switch (BuiltinID) {
5922 default: break;
5923 case NEON::BI__builtin_neon_vget_lane_i8:
5924 case NEON::BI__builtin_neon_vget_lane_i16:
5925 case NEON::BI__builtin_neon_vget_lane_i32:
5926 case NEON::BI__builtin_neon_vget_lane_i64:
5927 case NEON::BI__builtin_neon_vget_lane_f32:
5928 case NEON::BI__builtin_neon_vgetq_lane_i8:
5929 case NEON::BI__builtin_neon_vgetq_lane_i16:
5930 case NEON::BI__builtin_neon_vgetq_lane_i32:
5931 case NEON::BI__builtin_neon_vgetq_lane_i64:
5932 case NEON::BI__builtin_neon_vgetq_lane_f32:
5933 case NEON::BI__builtin_neon_vset_lane_i8:
5934 case NEON::BI__builtin_neon_vset_lane_i16:
5935 case NEON::BI__builtin_neon_vset_lane_i32:
5936 case NEON::BI__builtin_neon_vset_lane_i64:
5937 case NEON::BI__builtin_neon_vset_lane_f32:
5938 case NEON::BI__builtin_neon_vsetq_lane_i8:
5939 case NEON::BI__builtin_neon_vsetq_lane_i16:
5940 case NEON::BI__builtin_neon_vsetq_lane_i32:
5941 case NEON::BI__builtin_neon_vsetq_lane_i64:
5942 case NEON::BI__builtin_neon_vsetq_lane_f32:
5943 case NEON::BI__builtin_neon_vsha1h_u32:
5944 case NEON::BI__builtin_neon_vsha1cq_u32:
5945 case NEON::BI__builtin_neon_vsha1pq_u32:
5946 case NEON::BI__builtin_neon_vsha1mq_u32:
5947 case clang::ARM::BI_MoveToCoprocessor:
5948 case clang::ARM::BI_MoveToCoprocessor2:
5949 return false;
5950 }
5951 return true;
5952}
5953
5954Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
5955 const CallExpr *E,
5956 llvm::Triple::ArchType Arch) {
5957 if (auto Hint = GetValueForARMHint(BuiltinID))
5958 return Hint;
5959
5960 if (BuiltinID == ARM::BI__emit) {
5961 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
5962 llvm::FunctionType *FTy =
5963 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
5964
5965 Expr::EvalResult Result;
5966 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
5967 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 5967)
;
5968
5969 llvm::APSInt Value = Result.Val.getInt();
5970 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
5971
5972 llvm::InlineAsm *Emit =
5973 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
5974 /*SideEffects=*/true)
5975 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
5976 /*SideEffects=*/true);
5977
5978 return Builder.CreateCall(Emit);
5979 }
5980
5981 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
5982 Value *Option = EmitScalarExpr(E->getArg(0));
5983 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
5984 }
5985
5986 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
5987 Value *Address = EmitScalarExpr(E->getArg(0));
5988 Value *RW = EmitScalarExpr(E->getArg(1));
5989 Value *IsData = EmitScalarExpr(E->getArg(2));
5990
5991 // Locality is not supported on ARM target
5992 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
5993
5994 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
5995 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
5996 }
5997
5998 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
5999 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6000 return Builder.CreateCall(
6001 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6002 }
6003
6004 if (BuiltinID == ARM::BI__clear_cache) {
6005 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")((E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6005, __PRETTY_FUNCTION__))
;
6006 const FunctionDecl *FD = E->getDirectCallee();
6007 Value *Ops[2];
6008 for (unsigned i = 0; i < 2; i++)
6009 Ops[i] = EmitScalarExpr(E->getArg(i));
6010 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6011 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6012 StringRef Name = FD->getName();
6013 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6014 }
6015
6016 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6017 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6018 Function *F;
6019
6020 switch (BuiltinID) {
6021 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6021)
;
6022 case ARM::BI__builtin_arm_mcrr:
6023 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6024 break;
6025 case ARM::BI__builtin_arm_mcrr2:
6026 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6027 break;
6028 }
6029
6030 // MCRR{2} instruction has 5 operands but
6031 // the intrinsic has 4 because Rt and Rt2
6032 // are represented as a single unsigned 64
6033 // bit integer in the intrinsic definition
6034 // but internally it's represented as 2 32
6035 // bit integers.
6036
6037 Value *Coproc = EmitScalarExpr(E->getArg(0));
6038 Value *Opc1 = EmitScalarExpr(E->getArg(1));
6039 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6040 Value *CRm = EmitScalarExpr(E->getArg(3));
6041
6042 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6043 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6044 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6045 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6046
6047 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6048 }
6049
6050 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6051 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6052 Function *F;
6053
6054 switch (BuiltinID) {
6055 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6055)
;
6056 case ARM::BI__builtin_arm_mrrc:
6057 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6058 break;
6059 case ARM::BI__builtin_arm_mrrc2:
6060 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6061 break;
6062 }
6063
6064 Value *Coproc = EmitScalarExpr(E->getArg(0));
6065 Value *Opc1 = EmitScalarExpr(E->getArg(1));
6066 Value *CRm = EmitScalarExpr(E->getArg(2));
6067 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6068
6069 // Returns an unsigned 64 bit integer, represented
6070 // as two 32 bit integers.
6071
6072 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6073 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6074 Rt = Builder.CreateZExt(Rt, Int64Ty);
6075 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6076
6077 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6078 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6079 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6080
6081 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6082 }
6083
6084 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6085 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6086 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6087 getContext().getTypeSize(E->getType()) == 64) ||
6088 BuiltinID == ARM::BI__ldrexd) {
6089 Function *F;
6090
6091 switch (BuiltinID) {
6092 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6092)
;
6093 case ARM::BI__builtin_arm_ldaex:
6094 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6095 break;
6096 case ARM::BI__builtin_arm_ldrexd:
6097 case ARM::BI__builtin_arm_ldrex:
6098 case ARM::BI__ldrexd:
6099 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6100 break;
6101 }
6102
6103 Value *LdPtr = EmitScalarExpr(E->getArg(0));
6104 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6105 "ldrexd");
6106
6107 Value *Val0 = Builder.CreateExtractValue(Val, 1);
6108 Value *Val1 = Builder.CreateExtractValue(Val, 0);
6109 Val0 = Builder.CreateZExt(Val0, Int64Ty);
6110 Val1 = Builder.CreateZExt(Val1, Int64Ty);
6111
6112 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6113 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6114 Val = Builder.CreateOr(Val, Val1);
6115 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6116 }
6117
6118 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6119 BuiltinID == ARM::BI__builtin_arm_ldaex) {
6120 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6121
6122 QualType Ty = E->getType();
6123 llvm::Type *RealResTy = ConvertType(Ty);
6124 llvm::Type *PtrTy = llvm::IntegerType::get(
6125 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6126 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6127
6128 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6129 ? Intrinsic::arm_ldaex
6130 : Intrinsic::arm_ldrex,
6131 PtrTy);
6132 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6133
6134 if (RealResTy->isPointerTy())
6135 return Builder.CreateIntToPtr(Val, RealResTy);
6136 else {
6137 llvm::Type *IntResTy = llvm::IntegerType::get(
6138 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6139 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6140 return Builder.CreateBitCast(Val, RealResTy);
6141 }
6142 }
6143
6144 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6145 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6146 BuiltinID == ARM::BI__builtin_arm_strex) &&
6147 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6148 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6149 ? Intrinsic::arm_stlexd
6150 : Intrinsic::arm_strexd);
6151 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6152
6153 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6154 Value *Val = EmitScalarExpr(E->getArg(0));
6155 Builder.CreateStore(Val, Tmp);
6156
6157 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6158 Val = Builder.CreateLoad(LdPtr);
6159
6160 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6161 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6162 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6163 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6164 }
6165
6166 if (BuiltinID == ARM::BI__builtin_arm_strex ||
6167 BuiltinID == ARM::BI__builtin_arm_stlex) {
6168 Value *StoreVal = EmitScalarExpr(E->getArg(0));
6169 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6170
6171 QualType Ty = E->getArg(0)->getType();
6172 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6173 getContext().getTypeSize(Ty));
6174 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6175
6176 if (StoreVal->getType()->isPointerTy())
6177 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6178 else {
6179 llvm::Type *IntTy = llvm::IntegerType::get(
6180 getLLVMContext(),
6181 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6182 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6183 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6184 }
6185
6186 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6187 ? Intrinsic::arm_stlex
6188 : Intrinsic::arm_strex,
6189 StoreAddr->getType());
6190 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6191 }
6192
6193 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6194 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6195 return Builder.CreateCall(F);
6196 }
6197
6198 // CRC32
6199 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6200 switch (BuiltinID) {
6201 case ARM::BI__builtin_arm_crc32b:
6202 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6203 case ARM::BI__builtin_arm_crc32cb:
6204 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6205 case ARM::BI__builtin_arm_crc32h:
6206 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6207 case ARM::BI__builtin_arm_crc32ch:
6208 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6209 case ARM::BI__builtin_arm_crc32w:
6210 case ARM::BI__builtin_arm_crc32d:
6211 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6212 case ARM::BI__builtin_arm_crc32cw:
6213 case ARM::BI__builtin_arm_crc32cd:
6214 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6215 }
6216
6217 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6218 Value *Arg0 = EmitScalarExpr(E->getArg(0));
6219 Value *Arg1 = EmitScalarExpr(E->getArg(1));
6220
6221 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6222 // intrinsics, hence we need different codegen for these cases.
6223 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6224 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6225 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6226 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6227 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6228 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6229
6230 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6231 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6232 return Builder.CreateCall(F, {Res, Arg1b});
6233 } else {
6234 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6235
6236 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6237 return Builder.CreateCall(F, {Arg0, Arg1});
6238 }
6239 }
6240
6241 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6242 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6243 BuiltinID == ARM::BI__builtin_arm_rsrp ||
6244 BuiltinID == ARM::BI__builtin_arm_wsr ||
6245 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6246 BuiltinID == ARM::BI__builtin_arm_wsrp) {
6247
6248 bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
6249 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6250 BuiltinID == ARM::BI__builtin_arm_rsrp;
6251
6252 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6253 BuiltinID == ARM::BI__builtin_arm_wsrp;
6254
6255 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6256 BuiltinID == ARM::BI__builtin_arm_wsr64;
6257
6258 llvm::Type *ValueType;
6259 llvm::Type *RegisterType;
6260 if (IsPointerBuiltin) {
6261 ValueType = VoidPtrTy;
6262 RegisterType = Int32Ty;
6263 } else if (Is64Bit) {
6264 ValueType = RegisterType = Int64Ty;
6265 } else {
6266 ValueType = RegisterType = Int32Ty;
6267 }
6268
6269 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6270 }
6271
6272 // Find out if any arguments are required to be integer constant
6273 // expressions.
6274 unsigned ICEArguments = 0;
6275 ASTContext::GetBuiltinTypeError Error;
6276 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6277 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6277, __PRETTY_FUNCTION__))
;
6278
6279 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6280 return Builder.getInt32(addr.getAlignment().getQuantity());
6281 };
6282
6283 Address PtrOp0 = Address::invalid();
6284 Address PtrOp1 = Address::invalid();
6285 SmallVector<Value*, 4> Ops;
6286 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6287 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6288 for (unsigned i = 0, e = NumArgs; i != e; i++) {
6289 if (i == 0) {
6290 switch (BuiltinID) {
6291 case NEON::BI__builtin_neon_vld1_v:
6292 case NEON::BI__builtin_neon_vld1q_v:
6293 case NEON::BI__builtin_neon_vld1q_lane_v:
6294 case NEON::BI__builtin_neon_vld1_lane_v:
6295 case NEON::BI__builtin_neon_vld1_dup_v:
6296 case NEON::BI__builtin_neon_vld1q_dup_v:
6297 case NEON::BI__builtin_neon_vst1_v:
6298 case NEON::BI__builtin_neon_vst1q_v:
6299 case NEON::BI__builtin_neon_vst1q_lane_v:
6300 case NEON::BI__builtin_neon_vst1_lane_v:
6301 case NEON::BI__builtin_neon_vst2_v:
6302 case NEON::BI__builtin_neon_vst2q_v:
6303 case NEON::BI__builtin_neon_vst2_lane_v:
6304 case NEON::BI__builtin_neon_vst2q_lane_v:
6305 case NEON::BI__builtin_neon_vst3_v:
6306 case NEON::BI__builtin_neon_vst3q_v:
6307 case NEON::BI__builtin_neon_vst3_lane_v:
6308 case NEON::BI__builtin_neon_vst3q_lane_v:
6309 case NEON::BI__builtin_neon_vst4_v:
6310 case NEON::BI__builtin_neon_vst4q_v:
6311 case NEON::BI__builtin_neon_vst4_lane_v:
6312 case NEON::BI__builtin_neon_vst4q_lane_v:
6313 // Get the alignment for the argument in addition to the value;
6314 // we'll use it later.
6315 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6316 Ops.push_back(PtrOp0.getPointer());
6317 continue;
6318 }
6319 }
6320 if (i == 1) {
6321 switch (BuiltinID) {
6322 case NEON::BI__builtin_neon_vld2_v:
6323 case NEON::BI__builtin_neon_vld2q_v:
6324 case NEON::BI__builtin_neon_vld3_v:
6325 case NEON::BI__builtin_neon_vld3q_v:
6326 case NEON::BI__builtin_neon_vld4_v:
6327 case NEON::BI__builtin_neon_vld4q_v:
6328 case NEON::BI__builtin_neon_vld2_lane_v:
6329 case NEON::BI__builtin_neon_vld2q_lane_v:
6330 case NEON::BI__builtin_neon_vld3_lane_v:
6331 case NEON::BI__builtin_neon_vld3q_lane_v:
6332 case NEON::BI__builtin_neon_vld4_lane_v:
6333 case NEON::BI__builtin_neon_vld4q_lane_v:
6334 case NEON::BI__builtin_neon_vld2_dup_v:
6335 case NEON::BI__builtin_neon_vld2q_dup_v:
6336 case NEON::BI__builtin_neon_vld3_dup_v:
6337 case NEON::BI__builtin_neon_vld3q_dup_v:
6338 case NEON::BI__builtin_neon_vld4_dup_v:
6339 case NEON::BI__builtin_neon_vld4q_dup_v:
6340 // Get the alignment for the argument in addition to the value;
6341 // we'll use it later.
6342 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6343 Ops.push_back(PtrOp1.getPointer());
6344 continue;
6345 }
6346 }
6347
6348 if ((ICEArguments & (1 << i)) == 0) {
6349 Ops.push_back(EmitScalarExpr(E->getArg(i)));
6350 } else {
6351 // If this is required to be a constant, constant fold it so that we know
6352 // that the generated intrinsic gets a ConstantInt.
6353 llvm::APSInt Result;
6354 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6355 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6355, __PRETTY_FUNCTION__))
; (void)IsConst;
6356 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6357 }
6358 }
6359
6360 switch (BuiltinID) {
6361 default: break;
6362
6363 case NEON::BI__builtin_neon_vget_lane_i8:
6364 case NEON::BI__builtin_neon_vget_lane_i16:
6365 case NEON::BI__builtin_neon_vget_lane_i32:
6366 case NEON::BI__builtin_neon_vget_lane_i64:
6367 case NEON::BI__builtin_neon_vget_lane_f32:
6368 case NEON::BI__builtin_neon_vgetq_lane_i8:
6369 case NEON::BI__builtin_neon_vgetq_lane_i16:
6370 case NEON::BI__builtin_neon_vgetq_lane_i32:
6371 case NEON::BI__builtin_neon_vgetq_lane_i64:
6372 case NEON::BI__builtin_neon_vgetq_lane_f32:
6373 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6374
6375 case NEON::BI__builtin_neon_vrndns_f32: {
6376 Value *Arg = EmitScalarExpr(E->getArg(0));
6377 llvm::Type *Tys[] = {Arg->getType()};
6378 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6379 return Builder.CreateCall(F, {Arg}, "vrndn"); }
6380
6381 case NEON::BI__builtin_neon_vset_lane_i8:
6382 case NEON::BI__builtin_neon_vset_lane_i16:
6383 case NEON::BI__builtin_neon_vset_lane_i32:
6384 case NEON::BI__builtin_neon_vset_lane_i64:
6385 case NEON::BI__builtin_neon_vset_lane_f32:
6386 case NEON::BI__builtin_neon_vsetq_lane_i8:
6387 case NEON::BI__builtin_neon_vsetq_lane_i16:
6388 case NEON::BI__builtin_neon_vsetq_lane_i32:
6389 case NEON::BI__builtin_neon_vsetq_lane_i64:
6390 case NEON::BI__builtin_neon_vsetq_lane_f32:
6391 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6392
6393 case NEON::BI__builtin_neon_vsha1h_u32:
6394 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6395 "vsha1h");
6396 case NEON::BI__builtin_neon_vsha1cq_u32:
6397 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6398 "vsha1h");
6399 case NEON::BI__builtin_neon_vsha1pq_u32:
6400 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6401 "vsha1h");
6402 case NEON::BI__builtin_neon_vsha1mq_u32:
6403 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6404 "vsha1h");
6405
6406 // The ARM _MoveToCoprocessor builtins put the input register value as
6407 // the first argument, but the LLVM intrinsic expects it as the third one.
6408 case ARM::BI_MoveToCoprocessor:
6409 case ARM::BI_MoveToCoprocessor2: {
6410 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6411 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6412 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6413 Ops[3], Ops[4], Ops[5]});
6414 }
6415 case ARM::BI_BitScanForward:
6416 case ARM::BI_BitScanForward64:
6417 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6418 case ARM::BI_BitScanReverse:
6419 case ARM::BI_BitScanReverse64:
6420 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6421
6422 case ARM::BI_InterlockedAnd64:
6423 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6424 case ARM::BI_InterlockedExchange64:
6425 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6426 case ARM::BI_InterlockedExchangeAdd64:
6427 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6428 case ARM::BI_InterlockedExchangeSub64:
6429 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6430 case ARM::BI_InterlockedOr64:
6431 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6432 case ARM::BI_InterlockedXor64:
6433 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6434 case ARM::BI_InterlockedDecrement64:
6435 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6436 case ARM::BI_InterlockedIncrement64:
6437 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6438 case ARM::BI_InterlockedExchangeAdd8_acq:
6439 case ARM::BI_InterlockedExchangeAdd16_acq:
6440 case ARM::BI_InterlockedExchangeAdd_acq:
6441 case ARM::BI_InterlockedExchangeAdd64_acq:
6442 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
6443 case ARM::BI_InterlockedExchangeAdd8_rel:
6444 case ARM::BI_InterlockedExchangeAdd16_rel:
6445 case ARM::BI_InterlockedExchangeAdd_rel:
6446 case ARM::BI_InterlockedExchangeAdd64_rel:
6447 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
6448 case ARM::BI_InterlockedExchangeAdd8_nf:
6449 case ARM::BI_InterlockedExchangeAdd16_nf:
6450 case ARM::BI_InterlockedExchangeAdd_nf:
6451 case ARM::BI_InterlockedExchangeAdd64_nf:
6452 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
6453 case ARM::BI_InterlockedExchange8_acq:
6454 case ARM::BI_InterlockedExchange16_acq:
6455 case ARM::BI_InterlockedExchange_acq:
6456 case ARM::BI_InterlockedExchange64_acq:
6457 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
6458 case ARM::BI_InterlockedExchange8_rel:
6459 case ARM::BI_InterlockedExchange16_rel:
6460 case ARM::BI_InterlockedExchange_rel:
6461 case ARM::BI_InterlockedExchange64_rel:
6462 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
6463 case ARM::BI_InterlockedExchange8_nf:
6464 case ARM::BI_InterlockedExchange16_nf:
6465 case ARM::BI_InterlockedExchange_nf:
6466 case ARM::BI_InterlockedExchange64_nf:
6467 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
6468 case ARM::BI_InterlockedCompareExchange8_acq:
6469 case ARM::BI_InterlockedCompareExchange16_acq:
6470 case ARM::BI_InterlockedCompareExchange_acq:
6471 case ARM::BI_InterlockedCompareExchange64_acq:
6472 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
6473 case ARM::BI_InterlockedCompareExchange8_rel:
6474 case ARM::BI_InterlockedCompareExchange16_rel:
6475 case ARM::BI_InterlockedCompareExchange_rel:
6476 case ARM::BI_InterlockedCompareExchange64_rel:
6477 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
6478 case ARM::BI_InterlockedCompareExchange8_nf:
6479 case ARM::BI_InterlockedCompareExchange16_nf:
6480 case ARM::BI_InterlockedCompareExchange_nf:
6481 case ARM::BI_InterlockedCompareExchange64_nf:
6482 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
6483 case ARM::BI_InterlockedOr8_acq:
6484 case ARM::BI_InterlockedOr16_acq:
6485 case ARM::BI_InterlockedOr_acq:
6486 case ARM::BI_InterlockedOr64_acq:
6487 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
6488 case ARM::BI_InterlockedOr8_rel:
6489 case ARM::BI_InterlockedOr16_rel:
6490 case ARM::BI_InterlockedOr_rel:
6491 case ARM::BI_InterlockedOr64_rel:
6492 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
6493 case ARM::BI_InterlockedOr8_nf:
6494 case ARM::BI_InterlockedOr16_nf:
6495 case ARM::BI_InterlockedOr_nf:
6496 case ARM::BI_InterlockedOr64_nf:
6497 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
6498 case ARM::BI_InterlockedXor8_acq:
6499 case ARM::BI_InterlockedXor16_acq:
6500 case ARM::BI_InterlockedXor_acq:
6501 case ARM::BI_InterlockedXor64_acq:
6502 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
6503 case ARM::BI_InterlockedXor8_rel:
6504 case ARM::BI_InterlockedXor16_rel:
6505 case ARM::BI_InterlockedXor_rel:
6506 case ARM::BI_InterlockedXor64_rel:
6507 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
6508 case ARM::BI_InterlockedXor8_nf:
6509 case ARM::BI_InterlockedXor16_nf:
6510 case ARM::BI_InterlockedXor_nf:
6511 case ARM::BI_InterlockedXor64_nf:
6512 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
6513 case ARM::BI_InterlockedAnd8_acq:
6514 case ARM::BI_InterlockedAnd16_acq:
6515 case ARM::BI_InterlockedAnd_acq:
6516 case ARM::BI_InterlockedAnd64_acq:
6517 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
6518 case ARM::BI_InterlockedAnd8_rel:
6519 case ARM::BI_InterlockedAnd16_rel:
6520 case ARM::BI_InterlockedAnd_rel:
6521 case ARM::BI_InterlockedAnd64_rel:
6522 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
6523 case ARM::BI_InterlockedAnd8_nf:
6524 case ARM::BI_InterlockedAnd16_nf:
6525 case ARM::BI_InterlockedAnd_nf:
6526 case ARM::BI_InterlockedAnd64_nf:
6527 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
6528 case ARM::BI_InterlockedIncrement16_acq:
6529 case ARM::BI_InterlockedIncrement_acq:
6530 case ARM::BI_InterlockedIncrement64_acq:
6531 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
6532 case ARM::BI_InterlockedIncrement16_rel:
6533 case ARM::BI_InterlockedIncrement_rel:
6534 case ARM::BI_InterlockedIncrement64_rel:
6535 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
6536 case ARM::BI_InterlockedIncrement16_nf:
6537 case ARM::BI_InterlockedIncrement_nf:
6538 case ARM::BI_InterlockedIncrement64_nf:
6539 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
6540 case ARM::BI_InterlockedDecrement16_acq:
6541 case ARM::BI_InterlockedDecrement_acq:
6542 case ARM::BI_InterlockedDecrement64_acq:
6543 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
6544 case ARM::BI_InterlockedDecrement16_rel:
6545 case ARM::BI_InterlockedDecrement_rel:
6546 case ARM::BI_InterlockedDecrement64_rel:
6547 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
6548 case ARM::BI_InterlockedDecrement16_nf:
6549 case ARM::BI_InterlockedDecrement_nf:
6550 case ARM::BI_InterlockedDecrement64_nf:
6551 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
6552 }
6553
6554 // Get the last argument, which specifies the vector type.
6555 assert(HasExtraArg)((HasExtraArg) ? static_cast<void> (0) : __assert_fail (
"HasExtraArg", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6555, __PRETTY_FUNCTION__))
;
6556 llvm::APSInt Result;
6557 const Expr *Arg = E->getArg(E->getNumArgs()-1);
6558 if (!Arg->isIntegerConstantExpr(Result, getContext()))
6559 return nullptr;
6560
6561 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
6562 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
6563 // Determine the overloaded type of this builtin.
6564 llvm::Type *Ty;
6565 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
6566 Ty = FloatTy;
6567 else
6568 Ty = DoubleTy;
6569
6570 // Determine whether this is an unsigned conversion or not.
6571 bool usgn = Result.getZExtValue() == 1;
6572 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
6573
6574 // Call the appropriate intrinsic.
6575 Function *F = CGM.getIntrinsic(Int, Ty);
6576 return Builder.CreateCall(F, Ops, "vcvtr");
6577 }
6578
6579 // Determine the type of this overloaded NEON intrinsic.
6580 NeonTypeFlags Type(Result.getZExtValue());
6581 bool usgn = Type.isUnsigned();
6582 bool rightShift = false;
6583
6584 llvm::VectorType *VTy = GetNeonType(this, Type,
6585 getTarget().hasLegalHalfType());
6586 llvm::Type *Ty = VTy;
6587 if (!Ty)
6588 return nullptr;
6589
6590 // Many NEON builtins have identical semantics and uses in ARM and
6591 // AArch64. Emit these in a single function.
6592 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
6593 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6594 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
6595 if (Builtin)
6596 return EmitCommonNeonBuiltinExpr(
6597 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6598 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
6599
6600 unsigned Int;
6601 switch (BuiltinID) {
6602 default: return nullptr;
6603 case NEON::BI__builtin_neon_vld1q_lane_v:
6604 // Handle 64-bit integer elements as a special case. Use shuffles of
6605 // one-element vectors to avoid poor code for i64 in the backend.
6606 if (VTy->getElementType()->isIntegerTy(64)) {
6607 // Extract the other lane.
6608 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6609 uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
6610 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
6611 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6612 // Load the value as a one-element vector.
6613 Ty = llvm::VectorType::get(VTy->getElementType(), 1);
6614 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6615 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
6616 Value *Align = getAlignmentValue32(PtrOp0);
6617 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
6618 // Combine them.
6619 uint32_t Indices[] = {1 - Lane, Lane};
6620 SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6621 return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
6622 }
6623 LLVM_FALLTHROUGH[[clang::fallthrough]];
6624 case NEON::BI__builtin_neon_vld1_lane_v: {
6625 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6626 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6627 Value *Ld = Builder.CreateLoad(PtrOp0);
6628 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
6629 }
6630 case NEON::BI__builtin_neon_vqrshrn_n_v:
6631 Int =
6632 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
6633 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
6634 1, true);
6635 case NEON::BI__builtin_neon_vqrshrun_n_v:
6636 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
6637 Ops, "vqrshrun_n", 1, true);
6638 case NEON::BI__builtin_neon_vqshrn_n_v:
6639 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
6640 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
6641 1, true);
6642 case NEON::BI__builtin_neon_vqshrun_n_v:
6643 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
6644 Ops, "vqshrun_n", 1, true);
6645 case NEON::BI__builtin_neon_vrecpe_v:
6646 case NEON::BI__builtin_neon_vrecpeq_v:
6647 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
6648 Ops, "vrecpe");
6649 case NEON::BI__builtin_neon_vrshrn_n_v:
6650 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
6651 Ops, "vrshrn_n", 1, true);
6652 case NEON::BI__builtin_neon_vrsra_n_v:
6653 case NEON::BI__builtin_neon_vrsraq_n_v:
6654 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6655 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6656 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
6657 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
6658 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
6659 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
6660 case NEON::BI__builtin_neon_vsri_n_v:
6661 case NEON::BI__builtin_neon_vsriq_n_v:
6662 rightShift = true;
6663 LLVM_FALLTHROUGH[[clang::fallthrough]];
6664 case NEON::BI__builtin_neon_vsli_n_v:
6665 case NEON::BI__builtin_neon_vsliq_n_v:
6666 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
6667 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
6668 Ops, "vsli_n");
6669 case NEON::BI__builtin_neon_vsra_n_v:
6670 case NEON::BI__builtin_neon_vsraq_n_v:
6671 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6672 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
6673 return Builder.CreateAdd(Ops[0], Ops[1]);
6674 case NEON::BI__builtin_neon_vst1q_lane_v:
6675 // Handle 64-bit integer elements as a special case. Use a shuffle to get
6676 // a one-element vector and avoid poor code for i64 in the backend.
6677 if (VTy->getElementType()->isIntegerTy(64)) {
6678 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6679 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
6680 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6681 Ops[2] = getAlignmentValue32(PtrOp0);
6682 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
6683 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
6684 Tys), Ops);
6685 }
6686 LLVM_FALLTHROUGH[[clang::fallthrough]];
6687 case NEON::BI__builtin_neon_vst1_lane_v: {
6688 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6689 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
6690 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6691 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
6692 return St;
6693 }
6694 case NEON::BI__builtin_neon_vtbl1_v:
6695 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
6696 Ops, "vtbl1");
6697 case NEON::BI__builtin_neon_vtbl2_v:
6698 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
6699 Ops, "vtbl2");
6700 case NEON::BI__builtin_neon_vtbl3_v:
6701 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
6702 Ops, "vtbl3");
6703 case NEON::BI__builtin_neon_vtbl4_v:
6704 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
6705 Ops, "vtbl4");
6706 case NEON::BI__builtin_neon_vtbx1_v:
6707 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
6708 Ops, "vtbx1");
6709 case NEON::BI__builtin_neon_vtbx2_v:
6710 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
6711 Ops, "vtbx2");
6712 case NEON::BI__builtin_neon_vtbx3_v:
6713 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
6714 Ops, "vtbx3");
6715 case NEON::BI__builtin_neon_vtbx4_v:
6716 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
6717 Ops, "vtbx4");
6718 }
6719}
6720
6721static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
6722 const CallExpr *E,
6723 SmallVectorImpl<Value *> &Ops,
6724 llvm::Triple::ArchType Arch) {
6725 unsigned int Int = 0;
6726 const char *s = nullptr;
6727
6728 switch (BuiltinID) {
6729 default:
6730 return nullptr;
6731 case NEON::BI__builtin_neon_vtbl1_v:
6732 case NEON::BI__builtin_neon_vqtbl1_v:
6733 case NEON::BI__builtin_neon_vqtbl1q_v:
6734 case NEON::BI__builtin_neon_vtbl2_v:
6735 case NEON::BI__builtin_neon_vqtbl2_v:
6736 case NEON::BI__builtin_neon_vqtbl2q_v:
6737 case NEON::BI__builtin_neon_vtbl3_v:
6738 case NEON::BI__builtin_neon_vqtbl3_v:
6739 case NEON::BI__builtin_neon_vqtbl3q_v:
6740 case NEON::BI__builtin_neon_vtbl4_v:
6741 case NEON::BI__builtin_neon_vqtbl4_v:
6742 case NEON::BI__builtin_neon_vqtbl4q_v:
6743 break;
6744 case NEON::BI__builtin_neon_vtbx1_v:
6745 case NEON::BI__builtin_neon_vqtbx1_v:
6746 case NEON::BI__builtin_neon_vqtbx1q_v:
6747 case NEON::BI__builtin_neon_vtbx2_v:
6748 case NEON::BI__builtin_neon_vqtbx2_v:
6749 case NEON::BI__builtin_neon_vqtbx2q_v:
6750 case NEON::BI__builtin_neon_vtbx3_v:
6751 case NEON::BI__builtin_neon_vqtbx3_v:
6752 case NEON::BI__builtin_neon_vqtbx3q_v:
6753 case NEON::BI__builtin_neon_vtbx4_v:
6754 case NEON::BI__builtin_neon_vqtbx4_v:
6755 case NEON::BI__builtin_neon_vqtbx4q_v:
6756 break;
6757 }
6758
6759 assert(E->getNumArgs() >= 3)((E->getNumArgs() >= 3) ? static_cast<void> (0) :
__assert_fail ("E->getNumArgs() >= 3", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6759, __PRETTY_FUNCTION__))
;
6760
6761 // Get the last argument, which specifies the vector type.
6762 llvm::APSInt Result;
6763 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6764 if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
6765 return nullptr;
6766
6767 // Determine the type of this overloaded NEON intrinsic.
6768 NeonTypeFlags Type(Result.getZExtValue());
6769 llvm::VectorType *Ty = GetNeonType(&CGF, Type);
6770 if (!Ty)
6771 return nullptr;
6772
6773 CodeGen::CGBuilderTy &Builder = CGF.Builder;
6774
6775 // AArch64 scalar builtins are not overloaded, they do not have an extra
6776 // argument that specifies the vector type, need to handle each case.
6777 switch (BuiltinID) {
6778 case NEON::BI__builtin_neon_vtbl1_v: {
6779 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
6780 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
6781 "vtbl1");
6782 }
6783 case NEON::BI__builtin_neon_vtbl2_v: {
6784 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
6785 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
6786 "vtbl1");
6787 }
6788 case NEON::BI__builtin_neon_vtbl3_v: {
6789 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
6790 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
6791 "vtbl2");
6792 }
6793 case NEON::BI__builtin_neon_vtbl4_v: {
6794 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
6795 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
6796 "vtbl2");
6797 }
6798 case NEON::BI__builtin_neon_vtbx1_v: {
6799 Value *TblRes =
6800 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
6801 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
6802
6803 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
6804 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
6805 CmpRes = Builder.CreateSExt(CmpRes, Ty);
6806
6807 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6808 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6809 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6810 }
6811 case NEON::BI__builtin_neon_vtbx2_v: {
6812 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
6813 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
6814 "vtbx1");
6815 }
6816 case NEON::BI__builtin_neon_vtbx3_v: {
6817 Value *TblRes =
6818 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
6819 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
6820
6821 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
6822 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
6823 TwentyFourV);
6824 CmpRes = Builder.CreateSExt(CmpRes, Ty);
6825
6826 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6827 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6828 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6829 }
6830 case NEON::BI__builtin_neon_vtbx4_v: {
6831 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
6832 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
6833 "vtbx2");
6834 }
6835 case NEON::BI__builtin_neon_vqtbl1_v:
6836 case NEON::BI__builtin_neon_vqtbl1q_v:
6837 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
6838 case NEON::BI__builtin_neon_vqtbl2_v:
6839 case NEON::BI__builtin_neon_vqtbl2q_v: {
6840 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
6841 case NEON::BI__builtin_neon_vqtbl3_v:
6842 case NEON::BI__builtin_neon_vqtbl3q_v:
6843 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
6844 case NEON::BI__builtin_neon_vqtbl4_v:
6845 case NEON::BI__builtin_neon_vqtbl4q_v:
6846 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
6847 case NEON::BI__builtin_neon_vqtbx1_v:
6848 case NEON::BI__builtin_neon_vqtbx1q_v:
6849 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
6850 case NEON::BI__builtin_neon_vqtbx2_v:
6851 case NEON::BI__builtin_neon_vqtbx2q_v:
6852 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
6853 case NEON::BI__builtin_neon_vqtbx3_v:
6854 case NEON::BI__builtin_neon_vqtbx3q_v:
6855 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
6856 case NEON::BI__builtin_neon_vqtbx4_v:
6857 case NEON::BI__builtin_neon_vqtbx4q_v:
6858 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
6859 }
6860 }
6861
6862 if (!Int)
6863 return nullptr;
6864
6865 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
6866 return CGF.EmitNeonCall(F, Ops, s);
6867}
6868
6869Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
6870 llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
6871 Op = Builder.CreateBitCast(Op, Int16Ty);
6872 Value *V = UndefValue::get(VTy);
6873 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6874 Op = Builder.CreateInsertElement(V, Op, CI);
6875 return Op;
6876}
6877
6878Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
6879 const CallExpr *E,
6880 llvm::Triple::ArchType Arch) {
6881 unsigned HintID = static_cast<unsigned>(-1);
6882 switch (BuiltinID) {
6883 default: break;
6884 case AArch64::BI__builtin_arm_nop:
6885 HintID = 0;
6886 break;
6887 case AArch64::BI__builtin_arm_yield:
6888 case AArch64::BI__yield:
6889 HintID = 1;
6890 break;
6891 case AArch64::BI__builtin_arm_wfe:
6892 case AArch64::BI__wfe:
6893 HintID = 2;
6894 break;
6895 case AArch64::BI__builtin_arm_wfi:
6896 case AArch64::BI__wfi:
6897 HintID = 3;
6898 break;
6899 case AArch64::BI__builtin_arm_sev:
6900 case AArch64::BI__sev:
6901 HintID = 4;
6902 break;
6903 case AArch64::BI__builtin_arm_sevl:
6904 case AArch64::BI__sevl:
6905 HintID = 5;
6906 break;
6907 }
6908
6909 if (HintID != static_cast<unsigned>(-1)) {
6910 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
6911 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
6912 }
6913
6914 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
6915 Value *Address = EmitScalarExpr(E->getArg(0));
6916 Value *RW = EmitScalarExpr(E->getArg(1));
6917 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
6918 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
6919 Value *IsData = EmitScalarExpr(E->getArg(4));
6920
6921 Value *Locality = nullptr;
6922 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
6923 // Temporal fetch, needs to convert cache level to locality.
6924 Locality = llvm::ConstantInt::get(Int32Ty,
6925 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
6926 } else {
6927 // Streaming fetch.
6928 Locality = llvm::ConstantInt::get(Int32Ty, 0);
6929 }
6930
6931 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
6932 // PLDL3STRM or PLDL2STRM.
6933 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
6934 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6935 }
6936
6937 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
6938 assert((getContext().getTypeSize(E->getType()) == 32) &&(((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6939, __PRETTY_FUNCTION__))
6939 "rbit of unusual size!")(((getContext().getTypeSize(E->getType()) == 32) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6939, __PRETTY_FUNCTION__))
;
6940 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6941 return Builder.CreateCall(
6942 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6943 }
6944 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
6945 assert((getContext().getTypeSize(E->getType()) == 64) &&(((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6946, __PRETTY_FUNCTION__))
6946 "rbit of unusual size!")(((getContext().getTypeSize(E->getType()) == 64) &&
"rbit of unusual size!") ? static_cast<void> (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6946, __PRETTY_FUNCTION__))
;
6947 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6948 return Builder.CreateCall(
6949 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6950 }
6951
6952 if (BuiltinID == AArch64::BI__clear_cache) {
6953 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")((E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"
) ? static_cast<void> (0) : __assert_fail ("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 6953, __PRETTY_FUNCTION__))
;
6954 const FunctionDecl *FD = E->getDirectCallee();
6955 Value *Ops[2];
6956 for (unsigned i = 0; i < 2; i++)
6957 Ops[i] = EmitScalarExpr(E->getArg(i));
6958 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6959 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6960 StringRef Name = FD->getName();
6961 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6962 }
6963
6964 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
6965 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
6966 getContext().getTypeSize(E->getType()) == 128) {
6967 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
6968 ? Intrinsic::aarch64_ldaxp
6969 : Intrinsic::aarch64_ldxp);
6970
6971 Value *LdPtr = EmitScalarExpr(E->getArg(0));
6972 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6973 "ldxp");
6974
6975 Value *Val0 = Builder.CreateExtractValue(Val, 1);
6976 Value *Val1 = Builder.CreateExtractValue(Val, 0);
6977 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
6978 Val0 = Builder.CreateZExt(Val0, Int128Ty);
6979 Val1 = Builder.CreateZExt(Val1, Int128Ty);
6980
6981 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
6982 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6983 Val = Builder.CreateOr(Val, Val1);
6984 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6985 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
6986 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
6987 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6988
6989 QualType Ty = E->getType();
6990 llvm::Type *RealResTy = ConvertType(Ty);
6991 llvm::Type *PtrTy = llvm::IntegerType::get(
6992 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6993 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6994
6995 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
6996 ? Intrinsic::aarch64_ldaxr
6997 : Intrinsic::aarch64_ldxr,
6998 PtrTy);
6999 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
7000
7001 if (RealResTy->isPointerTy())
7002 return Builder.CreateIntToPtr(Val, RealResTy);
7003
7004 llvm::Type *IntResTy = llvm::IntegerType::get(
7005 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7006 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7007 return Builder.CreateBitCast(Val, RealResTy);
7008 }
7009
7010 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
7011 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
7012 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
7013 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7014 ? Intrinsic::aarch64_stlxp
7015 : Intrinsic::aarch64_stxp);
7016 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
7017
7018 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7019 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
7020
7021 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
7022 llvm::Value *Val = Builder.CreateLoad(Tmp);
7023
7024 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7025 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7026 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
7027 Int8PtrTy);
7028 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
7029 }
7030
7031 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
7032 BuiltinID == AArch64::BI__builtin_arm_stlex) {
7033 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7034 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7035
7036 QualType Ty = E->getArg(0)->getType();
7037 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7038 getContext().getTypeSize(Ty));
7039 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7040
7041 if (StoreVal->getType()->isPointerTy())
7042 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
7043 else {
7044 llvm::Type *IntTy = llvm::IntegerType::get(
7045 getLLVMContext(),
7046 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7047 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7048 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
7049 }
7050
7051 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
7052 ? Intrinsic::aarch64_stlxr
7053 : Intrinsic::aarch64_stxr,
7054 StoreAddr->getType());
7055 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
7056 }
7057
7058 if (BuiltinID == AArch64::BI__getReg) {
7059 Expr::EvalResult Result;
7060 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7061 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7061)
;
7062
7063 llvm::APSInt Value = Result.Val.getInt();
7064 LLVMContext &Context = CGM.getLLVMContext();
7065 std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
7066
7067 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
7068 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7069 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7070
7071 llvm::Function *F =
7072 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
7073 return Builder.CreateCall(F, Metadata);
7074 }
7075
7076 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
7077 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
7078 return Builder.CreateCall(F);
7079 }
7080
7081 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
7082 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
7083 llvm::SyncScope::SingleThread);
7084
7085 // CRC32
7086 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7087 switch (BuiltinID) {
7088 case AArch64::BI__builtin_arm_crc32b:
7089 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
7090 case AArch64::BI__builtin_arm_crc32cb:
7091 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
7092 case AArch64::BI__builtin_arm_crc32h:
7093 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
7094 case AArch64::BI__builtin_arm_crc32ch:
7095 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
7096 case AArch64::BI__builtin_arm_crc32w:
7097 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
7098 case AArch64::BI__builtin_arm_crc32cw:
7099 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
7100 case AArch64::BI__builtin_arm_crc32d:
7101 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
7102 case AArch64::BI__builtin_arm_crc32cd:
7103 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
7104 }
7105
7106 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7107 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7108 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7109 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7110
7111 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
7112 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
7113
7114 return Builder.CreateCall(F, {Arg0, Arg1});
7115 }
7116
7117 // Memory Tagging Extensions (MTE) Intrinsics
7118 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
7119 switch (BuiltinID) {
7120 case AArch64::BI__builtin_arm_irg:
7121 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
7122 case AArch64::BI__builtin_arm_addg:
7123 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
7124 case AArch64::BI__builtin_arm_gmi:
7125 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
7126 case AArch64::BI__builtin_arm_ldg:
7127 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
7128 case AArch64::BI__builtin_arm_stg:
7129 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
7130 case AArch64::BI__builtin_arm_subp:
7131 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
7132 }
7133
7134 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
7135 llvm::Type *T = ConvertType(E->getType());
7136
7137 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
7138 Value *Pointer = EmitScalarExpr(E->getArg(0));
7139 Value *Mask = EmitScalarExpr(E->getArg(1));
7140
7141 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7142 Mask = Builder.CreateZExt(Mask, Int64Ty);
7143 Value *RV = Builder.CreateCall(
7144 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
7145 return Builder.CreatePointerCast(RV, T);
7146 }
7147 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
7148 Value *Pointer = EmitScalarExpr(E->getArg(0));
7149 Value *TagOffset = EmitScalarExpr(E->getArg(1));
7150
7151 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7152 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
7153 Value *RV = Builder.CreateCall(
7154 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
7155 return Builder.CreatePointerCast(RV, T);
7156 }
7157 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
7158 Value *Pointer = EmitScalarExpr(E->getArg(0));
7159 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
7160
7161 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
7162 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
7163 return Builder.CreateCall(
7164 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
7165 }
7166 // Although it is possible to supply a different return
7167 // address (first arg) to this intrinsic, for now we set
7168 // return address same as input address.
7169 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
7170 Value *TagAddress = EmitScalarExpr(E->getArg(0));
7171 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7172 Value *RV = Builder.CreateCall(
7173 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7174 return Builder.CreatePointerCast(RV, T);
7175 }
7176 // Although it is possible to supply a different tag (to set)
7177 // to this intrinsic (as first arg), for now we supply
7178 // the tag that is in input address arg (common use case).
7179 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
7180 Value *TagAddress = EmitScalarExpr(E->getArg(0));
7181 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
7182 return Builder.CreateCall(
7183 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
7184 }
7185 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
7186 Value *PointerA = EmitScalarExpr(E->getArg(0));
7187 Value *PointerB = EmitScalarExpr(E->getArg(1));
7188 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
7189 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
7190 return Builder.CreateCall(
7191 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
7192 }
7193 }
7194
7195 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
7196 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7197 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7198 BuiltinID == AArch64::BI__builtin_arm_wsr ||
7199 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7200 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
7201
7202 bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
7203 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7204 BuiltinID == AArch64::BI__builtin_arm_rsrp;
7205
7206 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7207 BuiltinID == AArch64::BI__builtin_arm_wsrp;
7208
7209 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
7210 BuiltinID != AArch64::BI__builtin_arm_wsr;
7211
7212 llvm::Type *ValueType;
7213 llvm::Type *RegisterType = Int64Ty;
7214 if (IsPointerBuiltin) {
7215 ValueType = VoidPtrTy;
7216 } else if (Is64Bit) {
7217 ValueType = Int64Ty;
7218 } else {
7219 ValueType = Int32Ty;
7220 }
7221
7222 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
7223 }
7224
7225 if (BuiltinID == AArch64::BI_ReadStatusReg ||
7226 BuiltinID == AArch64::BI_WriteStatusReg) {
7227 LLVMContext &Context = CGM.getLLVMContext();
7228
7229 unsigned SysReg =
7230 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
7231
7232 std::string SysRegStr;
7233 llvm::raw_string_ostream(SysRegStr) <<
7234 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
7235 ((SysReg >> 11) & 7) << ":" <<
7236 ((SysReg >> 7) & 15) << ":" <<
7237 ((SysReg >> 3) & 15) << ":" <<
7238 ( SysReg & 7);
7239
7240 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
7241 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7242 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7243
7244 llvm::Type *RegisterType = Int64Ty;
7245 llvm::Type *Types[] = { RegisterType };
7246
7247 if (BuiltinID == AArch64::BI_ReadStatusReg) {
7248 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
7249
7250 return Builder.CreateCall(F, Metadata);
7251 }
7252
7253 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7254 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
7255
7256 return Builder.CreateCall(F, { Metadata, ArgValue });
7257 }
7258
7259 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
7260 llvm::Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
7261 return Builder.CreateCall(F);
7262 }
7263
7264 if (BuiltinID == AArch64::BI__builtin_sponentry) {
7265 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry);
7266 return Builder.CreateCall(F);
7267 }
7268
7269 // Find out if any arguments are required to be integer constant
7270 // expressions.
7271 unsigned ICEArguments = 0;
7272 ASTContext::GetBuiltinTypeError Error;
7273 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7274 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7274, __PRETTY_FUNCTION__))
;
7275
7276 llvm::SmallVector<Value*, 4> Ops;
7277 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
7278 if ((ICEArguments & (1 << i)) == 0) {
7279 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7280 } else {
7281 // If this is required to be a constant, constant fold it so that we know
7282 // that the generated intrinsic gets a ConstantInt.
7283 llvm::APSInt Result;
7284 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7285 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7285, __PRETTY_FUNCTION__))
;
7286 (void)IsConst;
7287 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7288 }
7289 }
7290
7291 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
7292 const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
7293 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
7294
7295 if (Builtin) {
7296 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
7297 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
7298 assert(Result && "SISD intrinsic should have been handled")((Result && "SISD intrinsic should have been handled"
) ? static_cast<void> (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7298, __PRETTY_FUNCTION__))
;
7299 return Result;
7300 }
7301
7302 llvm::APSInt Result;
7303 const Expr *Arg = E->getArg(E->getNumArgs()-1);
7304 NeonTypeFlags Type(0);
7305 if (Arg->isIntegerConstantExpr(Result, getContext()))
7306 // Determine the type of this overloaded NEON intrinsic.
7307 Type = NeonTypeFlags(Result.getZExtValue());
7308
7309 bool usgn = Type.isUnsigned();
7310 bool quad = Type.isQuad();
7311
7312 // Handle non-overloaded intrinsics first.
7313 switch (BuiltinID) {
7314 default: break;
7315 case NEON::BI__builtin_neon_vabsh_f16:
7316 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7317 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
7318 case NEON::BI__builtin_neon_vldrq_p128: {
7319 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
7320 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
7321 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
7322 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
7323 CharUnits::fromQuantity(16));
7324 }
7325 case NEON::BI__builtin_neon_vstrq_p128: {
7326 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
7327 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
7328 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
7329 }
7330 case NEON::BI__builtin_neon_vcvts_u32_f32:
7331 case NEON::BI__builtin_neon_vcvtd_u64_f64:
7332 usgn = true;
7333 LLVM_FALLTHROUGH[[clang::fallthrough]];
7334 case NEON::BI__builtin_neon_vcvts_s32_f32:
7335 case NEON::BI__builtin_neon_vcvtd_s64_f64: {
7336 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7337 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7338 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7339 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7340 Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
7341 if (usgn)
7342 return Builder.CreateFPToUI(Ops[0], InTy);
7343 return Builder.CreateFPToSI(Ops[0], InTy);
7344 }
7345 case NEON::BI__builtin_neon_vcvts_f32_u32:
7346 case NEON::BI__builtin_neon_vcvtd_f64_u64:
7347 usgn = true;
7348 LLVM_FALLTHROUGH[[clang::fallthrough]];
7349 case NEON::BI__builtin_neon_vcvts_f32_s32:
7350 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
7351 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7352 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7353 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7354 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7355 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7356 if (usgn)
7357 return Builder.CreateUIToFP(Ops[0], FTy);
7358 return Builder.CreateSIToFP(Ops[0], FTy);
7359 }
7360 case NEON::BI__builtin_neon_vcvth_f16_u16:
7361 case NEON::BI__builtin_neon_vcvth_f16_u32:
7362 case NEON::BI__builtin_neon_vcvth_f16_u64:
7363 usgn = true;
7364 LLVM_FALLTHROUGH[[clang::fallthrough]];
7365 case NEON::BI__builtin_neon_vcvth_f16_s16:
7366 case NEON::BI__builtin_neon_vcvth_f16_s32:
7367 case NEON::BI__builtin_neon_vcvth_f16_s64: {
7368 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7369 llvm::Type *FTy = HalfTy;
7370 llvm::Type *InTy;
7371 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
7372 InTy = Int64Ty;
7373 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
7374 InTy = Int32Ty;
7375 else
7376 InTy = Int16Ty;
7377 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7378 if (usgn)
7379 return Builder.CreateUIToFP(Ops[0], FTy);
7380 return Builder.CreateSIToFP(Ops[0], FTy);
7381 }
7382 case NEON::BI__builtin_neon_vcvth_u16_f16:
7383 usgn = true;
7384 LLVM_FALLTHROUGH[[clang::fallthrough]];
7385 case NEON::BI__builtin_neon_vcvth_s16_f16: {
7386 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7387 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7388 if (usgn)
7389 return Builder.CreateFPToUI(Ops[0], Int16Ty);
7390 return Builder.CreateFPToSI(Ops[0], Int16Ty);
7391 }
7392 case NEON::BI__builtin_neon_vcvth_u32_f16:
7393 usgn = true;
7394 LLVM_FALLTHROUGH[[clang::fallthrough]];
7395 case NEON::BI__builtin_neon_vcvth_s32_f16: {
7396 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7397 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7398 if (usgn)
7399 return Builder.CreateFPToUI(Ops[0], Int32Ty);
7400 return Builder.CreateFPToSI(Ops[0], Int32Ty);
7401 }
7402 case NEON::BI__builtin_neon_vcvth_u64_f16:
7403 usgn = true;
7404 LLVM_FALLTHROUGH[[clang::fallthrough]];
7405 case NEON::BI__builtin_neon_vcvth_s64_f16: {
7406 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7407 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7408 if (usgn)
7409 return Builder.CreateFPToUI(Ops[0], Int64Ty);
7410 return Builder.CreateFPToSI(Ops[0], Int64Ty);
7411 }
7412 case NEON::BI__builtin_neon_vcvtah_u16_f16:
7413 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7414 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7415 case NEON::BI__builtin_neon_vcvtph_u16_f16:
7416 case NEON::BI__builtin_neon_vcvtah_s16_f16:
7417 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7418 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7419 case NEON::BI__builtin_neon_vcvtph_s16_f16: {
7420 unsigned Int;
7421 llvm::Type* InTy = Int32Ty;
7422 llvm::Type* FTy = HalfTy;
7423 llvm::Type *Tys[2] = {InTy, FTy};
7424 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7425 switch (BuiltinID) {
7426 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7426)
;
7427 case NEON::BI__builtin_neon_vcvtah_u16_f16:
7428 Int = Intrinsic::aarch64_neon_fcvtau; break;
7429 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7430 Int = Intrinsic::aarch64_neon_fcvtmu; break;
7431 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7432 Int = Intrinsic::aarch64_neon_fcvtnu; break;
7433 case NEON::BI__builtin_neon_vcvtph_u16_f16:
7434 Int = Intrinsic::aarch64_neon_fcvtpu; break;
7435 case NEON::BI__builtin_neon_vcvtah_s16_f16:
7436 Int = Intrinsic::aarch64_neon_fcvtas; break;
7437 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7438 Int = Intrinsic::aarch64_neon_fcvtms; break;
7439 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7440 Int = Intrinsic::aarch64_neon_fcvtns; break;
7441 case NEON::BI__builtin_neon_vcvtph_s16_f16:
7442 Int = Intrinsic::aarch64_neon_fcvtps; break;
7443 }
7444 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
7445 return Builder.CreateTrunc(Ops[0], Int16Ty);
7446 }
7447 case NEON::BI__builtin_neon_vcaleh_f16:
7448 case NEON::BI__builtin_neon_vcalth_f16:
7449 case NEON::BI__builtin_neon_vcageh_f16:
7450 case NEON::BI__builtin_neon_vcagth_f16: {
7451 unsigned Int;
7452 llvm::Type* InTy = Int32Ty;
7453 llvm::Type* FTy = HalfTy;
7454 llvm::Type *Tys[2] = {InTy, FTy};
7455 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7456 switch (BuiltinID) {
7457 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7457)
;
7458 case NEON::BI__builtin_neon_vcageh_f16:
7459 Int = Intrinsic::aarch64_neon_facge; break;
7460 case NEON::BI__builtin_neon_vcagth_f16:
7461 Int = Intrinsic::aarch64_neon_facgt; break;
7462 case NEON::BI__builtin_neon_vcaleh_f16:
7463 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
7464 case NEON::BI__builtin_neon_vcalth_f16:
7465 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
7466 }
7467 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
7468 return Builder.CreateTrunc(Ops[0], Int16Ty);
7469 }
7470 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7471 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
7472 unsigned Int;
7473 llvm::Type* InTy = Int32Ty;
7474 llvm::Type* FTy = HalfTy;
7475 llvm::Type *Tys[2] = {InTy, FTy};
7476 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7477 switch (BuiltinID) {
7478 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7478)
;
7479 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7480 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
7481 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
7482 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
7483 }
7484 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7485 return Builder.CreateTrunc(Ops[0], Int16Ty);
7486 }
7487 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7488 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
7489 unsigned Int;
7490 llvm::Type* FTy = HalfTy;
7491 llvm::Type* InTy = Int32Ty;
7492 llvm::Type *Tys[2] = {FTy, InTy};
7493 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7494 switch (BuiltinID) {
7495 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7495)
;
7496 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7497 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
7498 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
7499 break;
7500 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
7501 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
7502 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
7503 break;
7504 }
7505 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7506 }
7507 case NEON::BI__builtin_neon_vpaddd_s64: {
7508 llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
7509 Value *Vec = EmitScalarExpr(E->getArg(0));
7510 // The vector is v2f64, so make sure it's bitcast to that.
7511 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
7512 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7513 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7514 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7515 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7516 // Pairwise addition of a v2f64 into a scalar f64.
7517 return Builder.CreateAdd(Op0, Op1, "vpaddd");
7518 }
7519 case NEON::BI__builtin_neon_vpaddd_f64: {
7520 llvm::Type *Ty =
7521 llvm::VectorType::get(DoubleTy, 2);
7522 Value *Vec = EmitScalarExpr(E->getArg(0));
7523 // The vector is v2f64, so make sure it's bitcast to that.
7524 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
7525 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7526 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7527 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7528 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7529 // Pairwise addition of a v2f64 into a scalar f64.
7530 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7531 }
7532 case NEON::BI__builtin_neon_vpadds_f32: {
7533 llvm::Type *Ty =
7534 llvm::VectorType::get(FloatTy, 2);
7535 Value *Vec = EmitScalarExpr(E->getArg(0));
7536 // The vector is v2f32, so make sure it's bitcast to that.
7537 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
7538 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7539 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7540 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7541 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7542 // Pairwise addition of a v2f32 into a scalar f32.
7543 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7544 }
7545 case NEON::BI__builtin_neon_vceqzd_s64:
7546 case NEON::BI__builtin_neon_vceqzd_f64:
7547 case NEON::BI__builtin_neon_vceqzs_f32:
7548 case NEON::BI__builtin_neon_vceqzh_f16:
7549 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7550 return EmitAArch64CompareBuiltinExpr(
7551 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7552 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
7553 case NEON::BI__builtin_neon_vcgezd_s64:
7554 case NEON::BI__builtin_neon_vcgezd_f64:
7555 case NEON::BI__builtin_neon_vcgezs_f32:
7556 case NEON::BI__builtin_neon_vcgezh_f16:
7557 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7558 return EmitAArch64CompareBuiltinExpr(
7559 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7560 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
7561 case NEON::BI__builtin_neon_vclezd_s64:
7562 case NEON::BI__builtin_neon_vclezd_f64:
7563 case NEON::BI__builtin_neon_vclezs_f32:
7564 case NEON::BI__builtin_neon_vclezh_f16:
7565 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7566 return EmitAArch64CompareBuiltinExpr(
7567 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7568 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
7569 case NEON::BI__builtin_neon_vcgtzd_s64:
7570 case NEON::BI__builtin_neon_vcgtzd_f64:
7571 case NEON::BI__builtin_neon_vcgtzs_f32:
7572 case NEON::BI__builtin_neon_vcgtzh_f16:
7573 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7574 return EmitAArch64CompareBuiltinExpr(
7575 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7576 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
7577 case NEON::BI__builtin_neon_vcltzd_s64:
7578 case NEON::BI__builtin_neon_vcltzd_f64:
7579 case NEON::BI__builtin_neon_vcltzs_f32:
7580 case NEON::BI__builtin_neon_vcltzh_f16:
7581 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7582 return EmitAArch64CompareBuiltinExpr(
7583 Ops[0], ConvertType(E->getCallReturnType(getContext())),
7584 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
7585
7586 case NEON::BI__builtin_neon_vceqzd_u64: {
7587 Ops.push_back(EmitScalarExpr(E->getArg(0)));
7588 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7589 Ops[0] =
7590 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
7591 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
7592 }
7593 case NEON::BI__builtin_neon_vceqd_f64:
7594 case NEON::BI__builtin_neon_vcled_f64:
7595 case NEON::BI__builtin_neon_vcltd_f64:
7596 case NEON::BI__builtin_neon_vcged_f64:
7597 case NEON::BI__builtin_neon_vcgtd_f64: {
7598 llvm::CmpInst::Predicate P;
7599 switch (BuiltinID) {
7600 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7600)
;
7601 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
7602 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
7603 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
7604 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
7605 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
7606 }
7607 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7608 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7609 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
7610 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7611 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
7612 }
7613 case NEON::BI__builtin_neon_vceqs_f32:
7614 case NEON::BI__builtin_neon_vcles_f32:
7615 case NEON::BI__builtin_neon_vclts_f32:
7616 case NEON::BI__builtin_neon_vcges_f32:
7617 case NEON::BI__builtin_neon_vcgts_f32: {
7618 llvm::CmpInst::Predicate P;
7619 switch (BuiltinID) {
7620 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7620)
;
7621 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
7622 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
7623 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
7624 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
7625 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
7626 }
7627 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7628 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
7629 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
7630 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7631 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
7632 }
7633 case NEON::BI__builtin_neon_vceqh_f16:
7634 case NEON::BI__builtin_neon_vcleh_f16:
7635 case NEON::BI__builtin_neon_vclth_f16:
7636 case NEON::BI__builtin_neon_vcgeh_f16:
7637 case NEON::BI__builtin_neon_vcgth_f16: {
7638 llvm::CmpInst::Predicate P;
7639 switch (BuiltinID) {
7640 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7640)
;
7641 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
7642 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
7643 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
7644 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
7645 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
7646 }
7647 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7648 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7649 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
7650 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7651 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
7652 }
7653 case NEON::BI__builtin_neon_vceqd_s64:
7654 case NEON::BI__builtin_neon_vceqd_u64:
7655 case NEON::BI__builtin_neon_vcgtd_s64:
7656 case NEON::BI__builtin_neon_vcgtd_u64:
7657 case NEON::BI__builtin_neon_vcltd_s64:
7658 case NEON::BI__builtin_neon_vcltd_u64:
7659 case NEON::BI__builtin_neon_vcged_u64:
7660 case NEON::BI__builtin_neon_vcged_s64:
7661 case NEON::BI__builtin_neon_vcled_u64:
7662 case NEON::BI__builtin_neon_vcled_s64: {
7663 llvm::CmpInst::Predicate P;
7664 switch (BuiltinID) {
7665 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 7665)
;
7666 case NEON::BI__builtin_neon_vceqd_s64:
7667 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
7668 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
7669 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
7670 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
7671 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
7672 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
7673 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
7674 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
7675 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
7676 }
7677 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7678 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7679 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7680 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
7681 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
7682 }
7683 case NEON::BI__builtin_neon_vtstd_s64:
7684 case NEON::BI__builtin_neon_vtstd_u64: {
7685 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7686 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7687 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7688 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7689 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7690 llvm::Constant::getNullValue(Int64Ty));
7691 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
7692 }
7693 case NEON::BI__builtin_neon_vset_lane_i8:
7694 case NEON::BI__builtin_neon_vset_lane_i16:
7695 case NEON::BI__builtin_neon_vset_lane_i32:
7696 case NEON::BI__builtin_neon_vset_lane_i64:
7697 case NEON::BI__builtin_neon_vset_lane_f32:
7698 case NEON::BI__builtin_neon_vsetq_lane_i8:
7699 case NEON::BI__builtin_neon_vsetq_lane_i16:
7700 case NEON::BI__builtin_neon_vsetq_lane_i32:
7701 case NEON::BI__builtin_neon_vsetq_lane_i64:
7702 case NEON::BI__builtin_neon_vsetq_lane_f32:
7703 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7704 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7705 case NEON::BI__builtin_neon_vset_lane_f64:
7706 // The vector type needs a cast for the v1f64 variant.
7707 Ops[1] = Builder.CreateBitCast(Ops[1],
7708 llvm::VectorType::get(DoubleTy, 1));
7709 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7710 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7711 case NEON::BI__builtin_neon_vsetq_lane_f64:
7712 // The vector type needs a cast for the v2f64 variant.
7713 Ops[1] = Builder.CreateBitCast(Ops[1],
7714 llvm::VectorType::get(DoubleTy, 2));
7715 Ops.push_back(EmitScalarExpr(E->getArg(2)));
7716 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7717
7718 case NEON::BI__builtin_neon_vget_lane_i8:
7719 case NEON::BI__builtin_neon_vdupb_lane_i8:
7720 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
7721 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7722 "vget_lane");
7723 case NEON::BI__builtin_neon_vgetq_lane_i8:
7724 case NEON::BI__builtin_neon_vdupb_laneq_i8:
7725 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
7726 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7727 "vgetq_lane");
7728 case NEON::BI__builtin_neon_vget_lane_i16:
7729 case NEON::BI__builtin_neon_vduph_lane_i16:
7730 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
7731 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7732 "vget_lane");
7733 case NEON::BI__builtin_neon_vgetq_lane_i16:
7734 case NEON::BI__builtin_neon_vduph_laneq_i16:
7735 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
7736 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7737 "vgetq_lane");
7738 case NEON::BI__builtin_neon_vget_lane_i32:
7739 case NEON::BI__builtin_neon_vdups_lane_i32:
7740 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
7741 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7742 "vget_lane");
7743 case NEON::BI__builtin_neon_vdups_lane_f32:
7744 Ops[0] = Builder.CreateBitCast(Ops[0],
7745 llvm::VectorType::get(FloatTy, 2));
7746 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7747 "vdups_lane");
7748 case NEON::BI__builtin_neon_vgetq_lane_i32:
7749 case NEON::BI__builtin_neon_vdups_laneq_i32:
7750 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
7751 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7752 "vgetq_lane");
7753 case NEON::BI__builtin_neon_vget_lane_i64:
7754 case NEON::BI__builtin_neon_vdupd_lane_i64:
7755 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
7756 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7757 "vget_lane");
7758 case NEON::BI__builtin_neon_vdupd_lane_f64:
7759 Ops[0] = Builder.CreateBitCast(Ops[0],
7760 llvm::VectorType::get(DoubleTy, 1));
7761 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7762 "vdupd_lane");
7763 case NEON::BI__builtin_neon_vgetq_lane_i64:
7764 case NEON::BI__builtin_neon_vdupd_laneq_i64:
7765 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
7766 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7767 "vgetq_lane");
7768 case NEON::BI__builtin_neon_vget_lane_f32:
7769 Ops[0] = Builder.CreateBitCast(Ops[0],
7770 llvm::VectorType::get(FloatTy, 2));
7771 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7772 "vget_lane");
7773 case NEON::BI__builtin_neon_vget_lane_f64:
7774 Ops[0] = Builder.CreateBitCast(Ops[0],
7775 llvm::VectorType::get(DoubleTy, 1));
7776 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7777 "vget_lane");
7778 case NEON::BI__builtin_neon_vgetq_lane_f32:
7779 case NEON::BI__builtin_neon_vdups_laneq_f32:
7780 Ops[0] = Builder.CreateBitCast(Ops[0],
7781 llvm::VectorType::get(FloatTy, 4));
7782 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7783 "vgetq_lane");
7784 case NEON::BI__builtin_neon_vgetq_lane_f64:
7785 case NEON::BI__builtin_neon_vdupd_laneq_f64:
7786 Ops[0] = Builder.CreateBitCast(Ops[0],
7787 llvm::VectorType::get(DoubleTy, 2));
7788 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7789 "vgetq_lane");
7790 case NEON::BI__builtin_neon_vaddh_f16:
7791 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7792 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
7793 case NEON::BI__builtin_neon_vsubh_f16:
7794 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7795 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
7796 case NEON::BI__builtin_neon_vmulh_f16:
7797 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7798 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
7799 case NEON::BI__builtin_neon_vdivh_f16:
7800 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7801 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
7802 case NEON::BI__builtin_neon_vfmah_f16: {
7803 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7804 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7805 return Builder.CreateCall(F,
7806 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
7807 }
7808 case NEON::BI__builtin_neon_vfmsh_f16: {
7809 Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7810 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
7811 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
7812 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7813 return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
7814 }
7815 case NEON::BI__builtin_neon_vaddd_s64:
7816 case NEON::BI__builtin_neon_vaddd_u64:
7817 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
7818 case NEON::BI__builtin_neon_vsubd_s64:
7819 case NEON::BI__builtin_neon_vsubd_u64:
7820 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
7821 case NEON::BI__builtin_neon_vqdmlalh_s16:
7822 case NEON::BI__builtin_neon_vqdmlslh_s16: {
7823 SmallVector<Value *, 2> ProductOps;
7824 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7825 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
7826 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7827 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7828 ProductOps, "vqdmlXl");
7829 Constant *CI = ConstantInt::get(SizeTy, 0);
7830 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7831
7832 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
7833 ? Intrinsic::aarch64_neon_sqadd
7834 : Intrinsic::aarch64_neon_sqsub;
7835 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
7836 }
7837 case NEON::BI__builtin_neon_vqshlud_n_s64: {
7838 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7839 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7840 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
7841 Ops, "vqshlu_n");
7842 }
7843 case NEON::BI__builtin_neon_vqshld_n_u64:
7844 case NEON::BI__builtin_neon_vqshld_n_s64: {
7845 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
7846 ? Intrinsic::aarch64_neon_uqshl
7847 : Intrinsic::aarch64_neon_sqshl;
7848 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7849 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7850 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
7851 }
7852 case NEON::BI__builtin_neon_vrshrd_n_u64:
7853 case NEON::BI__builtin_neon_vrshrd_n_s64: {
7854 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
7855 ? Intrinsic::aarch64_neon_urshl
7856 : Intrinsic::aarch64_neon_srshl;
7857 Ops.push_back(EmitScalarExpr(E->getArg(1)));
7858 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
7859 Ops[1] = ConstantInt::get(Int64Ty, -SV);
7860 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
7861 }
7862 case NEON::BI__builtin_neon_vrsrad_n_u64:
7863 case NEON::BI__builtin_neon_vrsrad_n_s64: {
7864 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
7865 ? Intrinsic::aarch64_neon_urshl
7866 : Intrinsic::aarch64_neon_srshl;
7867 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7868 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
7869 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
7870 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
7871 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
7872 }
7873 case NEON::BI__builtin_neon_vshld_n_s64:
7874 case NEON::BI__builtin_neon_vshld_n_u64: {
7875 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7876 return Builder.CreateShl(
7877 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
7878 }
7879 case NEON::BI__builtin_neon_vshrd_n_s64: {
7880 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7881 return Builder.CreateAShr(
7882 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7883 Amt->getZExtValue())),
7884 "shrd_n");
7885 }
7886 case NEON::BI__builtin_neon_vshrd_n_u64: {
7887 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7888 uint64_t ShiftAmt = Amt->getZExtValue();
7889 // Right-shifting an unsigned value by its size yields 0.
7890 if (ShiftAmt == 64)
7891 return ConstantInt::get(Int64Ty, 0);
7892 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
7893 "shrd_n");
7894 }
7895 case NEON::BI__builtin_neon_vsrad_n_s64: {
7896 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7897 Ops[1] = Builder.CreateAShr(
7898 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7899 Amt->getZExtValue())),
7900 "shrd_n");
7901 return Builder.CreateAdd(Ops[0], Ops[1]);
7902 }
7903 case NEON::BI__builtin_neon_vsrad_n_u64: {
7904 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7905 uint64_t ShiftAmt = Amt->getZExtValue();
7906 // Right-shifting an unsigned value by its size yields 0.
7907 // As Op + 0 = Op, return Ops[0] directly.
7908 if (ShiftAmt == 64)
7909 return Ops[0];
7910 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
7911 "shrd_n");
7912 return Builder.CreateAdd(Ops[0], Ops[1]);
7913 }
7914 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
7915 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
7916 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
7917 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
7918 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7919 "lane");
7920 SmallVector<Value *, 2> ProductOps;
7921 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7922 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
7923 llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7924 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7925 ProductOps, "vqdmlXl");
7926 Constant *CI = ConstantInt::get(SizeTy, 0);
7927 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7928 Ops.pop_back();
7929
7930 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
7931 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
7932 ? Intrinsic::aarch64_neon_sqadd
7933 : Intrinsic::aarch64_neon_sqsub;
7934 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
7935 }
7936 case NEON::BI__builtin_neon_vqdmlals_s32:
7937 case NEON::BI__builtin_neon_vqdmlsls_s32: {
7938 SmallVector<Value *, 2> ProductOps;
7939 ProductOps.push_back(Ops[1]);
7940 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
7941 Ops[1] =
7942 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
7943 ProductOps, "vqdmlXl");
7944
7945 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
7946 ? Intrinsic::aarch64_neon_sqadd
7947 : Intrinsic::aarch64_neon_sqsub;
7948 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
7949 }
7950 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
7951 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
7952 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
7953 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
7954 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7955 "lane");
7956 SmallVector<Value *, 2> ProductOps;
7957 ProductOps.push_back(Ops[1]);
7958 ProductOps.push_back(Ops[2]);
7959 Ops[1] =
7960 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
7961 ProductOps, "vqdmlXl");
7962 Ops.pop_back();
7963
7964 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
7965 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
7966 ? Intrinsic::aarch64_neon_sqadd
7967 : Intrinsic::aarch64_neon_sqsub;
7968 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
7969 }
7970 case NEON::BI__builtin_neon_vduph_lane_f16: {
7971 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7972 "vget_lane");
7973 }
7974 case NEON::BI__builtin_neon_vduph_laneq_f16: {
7975 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7976 "vgetq_lane");
7977 }
7978 }
7979
7980 llvm::VectorType *VTy = GetNeonType(this, Type);
7981 llvm::Type *Ty = VTy;
7982 if (!Ty)
7983 return nullptr;
7984
7985 // Not all intrinsics handled by the common case work for AArch64 yet, so only
7986 // defer to common code if it's been added to our special map.
7987 Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
7988 AArch64SIMDIntrinsicsProvenSorted);
7989
7990 if (Builtin)
7991 return EmitCommonNeonBuiltinExpr(
7992 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7993 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
7994 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
7995
7996 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
7997 return V;
7998
7999 unsigned Int;
8000 switch (BuiltinID) {
8001 default: return nullptr;
8002 case NEON::BI__builtin_neon_vbsl_v:
8003 case NEON::BI__builtin_neon_vbslq_v: {
8004 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
8005 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
8006 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
8007 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
8008
8009 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
8010 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
8011 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
8012 return Builder.CreateBitCast(Ops[0], Ty);
8013 }
8014 case NEON::BI__builtin_neon_vfma_lane_v:
8015 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
8016 // The ARM builtins (and instructions) have the addend as the first
8017 // operand, but the 'fma' intrinsics have it last. Swap it around here.
8018 Value *Addend = Ops[0];
8019 Value *Multiplicand = Ops[1];
8020 Value *LaneSource = Ops[2];
8021 Ops[0] = Multiplicand;
8022 Ops[1] = LaneSource;
8023 Ops[2] = Addend;
8024
8025 // Now adjust things to handle the lane access.
8026 llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
8027 llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
8028 VTy;
8029 llvm::Constant *cst = cast<Constant>(Ops[3]);
8030 Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
8031 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
8032 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
8033
8034 Ops.pop_back();
8035 Int = Intrinsic::fma;
8036 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
8037 }
8038 case NEON::BI__builtin_neon_vfma_laneq_v: {
8039 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
8040 // v1f64 fma should be mapped to Neon scalar f64 fma
8041 if (VTy && VTy->getElementType() == DoubleTy) {
8042 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8043 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
8044 llvm::Type *VTy = GetNeonType(this,
8045 NeonTypeFlags(NeonTypeFlags::Float64, false, true));
8046 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
8047 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8048 Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
8049 Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8050 return Builder.CreateBitCast(Result, Ty);
8051 }
8052 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8053 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8054 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8055
8056 llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
8057 VTy->getNumElements() * 2);
8058 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
8059 Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
8060 cast<ConstantInt>(Ops[3]));
8061 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
8062
8063 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8064 }
8065 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
8066 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8067 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8068 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8069
8070 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8071 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
8072 return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
8073 }
8074 case NEON::BI__builtin_neon_vfmah_lane_f16:
8075 case NEON::BI__builtin_neon_vfmas_lane_f32:
8076 case NEON::BI__builtin_neon_vfmah_laneq_f16:
8077 case NEON::BI__builtin_neon_vfmas_laneq_f32:
8078 case NEON::BI__builtin_neon_vfmad_lane_f64:
8079 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
8080 Ops.push_back(EmitScalarExpr(E->getArg(3)));
8081 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
8082 Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
8083 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
8084 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
8085 }
8086 case NEON::BI__builtin_neon_vmull_v:
8087 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8088 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
8089 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
8090 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
8091 case NEON::BI__builtin_neon_vmax_v:
8092 case NEON::BI__builtin_neon_vmaxq_v:
8093 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8094 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
8095 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
8096 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
8097 case NEON::BI__builtin_neon_vmaxh_f16: {
8098 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8099 Int = Intrinsic::aarch64_neon_fmax;
8100 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
8101 }
8102 case NEON::BI__builtin_neon_vmin_v:
8103 case NEON::BI__builtin_neon_vminq_v:
8104 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8105 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
8106 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
8107 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
8108 case NEON::BI__builtin_neon_vminh_f16: {
8109 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8110 Int = Intrinsic::aarch64_neon_fmin;
8111 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
8112 }
8113 case NEON::BI__builtin_neon_vabd_v:
8114 case NEON::BI__builtin_neon_vabdq_v:
8115 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8116 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
8117 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
8118 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
8119 case NEON::BI__builtin_neon_vpadal_v:
8120 case NEON::BI__builtin_neon_vpadalq_v: {
8121 unsigned ArgElts = VTy->getNumElements();
8122 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
8123 unsigned BitWidth = EltTy->getBitWidth();
8124 llvm::Type *ArgTy = llvm::VectorType::get(
8125 llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
8126 llvm::Type* Tys[2] = { VTy, ArgTy };
8127 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
8128 SmallVector<llvm::Value*, 1> TmpOps;
8129 TmpOps.push_back(Ops[1]);
8130 Function *F = CGM.getIntrinsic(Int, Tys);
8131 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
8132 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
8133 return Builder.CreateAdd(tmp, addend);
8134 }
8135 case NEON::BI__builtin_neon_vpmin_v:
8136 case NEON::BI__builtin_neon_vpminq_v:
8137 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8138 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
8139 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
8140 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
8141 case NEON::BI__builtin_neon_vpmax_v:
8142 case NEON::BI__builtin_neon_vpmaxq_v:
8143 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
8144 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
8145 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
8146 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
8147 case NEON::BI__builtin_neon_vminnm_v:
8148 case NEON::BI__builtin_neon_vminnmq_v:
8149 Int = Intrinsic::aarch64_neon_fminnm;
8150 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
8151 case NEON::BI__builtin_neon_vminnmh_f16:
8152 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8153 Int = Intrinsic::aarch64_neon_fminnm;
8154 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
8155 case NEON::BI__builtin_neon_vmaxnm_v:
8156 case NEON::BI__builtin_neon_vmaxnmq_v:
8157 Int = Intrinsic::aarch64_neon_fmaxnm;
8158 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
8159 case NEON::BI__builtin_neon_vmaxnmh_f16:
8160 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8161 Int = Intrinsic::aarch64_neon_fmaxnm;
8162 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
8163 case NEON::BI__builtin_neon_vrecpss_f32: {
8164 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8165 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
8166 Ops, "vrecps");
8167 }
8168 case NEON::BI__builtin_neon_vrecpsd_f64:
8169 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8170 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
8171 Ops, "vrecps");
8172 case NEON::BI__builtin_neon_vrecpsh_f16:
8173 Ops.push_back(EmitScalarExpr(E->getArg(1)));
8174 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
8175 Ops, "vrecps");
8176 case NEON::BI__builtin_neon_vqshrun_n_v:
8177 Int = Intrinsic::aarch64_neon_sqshrun;
8178 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
8179 case NEON::BI__builtin_neon_vqrshrun_n_v:
8180 Int = Intrinsic::aarch64_neon_sqrshrun;
8181 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
8182 case NEON::BI__builtin_neon_vqshrn_n_v:
8183 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
8184 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
8185 case NEON::BI__builtin_neon_vrshrn_n_v:
8186 Int = Intrinsic::aarch64_neon_rshrn;
8187 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
8188 case NEON::BI__builtin_neon_vqrshrn_n_v:
8189 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
8190 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
8191 case NEON::BI__builtin_neon_vrndah_f16: {
8192 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8193 Int = Intrinsic::round;
8194 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
8195 }
8196 case NEON::BI__builtin_neon_vrnda_v:
8197 case NEON::BI__builtin_neon_vrndaq_v: {
8198 Int = Intrinsic::round;
8199 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
8200 }
8201 case NEON::BI__builtin_neon_vrndih_f16: {
8202 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8203 Int = Intrinsic::nearbyint;
8204 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
8205 }
8206 case NEON::BI__builtin_neon_vrndmh_f16: {
8207 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8208 Int = Intrinsic::floor;
8209 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
8210 }
8211 case NEON::BI__builtin_neon_vrndm_v:
8212 case NEON::BI__builtin_neon_vrndmq_v: {
8213 Int = Intrinsic::floor;
8214 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
8215 }
8216 case NEON::BI__builtin_neon_vrndnh_f16: {
8217 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8218 Int = Intrinsic::aarch64_neon_frintn;
8219 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
8220 }
8221 case NEON::BI__builtin_neon_vrndn_v:
8222 case NEON::BI__builtin_neon_vrndnq_v: {
8223 Int = Intrinsic::aarch64_neon_frintn;
8224 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
8225 }
8226 case NEON::BI__builtin_neon_vrndns_f32: {
8227 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8228 Int = Intrinsic::aarch64_neon_frintn;
8229 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
8230 }
8231 case NEON::BI__builtin_neon_vrndph_f16: {
8232 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8233 Int = Intrinsic::ceil;
8234 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
8235 }
8236 case NEON::BI__builtin_neon_vrndp_v:
8237 case NEON::BI__builtin_neon_vrndpq_v: {
8238 Int = Intrinsic::ceil;
8239 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
8240 }
8241 case NEON::BI__builtin_neon_vrndxh_f16: {
8242 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8243 Int = Intrinsic::rint;
8244 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
8245 }
8246 case NEON::BI__builtin_neon_vrndx_v:
8247 case NEON::BI__builtin_neon_vrndxq_v: {
8248 Int = Intrinsic::rint;
8249 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
8250 }
8251 case NEON::BI__builtin_neon_vrndh_f16: {
8252 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8253 Int = Intrinsic::trunc;
8254 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
8255 }
8256 case NEON::BI__builtin_neon_vrnd_v:
8257 case NEON::BI__builtin_neon_vrndq_v: {
8258 Int = Intrinsic::trunc;
8259 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
8260 }
8261 case NEON::BI__builtin_neon_vcvt_f64_v:
8262 case NEON::BI__builtin_neon_vcvtq_f64_v:
8263 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8264 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
8265 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
8266 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
8267 case NEON::BI__builtin_neon_vcvt_f64_f32: {
8268 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&((Type.getEltType() == NeonTypeFlags::Float64 && quad
&& "unexpected vcvt_f64_f32 builtin") ? static_cast<
void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8269, __PRETTY_FUNCTION__))
8269 "unexpected vcvt_f64_f32 builtin")((Type.getEltType() == NeonTypeFlags::Float64 && quad
&& "unexpected vcvt_f64_f32 builtin") ? static_cast<
void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8269, __PRETTY_FUNCTION__))
;
8270 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
8271 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8272
8273 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
8274 }
8275 case NEON::BI__builtin_neon_vcvt_f32_f64: {
8276 assert(Type.getEltType() == NeonTypeFlags::Float32 &&((Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"
) ? static_cast<void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8277, __PRETTY_FUNCTION__))
8277 "unexpected vcvt_f32_f64 builtin")((Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"
) ? static_cast<void> (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 8277, __PRETTY_FUNCTION__))
;
8278 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
8279 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8280
8281 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
8282 }
8283 case NEON::BI__builtin_neon_vcvt_s32_v:
8284 case NEON::BI__builtin_neon_vcvt_u32_v:
8285 case NEON::BI__builtin_neon_vcvt_s64_v:
8286 case NEON::BI__builtin_neon_vcvt_u64_v:
8287 case NEON::BI__builtin_neon_vcvt_s16_v:
8288 case NEON::BI__builtin_neon_vcvt_u16_v:
8289 case NEON::BI__builtin_neon_vcvtq_s32_v:
8290 case NEON::BI__builtin_neon_vcvtq_u32_v:
8291 case NEON::BI__builtin_neon_vcvtq_s64_v:
8292 case NEON::BI__builtin_neon_vcvtq_u64_v:
8293 case NEON::BI__builtin_neon_vcvtq_s16_v:
8294 case NEON::BI__builtin_neon_vcvtq_u16_v: {
8295 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
8296 if (usgn)
8297 return Builder.CreateFPToUI(Ops[0], Ty);
8298 return Builder.CreateFPToSI(Ops[0], Ty);
8299 }
8300 case NEON::BI__builtin_neon_vcvta_s16_v:
8301 case NEON::BI__builtin_neon_vcvta_u16_v:
8302 case NEON::BI__builtin_neon_vcvta_s32_v:
8303 case NEON::BI__builtin_neon_vcvtaq_s16_v:
8304 case NEON::BI__builtin_neon_vcvtaq_s32_v:
8305 case NEON::BI__builtin_neon_vcvta_u32_v:
8306 case NEON::BI__builtin_neon_vcvtaq_u16_v:
8307 case NEON::BI__builtin_neon_vcvtaq_u32_v:
8308 case NEON::BI__builtin_neon_vcvta_s64_v:
8309 case NEON::BI__builtin_neon_vcvtaq_s64_v:
8310 case NEON::BI__builtin_neon_vcvta_u64_v:
8311 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
8312 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
8313 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8314 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
8315 }
8316 case NEON::BI__builtin_neon_vcvtm_s16_v:
8317 case NEON::BI__builtin_neon_vcvtm_s32_v:
8318 case NEON::BI__builtin_neon_vcvtmq_s16_v:
8319 case NEON::BI__builtin_neon_vcvtmq_s32_v:
8320 case NEON::BI__builtin_neon_vcvtm_u16_v:
8321 case NEON::BI__builtin_neon_vcvtm_u32_v:
8322 case NEON::BI__builtin_neon_vcvtmq_u16_v:
8323 case NEON::BI__builtin_neon_vcvtmq_u32_v:
8324 case NEON::BI__builtin_neon_vcvtm_s64_v:
8325 case NEON::BI__builtin_neon_vcvtmq_s64_v:
8326 case NEON::BI__builtin_neon_vcvtm_u64_v:
8327 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
8328 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
8329 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8330 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
8331 }
8332 case NEON::BI__builtin_neon_vcvtn_s16_v:
8333 case NEON::BI__builtin_neon_vcvtn_s32_v:
8334 case NEON::BI__builtin_neon_vcvtnq_s16_v:
8335 case NEON::BI__builtin_neon_vcvtnq_s32_v:
8336 case NEON::BI__builtin_neon_vcvtn_u16_v:
8337 case NEON::BI__builtin_neon_vcvtn_u32_v:
8338 case NEON::BI__builtin_neon_vcvtnq_u16_v:
8339 case NEON::BI__builtin_neon_vcvtnq_u32_v:
8340 case NEON::BI__builtin_neon_vcvtn_s64_v:
8341 case NEON::BI__builtin_neon_vcvtnq_s64_v:
8342 case NEON::BI__builtin_neon_vcvtn_u64_v:
8343 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
8344 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
8345 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8346 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
8347 }
8348 case NEON::BI__builtin_neon_vcvtp_s16_v:
8349 case NEON::BI__builtin_neon_vcvtp_s32_v:
8350 case NEON::BI__builtin_neon_vcvtpq_s16_v:
8351 case NEON::BI__builtin_neon_vcvtpq_s32_v:
8352 case NEON::BI__builtin_neon_vcvtp_u16_v:
8353 case NEON::BI__builtin_neon_vcvtp_u32_v:
8354 case NEON::BI__builtin_neon_vcvtpq_u16_v:
8355 case NEON::BI__builtin_neon_vcvtpq_u32_v:
8356 case NEON::BI__builtin_neon_vcvtp_s64_v:
8357 case NEON::BI__builtin_neon_vcvtpq_s64_v:
8358 case NEON::BI__builtin_neon_vcvtp_u64_v:
8359 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
8360 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
8361 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8362 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
8363 }
8364 case NEON::BI__builtin_neon_vmulx_v:
8365 case NEON::BI__builtin_neon_vmulxq_v: {
8366 Int = Intrinsic::aarch64_neon_fmulx;
8367 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
8368 }
8369 case NEON::BI__builtin_neon_vmulxh_lane_f16:
8370 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
8371 // vmulx_lane should be mapped to Neon scalar mulx after
8372 // extracting the scalar element
8373 Ops.push_back(EmitScalarExpr(E->getArg(2)));
8374 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8375 Ops.pop_back();
8376 Int = Intrinsic::aarch64_neon_fmulx;
8377 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
8378 }
8379 case NEON::BI__builtin_neon_vmul_lane_v:
8380 case NEON::BI__builtin_neon_vmul_laneq_v: {
8381 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
8382 bool Quad = false;
8383 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
8384 Quad = true;
8385 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8386 llvm::Type *VTy = GetNeonType(this,
8387 NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
8388 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8389 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8390 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
8391 return Builder.CreateBitCast(Result, Ty);
8392 }
8393 case NEON::BI__builtin_neon_vnegd_s64:
8394 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
8395 case NEON::BI__builtin_neon_vnegh_f16:
8396 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
8397 case NEON::BI__builtin_neon_vpmaxnm_v:
8398 case NEON::BI__builtin_neon_vpmaxnmq_v: {
8399 Int = Intrinsic::aarch64_neon_fmaxnmp;
8400 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
8401 }
8402 case NEON::BI__builtin_neon_vpminnm_v:
8403 case NEON::BI__builtin_neon_vpminnmq_v: {
8404 Int = Intrinsic::aarch64_neon_fminnmp;
8405 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
8406 }
8407 case NEON::BI__builtin_neon_vsqrth_f16: {
8408 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8409 Int = Intrinsic::sqrt;
8410 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
8411 }
8412 case NEON::BI__builtin_neon_vsqrt_v:
8413 case NEON::BI__builtin_neon_vsqrtq_v: {
8414 Int = Intrinsic::sqrt;
8415 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8416 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
8417 }
8418 case NEON::BI__builtin_neon_vrbit_v:
8419 case NEON::BI__builtin_neon_vrbitq_v: {
8420 Int = Intrinsic::aarch64_neon_rbit;
8421 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
8422 }
8423 case NEON::BI__builtin_neon_vaddv_u8:
8424 // FIXME: These are handled by the AArch64 scalar code.
8425 usgn = true;
8426 LLVM_FALLTHROUGH[[clang::fallthrough]];
8427 case NEON::BI__builtin_neon_vaddv_s8: {
8428 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8429 Ty = Int32Ty;
8430 VTy = llvm::VectorType::get(Int8Ty, 8);
8431 llvm::Type *Tys[2] = { Ty, VTy };
8432 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8433 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8434 return Builder.CreateTrunc(Ops[0], Int8Ty);
8435 }
8436 case NEON::BI__builtin_neon_vaddv_u16:
8437 usgn = true;
8438 LLVM_FALLTHROUGH[[clang::fallthrough]];
8439 case NEON::BI__builtin_neon_vaddv_s16: {
8440 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8441 Ty = Int32Ty;
8442 VTy = llvm::VectorType::get(Int16Ty, 4);
8443 llvm::Type *Tys[2] = { Ty, VTy };
8444 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8445 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8446 return Builder.CreateTrunc(Ops[0], Int16Ty);
8447 }
8448 case NEON::BI__builtin_neon_vaddvq_u8:
8449 usgn = true;
8450 LLVM_FALLTHROUGH[[clang::fallthrough]];
8451 case NEON::BI__builtin_neon_vaddvq_s8: {
8452 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8453 Ty = Int32Ty;
8454 VTy = llvm::VectorType::get(Int8Ty, 16);
8455 llvm::Type *Tys[2] = { Ty, VTy };
8456 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8457 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8458 return Builder.CreateTrunc(Ops[0], Int8Ty);
8459 }
8460 case NEON::BI__builtin_neon_vaddvq_u16:
8461 usgn = true;
8462 LLVM_FALLTHROUGH[[clang::fallthrough]];
8463 case NEON::BI__builtin_neon_vaddvq_s16: {
8464 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8465 Ty = Int32Ty;
8466 VTy = llvm::VectorType::get(Int16Ty, 8);
8467 llvm::Type *Tys[2] = { Ty, VTy };
8468 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8469 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8470 return Builder.CreateTrunc(Ops[0], Int16Ty);
8471 }
8472 case NEON::BI__builtin_neon_vmaxv_u8: {
8473 Int = Intrinsic::aarch64_neon_umaxv;
8474 Ty = Int32Ty;
8475 VTy = llvm::VectorType::get(Int8Ty, 8);
8476 llvm::Type *Tys[2] = { Ty, VTy };
8477 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8478 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8479 return Builder.CreateTrunc(Ops[0], Int8Ty);
8480 }
8481 case NEON::BI__builtin_neon_vmaxv_u16: {
8482 Int = Intrinsic::aarch64_neon_umaxv;
8483 Ty = Int32Ty;
8484 VTy = llvm::VectorType::get(Int16Ty, 4);
8485 llvm::Type *Tys[2] = { Ty, VTy };
8486 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8487 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8488 return Builder.CreateTrunc(Ops[0], Int16Ty);
8489 }
8490 case NEON::BI__builtin_neon_vmaxvq_u8: {
8491 Int = Intrinsic::aarch64_neon_umaxv;
8492 Ty = Int32Ty;
8493 VTy = llvm::VectorType::get(Int8Ty, 16);
8494 llvm::Type *Tys[2] = { Ty, VTy };
8495 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8496 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8497 return Builder.CreateTrunc(Ops[0], Int8Ty);
8498 }
8499 case NEON::BI__builtin_neon_vmaxvq_u16: {
8500 Int = Intrinsic::aarch64_neon_umaxv;
8501 Ty = Int32Ty;
8502 VTy = llvm::VectorType::get(Int16Ty, 8);
8503 llvm::Type *Tys[2] = { Ty, VTy };
8504 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8505 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8506 return Builder.CreateTrunc(Ops[0], Int16Ty);
8507 }
8508 case NEON::BI__builtin_neon_vmaxv_s8: {
8509 Int = Intrinsic::aarch64_neon_smaxv;
8510 Ty = Int32Ty;
8511 VTy = llvm::VectorType::get(Int8Ty, 8);
8512 llvm::Type *Tys[2] = { Ty, VTy };
8513 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8514 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8515 return Builder.CreateTrunc(Ops[0], Int8Ty);
8516 }
8517 case NEON::BI__builtin_neon_vmaxv_s16: {
8518 Int = Intrinsic::aarch64_neon_smaxv;
8519 Ty = Int32Ty;
8520 VTy = llvm::VectorType::get(Int16Ty, 4);
8521 llvm::Type *Tys[2] = { Ty, VTy };
8522 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8523 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8524 return Builder.CreateTrunc(Ops[0], Int16Ty);
8525 }
8526 case NEON::BI__builtin_neon_vmaxvq_s8: {
8527 Int = Intrinsic::aarch64_neon_smaxv;
8528 Ty = Int32Ty;
8529 VTy = llvm::VectorType::get(Int8Ty, 16);
8530 llvm::Type *Tys[2] = { Ty, VTy };
8531 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8532 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8533 return Builder.CreateTrunc(Ops[0], Int8Ty);
8534 }
8535 case NEON::BI__builtin_neon_vmaxvq_s16: {
8536 Int = Intrinsic::aarch64_neon_smaxv;
8537 Ty = Int32Ty;
8538 VTy = llvm::VectorType::get(Int16Ty, 8);
8539 llvm::Type *Tys[2] = { Ty, VTy };
8540 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8541 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8542 return Builder.CreateTrunc(Ops[0], Int16Ty);
8543 }
8544 case NEON::BI__builtin_neon_vmaxv_f16: {
8545 Int = Intrinsic::aarch64_neon_fmaxv;
8546 Ty = HalfTy;
8547 VTy = llvm::VectorType::get(HalfTy, 4);
8548 llvm::Type *Tys[2] = { Ty, VTy };
8549 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8550 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8551 return Builder.CreateTrunc(Ops[0], HalfTy);
8552 }
8553 case NEON::BI__builtin_neon_vmaxvq_f16: {
8554 Int = Intrinsic::aarch64_neon_fmaxv;
8555 Ty = HalfTy;
8556 VTy = llvm::VectorType::get(HalfTy, 8);
8557 llvm::Type *Tys[2] = { Ty, VTy };
8558 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8559 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8560 return Builder.CreateTrunc(Ops[0], HalfTy);
8561 }
8562 case NEON::BI__builtin_neon_vminv_u8: {
8563 Int = Intrinsic::aarch64_neon_uminv;
8564 Ty = Int32Ty;
8565 VTy = llvm::VectorType::get(Int8Ty, 8);
8566 llvm::Type *Tys[2] = { Ty, VTy };
8567 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8568 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8569 return Builder.CreateTrunc(Ops[0], Int8Ty);
8570 }
8571 case NEON::BI__builtin_neon_vminv_u16: {
8572 Int = Intrinsic::aarch64_neon_uminv;
8573 Ty = Int32Ty;
8574 VTy = llvm::VectorType::get(Int16Ty, 4);
8575 llvm::Type *Tys[2] = { Ty, VTy };
8576 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8577 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8578 return Builder.CreateTrunc(Ops[0], Int16Ty);
8579 }
8580 case NEON::BI__builtin_neon_vminvq_u8: {
8581 Int = Intrinsic::aarch64_neon_uminv;
8582 Ty = Int32Ty;
8583 VTy = llvm::VectorType::get(Int8Ty, 16);
8584 llvm::Type *Tys[2] = { Ty, VTy };
8585 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8586 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8587 return Builder.CreateTrunc(Ops[0], Int8Ty);
8588 }
8589 case NEON::BI__builtin_neon_vminvq_u16: {
8590 Int = Intrinsic::aarch64_neon_uminv;
8591 Ty = Int32Ty;
8592 VTy = llvm::VectorType::get(Int16Ty, 8);
8593 llvm::Type *Tys[2] = { Ty, VTy };
8594 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8595 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8596 return Builder.CreateTrunc(Ops[0], Int16Ty);
8597 }
8598 case NEON::BI__builtin_neon_vminv_s8: {
8599 Int = Intrinsic::aarch64_neon_sminv;
8600 Ty = Int32Ty;
8601 VTy = llvm::VectorType::get(Int8Ty, 8);
8602 llvm::Type *Tys[2] = { Ty, VTy };
8603 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8604 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8605 return Builder.CreateTrunc(Ops[0], Int8Ty);
8606 }
8607 case NEON::BI__builtin_neon_vminv_s16: {
8608 Int = Intrinsic::aarch64_neon_sminv;
8609 Ty = Int32Ty;
8610 VTy = llvm::VectorType::get(Int16Ty, 4);
8611 llvm::Type *Tys[2] = { Ty, VTy };
8612 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8613 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8614 return Builder.CreateTrunc(Ops[0], Int16Ty);
8615 }
8616 case NEON::BI__builtin_neon_vminvq_s8: {
8617 Int = Intrinsic::aarch64_neon_sminv;
8618 Ty = Int32Ty;
8619 VTy = llvm::VectorType::get(Int8Ty, 16);
8620 llvm::Type *Tys[2] = { Ty, VTy };
8621 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8622 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8623 return Builder.CreateTrunc(Ops[0], Int8Ty);
8624 }
8625 case NEON::BI__builtin_neon_vminvq_s16: {
8626 Int = Intrinsic::aarch64_neon_sminv;
8627 Ty = Int32Ty;
8628 VTy = llvm::VectorType::get(Int16Ty, 8);
8629 llvm::Type *Tys[2] = { Ty, VTy };
8630 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8631 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8632 return Builder.CreateTrunc(Ops[0], Int16Ty);
8633 }
8634 case NEON::BI__builtin_neon_vminv_f16: {
8635 Int = Intrinsic::aarch64_neon_fminv;
8636 Ty = HalfTy;
8637 VTy = llvm::VectorType::get(HalfTy, 4);
8638 llvm::Type *Tys[2] = { Ty, VTy };
8639 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8640 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8641 return Builder.CreateTrunc(Ops[0], HalfTy);
8642 }
8643 case NEON::BI__builtin_neon_vminvq_f16: {
8644 Int = Intrinsic::aarch64_neon_fminv;
8645 Ty = HalfTy;
8646 VTy = llvm::VectorType::get(HalfTy, 8);
8647 llvm::Type *Tys[2] = { Ty, VTy };
8648 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8649 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8650 return Builder.CreateTrunc(Ops[0], HalfTy);
8651 }
8652 case NEON::BI__builtin_neon_vmaxnmv_f16: {
8653 Int = Intrinsic::aarch64_neon_fmaxnmv;
8654 Ty = HalfTy;
8655 VTy = llvm::VectorType::get(HalfTy, 4);
8656 llvm::Type *Tys[2] = { Ty, VTy };
8657 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8658 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8659 return Builder.CreateTrunc(Ops[0], HalfTy);
8660 }
8661 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
8662 Int = Intrinsic::aarch64_neon_fmaxnmv;
8663 Ty = HalfTy;
8664 VTy = llvm::VectorType::get(HalfTy, 8);
8665 llvm::Type *Tys[2] = { Ty, VTy };
8666 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8667 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8668 return Builder.CreateTrunc(Ops[0], HalfTy);
8669 }
8670 case NEON::BI__builtin_neon_vminnmv_f16: {
8671 Int = Intrinsic::aarch64_neon_fminnmv;
8672 Ty = HalfTy;
8673 VTy = llvm::VectorType::get(HalfTy, 4);
8674 llvm::Type *Tys[2] = { Ty, VTy };
8675 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8676 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8677 return Builder.CreateTrunc(Ops[0], HalfTy);
8678 }
8679 case NEON::BI__builtin_neon_vminnmvq_f16: {
8680 Int = Intrinsic::aarch64_neon_fminnmv;
8681 Ty = HalfTy;
8682 VTy = llvm::VectorType::get(HalfTy, 8);
8683 llvm::Type *Tys[2] = { Ty, VTy };
8684 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8685 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8686 return Builder.CreateTrunc(Ops[0], HalfTy);
8687 }
8688 case NEON::BI__builtin_neon_vmul_n_f64: {
8689 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8690 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
8691 return Builder.CreateFMul(Ops[0], RHS);
8692 }
8693 case NEON::BI__builtin_neon_vaddlv_u8: {
8694 Int = Intrinsic::aarch64_neon_uaddlv;
8695 Ty = Int32Ty;
8696 VTy = llvm::VectorType::get(Int8Ty, 8);
8697 llvm::Type *Tys[2] = { Ty, VTy };
8698 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8699 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8700 return Builder.CreateTrunc(Ops[0], Int16Ty);
8701 }
8702 case NEON::BI__builtin_neon_vaddlv_u16: {
8703 Int = Intrinsic::aarch64_neon_uaddlv;
8704 Ty = Int32Ty;
8705 VTy = llvm::VectorType::get(Int16Ty, 4);
8706 llvm::Type *Tys[2] = { Ty, VTy };
8707 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8708 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8709 }
8710 case NEON::BI__builtin_neon_vaddlvq_u8: {
8711 Int = Intrinsic::aarch64_neon_uaddlv;
8712 Ty = Int32Ty;
8713 VTy = llvm::VectorType::get(Int8Ty, 16);
8714 llvm::Type *Tys[2] = { Ty, VTy };
8715 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8716 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8717 return Builder.CreateTrunc(Ops[0], Int16Ty);
8718 }
8719 case NEON::BI__builtin_neon_vaddlvq_u16: {
8720 Int = Intrinsic::aarch64_neon_uaddlv;
8721 Ty = Int32Ty;
8722 VTy = llvm::VectorType::get(Int16Ty, 8);
8723 llvm::Type *Tys[2] = { Ty, VTy };
8724 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8725 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8726 }
8727 case NEON::BI__builtin_neon_vaddlv_s8: {
8728 Int = Intrinsic::aarch64_neon_saddlv;
8729 Ty = Int32Ty;
8730 VTy = llvm::VectorType::get(Int8Ty, 8);
8731 llvm::Type *Tys[2] = { Ty, VTy };
8732 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8733 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8734 return Builder.CreateTrunc(Ops[0], Int16Ty);
8735 }
8736 case NEON::BI__builtin_neon_vaddlv_s16: {
8737 Int = Intrinsic::aarch64_neon_saddlv;
8738 Ty = Int32Ty;
8739 VTy = llvm::VectorType::get(Int16Ty, 4);
8740 llvm::Type *Tys[2] = { Ty, VTy };
8741 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8742 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8743 }
8744 case NEON::BI__builtin_neon_vaddlvq_s8: {
8745 Int = Intrinsic::aarch64_neon_saddlv;
8746 Ty = Int32Ty;
8747 VTy = llvm::VectorType::get(Int8Ty, 16);
8748 llvm::Type *Tys[2] = { Ty, VTy };
8749 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8750 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8751 return Builder.CreateTrunc(Ops[0], Int16Ty);
8752 }
8753 case NEON::BI__builtin_neon_vaddlvq_s16: {
8754 Int = Intrinsic::aarch64_neon_saddlv;
8755 Ty = Int32Ty;
8756 VTy = llvm::VectorType::get(Int16Ty, 8);
8757 llvm::Type *Tys[2] = { Ty, VTy };
8758 Ops.push_back(EmitScalarExpr(E->getArg(0)));
8759 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8760 }
8761 case NEON::BI__builtin_neon_vsri_n_v:
8762 case NEON::BI__builtin_neon_vsriq_n_v: {
8763 Int = Intrinsic::aarch64_neon_vsri;
8764 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8765 return EmitNeonCall(Intrin, Ops, "vsri_n");
8766 }
8767 case NEON::BI__builtin_neon_vsli_n_v:
8768 case NEON::BI__builtin_neon_vsliq_n_v: {
8769 Int = Intrinsic::aarch64_neon_vsli;
8770 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8771 return EmitNeonCall(Intrin, Ops, "vsli_n");
8772 }
8773 case NEON::BI__builtin_neon_vsra_n_v:
8774 case NEON::BI__builtin_neon_vsraq_n_v:
8775 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8776 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8777 return Builder.CreateAdd(Ops[0], Ops[1]);
8778 case NEON::BI__builtin_neon_vrsra_n_v:
8779 case NEON::BI__builtin_neon_vrsraq_n_v: {
8780 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
8781 SmallVector<llvm::Value*,2> TmpOps;
8782 TmpOps.push_back(Ops[1]);
8783 TmpOps.push_back(Ops[2]);
8784 Function* F = CGM.getIntrinsic(Int, Ty);
8785 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
8786 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
8787 return Builder.CreateAdd(Ops[0], tmp);
8788 }
8789 case NEON::BI__builtin_neon_vld1_v:
8790 case NEON::BI__builtin_neon_vld1q_v: {
8791 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8792 auto Alignment = CharUnits::fromQuantity(
8793 BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
8794 return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
8795 }
8796 case NEON::BI__builtin_neon_vst1_v:
8797 case NEON::BI__builtin_neon_vst1q_v:
8798 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8799 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8800 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8801 case NEON::BI__builtin_neon_vld1_lane_v:
8802 case NEON::BI__builtin_neon_vld1q_lane_v: {
8803 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8804 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
8805 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8806 auto Alignment = CharUnits::fromQuantity(
8807 BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
8808 Ops[0] =
8809 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
8810 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
8811 }
8812 case NEON::BI__builtin_neon_vld1_dup_v:
8813 case NEON::BI__builtin_neon_vld1q_dup_v: {
8814 Value *V = UndefValue::get(Ty);
8815 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
8816 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8817 auto Alignment = CharUnits::fromQuantity(
8818 BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
8819 Ops[0] =
8820 Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
8821 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
8822 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
8823 return EmitNeonSplat(Ops[0], CI);
8824 }
8825 case NEON::BI__builtin_neon_vst1_lane_v:
8826 case NEON::BI__builtin_neon_vst1q_lane_v:
8827 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8828 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8829 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8830 return Builder.CreateDefaultAlignedStore(Ops[1],
8831 Builder.CreateBitCast(Ops[0], Ty));
8832 case NEON::BI__builtin_neon_vld2_v:
8833 case NEON::BI__builtin_neon_vld2q_v: {
8834 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8835 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8836 llvm::Type *Tys[2] = { VTy, PTy };
8837 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
8838 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
8839 Ops[0] = Builder.CreateBitCast(Ops[0],
8840 llvm::PointerType::getUnqual(Ops[1]->getType()));
8841 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8842 }
8843 case NEON::BI__builtin_neon_vld3_v:
8844 case NEON::BI__builtin_neon_vld3q_v: {
8845 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8846 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8847 llvm::Type *Tys[2] = { VTy, PTy };
8848 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
8849 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
8850 Ops[0] = Builder.CreateBitCast(Ops[0],
8851 llvm::PointerType::getUnqual(Ops[1]->getType()));
8852 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8853 }
8854 case NEON::BI__builtin_neon_vld4_v:
8855 case NEON::BI__builtin_neon_vld4q_v: {
8856 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8857 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8858 llvm::Type *Tys[2] = { VTy, PTy };
8859 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
8860 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
8861 Ops[0] = Builder.CreateBitCast(Ops[0],
8862 llvm::PointerType::getUnqual(Ops[1]->getType()));
8863 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8864 }
8865 case NEON::BI__builtin_neon_vld2_dup_v:
8866 case NEON::BI__builtin_neon_vld2q_dup_v: {
8867 llvm::Type *PTy =
8868 llvm::PointerType::getUnqual(VTy->getElementType());
8869 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8870 llvm::Type *Tys[2] = { VTy, PTy };
8871 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
8872 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
8873 Ops[0] = Builder.CreateBitCast(Ops[0],
8874 llvm::PointerType::getUnqual(Ops[1]->getType()));
8875 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8876 }
8877 case NEON::BI__builtin_neon_vld3_dup_v:
8878 case NEON::BI__builtin_neon_vld3q_dup_v: {
8879 llvm::Type *PTy =
8880 llvm::PointerType::getUnqual(VTy->getElementType());
8881 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8882 llvm::Type *Tys[2] = { VTy, PTy };
8883 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
8884 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
8885 Ops[0] = Builder.CreateBitCast(Ops[0],
8886 llvm::PointerType::getUnqual(Ops[1]->getType()));
8887 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8888 }
8889 case NEON::BI__builtin_neon_vld4_dup_v:
8890 case NEON::BI__builtin_neon_vld4q_dup_v: {
8891 llvm::Type *PTy =
8892 llvm::PointerType::getUnqual(VTy->getElementType());
8893 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8894 llvm::Type *Tys[2] = { VTy, PTy };
8895 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
8896 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
8897 Ops[0] = Builder.CreateBitCast(Ops[0],
8898 llvm::PointerType::getUnqual(Ops[1]->getType()));
8899 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8900 }
8901 case NEON::BI__builtin_neon_vld2_lane_v:
8902 case NEON::BI__builtin_neon_vld2q_lane_v: {
8903 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8904 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
8905 Ops.push_back(Ops[1]);
8906 Ops.erase(Ops.begin()+1);
8907 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8908 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8909 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8910 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
8911 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8912 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8913 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8914 }
8915 case NEON::BI__builtin_neon_vld3_lane_v:
8916 case NEON::BI__builtin_neon_vld3q_lane_v: {
8917 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8918 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
8919 Ops.push_back(Ops[1]);
8920 Ops.erase(Ops.begin()+1);
8921 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8922 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8923 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
8924 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
8925 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
8926 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8927 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8928 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8929 }
8930 case NEON::BI__builtin_neon_vld4_lane_v:
8931 case NEON::BI__builtin_neon_vld4q_lane_v: {
8932 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8933 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
8934 Ops.push_back(Ops[1]);
8935 Ops.erase(Ops.begin()+1);
8936 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8937 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8938 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
8939 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
8940 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
8941 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
8942 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8943 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8944 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8945 }
8946 case NEON::BI__builtin_neon_vst2_v:
8947 case NEON::BI__builtin_neon_vst2q_v: {
8948 Ops.push_back(Ops[0]);
8949 Ops.erase(Ops.begin());
8950 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
8951 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
8952 Ops, "");
8953 }
8954 case NEON::BI__builtin_neon_vst2_lane_v:
8955 case NEON::BI__builtin_neon_vst2q_lane_v: {
8956 Ops.push_back(Ops[0]);
8957 Ops.erase(Ops.begin());
8958 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
8959 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
8960 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
8961 Ops, "");
8962 }
8963 case NEON::BI__builtin_neon_vst3_v:
8964 case NEON::BI__builtin_neon_vst3q_v: {
8965 Ops.push_back(Ops[0]);
8966 Ops.erase(Ops.begin());
8967 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
8968 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
8969 Ops, "");
8970 }
8971 case NEON::BI__builtin_neon_vst3_lane_v:
8972 case NEON::BI__builtin_neon_vst3q_lane_v: {
8973 Ops.push_back(Ops[0]);
8974 Ops.erase(Ops.begin());
8975 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8976 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
8977 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
8978 Ops, "");
8979 }
8980 case NEON::BI__builtin_neon_vst4_v:
8981 case NEON::BI__builtin_neon_vst4q_v: {
8982 Ops.push_back(Ops[0]);
8983 Ops.erase(Ops.begin());
8984 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
8985 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
8986 Ops, "");
8987 }
8988 case NEON::BI__builtin_neon_vst4_lane_v:
8989 case NEON::BI__builtin_neon_vst4q_lane_v: {
8990 Ops.push_back(Ops[0]);
8991 Ops.erase(Ops.begin());
8992 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
8993 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
8994 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
8995 Ops, "");
8996 }
8997 case NEON::BI__builtin_neon_vtrn_v:
8998 case NEON::BI__builtin_neon_vtrnq_v: {
8999 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9000 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9001 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9002 Value *SV = nullptr;
9003
9004 for (unsigned vi = 0; vi != 2; ++vi) {
9005 SmallVector<uint32_t, 16> Indices;
9006 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9007 Indices.push_back(i+vi);
9008 Indices.push_back(i+e+vi);
9009 }
9010 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9011 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
9012 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9013 }
9014 return SV;
9015 }
9016 case NEON::BI__builtin_neon_vuzp_v:
9017 case NEON::BI__builtin_neon_vuzpq_v: {
9018 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9019 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9020 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9021 Value *SV = nullptr;
9022
9023 for (unsigned vi = 0; vi != 2; ++vi) {
9024 SmallVector<uint32_t, 16> Indices;
9025 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
9026 Indices.push_back(2*i+vi);
9027
9028 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9029 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
9030 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9031 }
9032 return SV;
9033 }
9034 case NEON::BI__builtin_neon_vzip_v:
9035 case NEON::BI__builtin_neon_vzipq_v: {
9036 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
9037 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9038 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9039 Value *SV = nullptr;
9040
9041 for (unsigned vi = 0; vi != 2; ++vi) {
9042 SmallVector<uint32_t, 16> Indices;
9043 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
9044 Indices.push_back((i + vi*e) >> 1);
9045 Indices.push_back(((i + vi*e) >> 1)+e);
9046 }
9047 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
9048 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
9049 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
9050 }
9051 return SV;
9052 }
9053 case NEON::BI__builtin_neon_vqtbl1q_v: {
9054 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
9055 Ops, "vtbl1");
9056 }
9057 case NEON::BI__builtin_neon_vqtbl2q_v: {
9058 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
9059 Ops, "vtbl2");
9060 }
9061 case NEON::BI__builtin_neon_vqtbl3q_v: {
9062 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
9063 Ops, "vtbl3");
9064 }
9065 case NEON::BI__builtin_neon_vqtbl4q_v: {
9066 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
9067 Ops, "vtbl4");
9068 }
9069 case NEON::BI__builtin_neon_vqtbx1q_v: {
9070 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
9071 Ops, "vtbx1");
9072 }
9073 case NEON::BI__builtin_neon_vqtbx2q_v: {
9074 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
9075 Ops, "vtbx2");
9076 }
9077 case NEON::BI__builtin_neon_vqtbx3q_v: {
9078 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
9079 Ops, "vtbx3");
9080 }
9081 case NEON::BI__builtin_neon_vqtbx4q_v: {
9082 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
9083 Ops, "vtbx4");
9084 }
9085 case NEON::BI__builtin_neon_vsqadd_v:
9086 case NEON::BI__builtin_neon_vsqaddq_v: {
9087 Int = Intrinsic::aarch64_neon_usqadd;
9088 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
9089 }
9090 case NEON::BI__builtin_neon_vuqadd_v:
9091 case NEON::BI__builtin_neon_vuqaddq_v: {
9092 Int = Intrinsic::aarch64_neon_suqadd;
9093 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
9094 }
9095 case AArch64::BI_BitScanForward:
9096 case AArch64::BI_BitScanForward64:
9097 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
9098 case AArch64::BI_BitScanReverse:
9099 case AArch64::BI_BitScanReverse64:
9100 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
9101 case AArch64::BI_InterlockedAnd64:
9102 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
9103 case AArch64::BI_InterlockedExchange64:
9104 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
9105 case AArch64::BI_InterlockedExchangeAdd64:
9106 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
9107 case AArch64::BI_InterlockedExchangeSub64:
9108 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
9109 case AArch64::BI_InterlockedOr64:
9110 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
9111 case AArch64::BI_InterlockedXor64:
9112 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
9113 case AArch64::BI_InterlockedDecrement64:
9114 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
9115 case AArch64::BI_InterlockedIncrement64:
9116 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
9117 case AArch64::BI_InterlockedExchangeAdd8_acq:
9118 case AArch64::BI_InterlockedExchangeAdd16_acq:
9119 case AArch64::BI_InterlockedExchangeAdd_acq:
9120 case AArch64::BI_InterlockedExchangeAdd64_acq:
9121 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
9122 case AArch64::BI_InterlockedExchangeAdd8_rel:
9123 case AArch64::BI_InterlockedExchangeAdd16_rel:
9124 case AArch64::BI_InterlockedExchangeAdd_rel:
9125 case AArch64::BI_InterlockedExchangeAdd64_rel:
9126 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
9127 case AArch64::BI_InterlockedExchangeAdd8_nf:
9128 case AArch64::BI_InterlockedExchangeAdd16_nf:
9129 case AArch64::BI_InterlockedExchangeAdd_nf:
9130 case AArch64::BI_InterlockedExchangeAdd64_nf:
9131 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
9132 case AArch64::BI_InterlockedExchange8_acq:
9133 case AArch64::BI_InterlockedExchange16_acq:
9134 case AArch64::BI_InterlockedExchange_acq:
9135 case AArch64::BI_InterlockedExchange64_acq:
9136 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
9137 case AArch64::BI_InterlockedExchange8_rel:
9138 case AArch64::BI_InterlockedExchange16_rel:
9139 case AArch64::BI_InterlockedExchange_rel:
9140 case AArch64::BI_InterlockedExchange64_rel:
9141 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
9142 case AArch64::BI_InterlockedExchange8_nf:
9143 case AArch64::BI_InterlockedExchange16_nf:
9144 case AArch64::BI_InterlockedExchange_nf:
9145 case AArch64::BI_InterlockedExchange64_nf:
9146 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
9147 case AArch64::BI_InterlockedCompareExchange8_acq:
9148 case AArch64::BI_InterlockedCompareExchange16_acq:
9149 case AArch64::BI_InterlockedCompareExchange_acq:
9150 case AArch64::BI_InterlockedCompareExchange64_acq:
9151 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
9152 case AArch64::BI_InterlockedCompareExchange8_rel:
9153 case AArch64::BI_InterlockedCompareExchange16_rel:
9154 case AArch64::BI_InterlockedCompareExchange_rel:
9155 case AArch64::BI_InterlockedCompareExchange64_rel:
9156 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
9157 case AArch64::BI_InterlockedCompareExchange8_nf:
9158 case AArch64::BI_InterlockedCompareExchange16_nf:
9159 case AArch64::BI_InterlockedCompareExchange_nf:
9160 case AArch64::BI_InterlockedCompareExchange64_nf:
9161 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
9162 case AArch64::BI_InterlockedOr8_acq:
9163 case AArch64::BI_InterlockedOr16_acq:
9164 case AArch64::BI_InterlockedOr_acq:
9165 case AArch64::BI_InterlockedOr64_acq:
9166 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
9167 case AArch64::BI_InterlockedOr8_rel:
9168 case AArch64::BI_InterlockedOr16_rel:
9169 case AArch64::BI_InterlockedOr_rel:
9170 case AArch64::BI_InterlockedOr64_rel:
9171 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
9172 case AArch64::BI_InterlockedOr8_nf:
9173 case AArch64::BI_InterlockedOr16_nf:
9174 case AArch64::BI_InterlockedOr_nf:
9175 case AArch64::BI_InterlockedOr64_nf:
9176 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
9177 case AArch64::BI_InterlockedXor8_acq:
9178 case AArch64::BI_InterlockedXor16_acq:
9179 case AArch64::BI_InterlockedXor_acq:
9180 case AArch64::BI_InterlockedXor64_acq:
9181 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
9182 case AArch64::BI_InterlockedXor8_rel:
9183 case AArch64::BI_InterlockedXor16_rel:
9184 case AArch64::BI_InterlockedXor_rel:
9185 case AArch64::BI_InterlockedXor64_rel:
9186 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
9187 case AArch64::BI_InterlockedXor8_nf:
9188 case AArch64::BI_InterlockedXor16_nf:
9189 case AArch64::BI_InterlockedXor_nf:
9190 case AArch64::BI_InterlockedXor64_nf:
9191 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
9192 case AArch64::BI_InterlockedAnd8_acq:
9193 case AArch64::BI_InterlockedAnd16_acq:
9194 case AArch64::BI_InterlockedAnd_acq:
9195 case AArch64::BI_InterlockedAnd64_acq:
9196 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
9197 case AArch64::BI_InterlockedAnd8_rel:
9198 case AArch64::BI_InterlockedAnd16_rel:
9199 case AArch64::BI_InterlockedAnd_rel:
9200 case AArch64::BI_InterlockedAnd64_rel:
9201 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
9202 case AArch64::BI_InterlockedAnd8_nf:
9203 case AArch64::BI_InterlockedAnd16_nf:
9204 case AArch64::BI_InterlockedAnd_nf:
9205 case AArch64::BI_InterlockedAnd64_nf:
9206 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
9207 case AArch64::BI_InterlockedIncrement16_acq:
9208 case AArch64::BI_InterlockedIncrement_acq:
9209 case AArch64::BI_InterlockedIncrement64_acq:
9210 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
9211 case AArch64::BI_InterlockedIncrement16_rel:
9212 case AArch64::BI_InterlockedIncrement_rel:
9213 case AArch64::BI_InterlockedIncrement64_rel:
9214 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
9215 case AArch64::BI_InterlockedIncrement16_nf:
9216 case AArch64::BI_InterlockedIncrement_nf:
9217 case AArch64::BI_InterlockedIncrement64_nf:
9218 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
9219 case AArch64::BI_InterlockedDecrement16_acq:
9220 case AArch64::BI_InterlockedDecrement_acq:
9221 case AArch64::BI_InterlockedDecrement64_acq:
9222 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
9223 case AArch64::BI_InterlockedDecrement16_rel:
9224 case AArch64::BI_InterlockedDecrement_rel:
9225 case AArch64::BI_InterlockedDecrement64_rel:
9226 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
9227 case AArch64::BI_InterlockedDecrement16_nf:
9228 case AArch64::BI_InterlockedDecrement_nf:
9229 case AArch64::BI_InterlockedDecrement64_nf:
9230 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
9231
9232 case AArch64::BI_InterlockedAdd: {
9233 Value *Arg0 = EmitScalarExpr(E->getArg(0));
9234 Value *Arg1 = EmitScalarExpr(E->getArg(1));
9235 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
9236 AtomicRMWInst::Add, Arg0, Arg1,
9237 llvm::AtomicOrdering::SequentiallyConsistent);
9238 return Builder.CreateAdd(RMWI, Arg1);
9239 }
9240 }
9241}
9242
9243llvm::Value *CodeGenFunction::
9244BuildVector(ArrayRef<llvm::Value*> Ops) {
9245 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9246, __PRETTY_FUNCTION__))
9246 "Not a power-of-two sized vector!")(((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9246, __PRETTY_FUNCTION__))
;
9247 bool AllConstants = true;
9248 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
9249 AllConstants &= isa<Constant>(Ops[i]);
9250
9251 // If this is a constant vector, create a ConstantVector.
9252 if (AllConstants) {
9253 SmallVector<llvm::Constant*, 16> CstOps;
9254 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9255 CstOps.push_back(cast<Constant>(Ops[i]));
9256 return llvm::ConstantVector::get(CstOps);
9257 }
9258
9259 // Otherwise, insertelement the values to build the vector.
9260 Value *Result =
9261 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
9262
9263 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9264 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
9265
9266 return Result;
9267}
9268
9269// Convert the mask from an integer type to a vector of i1.
9270static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
9271 unsigned NumElts) {
9272
9273 llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9274 cast<IntegerType>(Mask->getType())->getBitWidth());
9275 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
9276
9277 // If we have less than 8 elements, then the starting mask was an i8 and
9278 // we need to extract down to the right number of elements.
9279 if (NumElts < 8) {
9280 uint32_t Indices[4];
9281 for (unsigned i = 0; i != NumElts; ++i)
9282 Indices[i] = i;
9283 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
9284 makeArrayRef(Indices, NumElts),
9285 "extract");
9286 }
9287 return MaskVec;
9288}
9289
9290static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
9291 ArrayRef<Value *> Ops,
9292 unsigned Align) {
9293 // Cast the pointer to right type.
9294 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9295 llvm::PointerType::getUnqual(Ops[1]->getType()));
9296
9297 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9298 Ops[1]->getType()->getVectorNumElements());
9299
9300 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
9301}
9302
9303static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
9304 ArrayRef<Value *> Ops, unsigned Align) {
9305 // Cast the pointer to right type.
9306 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9307 llvm::PointerType::getUnqual(Ops[1]->getType()));
9308
9309 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9310 Ops[1]->getType()->getVectorNumElements());
9311
9312 return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
9313}
9314
9315static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
9316 ArrayRef<Value *> Ops) {
9317 llvm::Type *ResultTy = Ops[1]->getType();
9318 llvm::Type *PtrTy = ResultTy->getVectorElementType();
9319
9320 // Cast the pointer to element type.
9321 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9322 llvm::PointerType::getUnqual(PtrTy));
9323
9324 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9325 ResultTy->getVectorNumElements());
9326
9327 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
9328 ResultTy);
9329 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
9330}
9331
9332static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
9333 ArrayRef<Value *> Ops,
9334 bool IsCompress) {
9335 llvm::Type *ResultTy = Ops[1]->getType();
9336
9337 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9338 ResultTy->getVectorNumElements());
9339
9340 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
9341 : Intrinsic::x86_avx512_mask_expand;
9342 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
9343 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
9344}
9345
9346static Value *EmitX86CompressStore(CodeGenFunction &CGF,
9347 ArrayRef<Value *> Ops) {
9348 llvm::Type *ResultTy = Ops[1]->getType();
9349 llvm::Type *PtrTy = ResultTy->getVectorElementType();
9350
9351 // Cast the pointer to element type.
9352 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9353 llvm::PointerType::getUnqual(PtrTy));
9354
9355 Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9356 ResultTy->getVectorNumElements());
9357
9358 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
9359 ResultTy);
9360 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
9361}
9362
9363static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
9364 ArrayRef<Value *> Ops,
9365 bool InvertLHS = false) {
9366 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
9367 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
9368 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
9369
9370 if (InvertLHS)
9371 LHS = CGF.Builder.CreateNot(LHS);
9372
9373 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
9374 Ops[0]->getType());
9375}
9376
9377static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
9378 Value *Amt, bool IsRight) {
9379 llvm::Type *Ty = Op0->getType();
9380
9381 // Amount may be scalar immediate, in which case create a splat vector.
9382 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
9383 // we only care about the lowest log2 bits anyway.
9384 if (Amt->getType() != Ty) {
9385 unsigned NumElts = Ty->getVectorNumElements();
9386 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
9387 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
9388 }
9389
9390 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
9391 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
9392 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
9393}
9394
9395static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9396 bool IsSigned) {
9397 Value *Op0 = Ops[0];
9398 Value *Op1 = Ops[1];
9399 llvm::Type *Ty = Op0->getType();
9400 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
9401
9402 CmpInst::Predicate Pred;
9403 switch (Imm) {
9404 case 0x0:
9405 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
9406 break;
9407 case 0x1:
9408 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9409 break;
9410 case 0x2:
9411 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
9412 break;
9413 case 0x3:
9414 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
9415 break;
9416 case 0x4:
9417 Pred = ICmpInst::ICMP_EQ;
9418 break;
9419 case 0x5:
9420 Pred = ICmpInst::ICMP_NE;
9421 break;
9422 case 0x6:
9423 return llvm::Constant::getNullValue(Ty); // FALSE
9424 case 0x7:
9425 return llvm::Constant::getAllOnesValue(Ty); // TRUE
9426 default:
9427 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9427)
;
9428 }
9429
9430 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
9431 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
9432 return Res;
9433}
9434
9435static Value *EmitX86Select(CodeGenFunction &CGF,
9436 Value *Mask, Value *Op0, Value *Op1) {
9437
9438 // If the mask is all ones just return first argument.
9439 if (const auto *C = dyn_cast<Constant>(Mask))
9440 if (C->isAllOnesValue())
9441 return Op0;
9442
9443 Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
9444
9445 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9446}
9447
9448static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
9449 Value *Mask, Value *Op0, Value *Op1) {
9450 // If the mask is all ones just return first argument.
9451 if (const auto *C = dyn_cast<Constant>(Mask))
9452 if (C->isAllOnesValue())
9453 return Op0;
9454
9455 llvm::VectorType *MaskTy =
9456 llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9457 Mask->getType()->getIntegerBitWidth());
9458 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
9459 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
9460 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9461}
9462
9463static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
9464 unsigned NumElts, Value *MaskIn) {
9465 if (MaskIn) {
9466 const auto *C = dyn_cast<Constant>(MaskIn);
9467 if (!C || !C->isAllOnesValue())
9468 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
9469 }
9470
9471 if (NumElts < 8) {
9472 uint32_t Indices[8];
9473 for (unsigned i = 0; i != NumElts; ++i)
9474 Indices[i] = i;
9475 for (unsigned i = NumElts; i != 8; ++i)
9476 Indices[i] = i % NumElts + NumElts;
9477 Cmp = CGF.Builder.CreateShuffleVector(
9478 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
9479 }
9480
9481 return CGF.Builder.CreateBitCast(Cmp,
9482 IntegerType::get(CGF.getLLVMContext(),
9483 std::max(NumElts, 8U)));
9484}
9485
9486static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
9487 bool Signed, ArrayRef<Value *> Ops) {
9488 assert((Ops.size() == 2 || Ops.size() == 4) &&(((Ops.size() == 2 || Ops.size() == 4) && "Unexpected number of arguments"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9489, __PRETTY_FUNCTION__))
9489 "Unexpected number of arguments")(((Ops.size() == 2 || Ops.size() == 4) && "Unexpected number of arguments"
) ? static_cast<void> (0) : __assert_fail ("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9489, __PRETTY_FUNCTION__))
;
9490 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9491 Value *Cmp;
9492
9493 if (CC == 3) {
9494 Cmp = Constant::getNullValue(
9495 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9496 } else if (CC == 7) {
9497 Cmp = Constant::getAllOnesValue(
9498 llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9499 } else {
9500 ICmpInst::Predicate Pred;
9501 switch (CC) {
9502 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9502)
;
9503 case 0: Pred = ICmpInst::ICMP_EQ; break;
9504 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
9505 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
9506 case 4: Pred = ICmpInst::ICMP_NE; break;
9507 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
9508 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
9509 }
9510 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9511 }
9512
9513 Value *MaskIn = nullptr;
9514 if (Ops.size() == 4)
9515 MaskIn = Ops[3];
9516
9517 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
9518}
9519
9520static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
9521 Value *Zero = Constant::getNullValue(In->getType());
9522 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
9523}
9524
9525static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
9526 ArrayRef<Value *> Ops, bool IsSigned) {
9527 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
9528 llvm::Type *Ty = Ops[1]->getType();
9529
9530 Value *Res;
9531 if (Rnd != 4) {
9532 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
9533 : Intrinsic::x86_avx512_uitofp_round;
9534 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
9535 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
9536 } else {
9537 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
9538 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
9539 }
9540
9541 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
9542}
9543
9544static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
9545
9546 llvm::Type *Ty = Ops[0]->getType();
9547 Value *Zero = llvm::Constant::getNullValue(Ty);
9548 Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
9549 Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
9550 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
9551 return Res;
9552}
9553
9554static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
9555 ArrayRef<Value *> Ops) {
9556 Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9557 Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
9558
9559 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9559, __PRETTY_FUNCTION__))
;
9560 return Res;
9561}
9562
9563// Lowers X86 FMA intrinsics to IR.
9564static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9565 unsigned BuiltinID, bool IsAddSub) {
9566
9567 bool Subtract = false;
9568 Intrinsic::ID IID = Intrinsic::not_intrinsic;
9569 switch (BuiltinID) {
9570 default: break;
9571 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9572 Subtract = true;
9573 LLVM_FALLTHROUGH[[clang::fallthrough]];
9574 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9575 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9576 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9577 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
9578 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9579 Subtract = true;
9580 LLVM_FALLTHROUGH[[clang::fallthrough]];
9581 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9582 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9583 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9584 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
9585 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9586 Subtract = true;
9587 LLVM_FALLTHROUGH[[clang::fallthrough]];
9588 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9589 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9590 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9591 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
9592 break;
9593 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9594 Subtract = true;
9595 LLVM_FALLTHROUGH[[clang::fallthrough]];
9596 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9597 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9598 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9599 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
9600 break;
9601 }
9602
9603 Value *A = Ops[0];
9604 Value *B = Ops[1];
9605 Value *C = Ops[2];
9606
9607 if (Subtract)
9608 C = CGF.Builder.CreateFNeg(C);
9609
9610 Value *Res;
9611
9612 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
9613 if (IID != Intrinsic::not_intrinsic &&
9614 cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
9615 Function *Intr = CGF.CGM.getIntrinsic(IID);
9616 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
9617 } else {
9618 llvm::Type *Ty = A->getType();
9619 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
9620 Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
9621
9622 if (IsAddSub) {
9623 // Negate even elts in C using a mask.
9624 unsigned NumElts = Ty->getVectorNumElements();
9625 SmallVector<uint32_t, 16> Indices(NumElts);
9626 for (unsigned i = 0; i != NumElts; ++i)
9627 Indices[i] = i + (i % 2) * NumElts;
9628
9629 Value *NegC = CGF.Builder.CreateFNeg(C);
9630 Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
9631 Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
9632 }
9633 }
9634
9635 // Handle any required masking.
9636 Value *MaskFalseVal = nullptr;
9637 switch (BuiltinID) {
9638 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9639 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9640 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9641 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9642 MaskFalseVal = Ops[0];
9643 break;
9644 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9645 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9646 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9647 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9648 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
9649 break;
9650 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9651 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9652 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9653 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9654 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9655 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9656 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9657 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9658 MaskFalseVal = Ops[2];
9659 break;
9660 }
9661
9662 if (MaskFalseVal)
9663 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
9664
9665 return Res;
9666}
9667
9668static Value *
9669EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
9670 Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
9671 bool NegAcc = false) {
9672 unsigned Rnd = 4;
9673 if (Ops.size() > 4)
9674 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
9675
9676 if (NegAcc)
9677 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
9678
9679 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
9680 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
9681 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
9682 Value *Res;
9683 if (Rnd != 4) {
9684 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
9685 Intrinsic::x86_avx512_vfmadd_f32 :
9686 Intrinsic::x86_avx512_vfmadd_f64;
9687 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9688 {Ops[0], Ops[1], Ops[2], Ops[4]});
9689 } else {
9690 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
9691 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
9692 }
9693 // If we have more than 3 arguments, we need to do masking.
9694 if (Ops.size() > 3) {
9695 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
9696 : Ops[PTIdx];
9697
9698 // If we negated the accumulator and the its the PassThru value we need to
9699 // bypass the negate. Conveniently Upper should be the same thing in this
9700 // case.
9701 if (NegAcc && PTIdx == 2)
9702 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
9703
9704 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
9705 }
9706 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
9707}
9708
9709static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
9710 ArrayRef<Value *> Ops) {
9711 llvm::Type *Ty = Ops[0]->getType();
9712 // Arguments have a vXi32 type so cast to vXi64.
9713 Ty = llvm::VectorType::get(CGF.Int64Ty,
9714 Ty->getPrimitiveSizeInBits() / 64);
9715 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
9716 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
9717
9718 if (IsSigned) {
9719 // Shift left then arithmetic shift right.
9720 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
9721 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
9722 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
9723 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
9724 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
9725 } else {
9726 // Clear the upper bits.
9727 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
9728 LHS = CGF.Builder.CreateAnd(LHS, Mask);
9729 RHS = CGF.Builder.CreateAnd(RHS, Mask);
9730 }
9731
9732 return CGF.Builder.CreateMul(LHS, RHS);
9733}
9734
9735// Emit a masked pternlog intrinsic. This only exists because the header has to
9736// use a macro and we aren't able to pass the input argument to a pternlog
9737// builtin and a select builtin without evaluating it twice.
9738static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
9739 ArrayRef<Value *> Ops) {
9740 llvm::Type *Ty = Ops[0]->getType();
9741
9742 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
9743 unsigned EltWidth = Ty->getScalarSizeInBits();
9744 Intrinsic::ID IID;
9745 if (VecWidth == 128 && EltWidth == 32)
9746 IID = Intrinsic::x86_avx512_pternlog_d_128;
9747 else if (VecWidth == 256 && EltWidth == 32)
9748 IID = Intrinsic::x86_avx512_pternlog_d_256;
9749 else if (VecWidth == 512 && EltWidth == 32)
9750 IID = Intrinsic::x86_avx512_pternlog_d_512;
9751 else if (VecWidth == 128 && EltWidth == 64)
9752 IID = Intrinsic::x86_avx512_pternlog_q_128;
9753 else if (VecWidth == 256 && EltWidth == 64)
9754 IID = Intrinsic::x86_avx512_pternlog_q_256;
9755 else if (VecWidth == 512 && EltWidth == 64)
9756 IID = Intrinsic::x86_avx512_pternlog_q_512;
9757 else
9758 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9758)
;
9759
9760 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9761 Ops.drop_back());
9762 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
9763 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
9764}
9765
9766static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
9767 llvm::Type *DstTy) {
9768 unsigned NumberOfElements = DstTy->getVectorNumElements();
9769 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
9770 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
9771}
9772
9773// Emit addition or subtraction with signed/unsigned saturation.
9774static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
9775 ArrayRef<Value *> Ops, bool IsSigned,
9776 bool IsAddition) {
9777 Intrinsic::ID IID =
9778 IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
9779 : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
9780 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
9781 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
9782}
9783
9784Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
9785 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
9786 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
9787 return EmitX86CpuIs(CPUStr);
9788}
9789
9790Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
9791
9792 llvm::Type *Int32Ty = Builder.getInt32Ty();
9793
9794 // Matching the struct layout from the compiler-rt/libgcc structure that is
9795 // filled in:
9796 // unsigned int __cpu_vendor;
9797 // unsigned int __cpu_type;
9798 // unsigned int __cpu_subtype;
9799 // unsigned int __cpu_features[1];
9800 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9801 llvm::ArrayType::get(Int32Ty, 1));
9802
9803 // Grab the global __cpu_model.
9804 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9805 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9806
9807 // Calculate the index needed to access the correct field based on the
9808 // range. Also adjust the expected value.
9809 unsigned Index;
9810 unsigned Value;
9811 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
9812#define X86_VENDOR(ENUM, STRING) \
9813 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
9814#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
9815 .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9816#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
9817 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9818#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
9819 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
9820#include "llvm/Support/X86TargetParser.def"
9821 .Default({0, 0});
9822 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")((Value != 0 && "Invalid CPUStr passed to CpuIs") ? static_cast
<void> (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9822, __PRETTY_FUNCTION__))
;
9823
9824 // Grab the appropriate field from __cpu_model.
9825 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
9826 ConstantInt::get(Int32Ty, Index)};
9827 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
9828 CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
9829
9830 // Check the value of the field against the requested value.
9831 return Builder.CreateICmpEQ(CpuValue,
9832 llvm::ConstantInt::get(Int32Ty, Value));
9833}
9834
9835Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
9836 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
9837 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
9838 return EmitX86CpuSupports(FeatureStr);
9839}
9840
9841uint64_t
9842CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
9843 // Processor features and mapping to processor feature value.
9844 uint64_t FeaturesMask = 0;
9845 for (const StringRef &FeatureStr : FeatureStrs) {
9846 unsigned Feature =
9847 StringSwitch<unsigned>(FeatureStr)
9848#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
9849#include "llvm/Support/X86TargetParser.def"
9850 ;
9851 FeaturesMask |= (1ULL << Feature);
9852 }
9853 return FeaturesMask;
9854}
9855
9856Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
9857 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
9858}
9859
9860llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
9861 uint32_t Features1 = Lo_32(FeaturesMask);
9862 uint32_t Features2 = Hi_32(FeaturesMask);
9863
9864 Value *Result = Builder.getTrue();
9865
9866 if (Features1 != 0) {
9867 // Matching the struct layout from the compiler-rt/libgcc structure that is
9868 // filled in:
9869 // unsigned int __cpu_vendor;
9870 // unsigned int __cpu_type;
9871 // unsigned int __cpu_subtype;
9872 // unsigned int __cpu_features[1];
9873 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9874 llvm::ArrayType::get(Int32Ty, 1));
9875
9876 // Grab the global __cpu_model.
9877 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9878 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9879
9880 // Grab the first (0th) element from the field __cpu_features off of the
9881 // global in the struct STy.
9882 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
9883 Builder.getInt32(0)};
9884 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
9885 Value *Features =
9886 Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
9887
9888 // Check the value of the bit corresponding to the feature requested.
9889 Value *Mask = Builder.getInt32(Features1);
9890 Value *Bitset = Builder.CreateAnd(Features, Mask);
9891 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9892 Result = Builder.CreateAnd(Result, Cmp);
9893 }
9894
9895 if (Features2 != 0) {
9896 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
9897 "__cpu_features2");
9898 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
9899
9900 Value *Features =
9901 Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
9902
9903 // Check the value of the bit corresponding to the feature requested.
9904 Value *Mask = Builder.getInt32(Features2);
9905 Value *Bitset = Builder.CreateAnd(Features, Mask);
9906 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9907 Result = Builder.CreateAnd(Result, Cmp);
9908 }
9909
9910 return Result;
9911}
9912
9913Value *CodeGenFunction::EmitX86CpuInit() {
9914 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
9915 /*Variadic*/ false);
9916 llvm::FunctionCallee Func =
9917 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
9918 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
9919 cast<llvm::GlobalValue>(Func.getCallee())
9920 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
9921 return Builder.CreateCall(Func);
9922}
9923
9924Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
9925 const CallExpr *E) {
9926 if (BuiltinID == X86::BI__builtin_cpu_is)
9927 return EmitX86CpuIs(E);
9928 if (BuiltinID == X86::BI__builtin_cpu_supports)
9929 return EmitX86CpuSupports(E);
9930 if (BuiltinID == X86::BI__builtin_cpu_init)
9931 return EmitX86CpuInit();
9932
9933 SmallVector<Value*, 4> Ops;
9934
9935 // Find out if any arguments are required to be integer constant expressions.
9936 unsigned ICEArguments = 0;
9937 ASTContext::GetBuiltinTypeError Error;
9938 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9939 assert(Error == ASTContext::GE_None && "Should not codegen an error")((Error == ASTContext::GE_None && "Should not codegen an error"
) ? static_cast<void> (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9939, __PRETTY_FUNCTION__))
;
9940
9941 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9942 // If this is a normal argument, just emit it as a scalar.
9943 if ((ICEArguments & (1 << i)) == 0) {
9944 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9945 continue;
9946 }
9947
9948 // If this is required to be a constant, constant fold it so that we know
9949 // that the generated intrinsic gets a ConstantInt.
9950 llvm::APSInt Result;
9951 bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
9952 assert(IsConst && "Constant arg isn't actually constant?")((IsConst && "Constant arg isn't actually constant?")
? static_cast<void> (0) : __assert_fail ("IsConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 9952, __PRETTY_FUNCTION__))
; (void)IsConst;
9953 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
9954 }
9955
9956 // These exist so that the builtin that takes an immediate can be bounds
9957 // checked by clang to avoid passing bad immediates to the backend. Since
9958 // AVX has a larger immediate than SSE we would need separate builtins to
9959 // do the different bounds checking. Rather than create a clang specific
9960 // SSE only builtin, this implements eight separate builtins to match gcc
9961 // implementation.
9962 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
9963 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
9964 llvm::Function *F = CGM.getIntrinsic(ID);
9965 return Builder.CreateCall(F, Ops);
9966 };
9967
9968 // For the vector forms of FP comparisons, translate the builtins directly to
9969 // IR.
9970 // TODO: The builtins could be removed if the SSE header files used vector
9971 // extension comparisons directly (vector ordered/unordered may need
9972 // additional support via __builtin_isnan()).
9973 auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
9974 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
9975 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
9976 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
9977 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
9978 return Builder.CreateBitCast(Sext, FPVecTy);
9979 };
9980
9981 switch (BuiltinID) {
9982 default: return nullptr;
9983 case X86::BI_mm_prefetch: {
9984 Value *Address = Ops[0];
9985 ConstantInt *C = cast<ConstantInt>(Ops[1]);
9986 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
9987 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
9988 Value *Data = ConstantInt::get(Int32Ty, 1);
9989 Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
9990 return Builder.CreateCall(F, {Address, RW, Locality, Data});
9991 }
9992 case X86::BI_mm_clflush: {
9993 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
9994 Ops[0]);
9995 }
9996 case X86::BI_mm_lfence: {
9997 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
9998 }
9999 case X86::BI_mm_mfence: {
10000 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
10001 }
10002 case X86::BI_mm_sfence: {
10003 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
10004 }
10005 case X86::BI_mm_pause: {
10006 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
10007 }
10008 case X86::BI__rdtsc: {
10009 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
10010 }
10011 case X86::BI__builtin_ia32_rdtscp: {
10012 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
10013 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
10014 Ops[0]);
10015 return Builder.CreateExtractValue(Call, 0);
10016 }
10017 case X86::BI__builtin_ia32_lzcnt_u16:
10018 case X86::BI__builtin_ia32_lzcnt_u32:
10019 case X86::BI__builtin_ia32_lzcnt_u64: {
10020 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
10021 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10022 }
10023 case X86::BI__builtin_ia32_tzcnt_u16:
10024 case X86::BI__builtin_ia32_tzcnt_u32:
10025 case X86::BI__builtin_ia32_tzcnt_u64: {
10026 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
10027 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
10028 }
10029 case X86::BI__builtin_ia32_undef128:
10030 case X86::BI__builtin_ia32_undef256:
10031 case X86::BI__builtin_ia32_undef512:
10032 // The x86 definition of "undef" is not the same as the LLVM definition
10033 // (PR32176). We leave optimizing away an unnecessary zero constant to the
10034 // IR optimizer and backend.
10035 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
10036 // value, we should use that here instead of a zero.
10037 return llvm::Constant::getNullValue(ConvertType(E->getType()));
10038 case X86::BI__builtin_ia32_vec_init_v8qi:
10039 case X86::BI__builtin_ia32_vec_init_v4hi:
10040 case X86::BI__builtin_ia32_vec_init_v2si:
10041 return Builder.CreateBitCast(BuildVector(Ops),
10042 llvm::Type::getX86_MMXTy(getLLVMContext()));
10043 case X86::BI__builtin_ia32_vec_ext_v2si:
10044 case X86::BI__builtin_ia32_vec_ext_v16qi:
10045 case X86::BI__builtin_ia32_vec_ext_v8hi:
10046 case X86::BI__builtin_ia32_vec_ext_v4si:
10047 case X86::BI__builtin_ia32_vec_ext_v4sf:
10048 case X86::BI__builtin_ia32_vec_ext_v2di:
10049 case X86::BI__builtin_ia32_vec_ext_v32qi:
10050 case X86::BI__builtin_ia32_vec_ext_v16hi:
10051 case X86::BI__builtin_ia32_vec_ext_v8si:
10052 case X86::BI__builtin_ia32_vec_ext_v4di: {
10053 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10054 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10055 Index &= NumElts - 1;
10056 // These builtins exist so we can ensure the index is an ICE and in range.
10057 // Otherwise we could just do this in the header file.
10058 return Builder.CreateExtractElement(Ops[0], Index);
10059 }
10060 case X86::BI__builtin_ia32_vec_set_v16qi:
10061 case X86::BI__builtin_ia32_vec_set_v8hi:
10062 case X86::BI__builtin_ia32_vec_set_v4si:
10063 case X86::BI__builtin_ia32_vec_set_v2di:
10064 case X86::BI__builtin_ia32_vec_set_v32qi:
10065 case X86::BI__builtin_ia32_vec_set_v16hi:
10066 case X86::BI__builtin_ia32_vec_set_v8si:
10067 case X86::BI__builtin_ia32_vec_set_v4di: {
10068 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10069 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10070 Index &= NumElts - 1;
10071 // These builtins exist so we can ensure the index is an ICE and in range.
10072 // Otherwise we could just do this in the header file.
10073 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
10074 }
10075 case X86::BI_mm_setcsr:
10076 case X86::BI__builtin_ia32_ldmxcsr: {
10077 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10078 Builder.CreateStore(Ops[0], Tmp);
10079 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
10080 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10081 }
10082 case X86::BI_mm_getcsr:
10083 case X86::BI__builtin_ia32_stmxcsr: {
10084 Address Tmp = CreateMemTemp(E->getType());
10085 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
10086 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
10087 return Builder.CreateLoad(Tmp, "stmxcsr");
10088 }
10089 case X86::BI__builtin_ia32_xsave:
10090 case X86::BI__builtin_ia32_xsave64:
10091 case X86::BI__builtin_ia32_xrstor:
10092 case X86::BI__builtin_ia32_xrstor64:
10093 case X86::BI__builtin_ia32_xsaveopt:
10094 case X86::BI__builtin_ia32_xsaveopt64:
10095 case X86::BI__builtin_ia32_xrstors:
10096 case X86::BI__builtin_ia32_xrstors64:
10097 case X86::BI__builtin_ia32_xsavec:
10098 case X86::BI__builtin_ia32_xsavec64:
10099 case X86::BI__builtin_ia32_xsaves:
10100 case X86::BI__builtin_ia32_xsaves64:
10101 case X86::BI__builtin_ia32_xsetbv:
10102 case X86::BI_xsetbv: {
10103 Intrinsic::ID ID;
10104#define INTRINSIC_X86_XSAVE_ID(NAME) \
10105 case X86::BI__builtin_ia32_##NAME: \
10106 ID = Intrinsic::x86_##NAME; \
10107 break
10108 switch (BuiltinID) {
10109 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10109)
;
10110 INTRINSIC_X86_XSAVE_ID(xsave);
10111 INTRINSIC_X86_XSAVE_ID(xsave64);
10112 INTRINSIC_X86_XSAVE_ID(xrstor);
10113 INTRINSIC_X86_XSAVE_ID(xrstor64);
10114 INTRINSIC_X86_XSAVE_ID(xsaveopt);
10115 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
10116 INTRINSIC_X86_XSAVE_ID(xrstors);
10117 INTRINSIC_X86_XSAVE_ID(xrstors64);
10118 INTRINSIC_X86_XSAVE_ID(xsavec);
10119 INTRINSIC_X86_XSAVE_ID(xsavec64);
10120 INTRINSIC_X86_XSAVE_ID(xsaves);
10121 INTRINSIC_X86_XSAVE_ID(xsaves64);
10122 INTRINSIC_X86_XSAVE_ID(xsetbv);
10123 case X86::BI_xsetbv:
10124 ID = Intrinsic::x86_xsetbv;
10125 break;
10126 }
10127#undef INTRINSIC_X86_XSAVE_ID
10128 Value *Mhi = Builder.CreateTrunc(
10129 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
10130 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
10131 Ops[1] = Mhi;
10132 Ops.push_back(Mlo);
10133 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
10134 }
10135 case X86::BI__builtin_ia32_xgetbv:
10136 case X86::BI_xgetbv:
10137 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
10138 case X86::BI__builtin_ia32_storedqudi128_mask:
10139 case X86::BI__builtin_ia32_storedqusi128_mask:
10140 case X86::BI__builtin_ia32_storedquhi128_mask:
10141 case X86::BI__builtin_ia32_storedquqi128_mask:
10142 case X86::BI__builtin_ia32_storeupd128_mask:
10143 case X86::BI__builtin_ia32_storeups128_mask:
10144 case X86::BI__builtin_ia32_storedqudi256_mask:
10145 case X86::BI__builtin_ia32_storedqusi256_mask:
10146 case X86::BI__builtin_ia32_storedquhi256_mask:
10147 case X86::BI__builtin_ia32_storedquqi256_mask:
10148 case X86::BI__builtin_ia32_storeupd256_mask:
10149 case X86::BI__builtin_ia32_storeups256_mask:
10150 case X86::BI__builtin_ia32_storedqudi512_mask:
10151 case X86::BI__builtin_ia32_storedqusi512_mask:
10152 case X86::BI__builtin_ia32_storedquhi512_mask:
10153 case X86::BI__builtin_ia32_storedquqi512_mask:
10154 case X86::BI__builtin_ia32_storeupd512_mask:
10155 case X86::BI__builtin_ia32_storeups512_mask:
10156 return EmitX86MaskedStore(*this, Ops, 1);
10157
10158 case X86::BI__builtin_ia32_storess128_mask:
10159 case X86::BI__builtin_ia32_storesd128_mask: {
10160 return EmitX86MaskedStore(*this, Ops, 1);
10161 }
10162 case X86::BI__builtin_ia32_vpopcntb_128:
10163 case X86::BI__builtin_ia32_vpopcntd_128:
10164 case X86::BI__builtin_ia32_vpopcntq_128:
10165 case X86::BI__builtin_ia32_vpopcntw_128:
10166 case X86::BI__builtin_ia32_vpopcntb_256:
10167 case X86::BI__builtin_ia32_vpopcntd_256:
10168 case X86::BI__builtin_ia32_vpopcntq_256:
10169 case X86::BI__builtin_ia32_vpopcntw_256:
10170 case X86::BI__builtin_ia32_vpopcntb_512:
10171 case X86::BI__builtin_ia32_vpopcntd_512:
10172 case X86::BI__builtin_ia32_vpopcntq_512:
10173 case X86::BI__builtin_ia32_vpopcntw_512: {
10174 llvm::Type *ResultType = ConvertType(E->getType());
10175 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
10176 return Builder.CreateCall(F, Ops);
10177 }
10178 case X86::BI__builtin_ia32_cvtmask2b128:
10179 case X86::BI__builtin_ia32_cvtmask2b256:
10180 case X86::BI__builtin_ia32_cvtmask2b512:
10181 case X86::BI__builtin_ia32_cvtmask2w128:
10182 case X86::BI__builtin_ia32_cvtmask2w256:
10183 case X86::BI__builtin_ia32_cvtmask2w512:
10184 case X86::BI__builtin_ia32_cvtmask2d128:
10185 case X86::BI__builtin_ia32_cvtmask2d256:
10186 case X86::BI__builtin_ia32_cvtmask2d512:
10187 case X86::BI__builtin_ia32_cvtmask2q128:
10188 case X86::BI__builtin_ia32_cvtmask2q256:
10189 case X86::BI__builtin_ia32_cvtmask2q512:
10190 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
10191
10192 case X86::BI__builtin_ia32_cvtb2mask128:
10193 case X86::BI__builtin_ia32_cvtb2mask256:
10194 case X86::BI__builtin_ia32_cvtb2mask512:
10195 case X86::BI__builtin_ia32_cvtw2mask128:
10196 case X86::BI__builtin_ia32_cvtw2mask256:
10197 case X86::BI__builtin_ia32_cvtw2mask512:
10198 case X86::BI__builtin_ia32_cvtd2mask128:
10199 case X86::BI__builtin_ia32_cvtd2mask256:
10200 case X86::BI__builtin_ia32_cvtd2mask512:
10201 case X86::BI__builtin_ia32_cvtq2mask128:
10202 case X86::BI__builtin_ia32_cvtq2mask256:
10203 case X86::BI__builtin_ia32_cvtq2mask512:
10204 return EmitX86ConvertToMask(*this, Ops[0]);
10205
10206 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
10207 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
10208 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
10209 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
10210 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
10211 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
10212 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
10213 return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
10214
10215 case X86::BI__builtin_ia32_vfmaddss3:
10216 case X86::BI__builtin_ia32_vfmaddsd3:
10217 case X86::BI__builtin_ia32_vfmaddss3_mask:
10218 case X86::BI__builtin_ia32_vfmaddsd3_mask:
10219 return EmitScalarFMAExpr(*this, Ops, Ops[0]);
10220 case X86::BI__builtin_ia32_vfmaddss:
10221 case X86::BI__builtin_ia32_vfmaddsd:
10222 return EmitScalarFMAExpr(*this, Ops,
10223 Constant::getNullValue(Ops[0]->getType()));
10224 case X86::BI__builtin_ia32_vfmaddss3_maskz:
10225 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
10226 return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
10227 case X86::BI__builtin_ia32_vfmaddss3_mask3:
10228 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
10229 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
10230 case X86::BI__builtin_ia32_vfmsubss3_mask3:
10231 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
10232 return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
10233 /*NegAcc*/true);
10234 case X86::BI__builtin_ia32_vfmaddps:
10235 case X86::BI__builtin_ia32_vfmaddpd:
10236 case X86::BI__builtin_ia32_vfmaddps256:
10237 case X86::BI__builtin_ia32_vfmaddpd256:
10238 case X86::BI__builtin_ia32_vfmaddps512_mask:
10239 case X86::BI__builtin_ia32_vfmaddps512_maskz:
10240 case X86::BI__builtin_ia32_vfmaddps512_mask3:
10241 case X86::BI__builtin_ia32_vfmsubps512_mask3:
10242 case X86::BI__builtin_ia32_vfmaddpd512_mask:
10243 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
10244 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
10245 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
10246 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
10247 case X86::BI__builtin_ia32_vfmaddsubps:
10248 case X86::BI__builtin_ia32_vfmaddsubpd:
10249 case X86::BI__builtin_ia32_vfmaddsubps256:
10250 case X86::BI__builtin_ia32_vfmaddsubpd256:
10251 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
10252 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
10253 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
10254 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
10255 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
10256 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
10257 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
10258 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
10259 return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
10260
10261 case X86::BI__builtin_ia32_movdqa32store128_mask:
10262 case X86::BI__builtin_ia32_movdqa64store128_mask:
10263 case X86::BI__builtin_ia32_storeaps128_mask:
10264 case X86::BI__builtin_ia32_storeapd128_mask:
10265 case X86::BI__builtin_ia32_movdqa32store256_mask:
10266 case X86::BI__builtin_ia32_movdqa64store256_mask:
10267 case X86::BI__builtin_ia32_storeaps256_mask:
10268 case X86::BI__builtin_ia32_storeapd256_mask:
10269 case X86::BI__builtin_ia32_movdqa32store512_mask:
10270 case X86::BI__builtin_ia32_movdqa64store512_mask:
10271 case X86::BI__builtin_ia32_storeaps512_mask:
10272 case X86::BI__builtin_ia32_storeapd512_mask: {
10273 unsigned Align =
10274 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10275 return EmitX86MaskedStore(*this, Ops, Align);
10276 }
10277 case X86::BI__builtin_ia32_loadups128_mask:
10278 case X86::BI__builtin_ia32_loadups256_mask:
10279 case X86::BI__builtin_ia32_loadups512_mask:
10280 case X86::BI__builtin_ia32_loadupd128_mask:
10281 case X86::BI__builtin_ia32_loadupd256_mask:
10282 case X86::BI__builtin_ia32_loadupd512_mask:
10283 case X86::BI__builtin_ia32_loaddquqi128_mask:
10284 case X86::BI__builtin_ia32_loaddquqi256_mask:
10285 case X86::BI__builtin_ia32_loaddquqi512_mask:
10286 case X86::BI__builtin_ia32_loaddquhi128_mask:
10287 case X86::BI__builtin_ia32_loaddquhi256_mask:
10288 case X86::BI__builtin_ia32_loaddquhi512_mask:
10289 case X86::BI__builtin_ia32_loaddqusi128_mask:
10290 case X86::BI__builtin_ia32_loaddqusi256_mask:
10291 case X86::BI__builtin_ia32_loaddqusi512_mask:
10292 case X86::BI__builtin_ia32_loaddqudi128_mask:
10293 case X86::BI__builtin_ia32_loaddqudi256_mask:
10294 case X86::BI__builtin_ia32_loaddqudi512_mask:
10295 return EmitX86MaskedLoad(*this, Ops, 1);
10296
10297 case X86::BI__builtin_ia32_loadss128_mask:
10298 case X86::BI__builtin_ia32_loadsd128_mask:
10299 return EmitX86MaskedLoad(*this, Ops, 1);
10300
10301 case X86::BI__builtin_ia32_loadaps128_mask:
10302 case X86::BI__builtin_ia32_loadaps256_mask:
10303 case X86::BI__builtin_ia32_loadaps512_mask:
10304 case X86::BI__builtin_ia32_loadapd128_mask:
10305 case X86::BI__builtin_ia32_loadapd256_mask:
10306 case X86::BI__builtin_ia32_loadapd512_mask:
10307 case X86::BI__builtin_ia32_movdqa32load128_mask:
10308 case X86::BI__builtin_ia32_movdqa32load256_mask:
10309 case X86::BI__builtin_ia32_movdqa32load512_mask:
10310 case X86::BI__builtin_ia32_movdqa64load128_mask:
10311 case X86::BI__builtin_ia32_movdqa64load256_mask:
10312 case X86::BI__builtin_ia32_movdqa64load512_mask: {
10313 unsigned Align =
10314 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10315 return EmitX86MaskedLoad(*this, Ops, Align);
10316 }
10317
10318 case X86::BI__builtin_ia32_expandloaddf128_mask:
10319 case X86::BI__builtin_ia32_expandloaddf256_mask:
10320 case X86::BI__builtin_ia32_expandloaddf512_mask:
10321 case X86::BI__builtin_ia32_expandloadsf128_mask:
10322 case X86::BI__builtin_ia32_expandloadsf256_mask:
10323 case X86::BI__builtin_ia32_expandloadsf512_mask:
10324 case X86::BI__builtin_ia32_expandloaddi128_mask:
10325 case X86::BI__builtin_ia32_expandloaddi256_mask:
10326 case X86::BI__builtin_ia32_expandloaddi512_mask:
10327 case X86::BI__builtin_ia32_expandloadsi128_mask:
10328 case X86::BI__builtin_ia32_expandloadsi256_mask:
10329 case X86::BI__builtin_ia32_expandloadsi512_mask:
10330 case X86::BI__builtin_ia32_expandloadhi128_mask:
10331 case X86::BI__builtin_ia32_expandloadhi256_mask:
10332 case X86::BI__builtin_ia32_expandloadhi512_mask:
10333 case X86::BI__builtin_ia32_expandloadqi128_mask:
10334 case X86::BI__builtin_ia32_expandloadqi256_mask:
10335 case X86::BI__builtin_ia32_expandloadqi512_mask:
10336 return EmitX86ExpandLoad(*this, Ops);
10337
10338 case X86::BI__builtin_ia32_compressstoredf128_mask:
10339 case X86::BI__builtin_ia32_compressstoredf256_mask:
10340 case X86::BI__builtin_ia32_compressstoredf512_mask:
10341 case X86::BI__builtin_ia32_compressstoresf128_mask:
10342 case X86::BI__builtin_ia32_compressstoresf256_mask:
10343 case X86::BI__builtin_ia32_compressstoresf512_mask:
10344 case X86::BI__builtin_ia32_compressstoredi128_mask:
10345 case X86::BI__builtin_ia32_compressstoredi256_mask:
10346 case X86::BI__builtin_ia32_compressstoredi512_mask:
10347 case X86::BI__builtin_ia32_compressstoresi128_mask:
10348 case X86::BI__builtin_ia32_compressstoresi256_mask:
10349 case X86::BI__builtin_ia32_compressstoresi512_mask:
10350 case X86::BI__builtin_ia32_compressstorehi128_mask:
10351 case X86::BI__builtin_ia32_compressstorehi256_mask:
10352 case X86::BI__builtin_ia32_compressstorehi512_mask:
10353 case X86::BI__builtin_ia32_compressstoreqi128_mask:
10354 case X86::BI__builtin_ia32_compressstoreqi256_mask:
10355 case X86::BI__builtin_ia32_compressstoreqi512_mask:
10356 return EmitX86CompressStore(*this, Ops);
10357
10358 case X86::BI__builtin_ia32_expanddf128_mask:
10359 case X86::BI__builtin_ia32_expanddf256_mask:
10360 case X86::BI__builtin_ia32_expanddf512_mask:
10361 case X86::BI__builtin_ia32_expandsf128_mask:
10362 case X86::BI__builtin_ia32_expandsf256_mask:
10363 case X86::BI__builtin_ia32_expandsf512_mask:
10364 case X86::BI__builtin_ia32_expanddi128_mask:
10365 case X86::BI__builtin_ia32_expanddi256_mask:
10366 case X86::BI__builtin_ia32_expanddi512_mask:
10367 case X86::BI__builtin_ia32_expandsi128_mask:
10368 case X86::BI__builtin_ia32_expandsi256_mask:
10369 case X86::BI__builtin_ia32_expandsi512_mask:
10370 case X86::BI__builtin_ia32_expandhi128_mask:
10371 case X86::BI__builtin_ia32_expandhi256_mask:
10372 case X86::BI__builtin_ia32_expandhi512_mask:
10373 case X86::BI__builtin_ia32_expandqi128_mask:
10374 case X86::BI__builtin_ia32_expandqi256_mask:
10375 case X86::BI__builtin_ia32_expandqi512_mask:
10376 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
10377
10378 case X86::BI__builtin_ia32_compressdf128_mask:
10379 case X86::BI__builtin_ia32_compressdf256_mask:
10380 case X86::BI__builtin_ia32_compressdf512_mask:
10381 case X86::BI__builtin_ia32_compresssf128_mask:
10382 case X86::BI__builtin_ia32_compresssf256_mask:
10383 case X86::BI__builtin_ia32_compresssf512_mask:
10384 case X86::BI__builtin_ia32_compressdi128_mask:
10385 case X86::BI__builtin_ia32_compressdi256_mask:
10386 case X86::BI__builtin_ia32_compressdi512_mask:
10387 case X86::BI__builtin_ia32_compresssi128_mask:
10388 case X86::BI__builtin_ia32_compresssi256_mask:
10389 case X86::BI__builtin_ia32_compresssi512_mask:
10390 case X86::BI__builtin_ia32_compresshi128_mask:
10391 case X86::BI__builtin_ia32_compresshi256_mask:
10392 case X86::BI__builtin_ia32_compresshi512_mask:
10393 case X86::BI__builtin_ia32_compressqi128_mask:
10394 case X86::BI__builtin_ia32_compressqi256_mask:
10395 case X86::BI__builtin_ia32_compressqi512_mask:
10396 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
10397
10398 case X86::BI__builtin_ia32_gather3div2df:
10399 case X86::BI__builtin_ia32_gather3div2di:
10400 case X86::BI__builtin_ia32_gather3div4df:
10401 case X86::BI__builtin_ia32_gather3div4di:
10402 case X86::BI__builtin_ia32_gather3div4sf:
10403 case X86::BI__builtin_ia32_gather3div4si:
10404 case X86::BI__builtin_ia32_gather3div8sf:
10405 case X86::BI__builtin_ia32_gather3div8si:
10406 case X86::BI__builtin_ia32_gather3siv2df:
10407 case X86::BI__builtin_ia32_gather3siv2di:
10408 case X86::BI__builtin_ia32_gather3siv4df:
10409 case X86::BI__builtin_ia32_gather3siv4di:
10410 case X86::BI__builtin_ia32_gather3siv4sf:
10411 case X86::BI__builtin_ia32_gather3siv4si:
10412 case X86::BI__builtin_ia32_gather3siv8sf:
10413 case X86::BI__builtin_ia32_gather3siv8si:
10414 case X86::BI__builtin_ia32_gathersiv8df:
10415 case X86::BI__builtin_ia32_gathersiv16sf:
10416 case X86::BI__builtin_ia32_gatherdiv8df:
10417 case X86::BI__builtin_ia32_gatherdiv16sf:
10418 case X86::BI__builtin_ia32_gathersiv8di:
10419 case X86::BI__builtin_ia32_gathersiv16si:
10420 case X86::BI__builtin_ia32_gatherdiv8di:
10421 case X86::BI__builtin_ia32_gatherdiv16si: {
10422 Intrinsic::ID IID;
10423 switch (BuiltinID) {
10424 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10424)
;
10425 case X86::BI__builtin_ia32_gather3div2df:
10426 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
10427 break;
10428 case X86::BI__builtin_ia32_gather3div2di:
10429 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
10430 break;
10431 case X86::BI__builtin_ia32_gather3div4df:
10432 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
10433 break;
10434 case X86::BI__builtin_ia32_gather3div4di:
10435 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
10436 break;
10437 case X86::BI__builtin_ia32_gather3div4sf:
10438 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
10439 break;
10440 case X86::BI__builtin_ia32_gather3div4si:
10441 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
10442 break;
10443 case X86::BI__builtin_ia32_gather3div8sf:
10444 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
10445 break;
10446 case X86::BI__builtin_ia32_gather3div8si:
10447 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
10448 break;
10449 case X86::BI__builtin_ia32_gather3siv2df:
10450 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
10451 break;
10452 case X86::BI__builtin_ia32_gather3siv2di:
10453 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
10454 break;
10455 case X86::BI__builtin_ia32_gather3siv4df:
10456 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
10457 break;
10458 case X86::BI__builtin_ia32_gather3siv4di:
10459 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
10460 break;
10461 case X86::BI__builtin_ia32_gather3siv4sf:
10462 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
10463 break;
10464 case X86::BI__builtin_ia32_gather3siv4si:
10465 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
10466 break;
10467 case X86::BI__builtin_ia32_gather3siv8sf:
10468 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
10469 break;
10470 case X86::BI__builtin_ia32_gather3siv8si:
10471 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
10472 break;
10473 case X86::BI__builtin_ia32_gathersiv8df:
10474 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
10475 break;
10476 case X86::BI__builtin_ia32_gathersiv16sf:
10477 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
10478 break;
10479 case X86::BI__builtin_ia32_gatherdiv8df:
10480 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
10481 break;
10482 case X86::BI__builtin_ia32_gatherdiv16sf:
10483 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
10484 break;
10485 case X86::BI__builtin_ia32_gathersiv8di:
10486 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
10487 break;
10488 case X86::BI__builtin_ia32_gathersiv16si:
10489 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
10490 break;
10491 case X86::BI__builtin_ia32_gatherdiv8di:
10492 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
10493 break;
10494 case X86::BI__builtin_ia32_gatherdiv16si:
10495 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
10496 break;
10497 }
10498
10499 unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
10500 Ops[2]->getType()->getVectorNumElements());
10501 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
10502 Function *Intr = CGM.getIntrinsic(IID);
10503 return Builder.CreateCall(Intr, Ops);
10504 }
10505
10506 case X86::BI__builtin_ia32_scattersiv8df:
10507 case X86::BI__builtin_ia32_scattersiv16sf:
10508 case X86::BI__builtin_ia32_scatterdiv8df:
10509 case X86::BI__builtin_ia32_scatterdiv16sf:
10510 case X86::BI__builtin_ia32_scattersiv8di:
10511 case X86::BI__builtin_ia32_scattersiv16si:
10512 case X86::BI__builtin_ia32_scatterdiv8di:
10513 case X86::BI__builtin_ia32_scatterdiv16si:
10514 case X86::BI__builtin_ia32_scatterdiv2df:
10515 case X86::BI__builtin_ia32_scatterdiv2di:
10516 case X86::BI__builtin_ia32_scatterdiv4df:
10517 case X86::BI__builtin_ia32_scatterdiv4di:
10518 case X86::BI__builtin_ia32_scatterdiv4sf:
10519 case X86::BI__builtin_ia32_scatterdiv4si:
10520 case X86::BI__builtin_ia32_scatterdiv8sf:
10521 case X86::BI__builtin_ia32_scatterdiv8si:
10522 case X86::BI__builtin_ia32_scattersiv2df:
10523 case X86::BI__builtin_ia32_scattersiv2di:
10524 case X86::BI__builtin_ia32_scattersiv4df:
10525 case X86::BI__builtin_ia32_scattersiv4di:
10526 case X86::BI__builtin_ia32_scattersiv4sf:
10527 case X86::BI__builtin_ia32_scattersiv4si:
10528 case X86::BI__builtin_ia32_scattersiv8sf:
10529 case X86::BI__builtin_ia32_scattersiv8si: {
10530 Intrinsic::ID IID;
10531 switch (BuiltinID) {
10532 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10532)
;
10533 case X86::BI__builtin_ia32_scattersiv8df:
10534 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
10535 break;
10536 case X86::BI__builtin_ia32_scattersiv16sf:
10537 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
10538 break;
10539 case X86::BI__builtin_ia32_scatterdiv8df:
10540 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
10541 break;
10542 case X86::BI__builtin_ia32_scatterdiv16sf:
10543 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
10544 break;
10545 case X86::BI__builtin_ia32_scattersiv8di:
10546 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
10547 break;
10548 case X86::BI__builtin_ia32_scattersiv16si:
10549 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
10550 break;
10551 case X86::BI__builtin_ia32_scatterdiv8di:
10552 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
10553 break;
10554 case X86::BI__builtin_ia32_scatterdiv16si:
10555 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
10556 break;
10557 case X86::BI__builtin_ia32_scatterdiv2df:
10558 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
10559 break;
10560 case X86::BI__builtin_ia32_scatterdiv2di:
10561 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
10562 break;
10563 case X86::BI__builtin_ia32_scatterdiv4df:
10564 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
10565 break;
10566 case X86::BI__builtin_ia32_scatterdiv4di:
10567 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
10568 break;
10569 case X86::BI__builtin_ia32_scatterdiv4sf:
10570 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
10571 break;
10572 case X86::BI__builtin_ia32_scatterdiv4si:
10573 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
10574 break;
10575 case X86::BI__builtin_ia32_scatterdiv8sf:
10576 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
10577 break;
10578 case X86::BI__builtin_ia32_scatterdiv8si:
10579 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
10580 break;
10581 case X86::BI__builtin_ia32_scattersiv2df:
10582 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
10583 break;
10584 case X86::BI__builtin_ia32_scattersiv2di:
10585 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
10586 break;
10587 case X86::BI__builtin_ia32_scattersiv4df:
10588 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
10589 break;
10590 case X86::BI__builtin_ia32_scattersiv4di:
10591 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
10592 break;
10593 case X86::BI__builtin_ia32_scattersiv4sf:
10594 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
10595 break;
10596 case X86::BI__builtin_ia32_scattersiv4si:
10597 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
10598 break;
10599 case X86::BI__builtin_ia32_scattersiv8sf:
10600 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
10601 break;
10602 case X86::BI__builtin_ia32_scattersiv8si:
10603 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
10604 break;
10605 }
10606
10607 unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
10608 Ops[3]->getType()->getVectorNumElements());
10609 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
10610 Function *Intr = CGM.getIntrinsic(IID);
10611 return Builder.CreateCall(Intr, Ops);
10612 }
10613
10614 case X86::BI__builtin_ia32_storehps:
10615 case X86::BI__builtin_ia32_storelps: {
10616 llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
10617 llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
10618
10619 // cast val v2i64
10620 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
10621
10622 // extract (0, 1)
10623 unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
10624 Ops[1] = Builder.CreateExtractElement(Ops[1], Index, "extract");
10625
10626 // cast pointer to i64 & store
10627 Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
10628 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10629 }
10630 case X86::BI__builtin_ia32_vextractf128_pd256:
10631 case X86::BI__builtin_ia32_vextractf128_ps256:
10632 case X86::BI__builtin_ia32_vextractf128_si256:
10633 case X86::BI__builtin_ia32_extract128i256:
10634 case X86::BI__builtin_ia32_extractf64x4_mask:
10635 case X86::BI__builtin_ia32_extractf32x4_mask:
10636 case X86::BI__builtin_ia32_extracti64x4_mask:
10637 case X86::BI__builtin_ia32_extracti32x4_mask:
10638 case X86::BI__builtin_ia32_extractf32x8_mask:
10639 case X86::BI__builtin_ia32_extracti32x8_mask:
10640 case X86::BI__builtin_ia32_extractf32x4_256_mask:
10641 case X86::BI__builtin_ia32_extracti32x4_256_mask:
10642 case X86::BI__builtin_ia32_extractf64x2_256_mask:
10643 case X86::BI__builtin_ia32_extracti64x2_256_mask:
10644 case X86::BI__builtin_ia32_extractf64x2_512_mask:
10645 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
10646 llvm::Type *DstTy = ConvertType(E->getType());
10647 unsigned NumElts = DstTy->getVectorNumElements();
10648 unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
10649 unsigned SubVectors = SrcNumElts / NumElts;
10650 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10651 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")((llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10651, __PRETTY_FUNCTION__))
;
10652 Index &= SubVectors - 1; // Remove any extra bits.
10653 Index *= NumElts;
10654
10655 uint32_t Indices[16];
10656 for (unsigned i = 0; i != NumElts; ++i)
10657 Indices[i] = i + Index;
10658
10659 Value *Res = Builder.CreateShuffleVector(Ops[0],
10660 UndefValue::get(Ops[0]->getType()),
10661 makeArrayRef(Indices, NumElts),
10662 "extract");
10663
10664 if (Ops.size() == 4)
10665 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
10666
10667 return Res;
10668 }
10669 case X86::BI__builtin_ia32_vinsertf128_pd256:
10670 case X86::BI__builtin_ia32_vinsertf128_ps256:
10671 case X86::BI__builtin_ia32_vinsertf128_si256:
10672 case X86::BI__builtin_ia32_insert128i256:
10673 case X86::BI__builtin_ia32_insertf64x4:
10674 case X86::BI__builtin_ia32_insertf32x4:
10675 case X86::BI__builtin_ia32_inserti64x4:
10676 case X86::BI__builtin_ia32_inserti32x4:
10677 case X86::BI__builtin_ia32_insertf32x8:
10678 case X86::BI__builtin_ia32_inserti32x8:
10679 case X86::BI__builtin_ia32_insertf32x4_256:
10680 case X86::BI__builtin_ia32_inserti32x4_256:
10681 case X86::BI__builtin_ia32_insertf64x2_256:
10682 case X86::BI__builtin_ia32_inserti64x2_256:
10683 case X86::BI__builtin_ia32_insertf64x2_512:
10684 case X86::BI__builtin_ia32_inserti64x2_512: {
10685 unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
10686 unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
10687 unsigned SubVectors = DstNumElts / SrcNumElts;
10688 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10689 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")((llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"
) ? static_cast<void> (0) : __assert_fail ("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10689, __PRETTY_FUNCTION__))
;
10690 Index &= SubVectors - 1; // Remove any extra bits.
10691 Index *= SrcNumElts;
10692
10693 uint32_t Indices[16];
10694 for (unsigned i = 0; i != DstNumElts; ++i)
10695 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
10696
10697 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
10698 UndefValue::get(Ops[1]->getType()),
10699 makeArrayRef(Indices, DstNumElts),
10700 "widen");
10701
10702 for (unsigned i = 0; i != DstNumElts; ++i) {
10703 if (i >= Index && i < (Index + SrcNumElts))
10704 Indices[i] = (i - Index) + DstNumElts;
10705 else
10706 Indices[i] = i;
10707 }
10708
10709 return Builder.CreateShuffleVector(Ops[0], Op1,
10710 makeArrayRef(Indices, DstNumElts),
10711 "insert");
10712 }
10713 case X86::BI__builtin_ia32_pmovqd512_mask:
10714 case X86::BI__builtin_ia32_pmovwb512_mask: {
10715 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10716 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
10717 }
10718 case X86::BI__builtin_ia32_pmovdb512_mask:
10719 case X86::BI__builtin_ia32_pmovdw512_mask:
10720 case X86::BI__builtin_ia32_pmovqw512_mask: {
10721 if (const auto *C = dyn_cast<Constant>(Ops[2]))
10722 if (C->isAllOnesValue())
10723 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10724
10725 Intrinsic::ID IID;
10726 switch (BuiltinID) {
10727 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10727)
;
10728 case X86::BI__builtin_ia32_pmovdb512_mask:
10729 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
10730 break;
10731 case X86::BI__builtin_ia32_pmovdw512_mask:
10732 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
10733 break;
10734 case X86::BI__builtin_ia32_pmovqw512_mask:
10735 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
10736 break;
10737 }
10738
10739 Function *Intr = CGM.getIntrinsic(IID);
10740 return Builder.CreateCall(Intr, Ops);
10741 }
10742 case X86::BI__builtin_ia32_pblendw128:
10743 case X86::BI__builtin_ia32_blendpd:
10744 case X86::BI__builtin_ia32_blendps:
10745 case X86::BI__builtin_ia32_blendpd256:
10746 case X86::BI__builtin_ia32_blendps256:
10747 case X86::BI__builtin_ia32_pblendw256:
10748 case X86::BI__builtin_ia32_pblendd128:
10749 case X86::BI__builtin_ia32_pblendd256: {
10750 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10751 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10752
10753 uint32_t Indices[16];
10754 // If there are more than 8 elements, the immediate is used twice so make
10755 // sure we handle that.
10756 for (unsigned i = 0; i != NumElts; ++i)
10757 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
10758
10759 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10760 makeArrayRef(Indices, NumElts),
10761 "blend");
10762 }
10763 case X86::BI__builtin_ia32_pshuflw:
10764 case X86::BI__builtin_ia32_pshuflw256:
10765 case X86::BI__builtin_ia32_pshuflw512: {
10766 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10767 llvm::Type *Ty = Ops[0]->getType();
10768 unsigned NumElts = Ty->getVectorNumElements();
10769
10770 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10771 Imm = (Imm & 0xff) * 0x01010101;
10772
10773 uint32_t Indices[32];
10774 for (unsigned l = 0; l != NumElts; l += 8) {
10775 for (unsigned i = 0; i != 4; ++i) {
10776 Indices[l + i] = l + (Imm & 3);
10777 Imm >>= 2;
10778 }
10779 for (unsigned i = 4; i != 8; ++i)
10780 Indices[l + i] = l + i;
10781 }
10782
10783 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10784 makeArrayRef(Indices, NumElts),
10785 "pshuflw");
10786 }
10787 case X86::BI__builtin_ia32_pshufhw:
10788 case X86::BI__builtin_ia32_pshufhw256:
10789 case X86::BI__builtin_ia32_pshufhw512: {
10790 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10791 llvm::Type *Ty = Ops[0]->getType();
10792 unsigned NumElts = Ty->getVectorNumElements();
10793
10794 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10795 Imm = (Imm & 0xff) * 0x01010101;
10796
10797 uint32_t Indices[32];
10798 for (unsigned l = 0; l != NumElts; l += 8) {
10799 for (unsigned i = 0; i != 4; ++i)
10800 Indices[l + i] = l + i;
10801 for (unsigned i = 4; i != 8; ++i) {
10802 Indices[l + i] = l + 4 + (Imm & 3);
10803 Imm >>= 2;
10804 }
10805 }
10806
10807 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10808 makeArrayRef(Indices, NumElts),
10809 "pshufhw");
10810 }
10811 case X86::BI__builtin_ia32_pshufd:
10812 case X86::BI__builtin_ia32_pshufd256:
10813 case X86::BI__builtin_ia32_pshufd512:
10814 case X86::BI__builtin_ia32_vpermilpd:
10815 case X86::BI__builtin_ia32_vpermilps:
10816 case X86::BI__builtin_ia32_vpermilpd256:
10817 case X86::BI__builtin_ia32_vpermilps256:
10818 case X86::BI__builtin_ia32_vpermilpd512:
10819 case X86::BI__builtin_ia32_vpermilps512: {
10820 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10821 llvm::Type *Ty = Ops[0]->getType();
10822 unsigned NumElts = Ty->getVectorNumElements();
10823 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10824 unsigned NumLaneElts = NumElts / NumLanes;
10825
10826 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10827 Imm = (Imm & 0xff) * 0x01010101;
10828
10829 uint32_t Indices[16];
10830 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10831 for (unsigned i = 0; i != NumLaneElts; ++i) {
10832 Indices[i + l] = (Imm % NumLaneElts) + l;
10833 Imm /= NumLaneElts;
10834 }
10835 }
10836
10837 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10838 makeArrayRef(Indices, NumElts),
10839 "permil");
10840 }
10841 case X86::BI__builtin_ia32_shufpd:
10842 case X86::BI__builtin_ia32_shufpd256:
10843 case X86::BI__builtin_ia32_shufpd512:
10844 case X86::BI__builtin_ia32_shufps:
10845 case X86::BI__builtin_ia32_shufps256:
10846 case X86::BI__builtin_ia32_shufps512: {
10847 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10848 llvm::Type *Ty = Ops[0]->getType();
10849 unsigned NumElts = Ty->getVectorNumElements();
10850 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10851 unsigned NumLaneElts = NumElts / NumLanes;
10852
10853 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10854 Imm = (Imm & 0xff) * 0x01010101;
10855
10856 uint32_t Indices[16];
10857 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10858 for (unsigned i = 0; i != NumLaneElts; ++i) {
10859 unsigned Index = Imm % NumLaneElts;
10860 Imm /= NumLaneElts;
10861 if (i >= (NumLaneElts / 2))
10862 Index += NumElts;
10863 Indices[l + i] = l + Index;
10864 }
10865 }
10866
10867 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10868 makeArrayRef(Indices, NumElts),
10869 "shufp");
10870 }
10871 case X86::BI__builtin_ia32_permdi256:
10872 case X86::BI__builtin_ia32_permdf256:
10873 case X86::BI__builtin_ia32_permdi512:
10874 case X86::BI__builtin_ia32_permdf512: {
10875 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10876 llvm::Type *Ty = Ops[0]->getType();
10877 unsigned NumElts = Ty->getVectorNumElements();
10878
10879 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
10880 uint32_t Indices[8];
10881 for (unsigned l = 0; l != NumElts; l += 4)
10882 for (unsigned i = 0; i != 4; ++i)
10883 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
10884
10885 return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10886 makeArrayRef(Indices, NumElts),
10887 "perm");
10888 }
10889 case X86::BI__builtin_ia32_palignr128:
10890 case X86::BI__builtin_ia32_palignr256:
10891 case X86::BI__builtin_ia32_palignr512: {
10892 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10893
10894 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10895 assert(NumElts % 16 == 0)((NumElts % 16 == 0) ? static_cast<void> (0) : __assert_fail
("NumElts % 16 == 0", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 10895, __PRETTY_FUNCTION__))
;
10896
10897 // If palignr is shifting the pair of vectors more than the size of two
10898 // lanes, emit zero.
10899 if (ShiftVal >= 32)
10900 return llvm::Constant::getNullValue(ConvertType(E->getType()));
10901
10902 // If palignr is shifting the pair of input vectors more than one lane,
10903 // but less than two lanes, convert to shifting in zeroes.
10904 if (ShiftVal > 16) {
10905 ShiftVal -= 16;
10906 Ops[1] = Ops[0];
10907 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
10908 }
10909
10910 uint32_t Indices[64];
10911 // 256-bit palignr operates on 128-bit lanes so we need to handle that
10912 for (unsigned l = 0; l != NumElts; l += 16) {
10913 for (unsigned i = 0; i != 16; ++i) {
10914 unsigned Idx = ShiftVal + i;
10915 if (Idx >= 16)
10916 Idx += NumElts - 16; // End of lane, switch operand.
10917 Indices[l + i] = Idx + l;
10918 }
10919 }
10920
10921 return Builder.CreateShuffleVector(Ops[1], Ops[0],
10922 makeArrayRef(Indices, NumElts),
10923 "palignr");
10924 }
10925 case X86::BI__builtin_ia32_alignd128:
10926 case X86::BI__builtin_ia32_alignd256:
10927 case X86::BI__builtin_ia32_alignd512:
10928 case X86::BI__builtin_ia32_alignq128:
10929 case X86::BI__builtin_ia32_alignq256:
10930 case X86::BI__builtin_ia32_alignq512: {
10931 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10932 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10933
10934 // Mask the shift amount to width of two vectors.
10935 ShiftVal &= (2 * NumElts) - 1;
10936
10937 uint32_t Indices[16];
10938 for (unsigned i = 0; i != NumElts; ++i)
10939 Indices[i] = i + ShiftVal;
10940
10941 return Builder.CreateShuffleVector(Ops[1], Ops[0],
10942 makeArrayRef(Indices, NumElts),
10943 "valign");
10944 }
10945 case X86::BI__builtin_ia32_shuf_f32x4_256:
10946 case X86::BI__builtin_ia32_shuf_f64x2_256:
10947 case X86::BI__builtin_ia32_shuf_i32x4_256:
10948 case X86::BI__builtin_ia32_shuf_i64x2_256:
10949 case X86::BI__builtin_ia32_shuf_f32x4:
10950 case X86::BI__builtin_ia32_shuf_f64x2:
10951 case X86::BI__builtin_ia32_shuf_i32x4:
10952 case X86::BI__builtin_ia32_shuf_i64x2: {
10953 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10954 llvm::Type *Ty = Ops[0]->getType();
10955 unsigned NumElts = Ty->getVectorNumElements();
10956 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
10957 unsigned NumLaneElts = NumElts / NumLanes;
10958
10959 uint32_t Indices[16];
10960 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10961 unsigned Index = (Imm % NumLanes) * NumLaneElts;
10962 Imm /= NumLanes; // Discard the bits we just used.
10963 if (l >= (NumElts / 2))
10964 Index += NumElts; // Switch to other source.
10965 for (unsigned i = 0; i != NumLaneElts; ++i) {
10966 Indices[l + i] = Index + i;
10967 }
10968 }
10969
10970 return Builder.CreateShuffleVector(Ops[0], Ops[1],
10971 makeArrayRef(Indices, NumElts),
10972 "shuf");
10973 }
10974
10975 case X86::BI__builtin_ia32_vperm2f128_pd256:
10976 case X86::BI__builtin_ia32_vperm2f128_ps256:
10977 case X86::BI__builtin_ia32_vperm2f128_si256:
10978 case X86::BI__builtin_ia32_permti256: {
10979 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10980 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10981
10982 // This takes a very simple approach since there are two lanes and a
10983 // shuffle can have 2 inputs. So we reserve the first input for the first
10984 // lane and the second input for the second lane. This may result in
10985 // duplicate sources, but this can be dealt with in the backend.
10986
10987 Value *OutOps[2];
10988 uint32_t Indices[8];
10989 for (unsigned l = 0; l != 2; ++l) {
10990 // Determine the source for this lane.
10991 if (Imm & (1 << ((l * 4) + 3)))
10992 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
10993 else if (Imm & (1 << ((l * 4) + 1)))
10994 OutOps[l] = Ops[1];
10995 else
10996 OutOps[l] = Ops[0];
10997
10998 for (unsigned i = 0; i != NumElts/2; ++i) {
10999 // Start with ith element of the source for this lane.
11000 unsigned Idx = (l * NumElts) + i;
11001 // If bit 0 of the immediate half is set, switch to the high half of
11002 // the source.
11003 if (Imm & (1 << (l * 4)))
11004 Idx += NumElts/2;
11005 Indices[(l * (NumElts/2)) + i] = Idx;
11006 }
11007 }
11008
11009 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
11010 makeArrayRef(Indices, NumElts),
11011 "vperm");
11012 }
11013
11014 case X86::BI__builtin_ia32_pslldqi128_byteshift:
11015 case X86::BI__builtin_ia32_pslldqi256_byteshift:
11016 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
11017 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11018 llvm::Type *ResultType = Ops[0]->getType();
11019 // Builtin type is vXi64 so multiply by 8 to get bytes.
11020 unsigned NumElts = ResultType->getVectorNumElements() * 8;
11021
11022 // If pslldq is shifting the vector more than 15 bytes, emit zero.
11023 if (ShiftVal >= 16)
11024 return llvm::Constant::getNullValue(ResultType);
11025
11026 uint32_t Indices[64];
11027 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
11028 for (unsigned l = 0; l != NumElts; l += 16) {
11029 for (unsigned i = 0; i != 16; ++i) {
11030 unsigned Idx = NumElts + i - ShiftVal;
11031 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
11032 Indices[l + i] = Idx + l;
11033 }
11034 }
11035
11036 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11037 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11038 Value *Zero = llvm::Constant::getNullValue(VecTy);
11039 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
11040 makeArrayRef(Indices, NumElts),
11041 "pslldq");
11042 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
11043 }
11044 case X86::BI__builtin_ia32_psrldqi128_byteshift:
11045 case X86::BI__builtin_ia32_psrldqi256_byteshift:
11046 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
11047 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11048 llvm::Type *ResultType = Ops[0]->getType();
11049 // Builtin type is vXi64 so multiply by 8 to get bytes.
11050 unsigned NumElts = ResultType->getVectorNumElements() * 8;
11051
11052 // If psrldq is shifting the vector more than 15 bytes, emit zero.
11053 if (ShiftVal >= 16)
11054 return llvm::Constant::getNullValue(ResultType);
11055
11056 uint32_t Indices[64];
11057 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
11058 for (unsigned l = 0; l != NumElts; l += 16) {
11059 for (unsigned i = 0; i != 16; ++i) {
11060 unsigned Idx = i + ShiftVal;
11061 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
11062 Indices[l + i] = Idx + l;
11063 }
11064 }
11065
11066 llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
11067 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
11068 Value *Zero = llvm::Constant::getNullValue(VecTy);
11069 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
11070 makeArrayRef(Indices, NumElts),
11071 "psrldq");
11072 return Builder.CreateBitCast(SV, ResultType, "cast");
11073 }
11074 case X86::BI__builtin_ia32_kshiftliqi:
11075 case X86::BI__builtin_ia32_kshiftlihi:
11076 case X86::BI__builtin_ia32_kshiftlisi:
11077 case X86::BI__builtin_ia32_kshiftlidi: {
11078 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11079 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11080
11081 if (ShiftVal >= NumElts)
11082 return llvm::Constant::getNullValue(Ops[0]->getType());
11083
11084 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11085
11086 uint32_t Indices[64];
11087 for (unsigned i = 0; i != NumElts; ++i)
11088 Indices[i] = NumElts + i - ShiftVal;
11089
11090 Value *Zero = llvm::Constant::getNullValue(In->getType());
11091 Value *SV = Builder.CreateShuffleVector(Zero, In,
11092 makeArrayRef(Indices, NumElts),
11093 "kshiftl");
11094 return Builder.CreateBitCast(SV, Ops[0]->getType());
11095 }
11096 case X86::BI__builtin_ia32_kshiftriqi:
11097 case X86::BI__builtin_ia32_kshiftrihi:
11098 case X86::BI__builtin_ia32_kshiftrisi:
11099 case X86::BI__builtin_ia32_kshiftridi: {
11100 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
11101 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11102
11103 if (ShiftVal >= NumElts)
11104 return llvm::Constant::getNullValue(Ops[0]->getType());
11105
11106 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
11107
11108 uint32_t Indices[64];
11109 for (unsigned i = 0; i != NumElts; ++i)
11110 Indices[i] = i + ShiftVal;
11111
11112 Value *Zero = llvm::Constant::getNullValue(In->getType());
11113 Value *SV = Builder.CreateShuffleVector(In, Zero,
11114 makeArrayRef(Indices, NumElts),
11115 "kshiftr");
11116 return Builder.CreateBitCast(SV, Ops[0]->getType());
11117 }
11118 case X86::BI__builtin_ia32_movnti:
11119 case X86::BI__builtin_ia32_movnti64:
11120 case X86::BI__builtin_ia32_movntsd:
11121 case X86::BI__builtin_ia32_movntss: {
11122 llvm::MDNode *Node = llvm::MDNode::get(
11123 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
11124
11125 Value *Ptr = Ops[0];
11126 Value *Src = Ops[1];
11127
11128 // Extract the 0'th element of the source vector.
11129 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
11130 BuiltinID == X86::BI__builtin_ia32_movntss)
11131 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
11132
11133 // Convert the type of the pointer to a pointer to the stored type.
11134 Value *BC = Builder.CreateBitCast(
11135 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
11136
11137 // Unaligned nontemporal store of the scalar value.
11138 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
11139 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
11140 SI->setAlignment(1);
11141 return SI;
11142 }
11143 // Rotate is a special case of funnel shift - 1st 2 args are the same.
11144 case X86::BI__builtin_ia32_vprotb:
11145 case X86::BI__builtin_ia32_vprotw:
11146 case X86::BI__builtin_ia32_vprotd:
11147 case X86::BI__builtin_ia32_vprotq:
11148 case X86::BI__builtin_ia32_vprotbi:
11149 case X86::BI__builtin_ia32_vprotwi:
11150 case X86::BI__builtin_ia32_vprotdi:
11151 case X86::BI__builtin_ia32_vprotqi:
11152 case X86::BI__builtin_ia32_prold128:
11153 case X86::BI__builtin_ia32_prold256:
11154 case X86::BI__builtin_ia32_prold512:
11155 case X86::BI__builtin_ia32_prolq128:
11156 case X86::BI__builtin_ia32_prolq256:
11157 case X86::BI__builtin_ia32_prolq512:
11158 case X86::BI__builtin_ia32_prolvd128:
11159 case X86::BI__builtin_ia32_prolvd256:
11160 case X86::BI__builtin_ia32_prolvd512:
11161 case X86::BI__builtin_ia32_prolvq128:
11162 case X86::BI__builtin_ia32_prolvq256:
11163 case X86::BI__builtin_ia32_prolvq512:
11164 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
11165 case X86::BI__builtin_ia32_prord128:
11166 case X86::BI__builtin_ia32_prord256:
11167 case X86::BI__builtin_ia32_prord512:
11168 case X86::BI__builtin_ia32_prorq128:
11169 case X86::BI__builtin_ia32_prorq256:
11170 case X86::BI__builtin_ia32_prorq512:
11171 case X86::BI__builtin_ia32_prorvd128:
11172 case X86::BI__builtin_ia32_prorvd256:
11173 case X86::BI__builtin_ia32_prorvd512:
11174 case X86::BI__builtin_ia32_prorvq128:
11175 case X86::BI__builtin_ia32_prorvq256:
11176 case X86::BI__builtin_ia32_prorvq512:
11177 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
11178 case X86::BI__builtin_ia32_selectb_128:
11179 case X86::BI__builtin_ia32_selectb_256:
11180 case X86::BI__builtin_ia32_selectb_512:
11181 case X86::BI__builtin_ia32_selectw_128:
11182 case X86::BI__builtin_ia32_selectw_256:
11183 case X86::BI__builtin_ia32_selectw_512:
11184 case X86::BI__builtin_ia32_selectd_128:
11185 case X86::BI__builtin_ia32_selectd_256:
11186 case X86::BI__builtin_ia32_selectd_512:
11187 case X86::BI__builtin_ia32_selectq_128:
11188 case X86::BI__builtin_ia32_selectq_256:
11189 case X86::BI__builtin_ia32_selectq_512:
11190 case X86::BI__builtin_ia32_selectps_128:
11191 case X86::BI__builtin_ia32_selectps_256:
11192 case X86::BI__builtin_ia32_selectps_512:
11193 case X86::BI__builtin_ia32_selectpd_128:
11194 case X86::BI__builtin_ia32_selectpd_256:
11195 case X86::BI__builtin_ia32_selectpd_512:
11196 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
11197 case X86::BI__builtin_ia32_selectss_128:
11198 case X86::BI__builtin_ia32_selectsd_128: {
11199 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11200 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11201 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
11202 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
11203 }
11204 case X86::BI__builtin_ia32_cmpb128_mask:
11205 case X86::BI__builtin_ia32_cmpb256_mask:
11206 case X86::BI__builtin_ia32_cmpb512_mask:
11207 case X86::BI__builtin_ia32_cmpw128_mask:
11208 case X86::BI__builtin_ia32_cmpw256_mask:
11209 case X86::BI__builtin_ia32_cmpw512_mask:
11210 case X86::BI__builtin_ia32_cmpd128_mask:
11211 case X86::BI__builtin_ia32_cmpd256_mask:
11212 case X86::BI__builtin_ia32_cmpd512_mask:
11213 case X86::BI__builtin_ia32_cmpq128_mask:
11214 case X86::BI__builtin_ia32_cmpq256_mask:
11215 case X86::BI__builtin_ia32_cmpq512_mask: {
11216 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11217 return EmitX86MaskedCompare(*this, CC, true, Ops);
11218 }
11219 case X86::BI__builtin_ia32_ucmpb128_mask:
11220 case X86::BI__builtin_ia32_ucmpb256_mask:
11221 case X86::BI__builtin_ia32_ucmpb512_mask:
11222 case X86::BI__builtin_ia32_ucmpw128_mask:
11223 case X86::BI__builtin_ia32_ucmpw256_mask:
11224 case X86::BI__builtin_ia32_ucmpw512_mask:
11225 case X86::BI__builtin_ia32_ucmpd128_mask:
11226 case X86::BI__builtin_ia32_ucmpd256_mask:
11227 case X86::BI__builtin_ia32_ucmpd512_mask:
11228 case X86::BI__builtin_ia32_ucmpq128_mask:
11229 case X86::BI__builtin_ia32_ucmpq256_mask:
11230 case X86::BI__builtin_ia32_ucmpq512_mask: {
11231 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11232 return EmitX86MaskedCompare(*this, CC, false, Ops);
11233 }
11234 case X86::BI__builtin_ia32_vpcomb:
11235 case X86::BI__builtin_ia32_vpcomw:
11236 case X86::BI__builtin_ia32_vpcomd:
11237 case X86::BI__builtin_ia32_vpcomq:
11238 return EmitX86vpcom(*this, Ops, true);
11239 case X86::BI__builtin_ia32_vpcomub:
11240 case X86::BI__builtin_ia32_vpcomuw:
11241 case X86::BI__builtin_ia32_vpcomud:
11242 case X86::BI__builtin_ia32_vpcomuq:
11243 return EmitX86vpcom(*this, Ops, false);
11244
11245 case X86::BI__builtin_ia32_kortestcqi:
11246 case X86::BI__builtin_ia32_kortestchi:
11247 case X86::BI__builtin_ia32_kortestcsi:
11248 case X86::BI__builtin_ia32_kortestcdi: {
11249 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11250 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
11251 Value *Cmp = Builder.CreateICmpEQ(Or, C);
11252 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11253 }
11254 case X86::BI__builtin_ia32_kortestzqi:
11255 case X86::BI__builtin_ia32_kortestzhi:
11256 case X86::BI__builtin_ia32_kortestzsi:
11257 case X86::BI__builtin_ia32_kortestzdi: {
11258 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
11259 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
11260 Value *Cmp = Builder.CreateICmpEQ(Or, C);
11261 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
11262 }
11263
11264 case X86::BI__builtin_ia32_ktestcqi:
11265 case X86::BI__builtin_ia32_ktestzqi:
11266 case X86::BI__builtin_ia32_ktestchi:
11267 case X86::BI__builtin_ia32_ktestzhi:
11268 case X86::BI__builtin_ia32_ktestcsi:
11269 case X86::BI__builtin_ia32_ktestzsi:
11270 case X86::BI__builtin_ia32_ktestcdi:
11271 case X86::BI__builtin_ia32_ktestzdi: {
11272 Intrinsic::ID IID;
11273 switch (BuiltinID) {
11274 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11274)
;
11275 case X86::BI__builtin_ia32_ktestcqi:
11276 IID = Intrinsic::x86_avx512_ktestc_b;
11277 break;
11278 case X86::BI__builtin_ia32_ktestzqi:
11279 IID = Intrinsic::x86_avx512_ktestz_b;
11280 break;
11281 case X86::BI__builtin_ia32_ktestchi:
11282 IID = Intrinsic::x86_avx512_ktestc_w;
11283 break;
11284 case X86::BI__builtin_ia32_ktestzhi:
11285 IID = Intrinsic::x86_avx512_ktestz_w;
11286 break;
11287 case X86::BI__builtin_ia32_ktestcsi:
11288 IID = Intrinsic::x86_avx512_ktestc_d;
11289 break;
11290 case X86::BI__builtin_ia32_ktestzsi:
11291 IID = Intrinsic::x86_avx512_ktestz_d;
11292 break;
11293 case X86::BI__builtin_ia32_ktestcdi:
11294 IID = Intrinsic::x86_avx512_ktestc_q;
11295 break;
11296 case X86::BI__builtin_ia32_ktestzdi:
11297 IID = Intrinsic::x86_avx512_ktestz_q;
11298 break;
11299 }
11300
11301 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11302 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11303 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11304 Function *Intr = CGM.getIntrinsic(IID);
11305 return Builder.CreateCall(Intr, {LHS, RHS});
11306 }
11307
11308 case X86::BI__builtin_ia32_kaddqi:
11309 case X86::BI__builtin_ia32_kaddhi:
11310 case X86::BI__builtin_ia32_kaddsi:
11311 case X86::BI__builtin_ia32_kadddi: {
11312 Intrinsic::ID IID;
11313 switch (BuiltinID) {
11314 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11314)
;
11315 case X86::BI__builtin_ia32_kaddqi:
11316 IID = Intrinsic::x86_avx512_kadd_b;
11317 break;
11318 case X86::BI__builtin_ia32_kaddhi:
11319 IID = Intrinsic::x86_avx512_kadd_w;
11320 break;
11321 case X86::BI__builtin_ia32_kaddsi:
11322 IID = Intrinsic::x86_avx512_kadd_d;
11323 break;
11324 case X86::BI__builtin_ia32_kadddi:
11325 IID = Intrinsic::x86_avx512_kadd_q;
11326 break;
11327 }
11328
11329 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11330 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11331 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11332 Function *Intr = CGM.getIntrinsic(IID);
11333 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
11334 return Builder.CreateBitCast(Res, Ops[0]->getType());
11335 }
11336 case X86::BI__builtin_ia32_kandqi:
11337 case X86::BI__builtin_ia32_kandhi:
11338 case X86::BI__builtin_ia32_kandsi:
11339 case X86::BI__builtin_ia32_kanddi:
11340 return EmitX86MaskLogic(*this, Instruction::And, Ops);
11341 case X86::BI__builtin_ia32_kandnqi:
11342 case X86::BI__builtin_ia32_kandnhi:
11343 case X86::BI__builtin_ia32_kandnsi:
11344 case X86::BI__builtin_ia32_kandndi:
11345 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
11346 case X86::BI__builtin_ia32_korqi:
11347 case X86::BI__builtin_ia32_korhi:
11348 case X86::BI__builtin_ia32_korsi:
11349 case X86::BI__builtin_ia32_kordi:
11350 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
11351 case X86::BI__builtin_ia32_kxnorqi:
11352 case X86::BI__builtin_ia32_kxnorhi:
11353 case X86::BI__builtin_ia32_kxnorsi:
11354 case X86::BI__builtin_ia32_kxnordi:
11355 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
11356 case X86::BI__builtin_ia32_kxorqi:
11357 case X86::BI__builtin_ia32_kxorhi:
11358 case X86::BI__builtin_ia32_kxorsi:
11359 case X86::BI__builtin_ia32_kxordi:
11360 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
11361 case X86::BI__builtin_ia32_knotqi:
11362 case X86::BI__builtin_ia32_knothi:
11363 case X86::BI__builtin_ia32_knotsi:
11364 case X86::BI__builtin_ia32_knotdi: {
11365 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11366 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11367 return Builder.CreateBitCast(Builder.CreateNot(Res),
11368 Ops[0]->getType());
11369 }
11370 case X86::BI__builtin_ia32_kmovb:
11371 case X86::BI__builtin_ia32_kmovw:
11372 case X86::BI__builtin_ia32_kmovd:
11373 case X86::BI__builtin_ia32_kmovq: {
11374 // Bitcast to vXi1 type and then back to integer. This gets the mask
11375 // register type into the IR, but might be optimized out depending on
11376 // what's around it.
11377 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11378 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
11379 return Builder.CreateBitCast(Res, Ops[0]->getType());
11380 }
11381
11382 case X86::BI__builtin_ia32_kunpckdi:
11383 case X86::BI__builtin_ia32_kunpcksi:
11384 case X86::BI__builtin_ia32_kunpckhi: {
11385 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11386 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
11387 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
11388 uint32_t Indices[64];
11389 for (unsigned i = 0; i != NumElts; ++i)
11390 Indices[i] = i;
11391
11392 // First extract half of each vector. This gives better codegen than
11393 // doing it in a single shuffle.
11394 LHS = Builder.CreateShuffleVector(LHS, LHS,
11395 makeArrayRef(Indices, NumElts / 2));
11396 RHS = Builder.CreateShuffleVector(RHS, RHS,
11397 makeArrayRef(Indices, NumElts / 2));
11398 // Concat the vectors.
11399 // NOTE: Operands are swapped to match the intrinsic definition.
11400 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
11401 makeArrayRef(Indices, NumElts));
11402 return Builder.CreateBitCast(Res, Ops[0]->getType());
11403 }
11404
11405 case X86::BI__builtin_ia32_vplzcntd_128:
11406 case X86::BI__builtin_ia32_vplzcntd_256:
11407 case X86::BI__builtin_ia32_vplzcntd_512:
11408 case X86::BI__builtin_ia32_vplzcntq_128:
11409 case X86::BI__builtin_ia32_vplzcntq_256:
11410 case X86::BI__builtin_ia32_vplzcntq_512: {
11411 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11412 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
11413 }
11414 case X86::BI__builtin_ia32_sqrtss:
11415 case X86::BI__builtin_ia32_sqrtsd: {
11416 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11417 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11418 A = Builder.CreateCall(F, {A});
11419 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11420 }
11421 case X86::BI__builtin_ia32_sqrtsd_round_mask:
11422 case X86::BI__builtin_ia32_sqrtss_round_mask: {
11423 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11424 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11425 // otherwise keep the intrinsic.
11426 if (CC != 4) {
11427 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
11428 Intrinsic::x86_avx512_mask_sqrt_sd :
11429 Intrinsic::x86_avx512_mask_sqrt_ss;
11430 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11431 }
11432 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11433 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
11434 A = Builder.CreateCall(F, A);
11435 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11436 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
11437 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
11438 }
11439 case X86::BI__builtin_ia32_sqrtpd256:
11440 case X86::BI__builtin_ia32_sqrtpd:
11441 case X86::BI__builtin_ia32_sqrtps256:
11442 case X86::BI__builtin_ia32_sqrtps:
11443 case X86::BI__builtin_ia32_sqrtps512:
11444 case X86::BI__builtin_ia32_sqrtpd512: {
11445 if (Ops.size() == 2) {
11446 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
11447 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
11448 // otherwise keep the intrinsic.
11449 if (CC != 4) {
11450 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
11451 Intrinsic::x86_avx512_sqrt_ps_512 :
11452 Intrinsic::x86_avx512_sqrt_pd_512;
11453 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11454 }
11455 }
11456 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
11457 return Builder.CreateCall(F, Ops[0]);
11458 }
11459 case X86::BI__builtin_ia32_pabsb128:
11460 case X86::BI__builtin_ia32_pabsw128:
11461 case X86::BI__builtin_ia32_pabsd128:
11462 case X86::BI__builtin_ia32_pabsb256:
11463 case X86::BI__builtin_ia32_pabsw256:
11464 case X86::BI__builtin_ia32_pabsd256:
11465 case X86::BI__builtin_ia32_pabsq128:
11466 case X86::BI__builtin_ia32_pabsq256:
11467 case X86::BI__builtin_ia32_pabsb512:
11468 case X86::BI__builtin_ia32_pabsw512:
11469 case X86::BI__builtin_ia32_pabsd512:
11470 case X86::BI__builtin_ia32_pabsq512:
11471 return EmitX86Abs(*this, Ops);
11472
11473 case X86::BI__builtin_ia32_pmaxsb128:
11474 case X86::BI__builtin_ia32_pmaxsw128:
11475 case X86::BI__builtin_ia32_pmaxsd128:
11476 case X86::BI__builtin_ia32_pmaxsq128:
11477 case X86::BI__builtin_ia32_pmaxsb256:
11478 case X86::BI__builtin_ia32_pmaxsw256:
11479 case X86::BI__builtin_ia32_pmaxsd256:
11480 case X86::BI__builtin_ia32_pmaxsq256:
11481 case X86::BI__builtin_ia32_pmaxsb512:
11482 case X86::BI__builtin_ia32_pmaxsw512:
11483 case X86::BI__builtin_ia32_pmaxsd512:
11484 case X86::BI__builtin_ia32_pmaxsq512:
11485 return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
11486 case X86::BI__builtin_ia32_pmaxub128:
11487 case X86::BI__builtin_ia32_pmaxuw128:
11488 case X86::BI__builtin_ia32_pmaxud128:
11489 case X86::BI__builtin_ia32_pmaxuq128:
11490 case X86::BI__builtin_ia32_pmaxub256:
11491 case X86::BI__builtin_ia32_pmaxuw256:
11492 case X86::BI__builtin_ia32_pmaxud256:
11493 case X86::BI__builtin_ia32_pmaxuq256:
11494 case X86::BI__builtin_ia32_pmaxub512:
11495 case X86::BI__builtin_ia32_pmaxuw512:
11496 case X86::BI__builtin_ia32_pmaxud512:
11497 case X86::BI__builtin_ia32_pmaxuq512:
11498 return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
11499 case X86::BI__builtin_ia32_pminsb128:
11500 case X86::BI__builtin_ia32_pminsw128:
11501 case X86::BI__builtin_ia32_pminsd128:
11502 case X86::BI__builtin_ia32_pminsq128:
11503 case X86::BI__builtin_ia32_pminsb256:
11504 case X86::BI__builtin_ia32_pminsw256:
11505 case X86::BI__builtin_ia32_pminsd256:
11506 case X86::BI__builtin_ia32_pminsq256:
11507 case X86::BI__builtin_ia32_pminsb512:
11508 case X86::BI__builtin_ia32_pminsw512:
11509 case X86::BI__builtin_ia32_pminsd512:
11510 case X86::BI__builtin_ia32_pminsq512:
11511 return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
11512 case X86::BI__builtin_ia32_pminub128:
11513 case X86::BI__builtin_ia32_pminuw128:
11514 case X86::BI__builtin_ia32_pminud128:
11515 case X86::BI__builtin_ia32_pminuq128:
11516 case X86::BI__builtin_ia32_pminub256:
11517 case X86::BI__builtin_ia32_pminuw256:
11518 case X86::BI__builtin_ia32_pminud256:
11519 case X86::BI__builtin_ia32_pminuq256:
11520 case X86::BI__builtin_ia32_pminub512:
11521 case X86::BI__builtin_ia32_pminuw512:
11522 case X86::BI__builtin_ia32_pminud512:
11523 case X86::BI__builtin_ia32_pminuq512:
11524 return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
11525
11526 case X86::BI__builtin_ia32_pmuludq128:
11527 case X86::BI__builtin_ia32_pmuludq256:
11528 case X86::BI__builtin_ia32_pmuludq512:
11529 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
11530
11531 case X86::BI__builtin_ia32_pmuldq128:
11532 case X86::BI__builtin_ia32_pmuldq256:
11533 case X86::BI__builtin_ia32_pmuldq512:
11534 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
11535
11536 case X86::BI__builtin_ia32_pternlogd512_mask:
11537 case X86::BI__builtin_ia32_pternlogq512_mask:
11538 case X86::BI__builtin_ia32_pternlogd128_mask:
11539 case X86::BI__builtin_ia32_pternlogd256_mask:
11540 case X86::BI__builtin_ia32_pternlogq128_mask:
11541 case X86::BI__builtin_ia32_pternlogq256_mask:
11542 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
11543
11544 case X86::BI__builtin_ia32_pternlogd512_maskz:
11545 case X86::BI__builtin_ia32_pternlogq512_maskz:
11546 case X86::BI__builtin_ia32_pternlogd128_maskz:
11547 case X86::BI__builtin_ia32_pternlogd256_maskz:
11548 case X86::BI__builtin_ia32_pternlogq128_maskz:
11549 case X86::BI__builtin_ia32_pternlogq256_maskz:
11550 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
11551
11552 case X86::BI__builtin_ia32_vpshldd128:
11553 case X86::BI__builtin_ia32_vpshldd256:
11554 case X86::BI__builtin_ia32_vpshldd512:
11555 case X86::BI__builtin_ia32_vpshldq128:
11556 case X86::BI__builtin_ia32_vpshldq256:
11557 case X86::BI__builtin_ia32_vpshldq512:
11558 case X86::BI__builtin_ia32_vpshldw128:
11559 case X86::BI__builtin_ia32_vpshldw256:
11560 case X86::BI__builtin_ia32_vpshldw512:
11561 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11562
11563 case X86::BI__builtin_ia32_vpshrdd128:
11564 case X86::BI__builtin_ia32_vpshrdd256:
11565 case X86::BI__builtin_ia32_vpshrdd512:
11566 case X86::BI__builtin_ia32_vpshrdq128:
11567 case X86::BI__builtin_ia32_vpshrdq256:
11568 case X86::BI__builtin_ia32_vpshrdq512:
11569 case X86::BI__builtin_ia32_vpshrdw128:
11570 case X86::BI__builtin_ia32_vpshrdw256:
11571 case X86::BI__builtin_ia32_vpshrdw512:
11572 // Ops 0 and 1 are swapped.
11573 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11574
11575 case X86::BI__builtin_ia32_vpshldvd128:
11576 case X86::BI__builtin_ia32_vpshldvd256:
11577 case X86::BI__builtin_ia32_vpshldvd512:
11578 case X86::BI__builtin_ia32_vpshldvq128:
11579 case X86::BI__builtin_ia32_vpshldvq256:
11580 case X86::BI__builtin_ia32_vpshldvq512:
11581 case X86::BI__builtin_ia32_vpshldvw128:
11582 case X86::BI__builtin_ia32_vpshldvw256:
11583 case X86::BI__builtin_ia32_vpshldvw512:
11584 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11585
11586 case X86::BI__builtin_ia32_vpshrdvd128:
11587 case X86::BI__builtin_ia32_vpshrdvd256:
11588 case X86::BI__builtin_ia32_vpshrdvd512:
11589 case X86::BI__builtin_ia32_vpshrdvq128:
11590 case X86::BI__builtin_ia32_vpshrdvq256:
11591 case X86::BI__builtin_ia32_vpshrdvq512:
11592 case X86::BI__builtin_ia32_vpshrdvw128:
11593 case X86::BI__builtin_ia32_vpshrdvw256:
11594 case X86::BI__builtin_ia32_vpshrdvw512:
11595 // Ops 0 and 1 are swapped.
11596 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11597
11598 // 3DNow!
11599 case X86::BI__builtin_ia32_pswapdsf:
11600 case X86::BI__builtin_ia32_pswapdsi: {
11601 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
11602 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
11603 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
11604 return Builder.CreateCall(F, Ops, "pswapd");
11605 }
11606 case X86::BI__builtin_ia32_rdrand16_step:
11607 case X86::BI__builtin_ia32_rdrand32_step:
11608 case X86::BI__builtin_ia32_rdrand64_step:
11609 case X86::BI__builtin_ia32_rdseed16_step:
11610 case X86::BI__builtin_ia32_rdseed32_step:
11611 case X86::BI__builtin_ia32_rdseed64_step: {
11612 Intrinsic::ID ID;
11613 switch (BuiltinID) {
11614 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11614)
;
11615 case X86::BI__builtin_ia32_rdrand16_step:
11616 ID = Intrinsic::x86_rdrand_16;
11617 break;
11618 case X86::BI__builtin_ia32_rdrand32_step:
11619 ID = Intrinsic::x86_rdrand_32;
11620 break;
11621 case X86::BI__builtin_ia32_rdrand64_step:
11622 ID = Intrinsic::x86_rdrand_64;
11623 break;
11624 case X86::BI__builtin_ia32_rdseed16_step:
11625 ID = Intrinsic::x86_rdseed_16;
11626 break;
11627 case X86::BI__builtin_ia32_rdseed32_step:
11628 ID = Intrinsic::x86_rdseed_32;
11629 break;
11630 case X86::BI__builtin_ia32_rdseed64_step:
11631 ID = Intrinsic::x86_rdseed_64;
11632 break;
11633 }
11634
11635 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
11636 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
11637 Ops[0]);
11638 return Builder.CreateExtractValue(Call, 1);
11639 }
11640 case X86::BI__builtin_ia32_addcarryx_u32:
11641 case X86::BI__builtin_ia32_addcarryx_u64:
11642 case X86::BI__builtin_ia32_subborrow_u32:
11643 case X86::BI__builtin_ia32_subborrow_u64: {
11644 Intrinsic::ID IID;
11645 switch (BuiltinID) {
11646 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11646)
;
11647 case X86::BI__builtin_ia32_addcarryx_u32:
11648 IID = Intrinsic::x86_addcarry_32;
11649 break;
11650 case X86::BI__builtin_ia32_addcarryx_u64:
11651 IID = Intrinsic::x86_addcarry_64;
11652 break;
11653 case X86::BI__builtin_ia32_subborrow_u32:
11654 IID = Intrinsic::x86_subborrow_32;
11655 break;
11656 case X86::BI__builtin_ia32_subborrow_u64:
11657 IID = Intrinsic::x86_subborrow_64;
11658 break;
11659 }
11660
11661 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
11662 { Ops[0], Ops[1], Ops[2] });
11663 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11664 Ops[3]);
11665 return Builder.CreateExtractValue(Call, 0);
11666 }
11667
11668 case X86::BI__builtin_ia32_fpclassps128_mask:
11669 case X86::BI__builtin_ia32_fpclassps256_mask:
11670 case X86::BI__builtin_ia32_fpclassps512_mask:
11671 case X86::BI__builtin_ia32_fpclasspd128_mask:
11672 case X86::BI__builtin_ia32_fpclasspd256_mask:
11673 case X86::BI__builtin_ia32_fpclasspd512_mask: {
11674 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11675 Value *MaskIn = Ops[2];
11676 Ops.erase(&Ops[2]);
11677
11678 Intrinsic::ID ID;
11679 switch (BuiltinID) {
11680 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11680)
;
11681 case X86::BI__builtin_ia32_fpclassps128_mask:
11682 ID = Intrinsic::x86_avx512_fpclass_ps_128;
11683 break;
11684 case X86::BI__builtin_ia32_fpclassps256_mask:
11685 ID = Intrinsic::x86_avx512_fpclass_ps_256;
11686 break;
11687 case X86::BI__builtin_ia32_fpclassps512_mask:
11688 ID = Intrinsic::x86_avx512_fpclass_ps_512;
11689 break;
11690 case X86::BI__builtin_ia32_fpclasspd128_mask:
11691 ID = Intrinsic::x86_avx512_fpclass_pd_128;
11692 break;
11693 case X86::BI__builtin_ia32_fpclasspd256_mask:
11694 ID = Intrinsic::x86_avx512_fpclass_pd_256;
11695 break;
11696 case X86::BI__builtin_ia32_fpclasspd512_mask:
11697 ID = Intrinsic::x86_avx512_fpclass_pd_512;
11698 break;
11699 }
11700
11701 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11702 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
11703 }
11704
11705 case X86::BI__builtin_ia32_vpmultishiftqb128:
11706 case X86::BI__builtin_ia32_vpmultishiftqb256:
11707 case X86::BI__builtin_ia32_vpmultishiftqb512: {
11708 Intrinsic::ID ID;
11709 switch (BuiltinID) {
11710 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11710)
;
11711 case X86::BI__builtin_ia32_vpmultishiftqb128:
11712 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
11713 break;
11714 case X86::BI__builtin_ia32_vpmultishiftqb256:
11715 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
11716 break;
11717 case X86::BI__builtin_ia32_vpmultishiftqb512:
11718 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
11719 break;
11720 }
11721
11722 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11723 }
11724
11725 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11726 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11727 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
11728 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11729 Value *MaskIn = Ops[2];
11730 Ops.erase(&Ops[2]);
11731
11732 Intrinsic::ID ID;
11733 switch (BuiltinID) {
11734 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11734)
;
11735 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11736 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
11737 break;
11738 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11739 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
11740 break;
11741 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
11742 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
11743 break;
11744 }
11745
11746 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11747 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
11748 }
11749
11750 // packed comparison intrinsics
11751 case X86::BI__builtin_ia32_cmpeqps:
11752 case X86::BI__builtin_ia32_cmpeqpd:
11753 return getVectorFCmpIR(CmpInst::FCMP_OEQ);
11754 case X86::BI__builtin_ia32_cmpltps:
11755 case X86::BI__builtin_ia32_cmpltpd:
11756 return getVectorFCmpIR(CmpInst::FCMP_OLT);
11757 case X86::BI__builtin_ia32_cmpleps:
11758 case X86::BI__builtin_ia32_cmplepd:
11759 return getVectorFCmpIR(CmpInst::FCMP_OLE);
11760 case X86::BI__builtin_ia32_cmpunordps:
11761 case X86::BI__builtin_ia32_cmpunordpd:
11762 return getVectorFCmpIR(CmpInst::FCMP_UNO);
11763 case X86::BI__builtin_ia32_cmpneqps:
11764 case X86::BI__builtin_ia32_cmpneqpd:
11765 return getVectorFCmpIR(CmpInst::FCMP_UNE);
11766 case X86::BI__builtin_ia32_cmpnltps:
11767 case X86::BI__builtin_ia32_cmpnltpd:
11768 return getVectorFCmpIR(CmpInst::FCMP_UGE);
11769 case X86::BI__builtin_ia32_cmpnleps:
11770 case X86::BI__builtin_ia32_cmpnlepd:
11771 return getVectorFCmpIR(CmpInst::FCMP_UGT);
11772 case X86::BI__builtin_ia32_cmpordps:
11773 case X86::BI__builtin_ia32_cmpordpd:
11774 return getVectorFCmpIR(CmpInst::FCMP_ORD);
11775 case X86::BI__builtin_ia32_cmpps:
11776 case X86::BI__builtin_ia32_cmpps256:
11777 case X86::BI__builtin_ia32_cmppd:
11778 case X86::BI__builtin_ia32_cmppd256:
11779 case X86::BI__builtin_ia32_cmpps128_mask:
11780 case X86::BI__builtin_ia32_cmpps256_mask:
11781 case X86::BI__builtin_ia32_cmpps512_mask:
11782 case X86::BI__builtin_ia32_cmppd128_mask:
11783 case X86::BI__builtin_ia32_cmppd256_mask:
11784 case X86::BI__builtin_ia32_cmppd512_mask: {
11785 // Lowering vector comparisons to fcmp instructions, while
11786 // ignoring signalling behaviour requested
11787 // ignoring rounding mode requested
11788 // This is is only possible as long as FENV_ACCESS is not implemented.
11789 // See also: https://reviews.llvm.org/D45616
11790
11791 // The third argument is the comparison condition, and integer in the
11792 // range [0, 31]
11793 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
11794
11795 // Lowering to IR fcmp instruction.
11796 // Ignoring requested signaling behaviour,
11797 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
11798 FCmpInst::Predicate Pred;
11799 switch (CC) {
11800 case 0x00: Pred = FCmpInst::FCMP_OEQ; break;
11801 case 0x01: Pred = FCmpInst::FCMP_OLT; break;
11802 case 0x02: Pred = FCmpInst::FCMP_OLE; break;
11803 case 0x03: Pred = FCmpInst::FCMP_UNO; break;
11804 case 0x04: Pred = FCmpInst::FCMP_UNE; break;
11805 case 0x05: Pred = FCmpInst::FCMP_UGE; break;
11806 case 0x06: Pred = FCmpInst::FCMP_UGT; break;
11807 case 0x07: Pred = FCmpInst::FCMP_ORD; break;
11808 case 0x08: Pred = FCmpInst::FCMP_UEQ; break;
11809 case 0x09: Pred = FCmpInst::FCMP_ULT; break;
11810 case 0x0a: Pred = FCmpInst::FCMP_ULE; break;
11811 case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
11812 case 0x0c: Pred = FCmpInst::FCMP_ONE; break;
11813 case 0x0d: Pred = FCmpInst::FCMP_OGE; break;
11814 case 0x0e: Pred = FCmpInst::FCMP_OGT; break;
11815 case 0x0f: Pred = FCmpInst::FCMP_TRUE; break;
11816 case 0x10: Pred = FCmpInst::FCMP_OEQ; break;
11817 case 0x11: Pred = FCmpInst::FCMP_OLT; break;
11818 case 0x12: Pred = FCmpInst::FCMP_OLE; break;
11819 case 0x13: Pred = FCmpInst::FCMP_UNO; break;
11820 case 0x14: Pred = FCmpInst::FCMP_UNE; break;
11821 case 0x15: Pred = FCmpInst::FCMP_UGE; break;
11822 case 0x16: Pred = FCmpInst::FCMP_UGT; break;
11823 case 0x17: Pred = FCmpInst::FCMP_ORD; break;
11824 case 0x18: Pred = FCmpInst::FCMP_UEQ; break;
11825 case 0x19: Pred = FCmpInst::FCMP_ULT; break;
11826 case 0x1a: Pred = FCmpInst::FCMP_ULE; break;
11827 case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
11828 case 0x1c: Pred = FCmpInst::FCMP_ONE; break;
11829 case 0x1d: Pred = FCmpInst::FCMP_OGE; break;
11830 case 0x1e: Pred = FCmpInst::FCMP_OGT; break;
11831 case 0x1f: Pred = FCmpInst::FCMP_TRUE; break;
11832 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11832)
;
11833 }
11834
11835 // Builtins without the _mask suffix return a vector of integers
11836 // of the same width as the input vectors
11837 switch (BuiltinID) {
11838 case X86::BI__builtin_ia32_cmpps512_mask:
11839 case X86::BI__builtin_ia32_cmppd512_mask:
11840 case X86::BI__builtin_ia32_cmpps128_mask:
11841 case X86::BI__builtin_ia32_cmpps256_mask:
11842 case X86::BI__builtin_ia32_cmppd128_mask:
11843 case X86::BI__builtin_ia32_cmppd256_mask: {
11844 unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11845 Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11846 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
11847 }
11848 default:
11849 return getVectorFCmpIR(Pred);
11850 }
11851 }
11852
11853 // SSE scalar comparison intrinsics
11854 case X86::BI__builtin_ia32_cmpeqss:
11855 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
11856 case X86::BI__builtin_ia32_cmpltss:
11857 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
11858 case X86::BI__builtin_ia32_cmpless:
11859 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
11860 case X86::BI__builtin_ia32_cmpunordss:
11861 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
11862 case X86::BI__builtin_ia32_cmpneqss:
11863 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
11864 case X86::BI__builtin_ia32_cmpnltss:
11865 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
11866 case X86::BI__builtin_ia32_cmpnless:
11867 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
11868 case X86::BI__builtin_ia32_cmpordss:
11869 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
11870 case X86::BI__builtin_ia32_cmpeqsd:
11871 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
11872 case X86::BI__builtin_ia32_cmpltsd:
11873 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
11874 case X86::BI__builtin_ia32_cmplesd:
11875 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
11876 case X86::BI__builtin_ia32_cmpunordsd:
11877 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
11878 case X86::BI__builtin_ia32_cmpneqsd:
11879 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
11880 case X86::BI__builtin_ia32_cmpnltsd:
11881 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
11882 case X86::BI__builtin_ia32_cmpnlesd:
11883 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
11884 case X86::BI__builtin_ia32_cmpordsd:
11885 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
11886
11887// AVX512 bf16 intrinsics
11888 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
11889 Ops[2] = getMaskVecValue(*this, Ops[2],
11890 Ops[0]->getType()->getVectorNumElements());
11891 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
11892 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
11893 }
11894
11895 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
11896 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
11897 Intrinsic::ID IID;
11898 switch (BuiltinID) {
11899 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 11899)
;
11900 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
11901 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
11902 break;
11903 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
11904 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
11905 break;
11906 }
11907 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
11908 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
11909 }
11910
11911 case X86::BI__emul:
11912 case X86::BI__emulu: {
11913 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
11914 bool isSigned = (BuiltinID == X86::BI__emul);
11915 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
11916 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
11917 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
11918 }
11919 case X86::BI__mulh:
11920 case X86::BI__umulh:
11921 case X86::BI_mul128:
11922 case X86::BI_umul128: {
11923 llvm::Type *ResType = ConvertType(E->getType());
11924 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11925
11926 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
11927 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
11928 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
11929
11930 Value *MulResult, *HigherBits;
11931 if (IsSigned) {
11932 MulResult = Builder.CreateNSWMul(LHS, RHS);
11933 HigherBits = Builder.CreateAShr(MulResult, 64);
11934 } else {
11935 MulResult = Builder.CreateNUWMul(LHS, RHS);
11936 HigherBits = Builder.CreateLShr(MulResult, 64);
11937 }
11938 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
11939
11940 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
11941 return HigherBits;
11942
11943 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
11944 Builder.CreateStore(HigherBits, HighBitsAddress);
11945 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
11946 }
11947
11948 case X86::BI__faststorefence: {
11949 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
11950 llvm::SyncScope::System);
11951 }
11952 case X86::BI__shiftleft128:
11953 case X86::BI__shiftright128: {
11954 // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
11955 // llvm::Function *F = CGM.getIntrinsic(
11956 // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
11957 // Int64Ty);
11958 // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11959 // return Builder.CreateCall(F, Ops);
11960 llvm::Type *Int128Ty = Builder.getInt128Ty();
11961 Value *HighPart128 =
11962 Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
11963 Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
11964 Value *Val = Builder.CreateOr(HighPart128, LowPart128);
11965 Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
11966 llvm::ConstantInt::get(Int128Ty, 0x3f));
11967 Value *Res;
11968 if (BuiltinID == X86::BI__shiftleft128)
11969 Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
11970 else
11971 Res = Builder.CreateLShr(Val, Amt);
11972 return Builder.CreateTrunc(Res, Int64Ty);
11973 }
11974 case X86::BI_ReadWriteBarrier:
11975 case X86::BI_ReadBarrier:
11976 case X86::BI_WriteBarrier: {
11977 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
11978 llvm::SyncScope::SingleThread);
11979 }
11980 case X86::BI_BitScanForward:
11981 case X86::BI_BitScanForward64:
11982 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
11983 case X86::BI_BitScanReverse:
11984 case X86::BI_BitScanReverse64:
11985 return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
11986
11987 case X86::BI_InterlockedAnd64:
11988 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
11989 case X86::BI_InterlockedExchange64:
11990 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
11991 case X86::BI_InterlockedExchangeAdd64:
11992 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
11993 case X86::BI_InterlockedExchangeSub64:
11994 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
11995 case X86::BI_InterlockedOr64:
11996 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
11997 case X86::BI_InterlockedXor64:
11998 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
11999 case X86::BI_InterlockedDecrement64:
12000 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
12001 case X86::BI_InterlockedIncrement64:
12002 return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
12003 case X86::BI_InterlockedCompareExchange128: {
12004 // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
12005 // instead it takes pointers to 64bit ints for Destination and
12006 // ComparandResult, and exchange is taken as two 64bit ints (high & low).
12007 // The previous value is written to ComparandResult, and success is
12008 // returned.
12009
12010 llvm::Type *Int128Ty = Builder.getInt128Ty();
12011 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
12012
12013 Value *Destination =
12014 Builder.CreateBitCast(Ops[0], Int128PtrTy);
12015 Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
12016 Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
12017 Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
12018 getContext().toCharUnitsFromBits(128));
12019
12020 Value *Exchange = Builder.CreateOr(
12021 Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
12022 ExchangeLow128);
12023
12024 Value *Comparand = Builder.CreateLoad(ComparandResult);
12025
12026 AtomicCmpXchgInst *CXI =
12027 Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
12028 AtomicOrdering::SequentiallyConsistent,
12029 AtomicOrdering::SequentiallyConsistent);
12030 CXI->setVolatile(true);
12031
12032 // Write the result back to the inout pointer.
12033 Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
12034
12035 // Get the success boolean and zero extend it to i8.
12036 Value *Success = Builder.CreateExtractValue(CXI, 1);
12037 return Builder.CreateZExt(Success, ConvertType(E->getType()));
12038 }
12039
12040 case X86::BI_AddressOfReturnAddress: {
12041 Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
12042 return Builder.CreateCall(F);
12043 }
12044 case X86::BI__stosb: {
12045 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
12046 // instruction, but it will create a memset that won't be optimized away.
12047 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
12048 }
12049 case X86::BI__ud2:
12050 // llvm.trap makes a ud2a instruction on x86.
12051 return EmitTrapCall(Intrinsic::trap);
12052 case X86::BI__int2c: {
12053 // This syscall signals a driver assertion failure in x86 NT kernels.
12054 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
12055 llvm::InlineAsm *IA =
12056 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*SideEffects=*/true);
12057 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
12058 getLLVMContext(), llvm::AttributeList::FunctionIndex,
12059 llvm::Attribute::NoReturn);
12060 llvm::CallInst *CI = Builder.CreateCall(IA);
12061 CI->setAttributes(NoReturnAttr);
12062 return CI;
12063 }
12064 case X86::BI__readfsbyte:
12065 case X86::BI__readfsword:
12066 case X86::BI__readfsdword:
12067 case X86::BI__readfsqword: {
12068 llvm::Type *IntTy = ConvertType(E->getType());
12069 Value *Ptr =
12070 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
12071 LoadInst *Load = Builder.CreateAlignedLoad(
12072 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12073 Load->setVolatile(true);
12074 return Load;
12075 }
12076 case X86::BI__readgsbyte:
12077 case X86::BI__readgsword:
12078 case X86::BI__readgsdword:
12079 case X86::BI__readgsqword: {
12080 llvm::Type *IntTy = ConvertType(E->getType());
12081 Value *Ptr =
12082 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
12083 LoadInst *Load = Builder.CreateAlignedLoad(
12084 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
12085 Load->setVolatile(true);
12086 return Load;
12087 }
12088 case X86::BI__builtin_ia32_paddsb512:
12089 case X86::BI__builtin_ia32_paddsw512:
12090 case X86::BI__builtin_ia32_paddsb256:
12091 case X86::BI__builtin_ia32_paddsw256:
12092 case X86::BI__builtin_ia32_paddsb128:
12093 case X86::BI__builtin_ia32_paddsw128:
12094 return EmitX86AddSubSatExpr(*this, Ops, true, true);
12095 case X86::BI__builtin_ia32_paddusb512:
12096 case X86::BI__builtin_ia32_paddusw512:
12097 case X86::BI__builtin_ia32_paddusb256:
12098 case X86::BI__builtin_ia32_paddusw256:
12099 case X86::BI__builtin_ia32_paddusb128:
12100 case X86::BI__builtin_ia32_paddusw128:
12101 return EmitX86AddSubSatExpr(*this, Ops, false, true);
12102 case X86::BI__builtin_ia32_psubsb512:
12103 case X86::BI__builtin_ia32_psubsw512:
12104 case X86::BI__builtin_ia32_psubsb256:
12105 case X86::BI__builtin_ia32_psubsw256:
12106 case X86::BI__builtin_ia32_psubsb128:
12107 case X86::BI__builtin_ia32_psubsw128:
12108 return EmitX86AddSubSatExpr(*this, Ops, true, false);
12109 case X86::BI__builtin_ia32_psubusb512:
12110 case X86::BI__builtin_ia32_psubusw512:
12111 case X86::BI__builtin_ia32_psubusb256:
12112 case X86::BI__builtin_ia32_psubusw256:
12113 case X86::BI__builtin_ia32_psubusb128:
12114 case X86::BI__builtin_ia32_psubusw128:
12115 return EmitX86AddSubSatExpr(*this, Ops, false, false);
12116 }
12117}
12118
12119Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
12120 const CallExpr *E) {
12121 SmallVector<Value*, 4> Ops;
12122
12123 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
12124 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12125
12126 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12127
12128 switch (BuiltinID) {
12129 default: return nullptr;
12130
12131 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
12132 // call __builtin_readcyclecounter.
12133 case PPC::BI__builtin_ppc_get_timebase:
12134 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
12135
12136 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
12137 case PPC::BI__builtin_altivec_lvx:
12138 case PPC::BI__builtin_altivec_lvxl:
12139 case PPC::BI__builtin_altivec_lvebx:
12140 case PPC::BI__builtin_altivec_lvehx:
12141 case PPC::BI__builtin_altivec_lvewx:
12142 case PPC::BI__builtin_altivec_lvsl:
12143 case PPC::BI__builtin_altivec_lvsr:
12144 case PPC::BI__builtin_vsx_lxvd2x:
12145 case PPC::BI__builtin_vsx_lxvw4x:
12146 case PPC::BI__builtin_vsx_lxvd2x_be:
12147 case PPC::BI__builtin_vsx_lxvw4x_be:
12148 case PPC::BI__builtin_vsx_lxvl:
12149 case PPC::BI__builtin_vsx_lxvll:
12150 {
12151 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
12152 BuiltinID == PPC::BI__builtin_vsx_lxvll){
12153 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
12154 }else {
12155 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12156 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
12157 Ops.pop_back();
12158 }
12159
12160 switch (BuiltinID) {
12161 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12161)
;
12162 case PPC::BI__builtin_altivec_lvx:
12163 ID = Intrinsic::ppc_altivec_lvx;
12164 break;
12165 case PPC::BI__builtin_altivec_lvxl:
12166 ID = Intrinsic::ppc_altivec_lvxl;
12167 break;
12168 case PPC::BI__builtin_altivec_lvebx:
12169 ID = Intrinsic::ppc_altivec_lvebx;
12170 break;
12171 case PPC::BI__builtin_altivec_lvehx:
12172 ID = Intrinsic::ppc_altivec_lvehx;
12173 break;
12174 case PPC::BI__builtin_altivec_lvewx:
12175 ID = Intrinsic::ppc_altivec_lvewx;
12176 break;
12177 case PPC::BI__builtin_altivec_lvsl:
12178 ID = Intrinsic::ppc_altivec_lvsl;
12179 break;
12180 case PPC::BI__builtin_altivec_lvsr:
12181 ID = Intrinsic::ppc_altivec_lvsr;
12182 break;
12183 case PPC::BI__builtin_vsx_lxvd2x:
12184 ID = Intrinsic::ppc_vsx_lxvd2x;
12185 break;
12186 case PPC::BI__builtin_vsx_lxvw4x:
12187 ID = Intrinsic::ppc_vsx_lxvw4x;
12188 break;
12189 case PPC::BI__builtin_vsx_lxvd2x_be:
12190 ID = Intrinsic::ppc_vsx_lxvd2x_be;
12191 break;
12192 case PPC::BI__builtin_vsx_lxvw4x_be:
12193 ID = Intrinsic::ppc_vsx_lxvw4x_be;
12194 break;
12195 case PPC::BI__builtin_vsx_lxvl:
12196 ID = Intrinsic::ppc_vsx_lxvl;
12197 break;
12198 case PPC::BI__builtin_vsx_lxvll:
12199 ID = Intrinsic::ppc_vsx_lxvll;
12200 break;
12201 }
12202 llvm::Function *F = CGM.getIntrinsic(ID);
12203 return Builder.CreateCall(F, Ops, "");
12204 }
12205
12206 // vec_st, vec_xst_be
12207 case PPC::BI__builtin_altivec_stvx:
12208 case PPC::BI__builtin_altivec_stvxl:
12209 case PPC::BI__builtin_altivec_stvebx:
12210 case PPC::BI__builtin_altivec_stvehx:
12211 case PPC::BI__builtin_altivec_stvewx:
12212 case PPC::BI__builtin_vsx_stxvd2x:
12213 case PPC::BI__builtin_vsx_stxvw4x:
12214 case PPC::BI__builtin_vsx_stxvd2x_be:
12215 case PPC::BI__builtin_vsx_stxvw4x_be:
12216 case PPC::BI__builtin_vsx_stxvl:
12217 case PPC::BI__builtin_vsx_stxvll:
12218 {
12219 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
12220 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
12221 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
12222 }else {
12223 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
12224 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
12225 Ops.pop_back();
12226 }
12227
12228 switch (BuiltinID) {
12229 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12229)
;
12230 case PPC::BI__builtin_altivec_stvx:
12231 ID = Intrinsic::ppc_altivec_stvx;
12232 break;
12233 case PPC::BI__builtin_altivec_stvxl:
12234 ID = Intrinsic::ppc_altivec_stvxl;
12235 break;
12236 case PPC::BI__builtin_altivec_stvebx:
12237 ID = Intrinsic::ppc_altivec_stvebx;
12238 break;
12239 case PPC::BI__builtin_altivec_stvehx:
12240 ID = Intrinsic::ppc_altivec_stvehx;
12241 break;
12242 case PPC::BI__builtin_altivec_stvewx:
12243 ID = Intrinsic::ppc_altivec_stvewx;
12244 break;
12245 case PPC::BI__builtin_vsx_stxvd2x:
12246 ID = Intrinsic::ppc_vsx_stxvd2x;
12247 break;
12248 case PPC::BI__builtin_vsx_stxvw4x:
12249 ID = Intrinsic::ppc_vsx_stxvw4x;
12250 break;
12251 case PPC::BI__builtin_vsx_stxvd2x_be:
12252 ID = Intrinsic::ppc_vsx_stxvd2x_be;
12253 break;
12254 case PPC::BI__builtin_vsx_stxvw4x_be:
12255 ID = Intrinsic::ppc_vsx_stxvw4x_be;
12256 break;
12257 case PPC::BI__builtin_vsx_stxvl:
12258 ID = Intrinsic::ppc_vsx_stxvl;
12259 break;
12260 case PPC::BI__builtin_vsx_stxvll:
12261 ID = Intrinsic::ppc_vsx_stxvll;
12262 break;
12263 }
12264 llvm::Function *F = CGM.getIntrinsic(ID);
12265 return Builder.CreateCall(F, Ops, "");
12266 }
12267 // Square root
12268 case PPC::BI__builtin_vsx_xvsqrtsp:
12269 case PPC::BI__builtin_vsx_xvsqrtdp: {
12270 llvm::Type *ResultType = ConvertType(E->getType());
12271 Value *X = EmitScalarExpr(E->getArg(0));
12272 ID = Intrinsic::sqrt;
12273 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12274 return Builder.CreateCall(F, X);
12275 }
12276 // Count leading zeros
12277 case PPC::BI__builtin_altivec_vclzb:
12278 case PPC::BI__builtin_altivec_vclzh:
12279 case PPC::BI__builtin_altivec_vclzw:
12280 case PPC::BI__builtin_altivec_vclzd: {
12281 llvm::Type *ResultType = ConvertType(E->getType());
12282 Value *X = EmitScalarExpr(E->getArg(0));
12283 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12284 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12285 return Builder.CreateCall(F, {X, Undef});
12286 }
12287 case PPC::BI__builtin_altivec_vctzb:
12288 case PPC::BI__builtin_altivec_vctzh:
12289 case PPC::BI__builtin_altivec_vctzw:
12290 case PPC::BI__builtin_altivec_vctzd: {
12291 llvm::Type *ResultType = ConvertType(E->getType());
12292 Value *X = EmitScalarExpr(E->getArg(0));
12293 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12294 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12295 return Builder.CreateCall(F, {X, Undef});
12296 }
12297 case PPC::BI__builtin_altivec_vpopcntb:
12298 case PPC::BI__builtin_altivec_vpopcnth:
12299 case PPC::BI__builtin_altivec_vpopcntw:
12300 case PPC::BI__builtin_altivec_vpopcntd: {
12301 llvm::Type *ResultType = ConvertType(E->getType());
12302 Value *X = EmitScalarExpr(E->getArg(0));
12303 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12304 return Builder.CreateCall(F, X);
12305 }
12306 // Copy sign
12307 case PPC::BI__builtin_vsx_xvcpsgnsp:
12308 case PPC::BI__builtin_vsx_xvcpsgndp: {
12309 llvm::Type *ResultType = ConvertType(E->getType());
12310 Value *X = EmitScalarExpr(E->getArg(0));
12311 Value *Y = EmitScalarExpr(E->getArg(1));
12312 ID = Intrinsic::copysign;
12313 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12314 return Builder.CreateCall(F, {X, Y});
12315 }
12316 // Rounding/truncation
12317 case PPC::BI__builtin_vsx_xvrspip:
12318 case PPC::BI__builtin_vsx_xvrdpip:
12319 case PPC::BI__builtin_vsx_xvrdpim:
12320 case PPC::BI__builtin_vsx_xvrspim:
12321 case PPC::BI__builtin_vsx_xvrdpi:
12322 case PPC::BI__builtin_vsx_xvrspi:
12323 case PPC::BI__builtin_vsx_xvrdpic:
12324 case PPC::BI__builtin_vsx_xvrspic:
12325 case PPC::BI__builtin_vsx_xvrdpiz:
12326 case PPC::BI__builtin_vsx_xvrspiz: {
12327 llvm::Type *ResultType = ConvertType(E->getType());
12328 Value *X = EmitScalarExpr(E->getArg(0));
12329 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
12330 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
12331 ID = Intrinsic::floor;
12332 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
12333 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
12334 ID = Intrinsic::round;
12335 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
12336 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
12337 ID = Intrinsic::nearbyint;
12338 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
12339 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
12340 ID = Intrinsic::ceil;
12341 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
12342 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
12343 ID = Intrinsic::trunc;
12344 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
12345 return Builder.CreateCall(F, X);
12346 }
12347
12348 // Absolute value
12349 case PPC::BI__builtin_vsx_xvabsdp:
12350 case PPC::BI__builtin_vsx_xvabssp: {
12351 llvm::Type *ResultType = ConvertType(E->getType());
12352 Value *X = EmitScalarExpr(E->getArg(0));
12353 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12354 return Builder.CreateCall(F, X);
12355 }
12356
12357 // FMA variations
12358 case PPC::BI__builtin_vsx_xvmaddadp:
12359 case PPC::BI__builtin_vsx_xvmaddasp:
12360 case PPC::BI__builtin_vsx_xvnmaddadp:
12361 case PPC::BI__builtin_vsx_xvnmaddasp:
12362 case PPC::BI__builtin_vsx_xvmsubadp:
12363 case PPC::BI__builtin_vsx_xvmsubasp:
12364 case PPC::BI__builtin_vsx_xvnmsubadp:
12365 case PPC::BI__builtin_vsx_xvnmsubasp: {
12366 llvm::Type *ResultType = ConvertType(E->getType());
12367 Value *X = EmitScalarExpr(E->getArg(0));
12368 Value *Y = EmitScalarExpr(E->getArg(1));
12369 Value *Z = EmitScalarExpr(E->getArg(2));
12370 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12371 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12372 switch (BuiltinID) {
12373 case PPC::BI__builtin_vsx_xvmaddadp:
12374 case PPC::BI__builtin_vsx_xvmaddasp:
12375 return Builder.CreateCall(F, {X, Y, Z});
12376 case PPC::BI__builtin_vsx_xvnmaddadp:
12377 case PPC::BI__builtin_vsx_xvnmaddasp:
12378 return Builder.CreateFSub(Zero,
12379 Builder.CreateCall(F, {X, Y, Z}), "sub");
12380 case PPC::BI__builtin_vsx_xvmsubadp:
12381 case PPC::BI__builtin_vsx_xvmsubasp:
12382 return Builder.CreateCall(F,
12383 {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12384 case PPC::BI__builtin_vsx_xvnmsubadp:
12385 case PPC::BI__builtin_vsx_xvnmsubasp:
12386 Value *FsubRes =
12387 Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12388 return Builder.CreateFSub(Zero, FsubRes, "sub");
12389 }
12390 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12390)
;
12391 return nullptr; // Suppress no-return warning
12392 }
12393
12394 case PPC::BI__builtin_vsx_insertword: {
12395 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
12396
12397 // Third argument is a compile time constant int. It must be clamped to
12398 // to the range [0, 12].
12399 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12400 assert(ArgCI &&((ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12401, __PRETTY_FUNCTION__))
12401 "Third arg to xxinsertw intrinsic must be constant integer")((ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12401, __PRETTY_FUNCTION__))
;
12402 const int64_t MaxIndex = 12;
12403 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12404
12405 // The builtin semantics don't exactly match the xxinsertw instructions
12406 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
12407 // word from the first argument, and inserts it in the second argument. The
12408 // instruction extracts the word from its second input register and inserts
12409 // it into its first input register, so swap the first and second arguments.
12410 std::swap(Ops[0], Ops[1]);
12411
12412 // Need to cast the second argument from a vector of unsigned int to a
12413 // vector of long long.
12414 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12415
12416 if (getTarget().isLittleEndian()) {
12417 // Create a shuffle mask of (1, 0)
12418 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12419 ConstantInt::get(Int32Ty, 0)
12420 };
12421 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12422
12423 // Reverse the double words in the vector we will extract from.
12424 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12425 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
12426
12427 // Reverse the index.
12428 Index = MaxIndex - Index;
12429 }
12430
12431 // Intrinsic expects the first arg to be a vector of int.
12432 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12433 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
12434 return Builder.CreateCall(F, Ops);
12435 }
12436
12437 case PPC::BI__builtin_vsx_extractuword: {
12438 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
12439
12440 // Intrinsic expects the first argument to be a vector of doublewords.
12441 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12442
12443 // The second argument is a compile time constant int that needs to
12444 // be clamped to the range [0, 12].
12445 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
12446 assert(ArgCI &&((ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12447, __PRETTY_FUNCTION__))
12447 "Second Arg to xxextractuw intrinsic must be a constant integer!")((ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12447, __PRETTY_FUNCTION__))
;
12448 const int64_t MaxIndex = 12;
12449 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
12450
12451 if (getTarget().isLittleEndian()) {
12452 // Reverse the index.
12453 Index = MaxIndex - Index;
12454 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12455
12456 // Emit the call, then reverse the double words of the results vector.
12457 Value *Call = Builder.CreateCall(F, Ops);
12458
12459 // Create a shuffle mask of (1, 0)
12460 Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
12461 ConstantInt::get(Int32Ty, 0)
12462 };
12463 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12464
12465 Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
12466 return ShuffleCall;
12467 } else {
12468 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
12469 return Builder.CreateCall(F, Ops);
12470 }
12471 }
12472
12473 case PPC::BI__builtin_vsx_xxpermdi: {
12474 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12475 assert(ArgCI && "Third arg must be constant integer!")((ArgCI && "Third arg must be constant integer!") ? static_cast
<void> (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12475, __PRETTY_FUNCTION__))
;
12476
12477 unsigned Index = ArgCI->getZExtValue();
12478 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
12479 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
12480
12481 // Account for endianness by treating this as just a shuffle. So we use the
12482 // same indices for both LE and BE in order to produce expected results in
12483 // both cases.
12484 unsigned ElemIdx0 = (Index & 2) >> 1;
12485 unsigned ElemIdx1 = 2 + (Index & 1);
12486
12487 Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
12488 ConstantInt::get(Int32Ty, ElemIdx1)};
12489 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12490
12491 Value *ShuffleCall =
12492 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12493 QualType BIRetType = E->getType();
12494 auto RetTy = ConvertType(BIRetType);
12495 return Builder.CreateBitCast(ShuffleCall, RetTy);
12496 }
12497
12498 case PPC::BI__builtin_vsx_xxsldwi: {
12499 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
12500 assert(ArgCI && "Third argument must be a compile time constant")((ArgCI && "Third argument must be a compile time constant"
) ? static_cast<void> (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12500, __PRETTY_FUNCTION__))
;
12501 unsigned Index = ArgCI->getZExtValue() & 0x3;
12502 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
12503 Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
12504
12505 // Create a shuffle mask
12506 unsigned ElemIdx0;
12507 unsigned ElemIdx1;
12508 unsigned ElemIdx2;
12509 unsigned ElemIdx3;
12510 if (getTarget().isLittleEndian()) {
12511 // Little endian element N comes from element 8+N-Index of the
12512 // concatenated wide vector (of course, using modulo arithmetic on
12513 // the total number of elements).
12514 ElemIdx0 = (8 - Index) % 8;
12515 ElemIdx1 = (9 - Index) % 8;
12516 ElemIdx2 = (10 - Index) % 8;
12517 ElemIdx3 = (11 - Index) % 8;
12518 } else {
12519 // Big endian ElemIdx<N> = Index + N
12520 ElemIdx0 = Index;
12521 ElemIdx1 = Index + 1;
12522 ElemIdx2 = Index + 2;
12523 ElemIdx3 = Index + 3;
12524 }
12525
12526 Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
12527 ConstantInt::get(Int32Ty, ElemIdx1),
12528 ConstantInt::get(Int32Ty, ElemIdx2),
12529 ConstantInt::get(Int32Ty, ElemIdx3)};
12530
12531 Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
12532 Value *ShuffleCall =
12533 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
12534 QualType BIRetType = E->getType();
12535 auto RetTy = ConvertType(BIRetType);
12536 return Builder.CreateBitCast(ShuffleCall, RetTy);
12537 }
12538
12539 case PPC::BI__builtin_pack_vector_int128: {
12540 bool isLittleEndian = getTarget().isLittleEndian();
12541 Value *UndefValue =
12542 llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
12543 Value *Res = Builder.CreateInsertElement(
12544 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
12545 Res = Builder.CreateInsertElement(Res, Ops[1],
12546 (uint64_t)(isLittleEndian ? 0 : 1));
12547 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
12548 }
12549
12550 case PPC::BI__builtin_unpack_vector_int128: {
12551 ConstantInt *Index = cast<ConstantInt>(Ops[1]);
12552 Value *Unpacked = Builder.CreateBitCast(
12553 Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
12554
12555 if (getTarget().isLittleEndian())
12556 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
12557
12558 return Builder.CreateExtractElement(Unpacked, Index);
12559 }
12560 }
12561}
12562
12563Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
12564 const CallExpr *E) {
12565 switch (BuiltinID) {
12566 case AMDGPU::BI__builtin_amdgcn_div_scale:
12567 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
12568 // Translate from the intrinsics's struct return to the builtin's out
12569 // argument.
12570
12571 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
12572
12573 llvm::Value *X = EmitScalarExpr(E->getArg(0));
12574 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
12575 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
12576
12577 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
12578 X->getType());
12579
12580 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
12581
12582 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
12583 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
12584
12585 llvm::Type *RealFlagType
12586 = FlagOutPtr.getPointer()->getType()->getPointerElementType();
12587
12588 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
12589 Builder.CreateStore(FlagExt, FlagOutPtr);
12590 return Result;
12591 }
12592 case AMDGPU::BI__builtin_amdgcn_div_fmas:
12593 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
12594 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12595 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12596 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12597 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
12598
12599 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
12600 Src0->getType());
12601 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
12602 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
12603 }
12604
12605 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
12606 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
12607 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
12608 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
12609 llvm::SmallVector<llvm::Value *, 6> Args;
12610 for (unsigned I = 0; I != E->getNumArgs(); ++I)
12611 Args.push_back(EmitScalarExpr(E->getArg(I)));
12612 assert(Args.size() == 5 || Args.size() == 6)((Args.size() == 5 || Args.size() == 6) ? static_cast<void
> (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12612, __PRETTY_FUNCTION__))
;
12613 if (Args.size() == 5)
12614 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
12615 Function *F =
12616 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
12617 return Builder.CreateCall(F, Args);
12618 }
12619 case AMDGPU::BI__builtin_amdgcn_div_fixup:
12620 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
12621 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
12622 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
12623 case AMDGPU::BI__builtin_amdgcn_trig_preop:
12624 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
12625 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
12626 case AMDGPU::BI__builtin_amdgcn_rcp:
12627 case AMDGPU::BI__builtin_amdgcn_rcpf:
12628 case AMDGPU::BI__builtin_amdgcn_rcph:
12629 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
12630 case AMDGPU::BI__builtin_amdgcn_rsq:
12631 case AMDGPU::BI__builtin_amdgcn_rsqf:
12632 case AMDGPU::BI__builtin_amdgcn_rsqh:
12633 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
12634 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
12635 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
12636 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
12637 case AMDGPU::BI__builtin_amdgcn_sinf:
12638 case AMDGPU::BI__builtin_amdgcn_sinh:
12639 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
12640 case AMDGPU::BI__builtin_amdgcn_cosf:
12641 case AMDGPU::BI__builtin_amdgcn_cosh:
12642 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
12643 case AMDGPU::BI__builtin_amdgcn_log_clampf:
12644 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
12645 case AMDGPU::BI__builtin_amdgcn_ldexp:
12646 case AMDGPU::BI__builtin_amdgcn_ldexpf:
12647 case AMDGPU::BI__builtin_amdgcn_ldexph:
12648 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
12649 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
12650 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
12651 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
12652 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
12653 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
12654 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
12655 Value *Src0 = EmitScalarExpr(E->getArg(0));
12656 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12657 { Builder.getInt32Ty(), Src0->getType() });
12658 return Builder.CreateCall(F, Src0);
12659 }
12660 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
12661 Value *Src0 = EmitScalarExpr(E->getArg(0));
12662 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12663 { Builder.getInt16Ty(), Src0->getType() });
12664 return Builder.CreateCall(F, Src0);
12665 }
12666 case AMDGPU::BI__builtin_amdgcn_fract:
12667 case AMDGPU::BI__builtin_amdgcn_fractf:
12668 case AMDGPU::BI__builtin_amdgcn_fracth:
12669 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
12670 case AMDGPU::BI__builtin_amdgcn_lerp:
12671 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
12672 case AMDGPU::BI__builtin_amdgcn_uicmp:
12673 case AMDGPU::BI__builtin_amdgcn_uicmpl:
12674 case AMDGPU::BI__builtin_amdgcn_sicmp:
12675 case AMDGPU::BI__builtin_amdgcn_sicmpl:
12676 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp);
12677 case AMDGPU::BI__builtin_amdgcn_fcmp:
12678 case AMDGPU::BI__builtin_amdgcn_fcmpf:
12679 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp);
12680 case AMDGPU::BI__builtin_amdgcn_class:
12681 case AMDGPU::BI__builtin_amdgcn_classf:
12682 case AMDGPU::BI__builtin_amdgcn_classh:
12683 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
12684 case AMDGPU::BI__builtin_amdgcn_fmed3f:
12685 case AMDGPU::BI__builtin_amdgcn_fmed3h:
12686 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
12687 case AMDGPU::BI__builtin_amdgcn_ds_append:
12688 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
12689 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
12690 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
12691 Value *Src0 = EmitScalarExpr(E->getArg(0));
12692 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
12693 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
12694 }
12695 case AMDGPU::BI__builtin_amdgcn_read_exec: {
12696 CallInst *CI = cast<CallInst>(
12697 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
12698 CI->setConvergent();
12699 return CI;
12700 }
12701 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
12702 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
12703 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
12704 "exec_lo" : "exec_hi";
12705 CallInst *CI = cast<CallInst>(
12706 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
12707 CI->setConvergent();
12708 return CI;
12709 }
12710 // amdgcn workitem
12711 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
12712 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
12713 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
12714 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
12715 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
12716 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
12717
12718 // r600 intrinsics
12719 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
12720 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
12721 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
12722 case AMDGPU::BI__builtin_r600_read_tidig_x:
12723 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
12724 case AMDGPU::BI__builtin_r600_read_tidig_y:
12725 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
12726 case AMDGPU::BI__builtin_r600_read_tidig_z:
12727 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
12728 default:
12729 return nullptr;
12730 }
12731}
12732
12733/// Handle a SystemZ function in which the final argument is a pointer
12734/// to an int that receives the post-instruction CC value. At the LLVM level
12735/// this is represented as a function that returns a {result, cc} pair.
12736static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
12737 unsigned IntrinsicID,
12738 const CallExpr *E) {
12739 unsigned NumArgs = E->getNumArgs() - 1;
12740 SmallVector<Value *, 8> Args(NumArgs);
12741 for (unsigned I = 0; I < NumArgs; ++I)
12742 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
12743 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
12744 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
12745 Value *Call = CGF.Builder.CreateCall(F, Args);
12746 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
12747 CGF.Builder.CreateStore(CC, CCPtr);
12748 return CGF.Builder.CreateExtractValue(Call, 0);
12749}
12750
12751Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
12752 const CallExpr *E) {
12753 switch (BuiltinID) {
12754 case SystemZ::BI__builtin_tbegin: {
12755 Value *TDB = EmitScalarExpr(E->getArg(0));
12756 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12757 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
12758 return Builder.CreateCall(F, {TDB, Control});
12759 }
12760 case SystemZ::BI__builtin_tbegin_nofloat: {
12761 Value *TDB = EmitScalarExpr(E->getArg(0));
12762 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12763 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
12764 return Builder.CreateCall(F, {TDB, Control});
12765 }
12766 case SystemZ::BI__builtin_tbeginc: {
12767 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
12768 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
12769 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
12770 return Builder.CreateCall(F, {TDB, Control});
12771 }
12772 case SystemZ::BI__builtin_tabort: {
12773 Value *Data = EmitScalarExpr(E->getArg(0));
12774 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
12775 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
12776 }
12777 case SystemZ::BI__builtin_non_tx_store: {
12778 Value *Address = EmitScalarExpr(E->getArg(0));
12779 Value *Data = EmitScalarExpr(E->getArg(1));
12780 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
12781 return Builder.CreateCall(F, {Data, Address});
12782 }
12783
12784 // Vector builtins. Note that most vector builtins are mapped automatically
12785 // to target-specific LLVM intrinsics. The ones handled specially here can
12786 // be represented via standard LLVM IR, which is preferable to enable common
12787 // LLVM optimizations.
12788
12789 case SystemZ::BI__builtin_s390_vpopctb:
12790 case SystemZ::BI__builtin_s390_vpopcth:
12791 case SystemZ::BI__builtin_s390_vpopctf:
12792 case SystemZ::BI__builtin_s390_vpopctg: {
12793 llvm::Type *ResultType = ConvertType(E->getType());
12794 Value *X = EmitScalarExpr(E->getArg(0));
12795 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12796 return Builder.CreateCall(F, X);
12797 }
12798
12799 case SystemZ::BI__builtin_s390_vclzb:
12800 case SystemZ::BI__builtin_s390_vclzh:
12801 case SystemZ::BI__builtin_s390_vclzf:
12802 case SystemZ::BI__builtin_s390_vclzg: {
12803 llvm::Type *ResultType = ConvertType(E->getType());
12804 Value *X = EmitScalarExpr(E->getArg(0));
12805 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12806 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12807 return Builder.CreateCall(F, {X, Undef});
12808 }
12809
12810 case SystemZ::BI__builtin_s390_vctzb:
12811 case SystemZ::BI__builtin_s390_vctzh:
12812 case SystemZ::BI__builtin_s390_vctzf:
12813 case SystemZ::BI__builtin_s390_vctzg: {
12814 llvm::Type *ResultType = ConvertType(E->getType());
12815 Value *X = EmitScalarExpr(E->getArg(0));
12816 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12817 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12818 return Builder.CreateCall(F, {X, Undef});
12819 }
12820
12821 case SystemZ::BI__builtin_s390_vfsqsb:
12822 case SystemZ::BI__builtin_s390_vfsqdb: {
12823 llvm::Type *ResultType = ConvertType(E->getType());
12824 Value *X = EmitScalarExpr(E->getArg(0));
12825 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
12826 return Builder.CreateCall(F, X);
12827 }
12828 case SystemZ::BI__builtin_s390_vfmasb:
12829 case SystemZ::BI__builtin_s390_vfmadb: {
12830 llvm::Type *ResultType = ConvertType(E->getType());
12831 Value *X = EmitScalarExpr(E->getArg(0));
12832 Value *Y = EmitScalarExpr(E->getArg(1));
12833 Value *Z = EmitScalarExpr(E->getArg(2));
12834 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12835 return Builder.CreateCall(F, {X, Y, Z});
12836 }
12837 case SystemZ::BI__builtin_s390_vfmssb:
12838 case SystemZ::BI__builtin_s390_vfmsdb: {
12839 llvm::Type *ResultType = ConvertType(E->getType());
12840 Value *X = EmitScalarExpr(E->getArg(0));
12841 Value *Y = EmitScalarExpr(E->getArg(1));
12842 Value *Z = EmitScalarExpr(E->getArg(2));
12843 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12844 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12845 return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12846 }
12847 case SystemZ::BI__builtin_s390_vfnmasb:
12848 case SystemZ::BI__builtin_s390_vfnmadb: {
12849 llvm::Type *ResultType = ConvertType(E->getType());
12850 Value *X = EmitScalarExpr(E->getArg(0));
12851 Value *Y = EmitScalarExpr(E->getArg(1));
12852 Value *Z = EmitScalarExpr(E->getArg(2));
12853 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12854 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12855 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
12856 }
12857 case SystemZ::BI__builtin_s390_vfnmssb:
12858 case SystemZ::BI__builtin_s390_vfnmsdb: {
12859 llvm::Type *ResultType = ConvertType(E->getType());
12860 Value *X = EmitScalarExpr(E->getArg(0));
12861 Value *Y = EmitScalarExpr(E->getArg(1));
12862 Value *Z = EmitScalarExpr(E->getArg(2));
12863 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12864 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12865 Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
12866 return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
12867 }
12868 case SystemZ::BI__builtin_s390_vflpsb:
12869 case SystemZ::BI__builtin_s390_vflpdb: {
12870 llvm::Type *ResultType = ConvertType(E->getType());
12871 Value *X = EmitScalarExpr(E->getArg(0));
12872 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12873 return Builder.CreateCall(F, X);
12874 }
12875 case SystemZ::BI__builtin_s390_vflnsb:
12876 case SystemZ::BI__builtin_s390_vflndb: {
12877 llvm::Type *ResultType = ConvertType(E->getType());
12878 Value *X = EmitScalarExpr(E->getArg(0));
12879 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12880 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12881 return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
12882 }
12883 case SystemZ::BI__builtin_s390_vfisb:
12884 case SystemZ::BI__builtin_s390_vfidb: {
12885 llvm::Type *ResultType = ConvertType(E->getType());
12886 Value *X = EmitScalarExpr(E->getArg(0));
12887 // Constant-fold the M4 and M5 mask arguments.
12888 llvm::APSInt M4, M5;
12889 bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
12890 bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
12891 assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?")((IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && IsConstM5 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12891, __PRETTY_FUNCTION__))
;
12892 (void)IsConstM4; (void)IsConstM5;
12893 // Check whether this instance can be represented via a LLVM standard
12894 // intrinsic. We only support some combinations of M4 and M5.
12895 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12896 switch (M4.getZExtValue()) {
12897 default: break;
12898 case 0: // IEEE-inexact exception allowed
12899 switch (M5.getZExtValue()) {
12900 default: break;
12901 case 0: ID = Intrinsic::rint; break;
12902 }
12903 break;
12904 case 4: // IEEE-inexact exception suppressed
12905 switch (M5.getZExtValue()) {
12906 default: break;
12907 case 0: ID = Intrinsic::nearbyint; break;
12908 case 1: ID = Intrinsic::round; break;
12909 case 5: ID = Intrinsic::trunc; break;
12910 case 6: ID = Intrinsic::ceil; break;
12911 case 7: ID = Intrinsic::floor; break;
12912 }
12913 break;
12914 }
12915 if (ID != Intrinsic::not_intrinsic) {
12916 Function *F = CGM.getIntrinsic(ID, ResultType);
12917 return Builder.CreateCall(F, X);
12918 }
12919 switch (BuiltinID) {
12920 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
12921 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
12922 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12922)
;
12923 }
12924 Function *F = CGM.getIntrinsic(ID);
12925 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
12926 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
12927 return Builder.CreateCall(F, {X, M4Value, M5Value});
12928 }
12929 case SystemZ::BI__builtin_s390_vfmaxsb:
12930 case SystemZ::BI__builtin_s390_vfmaxdb: {
12931 llvm::Type *ResultType = ConvertType(E->getType());
12932 Value *X = EmitScalarExpr(E->getArg(0));
12933 Value *Y = EmitScalarExpr(E->getArg(1));
12934 // Constant-fold the M4 mask argument.
12935 llvm::APSInt M4;
12936 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
12937 assert(IsConstM4 && "Constant arg isn't actually constant?")((IsConstM4 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12937, __PRETTY_FUNCTION__))
;
12938 (void)IsConstM4;
12939 // Check whether this instance can be represented via a LLVM standard
12940 // intrinsic. We only support some values of M4.
12941 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12942 switch (M4.getZExtValue()) {
12943 default: break;
12944 case 4: ID = Intrinsic::maxnum; break;
12945 }
12946 if (ID != Intrinsic::not_intrinsic) {
12947 Function *F = CGM.getIntrinsic(ID, ResultType);
12948 return Builder.CreateCall(F, {X, Y});
12949 }
12950 switch (BuiltinID) {
12951 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
12952 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
12953 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12953)
;
12954 }
12955 Function *F = CGM.getIntrinsic(ID);
12956 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
12957 return Builder.CreateCall(F, {X, Y, M4Value});
12958 }
12959 case SystemZ::BI__builtin_s390_vfminsb:
12960 case SystemZ::BI__builtin_s390_vfmindb: {
12961 llvm::Type *ResultType = ConvertType(E->getType());
12962 Value *X = EmitScalarExpr(E->getArg(0));
12963 Value *Y = EmitScalarExpr(E->getArg(1));
12964 // Constant-fold the M4 mask argument.
12965 llvm::APSInt M4;
12966 bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
12967 assert(IsConstM4 && "Constant arg isn't actually constant?")((IsConstM4 && "Constant arg isn't actually constant?"
) ? static_cast<void> (0) : __assert_fail ("IsConstM4 && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12967, __PRETTY_FUNCTION__))
;
12968 (void)IsConstM4;
12969 // Check whether this instance can be represented via a LLVM standard
12970 // intrinsic. We only support some values of M4.
12971 Intrinsic::ID ID = Intrinsic::not_intrinsic;
12972 switch (M4.getZExtValue()) {
12973 default: break;
12974 case 4: ID = Intrinsic::minnum; break;
12975 }
12976 if (ID != Intrinsic::not_intrinsic) {
12977 Function *F = CGM.getIntrinsic(ID, ResultType);
12978 return Builder.CreateCall(F, {X, Y});
12979 }
12980 switch (BuiltinID) {
12981 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
12982 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
12983 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 12983)
;
12984 }
12985 Function *F = CGM.getIntrinsic(ID);
12986 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
12987 return Builder.CreateCall(F, {X, Y, M4Value});
12988 }
12989
12990 // Vector intrinsics that output the post-instruction CC value.
12991
12992#define INTRINSIC_WITH_CC(NAME) \
12993 case SystemZ::BI__builtin_##NAME: \
12994 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
12995
12996 INTRINSIC_WITH_CC(s390_vpkshs);
12997 INTRINSIC_WITH_CC(s390_vpksfs);
12998 INTRINSIC_WITH_CC(s390_vpksgs);
12999
13000 INTRINSIC_WITH_CC(s390_vpklshs);
13001 INTRINSIC_WITH_CC(s390_vpklsfs);
13002 INTRINSIC_WITH_CC(s390_vpklsgs);
13003
13004 INTRINSIC_WITH_CC(s390_vceqbs);
13005 INTRINSIC_WITH_CC(s390_vceqhs);
13006 INTRINSIC_WITH_CC(s390_vceqfs);
13007 INTRINSIC_WITH_CC(s390_vceqgs);
13008
13009 INTRINSIC_WITH_CC(s390_vchbs);
13010 INTRINSIC_WITH_CC(s390_vchhs);
13011 INTRINSIC_WITH_CC(s390_vchfs);
13012 INTRINSIC_WITH_CC(s390_vchgs);
13013
13014 INTRINSIC_WITH_CC(s390_vchlbs);
13015 INTRINSIC_WITH_CC(s390_vchlhs);
13016 INTRINSIC_WITH_CC(s390_vchlfs);
13017 INTRINSIC_WITH_CC(s390_vchlgs);
13018
13019 INTRINSIC_WITH_CC(s390_vfaebs);
13020 INTRINSIC_WITH_CC(s390_vfaehs);
13021 INTRINSIC_WITH_CC(s390_vfaefs);
13022
13023 INTRINSIC_WITH_CC(s390_vfaezbs);
13024 INTRINSIC_WITH_CC(s390_vfaezhs);
13025 INTRINSIC_WITH_CC(s390_vfaezfs);
13026
13027 INTRINSIC_WITH_CC(s390_vfeebs);
13028 INTRINSIC_WITH_CC(s390_vfeehs);
13029 INTRINSIC_WITH_CC(s390_vfeefs);
13030
13031 INTRINSIC_WITH_CC(s390_vfeezbs);
13032 INTRINSIC_WITH_CC(s390_vfeezhs);
13033 INTRINSIC_WITH_CC(s390_vfeezfs);
13034
13035 INTRINSIC_WITH_CC(s390_vfenebs);
13036 INTRINSIC_WITH_CC(s390_vfenehs);
13037 INTRINSIC_WITH_CC(s390_vfenefs);
13038
13039 INTRINSIC_WITH_CC(s390_vfenezbs);
13040 INTRINSIC_WITH_CC(s390_vfenezhs);
13041 INTRINSIC_WITH_CC(s390_vfenezfs);
13042
13043 INTRINSIC_WITH_CC(s390_vistrbs);
13044 INTRINSIC_WITH_CC(s390_vistrhs);
13045 INTRINSIC_WITH_CC(s390_vistrfs);
13046
13047 INTRINSIC_WITH_CC(s390_vstrcbs);
13048 INTRINSIC_WITH_CC(s390_vstrchs);
13049 INTRINSIC_WITH_CC(s390_vstrcfs);
13050
13051 INTRINSIC_WITH_CC(s390_vstrczbs);
13052 INTRINSIC_WITH_CC(s390_vstrczhs);
13053 INTRINSIC_WITH_CC(s390_vstrczfs);
13054
13055 INTRINSIC_WITH_CC(s390_vfcesbs);
13056 INTRINSIC_WITH_CC(s390_vfcedbs);
13057 INTRINSIC_WITH_CC(s390_vfchsbs);
13058 INTRINSIC_WITH_CC(s390_vfchdbs);
13059 INTRINSIC_WITH_CC(s390_vfchesbs);
13060 INTRINSIC_WITH_CC(s390_vfchedbs);
13061
13062 INTRINSIC_WITH_CC(s390_vftcisb);
13063 INTRINSIC_WITH_CC(s390_vftcidb);
13064
13065#undef INTRINSIC_WITH_CC
13066
13067 default:
13068 return nullptr;
13069 }
13070}
13071
13072namespace {
13073// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
13074struct NVPTXMmaLdstInfo {
13075 unsigned NumResults; // Number of elements to load/store
13076 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
13077 unsigned IID_col;
13078 unsigned IID_row;
13079};
13080
13081#define MMA_INTR(geom_op_type, layout) \
13082 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
13083#define MMA_LDST(n, geom_op_type) \
13084 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
13085
13086static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
13087 switch (BuiltinID) {
13088 // FP MMA loads
13089 case NVPTX::BI__hmma_m16n16k16_ld_a:
13090 return MMA_LDST(8, m16n16k16_load_a_f16);
13091 case NVPTX::BI__hmma_m16n16k16_ld_b:
13092 return MMA_LDST(8, m16n16k16_load_b_f16);
13093 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13094 return MMA_LDST(4, m16n16k16_load_c_f16);
13095 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13096 return MMA_LDST(8, m16n16k16_load_c_f32);
13097 case NVPTX::BI__hmma_m32n8k16_ld_a:
13098 return MMA_LDST(8, m32n8k16_load_a_f16);
13099 case NVPTX::BI__hmma_m32n8k16_ld_b:
13100 return MMA_LDST(8, m32n8k16_load_b_f16);
13101 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13102 return MMA_LDST(4, m32n8k16_load_c_f16);
13103 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13104 return MMA_LDST(8, m32n8k16_load_c_f32);
13105 case NVPTX::BI__hmma_m8n32k16_ld_a:
13106 return MMA_LDST(8, m8n32k16_load_a_f16);
13107 case NVPTX::BI__hmma_m8n32k16_ld_b:
13108 return MMA_LDST(8, m8n32k16_load_b_f16);
13109 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13110 return MMA_LDST(4, m8n32k16_load_c_f16);
13111 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13112 return MMA_LDST(8, m8n32k16_load_c_f32);
13113
13114 // Integer MMA loads
13115 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13116 return MMA_LDST(2, m16n16k16_load_a_s8);
13117 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13118 return MMA_LDST(2, m16n16k16_load_a_u8);
13119 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13120 return MMA_LDST(2, m16n16k16_load_b_s8);
13121 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13122 return MMA_LDST(2, m16n16k16_load_b_u8);
13123 case NVPTX::BI__imma_m16n16k16_ld_c:
13124 return MMA_LDST(8, m16n16k16_load_c_s32);
13125 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13126 return MMA_LDST(4, m32n8k16_load_a_s8);
13127 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13128 return MMA_LDST(4, m32n8k16_load_a_u8);
13129 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13130 return MMA_LDST(1, m32n8k16_load_b_s8);
13131 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13132 return MMA_LDST(1, m32n8k16_load_b_u8);
13133 case NVPTX::BI__imma_m32n8k16_ld_c:
13134 return MMA_LDST(8, m32n8k16_load_c_s32);
13135 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13136 return MMA_LDST(1, m8n32k16_load_a_s8);
13137 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13138 return MMA_LDST(1, m8n32k16_load_a_u8);
13139 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13140 return MMA_LDST(4, m8n32k16_load_b_s8);
13141 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13142 return MMA_LDST(4, m8n32k16_load_b_u8);
13143 case NVPTX::BI__imma_m8n32k16_ld_c:
13144 return MMA_LDST(8, m8n32k16_load_c_s32);
13145
13146 // Sub-integer MMA loads.
13147 // Only row/col layout is supported by A/B fragments.
13148 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13149 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
13150 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13151 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
13152 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13153 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
13154 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13155 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
13156 case NVPTX::BI__imma_m8n8k32_ld_c:
13157 return MMA_LDST(2, m8n8k32_load_c_s32);
13158 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13159 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
13160 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13161 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
13162 case NVPTX::BI__bmma_m8n8k128_ld_c:
13163 return MMA_LDST(2, m8n8k128_load_c_s32);
13164
13165 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
13166 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
13167 // use fragment C for both loads and stores.
13168 // FP MMA stores.
13169 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13170 return MMA_LDST(4, m16n16k16_store_d_f16);
13171 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13172 return MMA_LDST(8, m16n16k16_store_d_f32);
13173 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13174 return MMA_LDST(4, m32n8k16_store_d_f16);
13175 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13176 return MMA_LDST(8, m32n8k16_store_d_f32);
13177 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13178 return MMA_LDST(4, m8n32k16_store_d_f16);
13179 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13180 return MMA_LDST(8, m8n32k16_store_d_f32);
13181
13182 // Integer and sub-integer MMA stores.
13183 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
13184 // name, integer loads/stores use LLVM's i32.
13185 case NVPTX::BI__imma_m16n16k16_st_c_i32:
13186 return MMA_LDST(8, m16n16k16_store_d_s32);
13187 case NVPTX::BI__imma_m32n8k16_st_c_i32:
13188 return MMA_LDST(8, m32n8k16_store_d_s32);
13189 case NVPTX::BI__imma_m8n32k16_st_c_i32:
13190 return MMA_LDST(8, m8n32k16_store_d_s32);
13191 case NVPTX::BI__imma_m8n8k32_st_c_i32:
13192 return MMA_LDST(2, m8n8k32_store_d_s32);
13193 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
13194 return MMA_LDST(2, m8n8k128_store_d_s32);
13195
13196 default:
13197 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13197)
;
13198 }
13199}
13200#undef MMA_LDST
13201#undef MMA_INTR
13202
13203
13204struct NVPTXMmaInfo {
13205 unsigned NumEltsA;
13206 unsigned NumEltsB;
13207 unsigned NumEltsC;
13208 unsigned NumEltsD;
13209 std::array<unsigned, 8> Variants;
13210
13211 unsigned getMMAIntrinsic(int Layout, bool Satf) {
13212 unsigned Index = Layout * 2 + Satf;
13213 if (Index >= Variants.size())
13214 return 0;
13215 return Variants[Index];
13216 }
13217};
13218
13219 // Returns an intrinsic that matches Layout and Satf for valid combinations of
13220 // Layout and Satf, 0 otherwise.
13221static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
13222 // clang-format off
13223#define MMA_VARIANTS(geom, type) {{ \
13224 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
13225 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
13226 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13227 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13228 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
13229 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
13230 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
13231 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
13232 }}
13233// Sub-integer MMA only supports row.col layout.
13234#define MMA_VARIANTS_I4(geom, type) {{ \
13235 0, \
13236 0, \
13237 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13238 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
13239 0, \
13240 0, \
13241 0, \
13242 0 \
13243 }}
13244// b1 MMA does not support .satfinite.
13245#define MMA_VARIANTS_B1(geom, type) {{ \
13246 0, \
13247 0, \
13248 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
13249 0, \
13250 0, \
13251 0, \
13252 0, \
13253 0 \
13254 }}
13255 // clang-format on
13256 switch (BuiltinID) {
13257 // FP MMA
13258 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
13259 // NumEltsN of return value are ordered as A,B,C,D.
13260 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13261 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
13262 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13263 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
13264 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13265 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
13266 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13267 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
13268 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13269 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
13270 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13271 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
13272 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13273 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
13274 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13275 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
13276 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13277 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
13278 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13279 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
13280 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13281 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
13282 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13283 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
13284
13285 // Integer MMA
13286 case NVPTX::BI__imma_m16n16k16_mma_s8:
13287 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
13288 case NVPTX::BI__imma_m16n16k16_mma_u8:
13289 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
13290 case NVPTX::BI__imma_m32n8k16_mma_s8:
13291 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
13292 case NVPTX::BI__imma_m32n8k16_mma_u8:
13293 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
13294 case NVPTX::BI__imma_m8n32k16_mma_s8:
13295 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
13296 case NVPTX::BI__imma_m8n32k16_mma_u8:
13297 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
13298
13299 // Sub-integer MMA
13300 case NVPTX::BI__imma_m8n8k32_mma_s4:
13301 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
13302 case NVPTX::BI__imma_m8n8k32_mma_u4:
13303 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
13304 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
13305 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
13306 default:
13307 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13307)
;
13308 }
13309#undef MMA_VARIANTS
13310#undef MMA_VARIANTS_I4
13311#undef MMA_VARIANTS_B1
13312}
13313
13314} // namespace
13315
13316Value *
13317CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
13318 auto MakeLdg = [&](unsigned IntrinsicID) {
13319 Value *Ptr = EmitScalarExpr(E->getArg(0));
13320 clang::CharUnits Align =
13321 getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
13322 return Builder.CreateCall(
13323 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13324 Ptr->getType()}),
13325 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
13326 };
13327 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
13328 Value *Ptr = EmitScalarExpr(E->getArg(0));
13329 return Builder.CreateCall(
13330 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
13331 Ptr->getType()}),
13332 {Ptr, EmitScalarExpr(E->getArg(1))});
13333 };
13334 switch (BuiltinID) {
13335 case NVPTX::BI__nvvm_atom_add_gen_i:
13336 case NVPTX::BI__nvvm_atom_add_gen_l:
13337 case NVPTX::BI__nvvm_atom_add_gen_ll:
13338 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
13339
13340 case NVPTX::BI__nvvm_atom_sub_gen_i:
13341 case NVPTX::BI__nvvm_atom_sub_gen_l:
13342 case NVPTX::BI__nvvm_atom_sub_gen_ll:
13343 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
13344
13345 case NVPTX::BI__nvvm_atom_and_gen_i:
13346 case NVPTX::BI__nvvm_atom_and_gen_l:
13347 case NVPTX::BI__nvvm_atom_and_gen_ll:
13348 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
13349
13350 case NVPTX::BI__nvvm_atom_or_gen_i:
13351 case NVPTX::BI__nvvm_atom_or_gen_l:
13352 case NVPTX::BI__nvvm_atom_or_gen_ll:
13353 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
13354
13355 case NVPTX::BI__nvvm_atom_xor_gen_i:
13356 case NVPTX::BI__nvvm_atom_xor_gen_l:
13357 case NVPTX::BI__nvvm_atom_xor_gen_ll:
13358 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
13359
13360 case NVPTX::BI__nvvm_atom_xchg_gen_i:
13361 case NVPTX::BI__nvvm_atom_xchg_gen_l:
13362 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
13363 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
13364
13365 case NVPTX::BI__nvvm_atom_max_gen_i:
13366 case NVPTX::BI__nvvm_atom_max_gen_l:
13367 case NVPTX::BI__nvvm_atom_max_gen_ll:
13368 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
13369
13370 case NVPTX::BI__nvvm_atom_max_gen_ui:
13371 case NVPTX::BI__nvvm_atom_max_gen_ul:
13372 case NVPTX::BI__nvvm_atom_max_gen_ull:
13373 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
13374
13375 case NVPTX::BI__nvvm_atom_min_gen_i:
13376 case NVPTX::BI__nvvm_atom_min_gen_l:
13377 case NVPTX::BI__nvvm_atom_min_gen_ll:
13378 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
13379
13380 case NVPTX::BI__nvvm_atom_min_gen_ui:
13381 case NVPTX::BI__nvvm_atom_min_gen_ul:
13382 case NVPTX::BI__nvvm_atom_min_gen_ull:
13383 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
13384
13385 case NVPTX::BI__nvvm_atom_cas_gen_i:
13386 case NVPTX::BI__nvvm_atom_cas_gen_l:
13387 case NVPTX::BI__nvvm_atom_cas_gen_ll:
13388 // __nvvm_atom_cas_gen_* should return the old value rather than the
13389 // success flag.
13390 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
13391
13392 case NVPTX::BI__nvvm_atom_add_gen_f: {
13393 Value *Ptr = EmitScalarExpr(E->getArg(0));
13394 Value *Val = EmitScalarExpr(E->getArg(1));
13395 // atomicrmw only deals with integer arguments so we need to use
13396 // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
13397 Function *FnALAF32 =
13398 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
13399 return Builder.CreateCall(FnALAF32, {Ptr, Val});
13400 }
13401
13402 case NVPTX::BI__nvvm_atom_add_gen_d: {
13403 Value *Ptr = EmitScalarExpr(E->getArg(0));
13404 Value *Val = EmitScalarExpr(E->getArg(1));
13405 // atomicrmw only deals with integer arguments, so we need to use
13406 // LLVM's nvvm_atomic_load_add_f64 intrinsic.
13407 Function *FnALAF64 =
13408 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f64, Ptr->getType());
13409 return Builder.CreateCall(FnALAF64, {Ptr, Val});
13410 }
13411
13412 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
13413 Value *Ptr = EmitScalarExpr(E->getArg(0));
13414 Value *Val = EmitScalarExpr(E->getArg(1));
13415 Function *FnALI32 =
13416 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
13417 return Builder.CreateCall(FnALI32, {Ptr, Val});
13418 }
13419
13420 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
13421 Value *Ptr = EmitScalarExpr(E->getArg(0));
13422 Value *Val = EmitScalarExpr(E->getArg(1));
13423 Function *FnALD32 =
13424 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
13425 return Builder.CreateCall(FnALD32, {Ptr, Val});
13426 }
13427
13428 case NVPTX::BI__nvvm_ldg_c:
13429 case NVPTX::BI__nvvm_ldg_c2:
13430 case NVPTX::BI__nvvm_ldg_c4:
13431 case NVPTX::BI__nvvm_ldg_s:
13432 case NVPTX::BI__nvvm_ldg_s2:
13433 case NVPTX::BI__nvvm_ldg_s4:
13434 case NVPTX::BI__nvvm_ldg_i:
13435 case NVPTX::BI__nvvm_ldg_i2:
13436 case NVPTX::BI__nvvm_ldg_i4:
13437 case NVPTX::BI__nvvm_ldg_l:
13438 case NVPTX::BI__nvvm_ldg_ll:
13439 case NVPTX::BI__nvvm_ldg_ll2:
13440 case NVPTX::BI__nvvm_ldg_uc:
13441 case NVPTX::BI__nvvm_ldg_uc2:
13442 case NVPTX::BI__nvvm_ldg_uc4:
13443 case NVPTX::BI__nvvm_ldg_us:
13444 case NVPTX::BI__nvvm_ldg_us2:
13445 case NVPTX::BI__nvvm_ldg_us4:
13446 case NVPTX::BI__nvvm_ldg_ui:
13447 case NVPTX::BI__nvvm_ldg_ui2:
13448 case NVPTX::BI__nvvm_ldg_ui4:
13449 case NVPTX::BI__nvvm_ldg_ul:
13450 case NVPTX::BI__nvvm_ldg_ull:
13451 case NVPTX::BI__nvvm_ldg_ull2:
13452 // PTX Interoperability section 2.2: "For a vector with an even number of
13453 // elements, its alignment is set to number of elements times the alignment
13454 // of its member: n*alignof(t)."
13455 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
13456 case NVPTX::BI__nvvm_ldg_f:
13457 case NVPTX::BI__nvvm_ldg_f2:
13458 case NVPTX::BI__nvvm_ldg_f4:
13459 case NVPTX::BI__nvvm_ldg_d:
13460 case NVPTX::BI__nvvm_ldg_d2:
13461 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
13462
13463 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
13464 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
13465 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
13466 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
13467 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
13468 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
13469 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
13470 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
13471 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
13472 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
13473 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
13474 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
13475 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
13476 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
13477 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
13478 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
13479 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
13480 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
13481 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
13482 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
13483 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
13484 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
13485 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
13486 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
13487 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
13488 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
13489 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
13490 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
13491 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
13492 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
13493 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
13494 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
13495 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
13496 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
13497 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
13498 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
13499 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
13500 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
13501 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
13502 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
13503 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
13504 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
13505 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
13506 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
13507 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
13508 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
13509 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
13510 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
13511 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
13512 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
13513 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
13514 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
13515 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
13516 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
13517 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
13518 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
13519 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
13520 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
13521 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
13522 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
13523 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
13524 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
13525 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
13526 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
13527 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
13528 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
13529 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
13530 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
13531 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
13532 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
13533 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
13534 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
13535 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
13536 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
13537 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
13538 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
13539 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
13540 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
13541 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
13542 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
13543 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
13544 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
13545 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
13546 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
13547 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
13548 Value *Ptr = EmitScalarExpr(E->getArg(0));
13549 return Builder.CreateCall(
13550 CGM.getIntrinsic(
13551 Intrinsic::nvvm_atomic_cas_gen_i_cta,
13552 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13553 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13554 }
13555 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
13556 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
13557 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
13558 Value *Ptr = EmitScalarExpr(E->getArg(0));
13559 return Builder.CreateCall(
13560 CGM.getIntrinsic(
13561 Intrinsic::nvvm_atomic_cas_gen_i_sys,
13562 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
13563 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
13564 }
13565 case NVPTX::BI__nvvm_match_all_sync_i32p:
13566 case NVPTX::BI__nvvm_match_all_sync_i64p: {
13567 Value *Mask = EmitScalarExpr(E->getArg(0));
13568 Value *Val = EmitScalarExpr(E->getArg(1));
13569 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
13570 Value *ResultPair = Builder.CreateCall(
13571 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
13572 ? Intrinsic::nvvm_match_all_sync_i32p
13573 : Intrinsic::nvvm_match_all_sync_i64p),
13574 {Mask, Val});
13575 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
13576 PredOutPtr.getElementType());
13577 Builder.CreateStore(Pred, PredOutPtr);
13578 return Builder.CreateExtractValue(ResultPair, 0);
13579 }
13580
13581 // FP MMA loads
13582 case NVPTX::BI__hmma_m16n16k16_ld_a:
13583 case NVPTX::BI__hmma_m16n16k16_ld_b:
13584 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
13585 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
13586 case NVPTX::BI__hmma_m32n8k16_ld_a:
13587 case NVPTX::BI__hmma_m32n8k16_ld_b:
13588 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
13589 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
13590 case NVPTX::BI__hmma_m8n32k16_ld_a:
13591 case NVPTX::BI__hmma_m8n32k16_ld_b:
13592 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
13593 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
13594 // Integer MMA loads.
13595 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
13596 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
13597 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
13598 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
13599 case NVPTX::BI__imma_m16n16k16_ld_c:
13600 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
13601 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
13602 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
13603 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
13604 case NVPTX::BI__imma_m32n8k16_ld_c:
13605 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
13606 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
13607 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
13608 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
13609 case NVPTX::BI__imma_m8n32k16_ld_c:
13610 // Sub-integer MMA loads.
13611 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
13612 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
13613 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
13614 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
13615 case NVPTX::BI__imma_m8n8k32_ld_c:
13616 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
13617 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
13618 case NVPTX::BI__bmma_m8n8k128_ld_c:
13619 {
13620 Address Dst = EmitPointerWithAlignment(E->getArg(0));
13621 Value *Src = EmitScalarExpr(E->getArg(1));
13622 Value *Ldm = EmitScalarExpr(E->getArg(2));
13623 llvm::APSInt isColMajorArg;
13624 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13625 return nullptr;
13626 bool isColMajor = isColMajorArg.getSExtValue();
13627 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13628 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13629 if (IID == 0)
13630 return nullptr;
13631
13632 Value *Result =
13633 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
13634
13635 // Save returned values.
13636 assert(II.NumResults)((II.NumResults) ? static_cast<void> (0) : __assert_fail
("II.NumResults", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13636, __PRETTY_FUNCTION__))
;
13637 if (II.NumResults == 1) {
13638 Builder.CreateAlignedStore(Result, Dst.getPointer(),
13639 CharUnits::fromQuantity(4));
13640 } else {
13641 for (unsigned i = 0; i < II.NumResults; ++i) {
13642 Builder.CreateAlignedStore(
13643 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
13644 Dst.getElementType()),
13645 Builder.CreateGEP(Dst.getPointer(),
13646 llvm::ConstantInt::get(IntTy, i)),
13647 CharUnits::fromQuantity(4));
13648 }
13649 }
13650 return Result;
13651 }
13652
13653 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
13654 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
13655 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
13656 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
13657 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
13658 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
13659 case NVPTX::BI__imma_m16n16k16_st_c_i32:
13660 case NVPTX::BI__imma_m32n8k16_st_c_i32:
13661 case NVPTX::BI__imma_m8n32k16_st_c_i32:
13662 case NVPTX::BI__imma_m8n8k32_st_c_i32:
13663 case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
13664 Value *Dst = EmitScalarExpr(E->getArg(0));
13665 Address Src = EmitPointerWithAlignment(E->getArg(1));
13666 Value *Ldm = EmitScalarExpr(E->getArg(2));
13667 llvm::APSInt isColMajorArg;
13668 if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
13669 return nullptr;
13670 bool isColMajor = isColMajorArg.getSExtValue();
13671 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
13672 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
13673 if (IID == 0)
13674 return nullptr;
13675 Function *Intrinsic =
13676 CGM.getIntrinsic(IID, Dst->getType());
13677 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
13678 SmallVector<Value *, 10> Values = {Dst};
13679 for (unsigned i = 0; i < II.NumResults; ++i) {
13680 Value *V = Builder.CreateAlignedLoad(
13681 Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13682 CharUnits::fromQuantity(4));
13683 Values.push_back(Builder.CreateBitCast(V, ParamType));
13684 }
13685 Values.push_back(Ldm);
13686 Value *Result = Builder.CreateCall(Intrinsic, Values);
13687 return Result;
13688 }
13689
13690 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
13691 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
13692 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
13693 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
13694 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
13695 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
13696 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
13697 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
13698 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13699 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
13700 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13701 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13702 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13703 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13704 case NVPTX::BI__imma_m16n16k16_mma_s8:
13705 case NVPTX::BI__imma_m16n16k16_mma_u8:
13706 case NVPTX::BI__imma_m32n8k16_mma_s8:
13707 case NVPTX::BI__imma_m32n8k16_mma_u8:
13708 case NVPTX::BI__imma_m8n32k16_mma_s8:
13709 case NVPTX::BI__imma_m8n32k16_mma_u8:
13710 case NVPTX::BI__imma_m8n8k32_mma_s4:
13711 case NVPTX::BI__imma_m8n8k32_mma_u4:
13712 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
13713 Address Dst = EmitPointerWithAlignment(E->getArg(0));
13714 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
13715 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
13716 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
13717 llvm::APSInt LayoutArg;
13718 if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
13719 return nullptr;
13720 int Layout = LayoutArg.getSExtValue();
13721 if (Layout < 0 || Layout > 3)
13722 return nullptr;
13723 llvm::APSInt SatfArg;
13724 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
13725 SatfArg = 0; // .b1 does not have satf argument.
13726 else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
13727 return nullptr;
13728 bool Satf = SatfArg.getSExtValue();
13729 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
13730 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
13731 if (IID == 0) // Unsupported combination of Layout/Satf.
13732 return nullptr;
13733
13734 SmallVector<Value *, 24> Values;
13735 Function *Intrinsic = CGM.getIntrinsic(IID);
13736 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
13737 // Load A
13738 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
13739 Value *V = Builder.CreateAlignedLoad(
13740 Builder.CreateGEP(SrcA.getPointer(),
13741 llvm::ConstantInt::get(IntTy, i)),
13742 CharUnits::fromQuantity(4));
13743 Values.push_back(Builder.CreateBitCast(V, AType));
13744 }
13745 // Load B
13746 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
13747 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
13748 Value *V = Builder.CreateAlignedLoad(
13749 Builder.CreateGEP(SrcB.getPointer(),
13750 llvm::ConstantInt::get(IntTy, i)),
13751 CharUnits::fromQuantity(4));
13752 Values.push_back(Builder.CreateBitCast(V, BType));
13753 }
13754 // Load C
13755 llvm::Type *CType =
13756 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
13757 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
13758 Value *V = Builder.CreateAlignedLoad(
13759 Builder.CreateGEP(SrcC.getPointer(),
13760 llvm::ConstantInt::get(IntTy, i)),
13761 CharUnits::fromQuantity(4));
13762 Values.push_back(Builder.CreateBitCast(V, CType));
13763 }
13764 Value *Result = Builder.CreateCall(Intrinsic, Values);
13765 llvm::Type *DType = Dst.getElementType();
13766 for (unsigned i = 0; i < MI.NumEltsD; ++i)
13767 Builder.CreateAlignedStore(
13768 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
13769 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13770 CharUnits::fromQuantity(4));
13771 return Result;
13772 }
13773 default:
13774 return nullptr;
13775 }
13776}
13777
13778Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
13779 const CallExpr *E) {
13780 switch (BuiltinID) {
13781 case WebAssembly::BI__builtin_wasm_memory_size: {
13782 llvm::Type *ResultType = ConvertType(E->getType());
13783 Value *I = EmitScalarExpr(E->getArg(0));
13784 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
13785 return Builder.CreateCall(Callee, I);
13786 }
13787 case WebAssembly::BI__builtin_wasm_memory_grow: {
13788 llvm::Type *ResultType = ConvertType(E->getType());
13789 Value *Args[] = {
13790 EmitScalarExpr(E->getArg(0)),
13791 EmitScalarExpr(E->getArg(1))
13792 };
13793 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
13794 return Builder.CreateCall(Callee, Args);
13795 }
13796 case WebAssembly::BI__builtin_wasm_memory_init: {
13797 llvm::APSInt SegConst;
13798 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13799 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13799)
;
13800 llvm::APSInt MemConst;
13801 if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
13802 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13802)
;
13803 if (!MemConst.isNullValue())
13804 ErrorUnsupported(E, "non-zero memory index");
13805 Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
13806 llvm::ConstantInt::get(getLLVMContext(), MemConst),
13807 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
13808 EmitScalarExpr(E->getArg(4))};
13809 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
13810 return Builder.CreateCall(Callee, Args);
13811 }
13812 case WebAssembly::BI__builtin_wasm_data_drop: {
13813 llvm::APSInt SegConst;
13814 if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
13815 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13815)
;
13816 Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
13817 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
13818 return Builder.CreateCall(Callee, {Arg});
13819 }
13820 case WebAssembly::BI__builtin_wasm_throw: {
13821 Value *Tag = EmitScalarExpr(E->getArg(0));
13822 Value *Obj = EmitScalarExpr(E->getArg(1));
13823 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
13824 return Builder.CreateCall(Callee, {Tag, Obj});
13825 }
13826 case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
13827 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
13828 return Builder.CreateCall(Callee);
13829 }
13830 case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
13831 Value *Addr = EmitScalarExpr(E->getArg(0));
13832 Value *Expected = EmitScalarExpr(E->getArg(1));
13833 Value *Timeout = EmitScalarExpr(E->getArg(2));
13834 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
13835 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
13836 }
13837 case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
13838 Value *Addr = EmitScalarExpr(E->getArg(0));
13839 Value *Expected = EmitScalarExpr(E->getArg(1));
13840 Value *Timeout = EmitScalarExpr(E->getArg(2));
13841 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
13842 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
13843 }
13844 case WebAssembly::BI__builtin_wasm_atomic_notify: {
13845 Value *Addr = EmitScalarExpr(E->getArg(0));
13846 Value *Count = EmitScalarExpr(E->getArg(1));
13847 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
13848 return Builder.CreateCall(Callee, {Addr, Count});
13849 }
13850 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
13851 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
13852 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
13853 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
13854 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
13855 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
13856 Value *Src = EmitScalarExpr(E->getArg(0));
13857 llvm::Type *ResT = ConvertType(E->getType());
13858 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
13859 {ResT, Src->getType()});
13860 return Builder.CreateCall(Callee, {Src});
13861 }
13862 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
13863 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
13864 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
13865 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
13866 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
13867 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
13868 Value *Src = EmitScalarExpr(E->getArg(0));
13869 llvm::Type *ResT = ConvertType(E->getType());
13870 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
13871 {ResT, Src->getType()});
13872 return Builder.CreateCall(Callee, {Src});
13873 }
13874 case WebAssembly::BI__builtin_wasm_min_f32:
13875 case WebAssembly::BI__builtin_wasm_min_f64:
13876 case WebAssembly::BI__builtin_wasm_min_f32x4:
13877 case WebAssembly::BI__builtin_wasm_min_f64x2: {
13878 Value *LHS = EmitScalarExpr(E->getArg(0));
13879 Value *RHS = EmitScalarExpr(E->getArg(1));
13880 Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
13881 ConvertType(E->getType()));
13882 return Builder.CreateCall(Callee, {LHS, RHS});
13883 }
13884 case WebAssembly::BI__builtin_wasm_max_f32:
13885 case WebAssembly::BI__builtin_wasm_max_f64:
13886 case WebAssembly::BI__builtin_wasm_max_f32x4:
13887 case WebAssembly::BI__builtin_wasm_max_f64x2: {
13888 Value *LHS = EmitScalarExpr(E->getArg(0));
13889 Value *RHS = EmitScalarExpr(E->getArg(1));
13890 Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
13891 ConvertType(E->getType()));
13892 return Builder.CreateCall(Callee, {LHS, RHS});
13893 }
13894 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
13895 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
13896 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
13897 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
13898 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
13899 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
13900 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
13901 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
13902 llvm::APSInt LaneConst;
13903 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
13904 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13904)
;
13905 Value *Vec = EmitScalarExpr(E->getArg(0));
13906 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
13907 Value *Extract = Builder.CreateExtractElement(Vec, Lane);
13908 switch (BuiltinID) {
13909 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
13910 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
13911 return Builder.CreateSExt(Extract, ConvertType(E->getType()));
13912 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
13913 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
13914 return Builder.CreateZExt(Extract, ConvertType(E->getType()));
13915 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
13916 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
13917 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
13918 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
13919 return Extract;
13920 default:
13921 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13921)
;
13922 }
13923 }
13924 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
13925 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
13926 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
13927 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
13928 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
13929 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
13930 llvm::APSInt LaneConst;
13931 if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
13932 llvm_unreachable("Constant arg isn't actually constant?")::llvm::llvm_unreachable_internal("Constant arg isn't actually constant?"
, "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13932)
;
13933 Value *Vec = EmitScalarExpr(E->getArg(0));
13934 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
13935 Value *Val = EmitScalarExpr(E->getArg(2));
13936 switch (BuiltinID) {
13937 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
13938 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
13939 llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
13940 Value *Trunc = Builder.CreateTrunc(Val, ElemType);
13941 return Builder.CreateInsertElement(Vec, Trunc, Lane);
13942 }
13943 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
13944 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
13945 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
13946 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
13947 return Builder.CreateInsertElement(Vec, Val, Lane);
13948 default:
13949 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13949)
;
13950 }
13951 }
13952 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
13953 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
13954 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
13955 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
13956 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
13957 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
13958 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
13959 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
13960 unsigned IntNo;
13961 switch (BuiltinID) {
13962 case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
13963 case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
13964 IntNo = Intrinsic::sadd_sat;
13965 break;
13966 case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
13967 case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
13968 IntNo = Intrinsic::uadd_sat;
13969 break;
13970 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
13971 case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
13972 IntNo = Intrinsic::wasm_sub_saturate_signed;
13973 break;
13974 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
13975 case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
13976 IntNo = Intrinsic::wasm_sub_saturate_unsigned;
13977 break;
13978 default:
13979 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 13979)
;
13980 }
13981 Value *LHS = EmitScalarExpr(E->getArg(0));
13982 Value *RHS = EmitScalarExpr(E->getArg(1));
13983 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
13984 return Builder.CreateCall(Callee, {LHS, RHS});
13985 }
13986 case WebAssembly::BI__builtin_wasm_bitselect: {
13987 Value *V1 = EmitScalarExpr(E->getArg(0));
13988 Value *V2 = EmitScalarExpr(E->getArg(1));
13989 Value *C = EmitScalarExpr(E->getArg(2));
13990 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
13991 ConvertType(E->getType()));
13992 return Builder.CreateCall(Callee, {V1, V2, C});
13993 }
13994 case WebAssembly::BI__builtin_wasm_any_true_i8x16:
13995 case WebAssembly::BI__builtin_wasm_any_true_i16x8:
13996 case WebAssembly::BI__builtin_wasm_any_true_i32x4:
13997 case WebAssembly::BI__builtin_wasm_any_true_i64x2:
13998 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
13999 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14000 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14001 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
14002 unsigned IntNo;
14003 switch (BuiltinID) {
14004 case WebAssembly::BI__builtin_wasm_any_true_i8x16:
14005 case WebAssembly::BI__builtin_wasm_any_true_i16x8:
14006 case WebAssembly::BI__builtin_wasm_any_true_i32x4:
14007 case WebAssembly::BI__builtin_wasm_any_true_i64x2:
14008 IntNo = Intrinsic::wasm_anytrue;
14009 break;
14010 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
14011 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
14012 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
14013 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
14014 IntNo = Intrinsic::wasm_alltrue;
14015 break;
14016 default:
14017 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-9~svn361194/tools/clang/lib/CodeGen/CGBuiltin.cpp"
, 14017)
;
14018 }
14019 Value *Vec = EmitScalarExpr(E->getArg(0));
14020 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
14021 return Builder.CreateCall(Callee, {Vec});
14022 }
14023 case WebAssembly::BI__builtin_wasm_abs_f32x4:
14024 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
14025 Value *Vec = EmitScalarExpr(E->getArg(0));
14026 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
14027 return Builder.CreateCall(Callee, {Vec});
14028 }
14029 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
14030 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
14031 Value *Vec = EmitScalarExpr(E->getArg(0));
14032 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
14033 return Builder.CreateCall(Callee, {Vec});
14034 }
14035
14036 default:
14037 return nullptr;
14038 }
14039}
14040
14041Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
14042 const CallExpr *E) {
14043 SmallVector<llvm::Value *, 4> Ops;
14044 Intrinsic::ID ID = Intrinsic::not_intrinsic;
14045
14046 auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
14047 // The base pointer is passed by address, so it needs to be loaded.
14048 Address BP = EmitPointerWithAlignment(E->getArg(0));
14049 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14050 BP.getAlignment());
14051 llvm::Value *Base = Builder.CreateLoad(BP);
14052 // Operands are Base, Increment, Modifier, Start.
14053 if (HasImm)
14054 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14055 EmitScalarExpr(E->getArg(3)) };
14056 else
14057 Ops = { Base, EmitScalarExpr(E->getArg(1)),
14058 EmitScalarExpr(E->getArg(2)) };
14059
14060 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14061 llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
14062 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14063 NewBase->getType()->getPointerTo());
14064 Address Dest = EmitPointerWithAlignment(E->getArg(0));
14065 // The intrinsic generates two results. The new value for the base pointer
14066 // needs to be stored.
14067 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14068 return Builder.CreateExtractValue(Result, 0);
14069 };
14070
14071 auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
14072 // The base pointer is passed by address, so it needs to be loaded.
14073 Address BP = EmitPointerWithAlignment(E->getArg(0));
14074 BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
14075 BP.getAlignment());
14076 llvm::Value *Base = Builder.CreateLoad(BP);
14077 // Operands are Base, Increment, Modifier, Value, Start.
14078 if (HasImm)
14079 Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
14080 EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
14081 else
14082 Ops = { Base, EmitScalarExpr(E->getArg(1)),
14083 EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
14084
14085 llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14086 llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
14087 NewBase->getType()->getPointerTo());
14088 Address Dest = EmitPointerWithAlignment(E->getArg(0));
14089 // The intrinsic generates one result, which is the new value for the base
14090 // pointer. It needs to be stored.
14091 return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
14092 };
14093
14094 // Handle the conversion of bit-reverse load intrinsics to bit code.
14095 // The intrinsic call after this function only reads from memory and the
14096 // write to memory is dealt by the store instruction.
14097 auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
14098 // The intrinsic generates one result, which is the new value for the base
14099 // pointer. It needs to be returned. The result of the load instruction is
14100 // passed to intrinsic by address, so the value needs to be stored.
14101 llvm::Value *BaseAddress =
14102 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
14103
14104 // Expressions like &(*pt++) will be incremented per evaluation.
14105 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
14106 // per call.
14107 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
14108 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
14109 DestAddr.getAlignment());
14110 llvm::Value *DestAddress = DestAddr.getPointer();
14111
14112 // Operands are Base, Dest, Modifier.
14113 // The intrinsic format in LLVM IR is defined as
14114 // { ValueType, i8* } (i8*, i32).
14115 Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
14116
14117 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
14118 // The value needs to be stored as the variable is passed by reference.
14119 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
14120
14121 // The store needs to be truncated to fit the destination type.
14122 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
14123 // to be handled with stores of respective destination type.
14124 DestVal = Builder.CreateTrunc(DestVal, DestTy);
14125
14126 llvm::Value *DestForStore =
14127 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
14128 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
14129 // The updated value of the base pointer is returned.
14130 return Builder.CreateExtractValue(Result, 1);
14131 };
14132
14133 switch (BuiltinID) {
14134 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
14135 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
14136 Address Dest = EmitPointerWithAlignment(E->getArg(2));
14137 unsigned Size;
14138 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
14139 Size = 512;
14140 ID = Intrinsic::hexagon_V6_vaddcarry;
14141 } else {
14142 Size = 1024;
14143 ID = Intrinsic::hexagon_V6_vaddcarry_128B;
14144 }
14145 Dest = Builder.CreateBitCast(Dest,
14146 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14147 LoadInst *QLd = Builder.CreateLoad(Dest);
14148 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14149 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14150 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14151 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14152 Vprd->getType()->getPointerTo(0));
14153 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14154 return Builder.CreateExtractValue(Result, 0);
14155 }
14156 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
14157 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
14158 Address Dest = EmitPointerWithAlignment(E->getArg(2));
14159 unsigned Size;
14160 if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
14161 Size = 512;
14162 ID = Intrinsic::hexagon_V6_vsubcarry;
14163 } else {
14164 Size = 1024;
14165 ID = Intrinsic::hexagon_V6_vsubcarry_128B;
14166 }
14167 Dest = Builder.CreateBitCast(Dest,
14168 llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
14169 LoadInst *QLd = Builder.CreateLoad(Dest);
14170 Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
14171 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14172 llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
14173 llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
14174 Vprd->getType()->getPointerTo(0));
14175 Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
14176 return Builder.CreateExtractValue(Result, 0);
14177 }
14178 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
14179 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
14180 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
14181 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true);
14182 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
14183 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
14184 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
14185 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true);
14186 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
14187 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true);
14188 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
14189 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true);
14190 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
14191 return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
14192 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
14193 return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false);
14194 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
14195 return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
14196 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
14197 return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false);
14198 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
14199 return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false);
14200 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
14201 return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false);
14202 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
14203 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
14204 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
14205 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
14206 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
14207 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
14208 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
14209 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
14210 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
14211 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
14212 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
14213 return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
14214 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
14215 return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
14216 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
14217 return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
14218 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
14219 return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
14220 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
14221 return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
14222 case Hexagon::BI__builtin_brev_ldub:
14223 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
14224 case Hexagon::BI__builtin_brev_ldb:
14225 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
14226 case Hexagon::BI__builtin_brev_lduh:
14227 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
14228 case Hexagon::BI__builtin_brev_ldh:
14229 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
14230 case Hexagon::BI__builtin_brev_ldw:
14231 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
14232 case Hexagon::BI__builtin_brev_ldd:
14233 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
14234 default:
14235 break;
14236 } // switch
14237
14238 return nullptr;
14239}