Bug Summary

File:tools/clang/lib/CodeGen/CGObjCGNU.cpp
Warning:line 1768, column 20
The result of the left shift is undefined because the left operand is negative

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGObjCGNU.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp

1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides Objective-C code generation targeting the GNU runtime. The
11// class in this file generates structures used by the GNU Objective-C runtime
12// library. These structures are defined in objc/objc.h and objc/objc-api.h in
13// the GNU runtime distribution.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGObjCRuntime.h"
18#include "CGCleanup.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "CGCXXABI.h"
22#include "clang/CodeGen/ConstantInitBuilder.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Basic/FileManager.h"
29#include "clang/Basic/SourceManager.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringMap.h"
32#include "llvm/IR/CallSite.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/ConvertUTF.h"
39#include <cctype>
40
41using namespace clang;
42using namespace CodeGen;
43
44namespace {
45
46std::string SymbolNameForMethod( StringRef ClassName,
47 StringRef CategoryName, const Selector MethodName,
48 bool isClassMethod) {
49 std::string MethodNameColonStripped = MethodName.getAsString();
50 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
51 ':', '_');
52 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
53 CategoryName + "_" + MethodNameColonStripped).str();
54}
55
56/// Class that lazily initialises the runtime function. Avoids inserting the
57/// types and the function declaration into a module if they're not used, and
58/// avoids constructing the type more than once if it's used more than once.
59class LazyRuntimeFunction {
60 CodeGenModule *CGM;
61 llvm::FunctionType *FTy;
62 const char *FunctionName;
63 llvm::Constant *Function;
64
65public:
66 /// Constructor leaves this class uninitialized, because it is intended to
67 /// be used as a field in another class and not all of the types that are
68 /// used as arguments will necessarily be available at construction time.
69 LazyRuntimeFunction()
70 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
71
72 /// Initialises the lazy function with the name, return type, and the types
73 /// of the arguments.
74 template <typename... Tys>
75 void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
76 Tys *... Types) {
77 CGM = Mod;
78 FunctionName = name;
79 Function = nullptr;
80 if(sizeof...(Tys)) {
81 SmallVector<llvm::Type *, 8> ArgTys({Types...});
82 FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
83 }
84 else {
85 FTy = llvm::FunctionType::get(RetTy, None, false);
86 }
87 }
88
89 llvm::FunctionType *getType() { return FTy; }
90
91 /// Overloaded cast operator, allows the class to be implicitly cast to an
92 /// LLVM constant.
93 operator llvm::Constant *() {
94 if (!Function) {
95 if (!FunctionName)
96 return nullptr;
97 Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
98 }
99 return Function;
100 }
101 operator llvm::Function *() {
102 return cast<llvm::Function>((llvm::Constant *)*this);
103 }
104};
105
106
107/// GNU Objective-C runtime code generation. This class implements the parts of
108/// Objective-C support that are specific to the GNU family of runtimes (GCC,
109/// GNUstep and ObjFW).
110class CGObjCGNU : public CGObjCRuntime {
111protected:
112 /// The LLVM module into which output is inserted
113 llvm::Module &TheModule;
114 /// strut objc_super. Used for sending messages to super. This structure
115 /// contains the receiver (object) and the expected class.
116 llvm::StructType *ObjCSuperTy;
117 /// struct objc_super*. The type of the argument to the superclass message
118 /// lookup functions.
119 llvm::PointerType *PtrToObjCSuperTy;
120 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
121 /// SEL is included in a header somewhere, in which case it will be whatever
122 /// type is declared in that header, most likely {i8*, i8*}.
123 llvm::PointerType *SelectorTy;
124 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
125 /// places where it's used
126 llvm::IntegerType *Int8Ty;
127 /// Pointer to i8 - LLVM type of char*, for all of the places where the
128 /// runtime needs to deal with C strings.
129 llvm::PointerType *PtrToInt8Ty;
130 /// struct objc_protocol type
131 llvm::StructType *ProtocolTy;
132 /// Protocol * type.
133 llvm::PointerType *ProtocolPtrTy;
134 /// Instance Method Pointer type. This is a pointer to a function that takes,
135 /// at a minimum, an object and a selector, and is the generic type for
136 /// Objective-C methods. Due to differences between variadic / non-variadic
137 /// calling conventions, it must always be cast to the correct type before
138 /// actually being used.
139 llvm::PointerType *IMPTy;
140 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
141 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
142 /// but if the runtime header declaring it is included then it may be a
143 /// pointer to a structure.
144 llvm::PointerType *IdTy;
145 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
146 /// message lookup function and some GC-related functions.
147 llvm::PointerType *PtrToIdTy;
148 /// The clang type of id. Used when using the clang CGCall infrastructure to
149 /// call Objective-C methods.
150 CanQualType ASTIdTy;
151 /// LLVM type for C int type.
152 llvm::IntegerType *IntTy;
153 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
154 /// used in the code to document the difference between i8* meaning a pointer
155 /// to a C string and i8* meaning a pointer to some opaque type.
156 llvm::PointerType *PtrTy;
157 /// LLVM type for C long type. The runtime uses this in a lot of places where
158 /// it should be using intptr_t, but we can't fix this without breaking
159 /// compatibility with GCC...
160 llvm::IntegerType *LongTy;
161 /// LLVM type for C size_t. Used in various runtime data structures.
162 llvm::IntegerType *SizeTy;
163 /// LLVM type for C intptr_t.
164 llvm::IntegerType *IntPtrTy;
165 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
166 llvm::IntegerType *PtrDiffTy;
167 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
168 /// variables.
169 llvm::PointerType *PtrToIntTy;
170 /// LLVM type for Objective-C BOOL type.
171 llvm::Type *BoolTy;
172 /// 32-bit integer type, to save us needing to look it up every time it's used.
173 llvm::IntegerType *Int32Ty;
174 /// 64-bit integer type, to save us needing to look it up every time it's used.
175 llvm::IntegerType *Int64Ty;
176 /// The type of struct objc_property.
177 llvm::StructType *PropertyMetadataTy;
178 /// Metadata kind used to tie method lookups to message sends. The GNUstep
179 /// runtime provides some LLVM passes that can use this to do things like
180 /// automatic IMP caching and speculative inlining.
181 unsigned msgSendMDKind;
182 /// Does the current target use SEH-based exceptions? False implies
183 /// Itanium-style DWARF unwinding.
184 bool usesSEHExceptions;
185
186 /// Helper to check if we are targeting a specific runtime version or later.
187 bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
188 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
189 return (R.getKind() == kind) &&
190 (R.getVersion() >= VersionTuple(major, minor));
191 }
192
193 std::string SymbolForProtocol(StringRef Name) {
194 return (StringRef("._OBJC_PROTOCOL_") + Name).str();
195 }
196
197 std::string SymbolForProtocolRef(StringRef Name) {
198 return (StringRef("._OBJC_REF_PROTOCOL_") + Name).str();
199 }
200
201
202 /// Helper function that generates a constant string and returns a pointer to
203 /// the start of the string. The result of this function can be used anywhere
204 /// where the C code specifies const char*.
205 llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
206 ConstantAddress Array = CGM.GetAddrOfConstantCString(Str, Name);
207 return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
208 Array.getPointer(), Zeros);
209 }
210
211 /// Emits a linkonce_odr string, whose name is the prefix followed by the
212 /// string value. This allows the linker to combine the strings between
213 /// different modules. Used for EH typeinfo names, selector strings, and a
214 /// few other things.
215 llvm::Constant *ExportUniqueString(const std::string &Str,
216 const std::string &prefix,
217 bool Private=false) {
218 std::string name = prefix + Str;
219 auto *ConstStr = TheModule.getGlobalVariable(name);
220 if (!ConstStr) {
221 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
222 auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
223 llvm::GlobalValue::LinkOnceODRLinkage, value, name);
224 GV->setComdat(TheModule.getOrInsertComdat(name));
225 if (Private)
226 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
227 ConstStr = GV;
228 }
229 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
230 ConstStr, Zeros);
231 }
232
233 /// Returns a property name and encoding string.
234 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
235 const Decl *Container) {
236 assert(!isRuntime(ObjCRuntime::GNUstep, 2))((!isRuntime(ObjCRuntime::GNUstep, 2)) ? static_cast<void>
(0) : __assert_fail ("!isRuntime(ObjCRuntime::GNUstep, 2)", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 236, __PRETTY_FUNCTION__))
;
237 if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
238 std::string NameAndAttributes;
239 std::string TypeStr =
240 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
241 NameAndAttributes += '\0';
242 NameAndAttributes += TypeStr.length() + 3;
243 NameAndAttributes += TypeStr;
244 NameAndAttributes += '\0';
245 NameAndAttributes += PD->getNameAsString();
246 return MakeConstantString(NameAndAttributes);
247 }
248 return MakeConstantString(PD->getNameAsString());
249 }
250
251 /// Push the property attributes into two structure fields.
252 void PushPropertyAttributes(ConstantStructBuilder &Fields,
253 const ObjCPropertyDecl *property, bool isSynthesized=true, bool
254 isDynamic=true) {
255 int attrs = property->getPropertyAttributes();
256 // For read-only properties, clear the copy and retain flags
257 if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
258 attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
259 attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
260 attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
261 attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
262 }
263 // The first flags field has the same attribute values as clang uses internally
264 Fields.addInt(Int8Ty, attrs & 0xff);
265 attrs >>= 8;
266 attrs <<= 2;
267 // For protocol properties, synthesized and dynamic have no meaning, so we
268 // reuse these flags to indicate that this is a protocol property (both set
269 // has no meaning, as a property can't be both synthesized and dynamic)
270 attrs |= isSynthesized ? (1<<0) : 0;
271 attrs |= isDynamic ? (1<<1) : 0;
272 // The second field is the next four fields left shifted by two, with the
273 // low bit set to indicate whether the field is synthesized or dynamic.
274 Fields.addInt(Int8Ty, attrs & 0xff);
275 // Two padding fields
276 Fields.addInt(Int8Ty, 0);
277 Fields.addInt(Int8Ty, 0);
278 }
279
280 virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
281 int count) {
282 // int count;
283 Fields.addInt(IntTy, count);
284 // int size; (only in GNUstep v2 ABI.
285 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
286 llvm::DataLayout td(&TheModule);
287 Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
288 CGM.getContext().getCharWidth());
289 }
290 // struct objc_property_list *next;
291 Fields.add(NULLPtr);
292 // struct objc_property properties[]
293 return Fields.beginArray(PropertyMetadataTy);
294 }
295 virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
296 const ObjCPropertyDecl *property,
297 const Decl *OCD,
298 bool isSynthesized=true, bool
299 isDynamic=true) {
300 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
301 ASTContext &Context = CGM.getContext();
302 Fields.add(MakePropertyEncodingString(property, OCD));
303 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
304 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
305 if (accessor) {
306 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
307 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
308 Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
309 Fields.add(TypeEncoding);
310 } else {
311 Fields.add(NULLPtr);
312 Fields.add(NULLPtr);
313 }
314 };
315 addPropertyMethod(property->getGetterMethodDecl());
316 addPropertyMethod(property->getSetterMethodDecl());
317 Fields.finishAndAddTo(PropertiesArray);
318 }
319
320 /// Ensures that the value has the required type, by inserting a bitcast if
321 /// required. This function lets us avoid inserting bitcasts that are
322 /// redundant.
323 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
324 if (V->getType() == Ty) return V;
325 return B.CreateBitCast(V, Ty);
326 }
327 Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
328 if (V.getType() == Ty) return V;
329 return B.CreateBitCast(V, Ty);
330 }
331
332 // Some zeros used for GEPs in lots of places.
333 llvm::Constant *Zeros[2];
334 /// Null pointer value. Mainly used as a terminator in various arrays.
335 llvm::Constant *NULLPtr;
336 /// LLVM context.
337 llvm::LLVMContext &VMContext;
338
339protected:
340
341 /// Placeholder for the class. Lots of things refer to the class before we've
342 /// actually emitted it. We use this alias as a placeholder, and then replace
343 /// it with a pointer to the class structure before finally emitting the
344 /// module.
345 llvm::GlobalAlias *ClassPtrAlias;
346 /// Placeholder for the metaclass. Lots of things refer to the class before
347 /// we've / actually emitted it. We use this alias as a placeholder, and then
348 /// replace / it with a pointer to the metaclass structure before finally
349 /// emitting the / module.
350 llvm::GlobalAlias *MetaClassPtrAlias;
351 /// All of the classes that have been generated for this compilation units.
352 std::vector<llvm::Constant*> Classes;
353 /// All of the categories that have been generated for this compilation units.
354 std::vector<llvm::Constant*> Categories;
355 /// All of the Objective-C constant strings that have been generated for this
356 /// compilation units.
357 std::vector<llvm::Constant*> ConstantStrings;
358 /// Map from string values to Objective-C constant strings in the output.
359 /// Used to prevent emitting Objective-C strings more than once. This should
360 /// not be required at all - CodeGenModule should manage this list.
361 llvm::StringMap<llvm::Constant*> ObjCStrings;
362 /// All of the protocols that have been declared.
363 llvm::StringMap<llvm::Constant*> ExistingProtocols;
364 /// For each variant of a selector, we store the type encoding and a
365 /// placeholder value. For an untyped selector, the type will be the empty
366 /// string. Selector references are all done via the module's selector table,
367 /// so we create an alias as a placeholder and then replace it with the real
368 /// value later.
369 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
370 /// Type of the selector map. This is roughly equivalent to the structure
371 /// used in the GNUstep runtime, which maintains a list of all of the valid
372 /// types for a selector in a table.
373 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
374 SelectorMap;
375 /// A map from selectors to selector types. This allows us to emit all
376 /// selectors of the same name and type together.
377 SelectorMap SelectorTable;
378
379 /// Selectors related to memory management. When compiling in GC mode, we
380 /// omit these.
381 Selector RetainSel, ReleaseSel, AutoreleaseSel;
382 /// Runtime functions used for memory management in GC mode. Note that clang
383 /// supports code generation for calling these functions, but neither GNU
384 /// runtime actually supports this API properly yet.
385 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
386 WeakAssignFn, GlobalAssignFn;
387
388 typedef std::pair<std::string, std::string> ClassAliasPair;
389 /// All classes that have aliases set for them.
390 std::vector<ClassAliasPair> ClassAliases;
391
392protected:
393 /// Function used for throwing Objective-C exceptions.
394 LazyRuntimeFunction ExceptionThrowFn;
395 /// Function used for rethrowing exceptions, used at the end of \@finally or
396 /// \@synchronize blocks.
397 LazyRuntimeFunction ExceptionReThrowFn;
398 /// Function called when entering a catch function. This is required for
399 /// differentiating Objective-C exceptions and foreign exceptions.
400 LazyRuntimeFunction EnterCatchFn;
401 /// Function called when exiting from a catch block. Used to do exception
402 /// cleanup.
403 LazyRuntimeFunction ExitCatchFn;
404 /// Function called when entering an \@synchronize block. Acquires the lock.
405 LazyRuntimeFunction SyncEnterFn;
406 /// Function called when exiting an \@synchronize block. Releases the lock.
407 LazyRuntimeFunction SyncExitFn;
408
409private:
410 /// Function called if fast enumeration detects that the collection is
411 /// modified during the update.
412 LazyRuntimeFunction EnumerationMutationFn;
413 /// Function for implementing synthesized property getters that return an
414 /// object.
415 LazyRuntimeFunction GetPropertyFn;
416 /// Function for implementing synthesized property setters that return an
417 /// object.
418 LazyRuntimeFunction SetPropertyFn;
419 /// Function used for non-object declared property getters.
420 LazyRuntimeFunction GetStructPropertyFn;
421 /// Function used for non-object declared property setters.
422 LazyRuntimeFunction SetStructPropertyFn;
423
424protected:
425 /// The version of the runtime that this class targets. Must match the
426 /// version in the runtime.
427 int RuntimeVersion;
428 /// The version of the protocol class. Used to differentiate between ObjC1
429 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
430 /// components and can not contain declared properties. We always emit
431 /// Objective-C 2 property structures, but we have to pretend that they're
432 /// Objective-C 1 property structures when targeting the GCC runtime or it
433 /// will abort.
434 const int ProtocolVersion;
435 /// The version of the class ABI. This value is used in the class structure
436 /// and indicates how various fields should be interpreted.
437 const int ClassABIVersion;
438 /// Generates an instance variable list structure. This is a structure
439 /// containing a size and an array of structures containing instance variable
440 /// metadata. This is used purely for introspection in the fragile ABI. In
441 /// the non-fragile ABI, it's used for instance variable fixup.
442 virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
443 ArrayRef<llvm::Constant *> IvarTypes,
444 ArrayRef<llvm::Constant *> IvarOffsets,
445 ArrayRef<llvm::Constant *> IvarAlign,
446 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
447
448 /// Generates a method list structure. This is a structure containing a size
449 /// and an array of structures containing method metadata.
450 ///
451 /// This structure is used by both classes and categories, and contains a next
452 /// pointer allowing them to be chained together in a linked list.
453 llvm::Constant *GenerateMethodList(StringRef ClassName,
454 StringRef CategoryName,
455 ArrayRef<const ObjCMethodDecl*> Methods,
456 bool isClassMethodList);
457
458 /// Emits an empty protocol. This is used for \@protocol() where no protocol
459 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
460 /// real protocol.
461 virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
462
463 /// Generates a list of property metadata structures. This follows the same
464 /// pattern as method and instance variable metadata lists.
465 llvm::Constant *GeneratePropertyList(const Decl *Container,
466 const ObjCContainerDecl *OCD,
467 bool isClassProperty=false,
468 bool protocolOptionalProperties=false);
469
470 /// Generates a list of referenced protocols. Classes, categories, and
471 /// protocols all use this structure.
472 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
473
474 /// To ensure that all protocols are seen by the runtime, we add a category on
475 /// a class defined in the runtime, declaring no methods, but adopting the
476 /// protocols. This is a horribly ugly hack, but it allows us to collect all
477 /// of the protocols without changing the ABI.
478 void GenerateProtocolHolderCategory();
479
480 /// Generates a class structure.
481 llvm::Constant *GenerateClassStructure(
482 llvm::Constant *MetaClass,
483 llvm::Constant *SuperClass,
484 unsigned info,
485 const char *Name,
486 llvm::Constant *Version,
487 llvm::Constant *InstanceSize,
488 llvm::Constant *IVars,
489 llvm::Constant *Methods,
490 llvm::Constant *Protocols,
491 llvm::Constant *IvarOffsets,
492 llvm::Constant *Properties,
493 llvm::Constant *StrongIvarBitmap,
494 llvm::Constant *WeakIvarBitmap,
495 bool isMeta=false);
496
497 /// Generates a method list. This is used by protocols to define the required
498 /// and optional methods.
499 virtual llvm::Constant *GenerateProtocolMethodList(
500 ArrayRef<const ObjCMethodDecl*> Methods);
501 /// Emits optional and required method lists.
502 template<class T>
503 void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
504 llvm::Constant *&Optional) {
505 SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
506 SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
507 for (const auto *I : Methods)
508 if (I->isOptional())
509 OptionalMethods.push_back(I);
510 else
511 RequiredMethods.push_back(I);
512 Required = GenerateProtocolMethodList(RequiredMethods);
513 Optional = GenerateProtocolMethodList(OptionalMethods);
514 }
515
516 /// Returns a selector with the specified type encoding. An empty string is
517 /// used to return an untyped selector (with the types field set to NULL).
518 virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
519 const std::string &TypeEncoding);
520
521 /// Returns the name of ivar offset variables. In the GNUstep v1 ABI, this
522 /// contains the class and ivar names, in the v2 ABI this contains the type
523 /// encoding as well.
524 virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
525 const ObjCIvarDecl *Ivar) {
526 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
527 + '.' + Ivar->getNameAsString();
528 return Name;
529 }
530 /// Returns the variable used to store the offset of an instance variable.
531 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
532 const ObjCIvarDecl *Ivar);
533 /// Emits a reference to a class. This allows the linker to object if there
534 /// is no class of the matching name.
535 void EmitClassRef(const std::string &className);
536
537 /// Emits a pointer to the named class
538 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
539 const std::string &Name, bool isWeak);
540
541 /// Looks up the method for sending a message to the specified object. This
542 /// mechanism differs between the GCC and GNU runtimes, so this method must be
543 /// overridden in subclasses.
544 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
545 llvm::Value *&Receiver,
546 llvm::Value *cmd,
547 llvm::MDNode *node,
548 MessageSendInfo &MSI) = 0;
549
550 /// Looks up the method for sending a message to a superclass. This
551 /// mechanism differs between the GCC and GNU runtimes, so this method must
552 /// be overridden in subclasses.
553 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
554 Address ObjCSuper,
555 llvm::Value *cmd,
556 MessageSendInfo &MSI) = 0;
557
558 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
559 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
560 /// bits set to their values, LSB first, while larger ones are stored in a
561 /// structure of this / form:
562 ///
563 /// struct { int32_t length; int32_t values[length]; };
564 ///
565 /// The values in the array are stored in host-endian format, with the least
566 /// significant bit being assumed to come first in the bitfield. Therefore,
567 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
568 /// while a bitfield / with the 63rd bit set will be 1<<64.
569 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
570
571public:
572 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
573 unsigned protocolClassVersion, unsigned classABI=1);
574
575 ConstantAddress GenerateConstantString(const StringLiteral *) override;
576
577 RValue
578 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
579 QualType ResultType, Selector Sel,
580 llvm::Value *Receiver, const CallArgList &CallArgs,
581 const ObjCInterfaceDecl *Class,
582 const ObjCMethodDecl *Method) override;
583 RValue
584 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
585 QualType ResultType, Selector Sel,
586 const ObjCInterfaceDecl *Class,
587 bool isCategoryImpl, llvm::Value *Receiver,
588 bool IsClassMessage, const CallArgList &CallArgs,
589 const ObjCMethodDecl *Method) override;
590 llvm::Value *GetClass(CodeGenFunction &CGF,
591 const ObjCInterfaceDecl *OID) override;
592 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
593 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
594 llvm::Value *GetSelector(CodeGenFunction &CGF,
595 const ObjCMethodDecl *Method) override;
596 virtual llvm::Constant *GetConstantSelector(Selector Sel,
597 const std::string &TypeEncoding) {
598 llvm_unreachable("Runtime unable to generate constant selector")::llvm::llvm_unreachable_internal("Runtime unable to generate constant selector"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 598)
;
599 }
600 llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
601 return GetConstantSelector(M->getSelector(),
602 CGM.getContext().getObjCEncodingForMethodDecl(M));
603 }
604 llvm::Constant *GetEHType(QualType T) override;
605
606 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
607 const ObjCContainerDecl *CD) override;
608 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
609 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
610 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
611 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
612 const ObjCProtocolDecl *PD) override;
613 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
614 llvm::Function *ModuleInitFunction() override;
615 llvm::Constant *GetPropertyGetFunction() override;
616 llvm::Constant *GetPropertySetFunction() override;
617 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
618 bool copy) override;
619 llvm::Constant *GetSetStructFunction() override;
620 llvm::Constant *GetGetStructFunction() override;
621 llvm::Constant *GetCppAtomicObjectGetFunction() override;
622 llvm::Constant *GetCppAtomicObjectSetFunction() override;
623 llvm::Constant *EnumerationMutationFunction() override;
624
625 void EmitTryStmt(CodeGenFunction &CGF,
626 const ObjCAtTryStmt &S) override;
627 void EmitSynchronizedStmt(CodeGenFunction &CGF,
628 const ObjCAtSynchronizedStmt &S) override;
629 void EmitThrowStmt(CodeGenFunction &CGF,
630 const ObjCAtThrowStmt &S,
631 bool ClearInsertionPoint=true) override;
632 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
633 Address AddrWeakObj) override;
634 void EmitObjCWeakAssign(CodeGenFunction &CGF,
635 llvm::Value *src, Address dst) override;
636 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
637 llvm::Value *src, Address dest,
638 bool threadlocal=false) override;
639 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
640 Address dest, llvm::Value *ivarOffset) override;
641 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
642 llvm::Value *src, Address dest) override;
643 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
644 Address SrcPtr,
645 llvm::Value *Size) override;
646 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
647 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
648 unsigned CVRQualifiers) override;
649 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
650 const ObjCInterfaceDecl *Interface,
651 const ObjCIvarDecl *Ivar) override;
652 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
653 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
654 const CGBlockInfo &blockInfo) override {
655 return NULLPtr;
656 }
657 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
658 const CGBlockInfo &blockInfo) override {
659 return NULLPtr;
660 }
661
662 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
663 return NULLPtr;
664 }
665};
666
667/// Class representing the legacy GCC Objective-C ABI. This is the default when
668/// -fobjc-nonfragile-abi is not specified.
669///
670/// The GCC ABI target actually generates code that is approximately compatible
671/// with the new GNUstep runtime ABI, but refrains from using any features that
672/// would not work with the GCC runtime. For example, clang always generates
673/// the extended form of the class structure, and the extra fields are simply
674/// ignored by GCC libobjc.
675class CGObjCGCC : public CGObjCGNU {
676 /// The GCC ABI message lookup function. Returns an IMP pointing to the
677 /// method implementation for this message.
678 LazyRuntimeFunction MsgLookupFn;
679 /// The GCC ABI superclass message lookup function. Takes a pointer to a
680 /// structure describing the receiver and the class, and a selector as
681 /// arguments. Returns the IMP for the corresponding method.
682 LazyRuntimeFunction MsgLookupSuperFn;
683
684protected:
685 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
686 llvm::Value *cmd, llvm::MDNode *node,
687 MessageSendInfo &MSI) override {
688 CGBuilderTy &Builder = CGF.Builder;
689 llvm::Value *args[] = {
690 EnforceType(Builder, Receiver, IdTy),
691 EnforceType(Builder, cmd, SelectorTy) };
692 llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
693 imp->setMetadata(msgSendMDKind, node);
694 return imp.getInstruction();
695 }
696
697 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
698 llvm::Value *cmd, MessageSendInfo &MSI) override {
699 CGBuilderTy &Builder = CGF.Builder;
700 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
701 PtrToObjCSuperTy).getPointer(), cmd};
702 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
703 }
704
705public:
706 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
707 // IMP objc_msg_lookup(id, SEL);
708 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
709 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
710 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
711 PtrToObjCSuperTy, SelectorTy);
712 }
713};
714
715/// Class used when targeting the new GNUstep runtime ABI.
716class CGObjCGNUstep : public CGObjCGNU {
717 /// The slot lookup function. Returns a pointer to a cacheable structure
718 /// that contains (among other things) the IMP.
719 LazyRuntimeFunction SlotLookupFn;
720 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
721 /// a structure describing the receiver and the class, and a selector as
722 /// arguments. Returns the slot for the corresponding method. Superclass
723 /// message lookup rarely changes, so this is a good caching opportunity.
724 LazyRuntimeFunction SlotLookupSuperFn;
725 /// Specialised function for setting atomic retain properties
726 LazyRuntimeFunction SetPropertyAtomic;
727 /// Specialised function for setting atomic copy properties
728 LazyRuntimeFunction SetPropertyAtomicCopy;
729 /// Specialised function for setting nonatomic retain properties
730 LazyRuntimeFunction SetPropertyNonAtomic;
731 /// Specialised function for setting nonatomic copy properties
732 LazyRuntimeFunction SetPropertyNonAtomicCopy;
733 /// Function to perform atomic copies of C++ objects with nontrivial copy
734 /// constructors from Objective-C ivars.
735 LazyRuntimeFunction CxxAtomicObjectGetFn;
736 /// Function to perform atomic copies of C++ objects with nontrivial copy
737 /// constructors to Objective-C ivars.
738 LazyRuntimeFunction CxxAtomicObjectSetFn;
739 /// Type of an slot structure pointer. This is returned by the various
740 /// lookup functions.
741 llvm::Type *SlotTy;
742
743 public:
744 llvm::Constant *GetEHType(QualType T) override;
745
746 protected:
747 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
748 llvm::Value *cmd, llvm::MDNode *node,
749 MessageSendInfo &MSI) override {
750 CGBuilderTy &Builder = CGF.Builder;
751 llvm::Function *LookupFn = SlotLookupFn;
752
753 // Store the receiver on the stack so that we can reload it later
754 Address ReceiverPtr =
755 CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
756 Builder.CreateStore(Receiver, ReceiverPtr);
757
758 llvm::Value *self;
759
760 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
761 self = CGF.LoadObjCSelf();
762 } else {
763 self = llvm::ConstantPointerNull::get(IdTy);
764 }
765
766 // The lookup function is guaranteed not to capture the receiver pointer.
767 LookupFn->addParamAttr(0, llvm::Attribute::NoCapture);
768
769 llvm::Value *args[] = {
770 EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
771 EnforceType(Builder, cmd, SelectorTy),
772 EnforceType(Builder, self, IdTy) };
773 llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
774 slot.setOnlyReadsMemory();
775 slot->setMetadata(msgSendMDKind, node);
776
777 // Load the imp from the slot
778 llvm::Value *imp = Builder.CreateAlignedLoad(
779 Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4),
780 CGF.getPointerAlign());
781
782 // The lookup function may have changed the receiver, so make sure we use
783 // the new one.
784 Receiver = Builder.CreateLoad(ReceiverPtr, true);
785 return imp;
786 }
787
788 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
789 llvm::Value *cmd,
790 MessageSendInfo &MSI) override {
791 CGBuilderTy &Builder = CGF.Builder;
792 llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
793
794 llvm::CallInst *slot =
795 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
796 slot->setOnlyReadsMemory();
797
798 return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4),
799 CGF.getPointerAlign());
800 }
801
802 public:
803 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
804 CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
805 unsigned ClassABI) :
806 CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
807 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
808
809 llvm::StructType *SlotStructTy =
810 llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
811 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
812 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
813 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
814 SelectorTy, IdTy);
815 // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
816 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
817 PtrToObjCSuperTy, SelectorTy);
818 // If we're in ObjC++ mode, then we want to make
819 if (usesSEHExceptions) {
820 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
821 // void objc_exception_rethrow(void)
822 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
823 } else if (CGM.getLangOpts().CPlusPlus) {
824 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
825 // void *__cxa_begin_catch(void *e)
826 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
827 // void __cxa_end_catch(void)
828 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
829 // void _Unwind_Resume_or_Rethrow(void*)
830 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
831 PtrTy);
832 } else if (R.getVersion() >= VersionTuple(1, 7)) {
833 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
834 // id objc_begin_catch(void *e)
835 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
836 // void objc_end_catch(void)
837 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
838 // void _Unwind_Resume_or_Rethrow(void*)
839 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
840 }
841 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
842 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
843 SelectorTy, IdTy, PtrDiffTy);
844 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
845 IdTy, SelectorTy, IdTy, PtrDiffTy);
846 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
847 IdTy, SelectorTy, IdTy, PtrDiffTy);
848 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
849 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
850 // void objc_setCppObjectAtomic(void *dest, const void *src, void
851 // *helper);
852 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
853 PtrTy, PtrTy);
854 // void objc_getCppObjectAtomic(void *dest, const void *src, void
855 // *helper);
856 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
857 PtrTy, PtrTy);
858 }
859
860 llvm::Constant *GetCppAtomicObjectGetFunction() override {
861 // The optimised functions were added in version 1.7 of the GNUstep
862 // runtime.
863 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 864, __PRETTY_FUNCTION__))
864 VersionTuple(1, 7))((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 864, __PRETTY_FUNCTION__))
;
865 return CxxAtomicObjectGetFn;
866 }
867
868 llvm::Constant *GetCppAtomicObjectSetFunction() override {
869 // The optimised functions were added in version 1.7 of the GNUstep
870 // runtime.
871 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 872, __PRETTY_FUNCTION__))
872 VersionTuple(1, 7))((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 872, __PRETTY_FUNCTION__))
;
873 return CxxAtomicObjectSetFn;
874 }
875
876 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
877 bool copy) override {
878 // The optimised property functions omit the GC check, and so are not
879 // safe to use in GC mode. The standard functions are fast in GC mode,
880 // so there is less advantage in using them.
881 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC))(((CGM.getLangOpts().getGC() == LangOptions::NonGC)) ? static_cast
<void> (0) : __assert_fail ("(CGM.getLangOpts().getGC() == LangOptions::NonGC)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 881, __PRETTY_FUNCTION__))
;
882 // The optimised functions were added in version 1.7 of the GNUstep
883 // runtime.
884 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 885, __PRETTY_FUNCTION__))
885 VersionTuple(1, 7))((CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple
(1, 7)) ? static_cast<void> (0) : __assert_fail ("CGM.getLangOpts().ObjCRuntime.getVersion() >= VersionTuple(1, 7)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 885, __PRETTY_FUNCTION__))
;
886
887 if (atomic) {
888 if (copy) return SetPropertyAtomicCopy;
889 return SetPropertyAtomic;
890 }
891
892 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
893 }
894};
895
896/// GNUstep Objective-C ABI version 2 implementation.
897/// This is the ABI that provides a clean break with the legacy GCC ABI and
898/// cleans up a number of things that were added to work around 1980s linkers.
899class CGObjCGNUstep2 : public CGObjCGNUstep {
900 enum SectionKind
901 {
902 SelectorSection = 0,
903 ClassSection,
904 ClassReferenceSection,
905 CategorySection,
906 ProtocolSection,
907 ProtocolReferenceSection,
908 ClassAliasSection,
909 ConstantStringSection
910 };
911 static const char *const SectionsBaseNames[8];
912 template<SectionKind K>
913 std::string sectionName() {
914 std::string name(SectionsBaseNames[K]);
915 if (CGM.getTriple().isOSBinFormatCOFF())
916 name += "$m";
917 return name;
918 }
919 /// The GCC ABI superclass message lookup function. Takes a pointer to a
920 /// structure describing the receiver and the class, and a selector as
921 /// arguments. Returns the IMP for the corresponding method.
922 LazyRuntimeFunction MsgLookupSuperFn;
923 /// A flag indicating if we've emitted at least one protocol.
924 /// If we haven't, then we need to emit an empty protocol, to ensure that the
925 /// __start__objc_protocols and __stop__objc_protocols sections exist.
926 bool EmittedProtocol = false;
927 /// A flag indicating if we've emitted at least one protocol reference.
928 /// If we haven't, then we need to emit an empty protocol, to ensure that the
929 /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
930 /// exist.
931 bool EmittedProtocolRef = false;
932 /// A flag indicating if we've emitted at least one class.
933 /// If we haven't, then we need to emit an empty protocol, to ensure that the
934 /// __start__objc_classes and __stop__objc_classes sections / exist.
935 bool EmittedClass = false;
936 /// Generate the name of a symbol for a reference to a class. Accesses to
937 /// classes should be indirected via this.
938 std::string SymbolForClassRef(StringRef Name, bool isWeak) {
939 if (isWeak)
940 return (StringRef("._OBJC_WEAK_REF_CLASS_") + Name).str();
941 else
942 return (StringRef("._OBJC_REF_CLASS_") + Name).str();
943 }
944 /// Generate the name of a class symbol.
945 std::string SymbolForClass(StringRef Name) {
946 return (StringRef("._OBJC_CLASS_") + Name).str();
947 }
948 void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
949 ArrayRef<llvm::Value*> Args) {
950 SmallVector<llvm::Type *,8> Types;
951 for (auto *Arg : Args)
952 Types.push_back(Arg->getType());
953 llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
954 false);
955 llvm::Value *Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
956 B.CreateCall(Fn, Args);
957 }
958
959 ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
960
961 auto Str = SL->getString();
962 CharUnits Align = CGM.getPointerAlign();
963
964 // Look for an existing one
965 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
966 if (old != ObjCStrings.end())
967 return ConstantAddress(old->getValue(), Align);
968
969 bool isNonASCII = SL->containsNonAscii();
970
971 auto LiteralLength = SL->getLength();
972
973 if ((CGM.getTarget().getPointerWidth(0) == 64) &&
974 (LiteralLength < 9) && !isNonASCII) {
975 // Tiny strings are only used on 64-bit platforms. They store 8 7-bit
976 // ASCII characters in the high 56 bits, followed by a 4-bit length and a
977 // 3-bit tag (which is always 4).
978 uint64_t str = 0;
979 // Fill in the characters
980 for (unsigned i=0 ; i<LiteralLength ; i++)
981 str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
982 // Fill in the length
983 str |= LiteralLength << 3;
984 // Set the tag
985 str |= 4;
986 auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
987 llvm::ConstantInt::get(Int64Ty, str), IdTy);
988 ObjCStrings[Str] = ObjCStr;
989 return ConstantAddress(ObjCStr, Align);
990 }
991
992 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
993
994 if (StringClass.empty()) StringClass = "NSConstantString";
995
996 std::string Sym = SymbolForClass(StringClass);
997
998 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
999
1000 if (!isa)
1001 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1002 llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1003 else if (isa->getType() != PtrToIdTy)
1004 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1005
1006 // struct
1007 // {
1008 // Class isa;
1009 // uint32_t flags;
1010 // uint32_t length; // Number of codepoints
1011 // uint32_t size; // Number of bytes
1012 // uint32_t hash;
1013 // const char *data;
1014 // };
1015
1016 ConstantInitBuilder Builder(CGM);
1017 auto Fields = Builder.beginStruct();
1018 Fields.add(isa);
1019 // For now, all non-ASCII strings are represented as UTF-16. As such, the
1020 // number of bytes is simply double the number of UTF-16 codepoints. In
1021 // ASCII strings, the number of bytes is equal to the number of non-ASCII
1022 // codepoints.
1023 if (isNonASCII) {
1024 unsigned NumU8CodeUnits = Str.size();
1025 // A UTF-16 representation of a unicode string contains at most the same
1026 // number of code units as a UTF-8 representation. Allocate that much
1027 // space, plus one for the final null character.
1028 SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1029 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1030 llvm::UTF16 *ToPtr = &ToBuf[0];
1031 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1032 &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1033 uint32_t StringLength = ToPtr - &ToBuf[0];
1034 // Add null terminator
1035 *ToPtr = 0;
1036 // Flags: 2 indicates UTF-16 encoding
1037 Fields.addInt(Int32Ty, 2);
1038 // Number of UTF-16 codepoints
1039 Fields.addInt(Int32Ty, StringLength);
1040 // Number of bytes
1041 Fields.addInt(Int32Ty, StringLength * 2);
1042 // Hash. Not currently initialised by the compiler.
1043 Fields.addInt(Int32Ty, 0);
1044 // pointer to the data string.
1045 auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1);
1046 auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1047 auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1048 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1049 Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1050 Fields.add(Buffer);
1051 } else {
1052 // Flags: 0 indicates ASCII encoding
1053 Fields.addInt(Int32Ty, 0);
1054 // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1055 Fields.addInt(Int32Ty, Str.size());
1056 // Number of bytes
1057 Fields.addInt(Int32Ty, Str.size());
1058 // Hash. Not currently initialised by the compiler.
1059 Fields.addInt(Int32Ty, 0);
1060 // Data pointer
1061 Fields.add(MakeConstantString(Str));
1062 }
1063 std::string StringName;
1064 bool isNamed = !isNonASCII;
1065 if (isNamed) {
1066 StringName = ".objc_str_";
1067 for (int i=0,e=Str.size() ; i<e ; ++i) {
1068 unsigned char c = Str[i];
1069 if (isalnum(c))
1070 StringName += c;
1071 else if (c == ' ')
1072 StringName += '_';
1073 else {
1074 isNamed = false;
1075 break;
1076 }
1077 }
1078 }
1079 auto *ObjCStrGV =
1080 Fields.finishAndCreateGlobal(
1081 isNamed ? StringRef(StringName) : ".objc_string",
1082 Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1083 : llvm::GlobalValue::PrivateLinkage);
1084 ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1085 if (isNamed) {
1086 ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1087 ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1088 }
1089 llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy);
1090 ObjCStrings[Str] = ObjCStr;
1091 ConstantStrings.push_back(ObjCStr);
1092 return ConstantAddress(ObjCStr, Align);
1093 }
1094
1095 void PushProperty(ConstantArrayBuilder &PropertiesArray,
1096 const ObjCPropertyDecl *property,
1097 const Decl *OCD,
1098 bool isSynthesized=true, bool
1099 isDynamic=true) override {
1100 // struct objc_property
1101 // {
1102 // const char *name;
1103 // const char *attributes;
1104 // const char *type;
1105 // SEL getter;
1106 // SEL setter;
1107 // };
1108 auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1109 ASTContext &Context = CGM.getContext();
1110 Fields.add(MakeConstantString(property->getNameAsString()));
1111 std::string TypeStr =
1112 CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1113 Fields.add(MakeConstantString(TypeStr));
1114 std::string typeStr;
1115 Context.getObjCEncodingForType(property->getType(), typeStr);
1116 Fields.add(MakeConstantString(typeStr));
1117 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1118 if (accessor) {
1119 std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1120 Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1121 } else {
1122 Fields.add(NULLPtr);
1123 }
1124 };
1125 addPropertyMethod(property->getGetterMethodDecl());
1126 addPropertyMethod(property->getSetterMethodDecl());
1127 Fields.finishAndAddTo(PropertiesArray);
1128 }
1129
1130 llvm::Constant *
1131 GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1132 // struct objc_protocol_method_description
1133 // {
1134 // SEL selector;
1135 // const char *types;
1136 // };
1137 llvm::StructType *ObjCMethodDescTy =
1138 llvm::StructType::get(CGM.getLLVMContext(),
1139 { PtrToInt8Ty, PtrToInt8Ty });
1140 ASTContext &Context = CGM.getContext();
1141 ConstantInitBuilder Builder(CGM);
1142 // struct objc_protocol_method_description_list
1143 // {
1144 // int count;
1145 // int size;
1146 // struct objc_protocol_method_description methods[];
1147 // };
1148 auto MethodList = Builder.beginStruct();
1149 // int count;
1150 MethodList.addInt(IntTy, Methods.size());
1151 // int size; // sizeof(struct objc_method_description)
1152 llvm::DataLayout td(&TheModule);
1153 MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1154 CGM.getContext().getCharWidth());
1155 // struct objc_method_description[]
1156 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1157 for (auto *M : Methods) {
1158 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1159 Method.add(CGObjCGNU::GetConstantSelector(M));
1160 Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1161 Method.finishAndAddTo(MethodArray);
1162 }
1163 MethodArray.finishAndAddTo(MethodList);
1164 return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1165 CGM.getPointerAlign());
1166 }
1167
1168 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1169 llvm::Value *cmd, MessageSendInfo &MSI) override {
1170 // Don't access the slot unless we're trying to cache the result.
1171 CGBuilderTy &Builder = CGF.Builder;
1172 llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper,
1173 PtrToObjCSuperTy).getPointer(), cmd};
1174 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1175 }
1176
1177 llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1178 std::string SymbolName = SymbolForClassRef(Name, isWeak);
1179 auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1180 if (ClassSymbol)
1181 return ClassSymbol;
1182 ClassSymbol = new llvm::GlobalVariable(TheModule,
1183 IdTy, false, llvm::GlobalValue::ExternalLinkage,
1184 nullptr, SymbolName);
1185 // If this is a weak symbol, then we are creating a valid definition for
1186 // the symbol, pointing to a weak definition of the real class pointer. If
1187 // this is not a weak reference, then we are expecting another compilation
1188 // unit to provide the real indirection symbol.
1189 if (isWeak)
1190 ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1191 Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1192 nullptr, SymbolForClass(Name)));
1193 assert(ClassSymbol->getName() == SymbolName)((ClassSymbol->getName() == SymbolName) ? static_cast<void
> (0) : __assert_fail ("ClassSymbol->getName() == SymbolName"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1193, __PRETTY_FUNCTION__))
;
1194 return ClassSymbol;
1195 }
1196 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1197 const std::string &Name,
1198 bool isWeak) override {
1199 return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak),
1200 CGM.getPointerAlign()));
1201 }
1202 int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1203 // typedef enum {
1204 // ownership_invalid = 0,
1205 // ownership_strong = 1,
1206 // ownership_weak = 2,
1207 // ownership_unsafe = 3
1208 // } ivar_ownership;
1209 int Flag;
1210 switch (Ownership) {
1211 case Qualifiers::OCL_Strong:
1212 Flag = 1;
1213 break;
1214 case Qualifiers::OCL_Weak:
1215 Flag = 2;
1216 break;
1217 case Qualifiers::OCL_ExplicitNone:
1218 Flag = 3;
1219 break;
1220 case Qualifiers::OCL_None:
1221 case Qualifiers::OCL_Autoreleasing:
1222 assert(Ownership != Qualifiers::OCL_Autoreleasing)((Ownership != Qualifiers::OCL_Autoreleasing) ? static_cast<
void> (0) : __assert_fail ("Ownership != Qualifiers::OCL_Autoreleasing"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1222, __PRETTY_FUNCTION__))
;
1223 Flag = 0;
1224 }
1225 return Flag;
1226 }
1227 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1228 ArrayRef<llvm::Constant *> IvarTypes,
1229 ArrayRef<llvm::Constant *> IvarOffsets,
1230 ArrayRef<llvm::Constant *> IvarAlign,
1231 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1232 llvm_unreachable("Method should not be called!")::llvm::llvm_unreachable_internal("Method should not be called!"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1232)
;
1233 }
1234
1235 llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1236 std::string Name = SymbolForProtocol(ProtocolName);
1237 auto *GV = TheModule.getGlobalVariable(Name);
1238 if (!GV) {
1239 // Emit a placeholder symbol.
1240 GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1241 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1242 GV->setAlignment(CGM.getPointerAlign().getQuantity());
1243 }
1244 return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy);
1245 }
1246
1247 /// Existing protocol references.
1248 llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1249
1250 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1251 const ObjCProtocolDecl *PD) override {
1252 auto Name = PD->getNameAsString();
1253 auto *&Ref = ExistingProtocolRefs[Name];
1254 if (!Ref) {
1255 auto *&Protocol = ExistingProtocols[Name];
1256 if (!Protocol)
1257 Protocol = GenerateProtocolRef(PD);
1258 std::string RefName = SymbolForProtocolRef(Name);
1259 assert(!TheModule.getGlobalVariable(RefName))((!TheModule.getGlobalVariable(RefName)) ? static_cast<void
> (0) : __assert_fail ("!TheModule.getGlobalVariable(RefName)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1259, __PRETTY_FUNCTION__))
;
1260 // Emit a reference symbol.
1261 auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy,
1262 false, llvm::GlobalValue::LinkOnceODRLinkage,
1263 llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName);
1264 GV->setComdat(TheModule.getOrInsertComdat(RefName));
1265 GV->setSection(sectionName<ProtocolReferenceSection>());
1266 GV->setAlignment(CGM.getPointerAlign().getQuantity());
1267 Ref = GV;
1268 }
1269 EmittedProtocolRef = true;
1270 return CGF.Builder.CreateAlignedLoad(Ref, CGM.getPointerAlign());
1271 }
1272
1273 llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1274 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1275 Protocols.size());
1276 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1277 Protocols);
1278 ConstantInitBuilder builder(CGM);
1279 auto ProtocolBuilder = builder.beginStruct();
1280 ProtocolBuilder.addNullPointer(PtrTy);
1281 ProtocolBuilder.addInt(SizeTy, Protocols.size());
1282 ProtocolBuilder.add(ProtocolArray);
1283 return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1284 CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1285 }
1286
1287 void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1288 // Do nothing - we only emit referenced protocols.
1289 }
1290 llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) {
1291 std::string ProtocolName = PD->getNameAsString();
1292 auto *&Protocol = ExistingProtocols[ProtocolName];
1293 if (Protocol)
1294 return Protocol;
1295
1296 EmittedProtocol = true;
1297
1298 auto SymName = SymbolForProtocol(ProtocolName);
1299 auto *OldGV = TheModule.getGlobalVariable(SymName);
1300
1301 // Use the protocol definition, if there is one.
1302 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1303 PD = Def;
1304 else {
1305 // If there is no definition, then create an external linkage symbol and
1306 // hope that someone else fills it in for us (and fail to link if they
1307 // don't).
1308 assert(!OldGV)((!OldGV) ? static_cast<void> (0) : __assert_fail ("!OldGV"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1308, __PRETTY_FUNCTION__))
;
1309 Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1310 /*isConstant*/false,
1311 llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1312 return Protocol;
1313 }
1314
1315 SmallVector<llvm::Constant*, 16> Protocols;
1316 for (const auto *PI : PD->protocols())
1317 Protocols.push_back(
1318 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1319 ProtocolPtrTy));
1320 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1321
1322 // Collect information about methods
1323 llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1324 llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1325 EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1326 OptionalInstanceMethodList);
1327 EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1328 OptionalClassMethodList);
1329
1330 // The isa pointer must be set to a magic number so the runtime knows it's
1331 // the correct layout.
1332 ConstantInitBuilder builder(CGM);
1333 auto ProtocolBuilder = builder.beginStruct();
1334 ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1335 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1336 ProtocolBuilder.add(MakeConstantString(ProtocolName));
1337 ProtocolBuilder.add(ProtocolList);
1338 ProtocolBuilder.add(InstanceMethodList);
1339 ProtocolBuilder.add(ClassMethodList);
1340 ProtocolBuilder.add(OptionalInstanceMethodList);
1341 ProtocolBuilder.add(OptionalClassMethodList);
1342 // Required instance properties
1343 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1344 // Optional instance properties
1345 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1346 // Required class properties
1347 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1348 // Optional class properties
1349 ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1350
1351 auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1352 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1353 GV->setSection(sectionName<ProtocolSection>());
1354 GV->setComdat(TheModule.getOrInsertComdat(SymName));
1355 if (OldGV) {
1356 OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV,
1357 OldGV->getType()));
1358 OldGV->removeFromParent();
1359 GV->setName(SymName);
1360 }
1361 Protocol = GV;
1362 return GV;
1363 }
1364 llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) {
1365 if (Val->getType() == Ty)
1366 return Val;
1367 return llvm::ConstantExpr::getBitCast(Val, Ty);
1368 }
1369 llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1370 const std::string &TypeEncoding) override {
1371 return GetConstantSelector(Sel, TypeEncoding);
1372 }
1373 llvm::Constant *GetTypeString(llvm::StringRef TypeEncoding) {
1374 if (TypeEncoding.empty())
1375 return NULLPtr;
1376 std::string MangledTypes = TypeEncoding;
1377 std::replace(MangledTypes.begin(), MangledTypes.end(),
1378 '@', '\1');
1379 std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1380 auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1381 if (!TypesGlobal) {
1382 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1383 TypeEncoding);
1384 auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1385 true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1386 GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1387 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1388 TypesGlobal = GV;
1389 }
1390 return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1391 TypesGlobal, Zeros);
1392 }
1393 llvm::Constant *GetConstantSelector(Selector Sel,
1394 const std::string &TypeEncoding) override {
1395 // @ is used as a special character in symbol names (used for symbol
1396 // versioning), so mangle the name to not include it. Replace it with a
1397 // character that is not a valid type encoding character (and, being
1398 // non-printable, never will be!)
1399 std::string MangledTypes = TypeEncoding;
1400 std::replace(MangledTypes.begin(), MangledTypes.end(),
1401 '@', '\1');
1402 auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1403 MangledTypes).str();
1404 if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1405 return EnforceType(GV, SelectorTy);
1406 ConstantInitBuilder builder(CGM);
1407 auto SelBuilder = builder.beginStruct();
1408 SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1409 true));
1410 SelBuilder.add(GetTypeString(TypeEncoding));
1411 auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1412 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1413 GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1414 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1415 GV->setSection(sectionName<SelectorSection>());
1416 auto *SelVal = EnforceType(GV, SelectorTy);
1417 return SelVal;
1418 }
1419 llvm::StructType *emptyStruct = nullptr;
1420
1421 /// Return pointers to the start and end of a section. On ELF platforms, we
1422 /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1423 /// to the start and end of section names, as long as those section names are
1424 /// valid identifiers and the symbols are referenced but not defined. On
1425 /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1426 /// by subsections and place everything that we want to reference in a middle
1427 /// subsection and then insert zero-sized symbols in subsections a and z.
1428 std::pair<llvm::Constant*,llvm::Constant*>
1429 GetSectionBounds(StringRef Section) {
1430 if (CGM.getTriple().isOSBinFormatCOFF()) {
1431 if (emptyStruct == nullptr) {
1432 emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1433 emptyStruct->setBody({}, /*isPacked*/true);
1434 }
1435 auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1436 auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1437 auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1438 /*isConstant*/false,
1439 llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1440 Section);
1441 Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1442 Sym->setSection((Section + SecSuffix).str());
1443 Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1444 Section).str()));
1445 Sym->setAlignment(1);
1446 return Sym;
1447 };
1448 return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1449 }
1450 auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1451 /*isConstant*/false,
1452 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1453 Section);
1454 Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1455 auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1456 /*isConstant*/false,
1457 llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1458 Section);
1459 Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1460 return { Start, Stop };
1461 }
1462 CatchTypeInfo getCatchAllTypeInfo() override {
1463 return CGM.getCXXABI().getCatchAllTypeInfo();
1464 }
1465 llvm::Function *ModuleInitFunction() override {
1466 llvm::Function *LoadFunction = llvm::Function::Create(
1467 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1468 llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1469 &TheModule);
1470 LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1471 LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1472
1473 llvm::BasicBlock *EntryBB =
1474 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1475 CGBuilderTy B(CGM, VMContext);
1476 B.SetInsertPoint(EntryBB);
1477 ConstantInitBuilder builder(CGM);
1478 auto InitStructBuilder = builder.beginStruct();
1479 InitStructBuilder.addInt(Int64Ty, 0);
1480 for (auto *s : SectionsBaseNames) {
1481 auto bounds = GetSectionBounds(s);
1482 InitStructBuilder.add(bounds.first);
1483 InitStructBuilder.add(bounds.second);
1484 };
1485 auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1486 CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1487 InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1488 InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1489
1490 CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1491 B.CreateRetVoid();
1492 // Make sure that the optimisers don't delete this function.
1493 CGM.addCompilerUsedGlobal(LoadFunction);
1494 // FIXME: Currently ELF only!
1495 // We have to do this by hand, rather than with @llvm.ctors, so that the
1496 // linker can remove the duplicate invocations.
1497 auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1498 /*isConstant*/true, llvm::GlobalValue::LinkOnceAnyLinkage,
1499 LoadFunction, ".objc_ctor");
1500 // Check that this hasn't been renamed. This shouldn't happen, because
1501 // this function should be called precisely once.
1502 assert(InitVar->getName() == ".objc_ctor")((InitVar->getName() == ".objc_ctor") ? static_cast<void
> (0) : __assert_fail ("InitVar->getName() == \".objc_ctor\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1502, __PRETTY_FUNCTION__))
;
1503 // In Windows, initialisers are sorted by the suffix. XCL is for library
1504 // initialisers, which run before user initialisers. We are running
1505 // Objective-C loads at the end of library load. This means +load methods
1506 // will run before any other static constructors, but that static
1507 // constructors can see a fully initialised Objective-C state.
1508 if (CGM.getTriple().isOSBinFormatCOFF())
1509 InitVar->setSection(".CRT$XCLz");
1510 else
1511 InitVar->setSection(".ctors");
1512 InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1513 InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1514 CGM.addUsedGlobal(InitVar);
1515 for (auto *C : Categories) {
1516 auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1517 Cat->setSection(sectionName<CategorySection>());
1518 CGM.addUsedGlobal(Cat);
1519 }
1520 auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1521 StringRef Section) {
1522 auto nullBuilder = builder.beginStruct();
1523 for (auto *F : Init)
1524 nullBuilder.add(F);
1525 auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1526 false, llvm::GlobalValue::LinkOnceODRLinkage);
1527 GV->setSection(Section);
1528 GV->setComdat(TheModule.getOrInsertComdat(Name));
1529 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1530 CGM.addUsedGlobal(GV);
1531 return GV;
1532 };
1533 for (auto clsAlias : ClassAliases)
1534 createNullGlobal(std::string(".objc_class_alias") +
1535 clsAlias.second, { MakeConstantString(clsAlias.second),
1536 GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1537 // On ELF platforms, add a null value for each special section so that we
1538 // can always guarantee that the _start and _stop symbols will exist and be
1539 // meaningful. This is not required on COFF platforms, where our start and
1540 // stop symbols will create the section.
1541 if (!CGM.getTriple().isOSBinFormatCOFF()) {
1542 createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1543 sectionName<SelectorSection>());
1544 if (Categories.empty())
1545 createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1546 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1547 sectionName<CategorySection>());
1548 if (!EmittedClass) {
1549 createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1550 sectionName<ClassReferenceSection>());
1551 createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1552 sectionName<ClassReferenceSection>());
1553 }
1554 if (!EmittedProtocol)
1555 createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1556 NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1557 NULLPtr}, sectionName<ProtocolSection>());
1558 if (!EmittedProtocolRef)
1559 createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1560 sectionName<ProtocolReferenceSection>());
1561 if (ClassAliases.empty())
1562 createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1563 sectionName<ClassAliasSection>());
1564 if (ConstantStrings.empty()) {
1565 auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1566 createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1567 i32Zero, i32Zero, i32Zero, NULLPtr },
1568 sectionName<ConstantStringSection>());
1569 }
1570 }
1571 ConstantStrings.clear();
1572 Categories.clear();
1573 Classes.clear();
1574 return nullptr;
1575 }
1576 /// In the v2 ABI, ivar offset variables use the type encoding in their name
1577 /// to trigger linker failures if the types don't match.
1578 std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1579 const ObjCIvarDecl *Ivar) override {
1580 std::string TypeEncoding;
1581 CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1582 // Prevent the @ from being interpreted as a symbol version.
1583 std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1584 '@', '\1');
1585 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1586 + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1587 return Name;
1588 }
1589 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1590 const ObjCInterfaceDecl *Interface,
1591 const ObjCIvarDecl *Ivar) override {
1592 const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1593 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1594 if (!IvarOffsetPointer)
1595 IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1596 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1597 CharUnits Align = CGM.getIntAlign();
1598 llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(IvarOffsetPointer, Align);
1599 if (Offset->getType() != PtrDiffTy)
1600 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1601 return Offset;
1602 }
1603 void GenerateClass(const ObjCImplementationDecl *OID) override {
1604 ASTContext &Context = CGM.getContext();
1605
1606 // Get the class name
1607 ObjCInterfaceDecl *classDecl =
1608 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1609 std::string className = classDecl->getNameAsString();
1610 auto *classNameConstant = MakeConstantString(className);
1611
1612 ConstantInitBuilder builder(CGM);
1613 auto metaclassFields = builder.beginStruct();
1614 // struct objc_class *isa;
1615 metaclassFields.addNullPointer(PtrTy);
1616 // struct objc_class *super_class;
1617 metaclassFields.addNullPointer(PtrTy);
1618 // const char *name;
1619 metaclassFields.add(classNameConstant);
1620 // long version;
1621 metaclassFields.addInt(LongTy, 0);
1622 // unsigned long info;
1623 // objc_class_flag_meta
1624 metaclassFields.addInt(LongTy, 1);
1625 // long instance_size;
1626 // Setting this to zero is consistent with the older ABI, but it might be
1627 // more sensible to set this to sizeof(struct objc_class)
1628 metaclassFields.addInt(LongTy, 0);
1629 // struct objc_ivar_list *ivars;
1630 metaclassFields.addNullPointer(PtrTy);
1631 // struct objc_method_list *methods
1632 // FIXME: Almost identical code is copied and pasted below for the
1633 // class, but refactoring it cleanly requires C++14 generic lambdas.
1634 if (OID->classmeth_begin() == OID->classmeth_end())
1
Taking false branch
1635 metaclassFields.addNullPointer(PtrTy);
1636 else {
1637 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1638 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1639 OID->classmeth_end());
1640 metaclassFields.addBitCast(
1641 GenerateMethodList(className, "", ClassMethods, true),
1642 PtrTy);
1643 }
1644 // void *dtable;
1645 metaclassFields.addNullPointer(PtrTy);
1646 // IMP cxx_construct;
1647 metaclassFields.addNullPointer(PtrTy);
1648 // IMP cxx_destruct;
1649 metaclassFields.addNullPointer(PtrTy);
1650 // struct objc_class *subclass_list
1651 metaclassFields.addNullPointer(PtrTy);
1652 // struct objc_class *sibling_class
1653 metaclassFields.addNullPointer(PtrTy);
1654 // struct objc_protocol_list *protocols;
1655 metaclassFields.addNullPointer(PtrTy);
1656 // struct reference_list *extra_data;
1657 metaclassFields.addNullPointer(PtrTy);
1658 // long abi_version;
1659 metaclassFields.addInt(LongTy, 0);
1660 // struct objc_property_list *properties
1661 metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1662
1663 auto *metaclass = metaclassFields.finishAndCreateGlobal("._OBJC_METACLASS_"
1664 + className, CGM.getPointerAlign());
1665
1666 auto classFields = builder.beginStruct();
1667 // struct objc_class *isa;
1668 classFields.add(metaclass);
1669 // struct objc_class *super_class;
1670 // Get the superclass name.
1671 const ObjCInterfaceDecl * SuperClassDecl =
1672 OID->getClassInterface()->getSuperClass();
1673 if (SuperClassDecl) {
2
Assuming 'SuperClassDecl' is null
3
Taking false branch
1674 auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1675 llvm::Constant *SuperClass = TheModule.getNamedGlobal(SuperClassName);
1676 if (!SuperClass)
1677 {
1678 SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1679 llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1680 }
1681 classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy));
1682 } else
1683 classFields.addNullPointer(PtrTy);
1684 // const char *name;
1685 classFields.add(classNameConstant);
1686 // long version;
1687 classFields.addInt(LongTy, 0);
1688 // unsigned long info;
1689 // !objc_class_flag_meta
1690 classFields.addInt(LongTy, 0);
1691 // long instance_size;
1692 int superInstanceSize = !SuperClassDecl ? 0 :
4
'?' condition is true
1693 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1694 // Instance size is negative for classes that have not yet had their ivar
1695 // layout calculated.
1696 classFields.addInt(LongTy,
1697 0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1698 superInstanceSize));
1699
1700 if (classDecl->all_declared_ivar_begin() == nullptr)
5
Assuming the condition is false
6
Taking false branch
1701 classFields.addNullPointer(PtrTy);
1702 else {
1703 int ivar_count = 0;
1704 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
7
Loop condition is false. Execution continues on line 1706
1705 IVD = IVD->getNextIvar()) ivar_count++;
1706 llvm::DataLayout td(&TheModule);
1707 // struct objc_ivar_list *ivars;
1708 ConstantInitBuilder b(CGM);
1709 auto ivarListBuilder = b.beginStruct();
1710 // int count;
1711 ivarListBuilder.addInt(IntTy, ivar_count);
1712 // size_t size;
1713 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1714 PtrToInt8Ty,
1715 PtrToInt8Ty,
1716 PtrToInt8Ty,
1717 Int32Ty,
1718 Int32Ty);
1719 ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1720 CGM.getContext().getCharWidth());
1721 // struct objc_ivar ivars[]
1722 auto ivarArrayBuilder = ivarListBuilder.beginArray();
1723 CodeGenTypes &Types = CGM.getTypes();
1724 for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
8
Loop condition is true. Entering loop body
1725 IVD = IVD->getNextIvar()) {
1726 auto ivarTy = IVD->getType();
1727 auto ivarBuilder = ivarArrayBuilder.beginStruct();
1728 // const char *name;
1729 ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1730 // const char *type;
1731 std::string TypeStr;
1732 //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1733 Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1734 ivarBuilder.add(MakeConstantString(TypeStr));
1735 // int *offset;
1736 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1737 uint64_t Offset = BaseOffset - superInstanceSize;
1738 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1739 std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1740 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1741 if (OffsetVar)
9
Assuming 'OffsetVar' is non-null
10
Taking true branch
1742 OffsetVar->setInitializer(OffsetValue);
1743 else
1744 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1745 false, llvm::GlobalValue::ExternalLinkage,
1746 OffsetValue, OffsetName);
1747 auto ivarVisibility =
1748 (IVD->getAccessControl() == ObjCIvarDecl::Private ||
11
Assuming the condition is false
14
'?' condition is false
1749 IVD->getAccessControl() == ObjCIvarDecl::Package ||
12
Assuming the condition is false
1750 classDecl->getVisibility() == HiddenVisibility) ?
13
Assuming the condition is false
1751 llvm::GlobalValue::HiddenVisibility :
1752 llvm::GlobalValue::DefaultVisibility;
1753 OffsetVar->setVisibility(ivarVisibility);
1754 ivarBuilder.add(OffsetVar);
1755 // Ivar size
1756 ivarBuilder.addInt(Int32Ty,
1757 td.getTypeSizeInBits(Types.ConvertType(ivarTy)) /
1758 CGM.getContext().getCharWidth());
1759 // Alignment will be stored as a base-2 log of the alignment.
1760 int align = llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
15
Calling 'Log2_32'
17
Returning from 'Log2_32'
18
'align' initialized to -1
1761 // Objects that require more than 2^64-byte alignment should be impossible!
1762 assert(align < 64)((align < 64) ? static_cast<void> (0) : __assert_fail
("align < 64", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1762, __PRETTY_FUNCTION__))
;
1763 // uint32_t flags;
1764 // Bits 0-1 are ownership.
1765 // Bit 2 indicates an extended type encoding
1766 // Bits 3-8 contain log2(aligment)
1767 ivarBuilder.addInt(Int32Ty,
1768 (align << 3) | (1<<2) |
19
The result of the left shift is undefined because the left operand is negative
1769 FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1770 ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1771 }
1772 ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1773 auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1774 CGM.getPointerAlign(), /*constant*/ false,
1775 llvm::GlobalValue::PrivateLinkage);
1776 classFields.add(ivarList);
1777 }
1778 // struct objc_method_list *methods
1779 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1780 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1781 OID->instmeth_end());
1782 for (auto *propImpl : OID->property_impls())
1783 if (propImpl->getPropertyImplementation() ==
1784 ObjCPropertyImplDecl::Synthesize) {
1785 ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1786 auto addIfExists = [&](const ObjCMethodDecl* OMD) {
1787 if (OMD)
1788 InstanceMethods.push_back(OMD);
1789 };
1790 addIfExists(prop->getGetterMethodDecl());
1791 addIfExists(prop->getSetterMethodDecl());
1792 }
1793
1794 if (InstanceMethods.size() == 0)
1795 classFields.addNullPointer(PtrTy);
1796 else
1797 classFields.addBitCast(
1798 GenerateMethodList(className, "", InstanceMethods, false),
1799 PtrTy);
1800 // void *dtable;
1801 classFields.addNullPointer(PtrTy);
1802 // IMP cxx_construct;
1803 classFields.addNullPointer(PtrTy);
1804 // IMP cxx_destruct;
1805 classFields.addNullPointer(PtrTy);
1806 // struct objc_class *subclass_list
1807 classFields.addNullPointer(PtrTy);
1808 // struct objc_class *sibling_class
1809 classFields.addNullPointer(PtrTy);
1810 // struct objc_protocol_list *protocols;
1811 SmallVector<llvm::Constant*, 16> Protocols;
1812 for (const auto *I : classDecl->protocols())
1813 Protocols.push_back(
1814 llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I),
1815 ProtocolPtrTy));
1816 if (Protocols.empty())
1817 classFields.addNullPointer(PtrTy);
1818 else
1819 classFields.add(GenerateProtocolList(Protocols));
1820 // struct reference_list *extra_data;
1821 classFields.addNullPointer(PtrTy);
1822 // long abi_version;
1823 classFields.addInt(LongTy, 0);
1824 // struct objc_property_list *properties
1825 classFields.add(GeneratePropertyList(OID, classDecl));
1826
1827 auto *classStruct =
1828 classFields.finishAndCreateGlobal(SymbolForClass(className),
1829 CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1830
1831 if (CGM.getTriple().isOSBinFormatCOFF()) {
1832 auto Storage = llvm::GlobalValue::DefaultStorageClass;
1833 if (OID->getClassInterface()->hasAttr<DLLImportAttr>())
1834 Storage = llvm::GlobalValue::DLLImportStorageClass;
1835 else if (OID->getClassInterface()->hasAttr<DLLExportAttr>())
1836 Storage = llvm::GlobalValue::DLLExportStorageClass;
1837 cast<llvm::GlobalValue>(classStruct)->setDLLStorageClass(Storage);
1838 }
1839
1840 auto *classRefSymbol = GetClassVar(className);
1841 classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1842 classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1843
1844
1845 // Resolve the class aliases, if they exist.
1846 // FIXME: Class pointer aliases shouldn't exist!
1847 if (ClassPtrAlias) {
1848 ClassPtrAlias->replaceAllUsesWith(
1849 llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1850 ClassPtrAlias->eraseFromParent();
1851 ClassPtrAlias = nullptr;
1852 }
1853 if (auto Placeholder =
1854 TheModule.getNamedGlobal(SymbolForClass(className)))
1855 if (Placeholder != classStruct) {
1856 Placeholder->replaceAllUsesWith(
1857 llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType()));
1858 Placeholder->eraseFromParent();
1859 classStruct->setName(SymbolForClass(className));
1860 }
1861 if (MetaClassPtrAlias) {
1862 MetaClassPtrAlias->replaceAllUsesWith(
1863 llvm::ConstantExpr::getBitCast(metaclass, IdTy));
1864 MetaClassPtrAlias->eraseFromParent();
1865 MetaClassPtrAlias = nullptr;
1866 }
1867 assert(classStruct->getName() == SymbolForClass(className))((classStruct->getName() == SymbolForClass(className)) ? static_cast
<void> (0) : __assert_fail ("classStruct->getName() == SymbolForClass(className)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 1867, __PRETTY_FUNCTION__))
;
1868
1869 auto classInitRef = new llvm::GlobalVariable(TheModule,
1870 classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1871 classStruct, "._OBJC_INIT_CLASS_" + className);
1872 classInitRef->setSection(sectionName<ClassSection>());
1873 CGM.addUsedGlobal(classInitRef);
1874
1875 EmittedClass = true;
1876 }
1877 public:
1878 CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
1879 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1880 PtrToObjCSuperTy, SelectorTy);
1881 // struct objc_property
1882 // {
1883 // const char *name;
1884 // const char *attributes;
1885 // const char *type;
1886 // SEL getter;
1887 // SEL setter;
1888 // }
1889 PropertyMetadataTy =
1890 llvm::StructType::get(CGM.getLLVMContext(),
1891 { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
1892 }
1893
1894};
1895
1896const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
1897{
1898"__objc_selectors",
1899"__objc_classes",
1900"__objc_class_refs",
1901"__objc_cats",
1902"__objc_protocols",
1903"__objc_protocol_refs",
1904"__objc_class_aliases",
1905"__objc_constant_string"
1906};
1907
1908/// Support for the ObjFW runtime.
1909class CGObjCObjFW: public CGObjCGNU {
1910protected:
1911 /// The GCC ABI message lookup function. Returns an IMP pointing to the
1912 /// method implementation for this message.
1913 LazyRuntimeFunction MsgLookupFn;
1914 /// stret lookup function. While this does not seem to make sense at the
1915 /// first look, this is required to call the correct forwarding function.
1916 LazyRuntimeFunction MsgLookupFnSRet;
1917 /// The GCC ABI superclass message lookup function. Takes a pointer to a
1918 /// structure describing the receiver and the class, and a selector as
1919 /// arguments. Returns the IMP for the corresponding method.
1920 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
1921
1922 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
1923 llvm::Value *cmd, llvm::MDNode *node,
1924 MessageSendInfo &MSI) override {
1925 CGBuilderTy &Builder = CGF.Builder;
1926 llvm::Value *args[] = {
1927 EnforceType(Builder, Receiver, IdTy),
1928 EnforceType(Builder, cmd, SelectorTy) };
1929
1930 llvm::CallSite imp;
1931 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
1932 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
1933 else
1934 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
1935
1936 imp->setMetadata(msgSendMDKind, node);
1937 return imp.getInstruction();
1938 }
1939
1940 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1941 llvm::Value *cmd, MessageSendInfo &MSI) override {
1942 CGBuilderTy &Builder = CGF.Builder;
1943 llvm::Value *lookupArgs[] = {
1944 EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
1945 };
1946
1947 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
1948 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
1949 else
1950 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1951 }
1952
1953 llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
1954 bool isWeak) override {
1955 if (isWeak)
1956 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
1957
1958 EmitClassRef(Name);
1959 std::string SymbolName = "_OBJC_CLASS_" + Name;
1960 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
1961 if (!ClassSymbol)
1962 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
1963 llvm::GlobalValue::ExternalLinkage,
1964 nullptr, SymbolName);
1965 return ClassSymbol;
1966 }
1967
1968public:
1969 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
1970 // IMP objc_msg_lookup(id, SEL);
1971 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
1972 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
1973 SelectorTy);
1974 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
1975 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1976 PtrToObjCSuperTy, SelectorTy);
1977 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
1978 PtrToObjCSuperTy, SelectorTy);
1979 }
1980};
1981} // end anonymous namespace
1982
1983/// Emits a reference to a dummy variable which is emitted with each class.
1984/// This ensures that a linker error will be generated when trying to link
1985/// together modules where a referenced class is not defined.
1986void CGObjCGNU::EmitClassRef(const std::string &className) {
1987 std::string symbolRef = "__objc_class_ref_" + className;
1988 // Don't emit two copies of the same symbol
1989 if (TheModule.getGlobalVariable(symbolRef))
1990 return;
1991 std::string symbolName = "__objc_class_name_" + className;
1992 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
1993 if (!ClassSymbol) {
1994 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
1995 llvm::GlobalValue::ExternalLinkage,
1996 nullptr, symbolName);
1997 }
1998 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
1999 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2000}
2001
2002CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2003 unsigned protocolClassVersion, unsigned classABI)
2004 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2005 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2006 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2007 ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2008
2009 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2010 usesSEHExceptions =
2011 cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2012
2013 CodeGenTypes &Types = CGM.getTypes();
2014 IntTy = cast<llvm::IntegerType>(
2015 Types.ConvertType(CGM.getContext().IntTy));
2016 LongTy = cast<llvm::IntegerType>(
2017 Types.ConvertType(CGM.getContext().LongTy));
2018 SizeTy = cast<llvm::IntegerType>(
2019 Types.ConvertType(CGM.getContext().getSizeType()));
2020 PtrDiffTy = cast<llvm::IntegerType>(
2021 Types.ConvertType(CGM.getContext().getPointerDiffType()));
2022 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2023
2024 Int8Ty = llvm::Type::getInt8Ty(VMContext);
2025 // C string type. Used in lots of places.
2026 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2027 ProtocolPtrTy = llvm::PointerType::getUnqual(
2028 Types.ConvertType(CGM.getContext().getObjCProtoType()));
2029
2030 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2031 Zeros[1] = Zeros[0];
2032 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2033 // Get the selector Type.
2034 QualType selTy = CGM.getContext().getObjCSelType();
2035 if (QualType() == selTy) {
2036 SelectorTy = PtrToInt8Ty;
2037 } else {
2038 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2039 }
2040
2041 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2042 PtrTy = PtrToInt8Ty;
2043
2044 Int32Ty = llvm::Type::getInt32Ty(VMContext);
2045 Int64Ty = llvm::Type::getInt64Ty(VMContext);
2046
2047 IntPtrTy =
2048 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2049
2050 // Object type
2051 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2052 ASTIdTy = CanQualType();
2053 if (UnqualIdTy != QualType()) {
2054 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2055 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2056 } else {
2057 IdTy = PtrToInt8Ty;
2058 }
2059 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2060 ProtocolTy = llvm::StructType::get(IdTy,
2061 PtrToInt8Ty, // name
2062 PtrToInt8Ty, // protocols
2063 PtrToInt8Ty, // instance methods
2064 PtrToInt8Ty, // class methods
2065 PtrToInt8Ty, // optional instance methods
2066 PtrToInt8Ty, // optional class methods
2067 PtrToInt8Ty, // properties
2068 PtrToInt8Ty);// optional properties
2069
2070 // struct objc_property_gsv1
2071 // {
2072 // const char *name;
2073 // char attributes;
2074 // char attributes2;
2075 // char unused1;
2076 // char unused2;
2077 // const char *getter_name;
2078 // const char *getter_types;
2079 // const char *setter_name;
2080 // const char *setter_types;
2081 // }
2082 PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2083 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2084 PtrToInt8Ty, PtrToInt8Ty });
2085
2086 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2087 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2088
2089 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2090
2091 // void objc_exception_throw(id);
2092 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2093 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2094 // int objc_sync_enter(id);
2095 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2096 // int objc_sync_exit(id);
2097 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2098
2099 // void objc_enumerationMutation (id)
2100 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2101
2102 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2103 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2104 PtrDiffTy, BoolTy);
2105 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2106 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2107 PtrDiffTy, IdTy, BoolTy, BoolTy);
2108 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2109 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2110 PtrDiffTy, BoolTy, BoolTy);
2111 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2112 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2113 PtrDiffTy, BoolTy, BoolTy);
2114
2115 // IMP type
2116 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2117 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2118 true));
2119
2120 const LangOptions &Opts = CGM.getLangOpts();
2121 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2122 RuntimeVersion = 10;
2123
2124 // Don't bother initialising the GC stuff unless we're compiling in GC mode
2125 if (Opts.getGC() != LangOptions::NonGC) {
2126 // This is a bit of an hack. We should sort this out by having a proper
2127 // CGObjCGNUstep subclass for GC, but we may want to really support the old
2128 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2129 // Get selectors needed in GC mode
2130 RetainSel = GetNullarySelector("retain", CGM.getContext());
2131 ReleaseSel = GetNullarySelector("release", CGM.getContext());
2132 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2133
2134 // Get functions needed in GC mode
2135
2136 // id objc_assign_ivar(id, id, ptrdiff_t);
2137 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2138 // id objc_assign_strongCast (id, id*)
2139 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2140 PtrToIdTy);
2141 // id objc_assign_global(id, id*);
2142 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2143 // id objc_assign_weak(id, id*);
2144 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2145 // id objc_read_weak(id*);
2146 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2147 // void *objc_memmove_collectable(void*, void *, size_t);
2148 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2149 SizeTy);
2150 }
2151}
2152
2153llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2154 const std::string &Name, bool isWeak) {
2155 llvm::Constant *ClassName = MakeConstantString(Name);
2156 // With the incompatible ABI, this will need to be replaced with a direct
2157 // reference to the class symbol. For the compatible nonfragile ABI we are
2158 // still performing this lookup at run time but emitting the symbol for the
2159 // class externally so that we can make the switch later.
2160 //
2161 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2162 // with memoized versions or with static references if it's safe to do so.
2163 if (!isWeak)
2164 EmitClassRef(Name);
2165
2166 llvm::Constant *ClassLookupFn =
2167 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
2168 "objc_lookup_class");
2169 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2170}
2171
2172// This has to perform the lookup every time, since posing and related
2173// techniques can modify the name -> class mapping.
2174llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2175 const ObjCInterfaceDecl *OID) {
2176 auto *Value =
2177 GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2178 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2179 CGM.setGVProperties(ClassSymbol, OID);
2180 return Value;
2181}
2182
2183llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2184 auto *Value = GetClassNamed(CGF, "NSAutoreleasePool", false);
2185 if (CGM.getTriple().isOSBinFormatCOFF()) {
2186 if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2187 IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2188 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2189 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2190
2191 const VarDecl *VD = nullptr;
2192 for (const auto &Result : DC->lookup(&II))
2193 if ((VD = dyn_cast<VarDecl>(Result)))
2194 break;
2195
2196 CGM.setGVProperties(ClassSymbol, VD);
2197 }
2198 }
2199 return Value;
2200}
2201
2202llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2203 const std::string &TypeEncoding) {
2204 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2205 llvm::GlobalAlias *SelValue = nullptr;
2206
2207 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2208 e = Types.end() ; i!=e ; i++) {
2209 if (i->first == TypeEncoding) {
2210 SelValue = i->second;
2211 break;
2212 }
2213 }
2214 if (!SelValue) {
2215 SelValue = llvm::GlobalAlias::create(
2216 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
2217 ".objc_selector_" + Sel.getAsString(), &TheModule);
2218 Types.emplace_back(TypeEncoding, SelValue);
2219 }
2220
2221 return SelValue;
2222}
2223
2224Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2225 llvm::Value *SelValue = GetSelector(CGF, Sel);
2226
2227 // Store it to a temporary. Does this satisfy the semantics of
2228 // GetAddrOfSelector? Hopefully.
2229 Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2230 CGF.getPointerAlign());
2231 CGF.Builder.CreateStore(SelValue, tmp);
2232 return tmp;
2233}
2234
2235llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2236 return GetTypedSelector(CGF, Sel, std::string());
2237}
2238
2239llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2240 const ObjCMethodDecl *Method) {
2241 std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2242 return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2243}
2244
2245llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2246 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2247 // With the old ABI, there was only one kind of catchall, which broke
2248 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
2249 // a pointer indicating object catchalls, and NULL to indicate real
2250 // catchalls
2251 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2252 return MakeConstantString("@id");
2253 } else {
2254 return nullptr;
2255 }
2256 }
2257
2258 // All other types should be Objective-C interface pointer types.
2259 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2260 assert(OPT && "Invalid @catch type.")((OPT && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("OPT && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2260, __PRETTY_FUNCTION__))
;
2261 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2262 assert(IDecl && "Invalid @catch type.")((IDecl && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("IDecl && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2262, __PRETTY_FUNCTION__))
;
2263 return MakeConstantString(IDecl->getIdentifier()->getName());
2264}
2265
2266llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2267 if (usesSEHExceptions)
2268 return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2269
2270 if (!CGM.getLangOpts().CPlusPlus)
2271 return CGObjCGNU::GetEHType(T);
2272
2273 // For Objective-C++, we want to provide the ability to catch both C++ and
2274 // Objective-C objects in the same function.
2275
2276 // There's a particular fixed type info for 'id'.
2277 if (T->isObjCIdType() ||
2278 T->isObjCQualifiedIdType()) {
2279 llvm::Constant *IDEHType =
2280 CGM.getModule().getGlobalVariable("__objc_id_type_info");
2281 if (!IDEHType)
2282 IDEHType =
2283 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2284 false,
2285 llvm::GlobalValue::ExternalLinkage,
2286 nullptr, "__objc_id_type_info");
2287 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
2288 }
2289
2290 const ObjCObjectPointerType *PT =
2291 T->getAs<ObjCObjectPointerType>();
2292 assert(PT && "Invalid @catch type.")((PT && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("PT && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2292, __PRETTY_FUNCTION__))
;
2293 const ObjCInterfaceType *IT = PT->getInterfaceType();
2294 assert(IT && "Invalid @catch type.")((IT && "Invalid @catch type.") ? static_cast<void
> (0) : __assert_fail ("IT && \"Invalid @catch type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2294, __PRETTY_FUNCTION__))
;
2295 std::string className = IT->getDecl()->getIdentifier()->getName();
2296
2297 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2298
2299 // Return the existing typeinfo if it exists
2300 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
2301 if (typeinfo)
2302 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
2303
2304 // Otherwise create it.
2305
2306 // vtable for gnustep::libobjc::__objc_class_type_info
2307 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
2308 // platform's name mangling.
2309 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2310 auto *Vtable = TheModule.getGlobalVariable(vtableName);
2311 if (!Vtable) {
2312 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2313 llvm::GlobalValue::ExternalLinkage,
2314 nullptr, vtableName);
2315 }
2316 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2317 auto *BVtable = llvm::ConstantExpr::getBitCast(
2318 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
2319 PtrToInt8Ty);
2320
2321 llvm::Constant *typeName =
2322 ExportUniqueString(className, "__objc_eh_typename_");
2323
2324 ConstantInitBuilder builder(CGM);
2325 auto fields = builder.beginStruct();
2326 fields.add(BVtable);
2327 fields.add(typeName);
2328 llvm::Constant *TI =
2329 fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2330 CGM.getPointerAlign(),
2331 /*constant*/ false,
2332 llvm::GlobalValue::LinkOnceODRLinkage);
2333 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
2334}
2335
2336/// Generate an NSConstantString object.
2337ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2338
2339 std::string Str = SL->getString().str();
2340 CharUnits Align = CGM.getPointerAlign();
2341
2342 // Look for an existing one
2343 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2344 if (old != ObjCStrings.end())
2345 return ConstantAddress(old->getValue(), Align);
2346
2347 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2348
2349 if (StringClass.empty()) StringClass = "NSConstantString";
2350
2351 std::string Sym = "_OBJC_CLASS_";
2352 Sym += StringClass;
2353
2354 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2355
2356 if (!isa)
2357 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
2358 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
2359 else if (isa->getType() != PtrToIdTy)
2360 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
2361
2362 ConstantInitBuilder Builder(CGM);
2363 auto Fields = Builder.beginStruct();
2364 Fields.add(isa);
2365 Fields.add(MakeConstantString(Str));
2366 Fields.addInt(IntTy, Str.size());
2367 llvm::Constant *ObjCStr =
2368 Fields.finishAndCreateGlobal(".objc_str", Align);
2369 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
2370 ObjCStrings[Str] = ObjCStr;
2371 ConstantStrings.push_back(ObjCStr);
2372 return ConstantAddress(ObjCStr, Align);
2373}
2374
2375///Generates a message send where the super is the receiver. This is a message
2376///send to self with special delivery semantics indicating which class's method
2377///should be called.
2378RValue
2379CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2380 ReturnValueSlot Return,
2381 QualType ResultType,
2382 Selector Sel,
2383 const ObjCInterfaceDecl *Class,
2384 bool isCategoryImpl,
2385 llvm::Value *Receiver,
2386 bool IsClassMessage,
2387 const CallArgList &CallArgs,
2388 const ObjCMethodDecl *Method) {
2389 CGBuilderTy &Builder = CGF.Builder;
2390 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2391 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2392 return RValue::get(EnforceType(Builder, Receiver,
2393 CGM.getTypes().ConvertType(ResultType)));
2394 }
2395 if (Sel == ReleaseSel) {
2396 return RValue::get(nullptr);
2397 }
2398 }
2399
2400 llvm::Value *cmd = GetSelector(CGF, Sel);
2401 CallArgList ActualArgs;
2402
2403 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2404 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2405 ActualArgs.addFrom(CallArgs);
2406
2407 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2408
2409 llvm::Value *ReceiverClass = nullptr;
2410 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2411 if (isV2ABI) {
2412 ReceiverClass = GetClassNamed(CGF,
2413 Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2414 if (IsClassMessage) {
2415 // Load the isa pointer of the superclass is this is a class method.
2416 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2417 llvm::PointerType::getUnqual(IdTy));
2418 ReceiverClass =
2419 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2420 }
2421 ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2422 } else {
2423 if (isCategoryImpl) {
2424 llvm::Constant *classLookupFunction = nullptr;
2425 if (IsClassMessage) {
2426 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2427 IdTy, PtrTy, true), "objc_get_meta_class");
2428 } else {
2429 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2430 IdTy, PtrTy, true), "objc_get_class");
2431 }
2432 ReceiverClass = Builder.CreateCall(classLookupFunction,
2433 MakeConstantString(Class->getNameAsString()));
2434 } else {
2435 // Set up global aliases for the metaclass or class pointer if they do not
2436 // already exist. These will are forward-references which will be set to
2437 // pointers to the class and metaclass structure created for the runtime
2438 // load function. To send a message to super, we look up the value of the
2439 // super_class pointer from either the class or metaclass structure.
2440 if (IsClassMessage) {
2441 if (!MetaClassPtrAlias) {
2442 MetaClassPtrAlias = llvm::GlobalAlias::create(
2443 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2444 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2445 }
2446 ReceiverClass = MetaClassPtrAlias;
2447 } else {
2448 if (!ClassPtrAlias) {
2449 ClassPtrAlias = llvm::GlobalAlias::create(
2450 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2451 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2452 }
2453 ReceiverClass = ClassPtrAlias;
2454 }
2455 }
2456 // Cast the pointer to a simplified version of the class structure
2457 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2458 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2459 llvm::PointerType::getUnqual(CastTy));
2460 // Get the superclass pointer
2461 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2462 // Load the superclass pointer
2463 ReceiverClass =
2464 Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2465 }
2466 // Construct the structure used to look up the IMP
2467 llvm::StructType *ObjCSuperTy =
2468 llvm::StructType::get(Receiver->getType(), IdTy);
2469
2470 Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2471 CGF.getPointerAlign());
2472
2473 Builder.CreateStore(Receiver,
2474 Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
2475 Builder.CreateStore(ReceiverClass,
2476 Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
2477
2478 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
2479
2480 // Get the IMP
2481 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2482 imp = EnforceType(Builder, imp, MSI.MessengerType);
2483
2484 llvm::Metadata *impMD[] = {
2485 llvm::MDString::get(VMContext, Sel.getAsString()),
2486 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2487 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2488 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2489 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2490
2491 CGCallee callee(CGCalleeInfo(), imp);
2492
2493 llvm::Instruction *call;
2494 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2495 call->setMetadata(msgSendMDKind, node);
2496 return msgRet;
2497}
2498
2499/// Generate code for a message send expression.
2500RValue
2501CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2502 ReturnValueSlot Return,
2503 QualType ResultType,
2504 Selector Sel,
2505 llvm::Value *Receiver,
2506 const CallArgList &CallArgs,
2507 const ObjCInterfaceDecl *Class,
2508 const ObjCMethodDecl *Method) {
2509 CGBuilderTy &Builder = CGF.Builder;
2510
2511 // Strip out message sends to retain / release in GC mode
2512 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2513 if (Sel == RetainSel || Sel == AutoreleaseSel) {
2514 return RValue::get(EnforceType(Builder, Receiver,
2515 CGM.getTypes().ConvertType(ResultType)));
2516 }
2517 if (Sel == ReleaseSel) {
2518 return RValue::get(nullptr);
2519 }
2520 }
2521
2522 // If the return type is something that goes in an integer register, the
2523 // runtime will handle 0 returns. For other cases, we fill in the 0 value
2524 // ourselves.
2525 //
2526 // The language spec says the result of this kind of message send is
2527 // undefined, but lots of people seem to have forgotten to read that
2528 // paragraph and insist on sending messages to nil that have structure
2529 // returns. With GCC, this generates a random return value (whatever happens
2530 // to be on the stack / in those registers at the time) on most platforms,
2531 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
2532 // the stack.
2533 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
2534 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
2535
2536 llvm::BasicBlock *startBB = nullptr;
2537 llvm::BasicBlock *messageBB = nullptr;
2538 llvm::BasicBlock *continueBB = nullptr;
2539
2540 if (!isPointerSizedReturn) {
2541 startBB = Builder.GetInsertBlock();
2542 messageBB = CGF.createBasicBlock("msgSend");
2543 continueBB = CGF.createBasicBlock("continue");
2544
2545 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2546 llvm::Constant::getNullValue(Receiver->getType()));
2547 Builder.CreateCondBr(isNil, continueBB, messageBB);
2548 CGF.EmitBlock(messageBB);
2549 }
2550
2551 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2552 llvm::Value *cmd;
2553 if (Method)
2554 cmd = GetSelector(CGF, Method);
2555 else
2556 cmd = GetSelector(CGF, Sel);
2557 cmd = EnforceType(Builder, cmd, SelectorTy);
2558 Receiver = EnforceType(Builder, Receiver, IdTy);
2559
2560 llvm::Metadata *impMD[] = {
2561 llvm::MDString::get(VMContext, Sel.getAsString()),
2562 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2563 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2564 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2565 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2566
2567 CallArgList ActualArgs;
2568 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2569 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2570 ActualArgs.addFrom(CallArgs);
2571
2572 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2573
2574 // Get the IMP to call
2575 llvm::Value *imp;
2576
2577 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2578 // functions. These are not supported on all platforms (or all runtimes on a
2579 // given platform), so we
2580 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2581 case CodeGenOptions::Legacy:
2582 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2583 break;
2584 case CodeGenOptions::Mixed:
2585 case CodeGenOptions::NonLegacy:
2586 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2587 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2588 "objc_msgSend_fpret");
2589 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2590 // The actual types here don't matter - we're going to bitcast the
2591 // function anyway
2592 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2593 "objc_msgSend_stret");
2594 } else {
2595 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2596 "objc_msgSend");
2597 }
2598 }
2599
2600 // Reset the receiver in case the lookup modified it
2601 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2602
2603 imp = EnforceType(Builder, imp, MSI.MessengerType);
2604
2605 llvm::Instruction *call;
2606 CGCallee callee(CGCalleeInfo(), imp);
2607 RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2608 call->setMetadata(msgSendMDKind, node);
2609
2610
2611 if (!isPointerSizedReturn) {
2612 messageBB = CGF.Builder.GetInsertBlock();
2613 CGF.Builder.CreateBr(continueBB);
2614 CGF.EmitBlock(continueBB);
2615 if (msgRet.isScalar()) {
2616 llvm::Value *v = msgRet.getScalarVal();
2617 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2618 phi->addIncoming(v, messageBB);
2619 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
2620 msgRet = RValue::get(phi);
2621 } else if (msgRet.isAggregate()) {
2622 Address v = msgRet.getAggregateAddress();
2623 llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
2624 llvm::Type *RetTy = v.getElementType();
2625 Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
2626 CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
2627 phi->addIncoming(v.getPointer(), messageBB);
2628 phi->addIncoming(NullVal.getPointer(), startBB);
2629 msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
2630 } else /* isComplex() */ {
2631 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2632 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2633 phi->addIncoming(v.first, messageBB);
2634 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2635 startBB);
2636 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2637 phi2->addIncoming(v.second, messageBB);
2638 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2639 startBB);
2640 msgRet = RValue::getComplex(phi, phi2);
2641 }
2642 }
2643 return msgRet;
2644}
2645
2646/// Generates a MethodList. Used in construction of a objc_class and
2647/// objc_category structures.
2648llvm::Constant *CGObjCGNU::
2649GenerateMethodList(StringRef ClassName,
2650 StringRef CategoryName,
2651 ArrayRef<const ObjCMethodDecl*> Methods,
2652 bool isClassMethodList) {
2653 if (Methods.empty())
2654 return NULLPtr;
2655
2656 ConstantInitBuilder Builder(CGM);
2657
2658 auto MethodList = Builder.beginStruct();
2659 MethodList.addNullPointer(CGM.Int8PtrTy);
2660 MethodList.addInt(Int32Ty, Methods.size());
2661
2662 // Get the method structure type.
2663 llvm::StructType *ObjCMethodTy =
2664 llvm::StructType::get(CGM.getLLVMContext(), {
2665 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2666 PtrToInt8Ty, // Method types
2667 IMPTy // Method pointer
2668 });
2669 bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2670 if (isV2ABI) {
2671 // size_t size;
2672 llvm::DataLayout td(&TheModule);
2673 MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2674 CGM.getContext().getCharWidth());
2675 ObjCMethodTy =
2676 llvm::StructType::get(CGM.getLLVMContext(), {
2677 IMPTy, // Method pointer
2678 PtrToInt8Ty, // Selector
2679 PtrToInt8Ty // Extended type encoding
2680 });
2681 } else {
2682 ObjCMethodTy =
2683 llvm::StructType::get(CGM.getLLVMContext(), {
2684 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2685 PtrToInt8Ty, // Method types
2686 IMPTy // Method pointer
2687 });
2688 }
2689 auto MethodArray = MethodList.beginArray();
2690 ASTContext &Context = CGM.getContext();
2691 for (const auto *OMD : Methods) {
2692 llvm::Constant *FnPtr =
2693 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
2694 OMD->getSelector(),
2695 isClassMethodList));
2696 assert(FnPtr && "Can't generate metadata for method that doesn't exist")((FnPtr && "Can't generate metadata for method that doesn't exist"
) ? static_cast<void> (0) : __assert_fail ("FnPtr && \"Can't generate metadata for method that doesn't exist\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 2696, __PRETTY_FUNCTION__))
;
2697 auto Method = MethodArray.beginStruct(ObjCMethodTy);
2698 if (isV2ABI) {
2699 Method.addBitCast(FnPtr, IMPTy);
2700 Method.add(GetConstantSelector(OMD->getSelector(),
2701 Context.getObjCEncodingForMethodDecl(OMD)));
2702 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2703 } else {
2704 Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2705 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2706 Method.addBitCast(FnPtr, IMPTy);
2707 }
2708 Method.finishAndAddTo(MethodArray);
2709 }
2710 MethodArray.finishAndAddTo(MethodList);
2711
2712 // Create an instance of the structure
2713 return MethodList.finishAndCreateGlobal(".objc_method_list",
2714 CGM.getPointerAlign());
2715}
2716
2717/// Generates an IvarList. Used in construction of a objc_class.
2718llvm::Constant *CGObjCGNU::
2719GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2720 ArrayRef<llvm::Constant *> IvarTypes,
2721 ArrayRef<llvm::Constant *> IvarOffsets,
2722 ArrayRef<llvm::Constant *> IvarAlign,
2723 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2724 if (IvarNames.empty())
2725 return NULLPtr;
2726
2727 ConstantInitBuilder Builder(CGM);
2728
2729 // Structure containing array count followed by array.
2730 auto IvarList = Builder.beginStruct();
2731 IvarList.addInt(IntTy, (int)IvarNames.size());
2732
2733 // Get the ivar structure type.
2734 llvm::StructType *ObjCIvarTy =
2735 llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2736
2737 // Array of ivar structures.
2738 auto Ivars = IvarList.beginArray(ObjCIvarTy);
2739 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2740 auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2741 Ivar.add(IvarNames[i]);
2742 Ivar.add(IvarTypes[i]);
2743 Ivar.add(IvarOffsets[i]);
2744 Ivar.finishAndAddTo(Ivars);
2745 }
2746 Ivars.finishAndAddTo(IvarList);
2747
2748 // Create an instance of the structure
2749 return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2750 CGM.getPointerAlign());
2751}
2752
2753/// Generate a class structure
2754llvm::Constant *CGObjCGNU::GenerateClassStructure(
2755 llvm::Constant *MetaClass,
2756 llvm::Constant *SuperClass,
2757 unsigned info,
2758 const char *Name,
2759 llvm::Constant *Version,
2760 llvm::Constant *InstanceSize,
2761 llvm::Constant *IVars,
2762 llvm::Constant *Methods,
2763 llvm::Constant *Protocols,
2764 llvm::Constant *IvarOffsets,
2765 llvm::Constant *Properties,
2766 llvm::Constant *StrongIvarBitmap,
2767 llvm::Constant *WeakIvarBitmap,
2768 bool isMeta) {
2769 // Set up the class structure
2770 // Note: Several of these are char*s when they should be ids. This is
2771 // because the runtime performs this translation on load.
2772 //
2773 // Fields marked New ABI are part of the GNUstep runtime. We emit them
2774 // anyway; the classes will still work with the GNU runtime, they will just
2775 // be ignored.
2776 llvm::StructType *ClassTy = llvm::StructType::get(
2777 PtrToInt8Ty, // isa
2778 PtrToInt8Ty, // super_class
2779 PtrToInt8Ty, // name
2780 LongTy, // version
2781 LongTy, // info
2782 LongTy, // instance_size
2783 IVars->getType(), // ivars
2784 Methods->getType(), // methods
2785 // These are all filled in by the runtime, so we pretend
2786 PtrTy, // dtable
2787 PtrTy, // subclass_list
2788 PtrTy, // sibling_class
2789 PtrTy, // protocols
2790 PtrTy, // gc_object_type
2791 // New ABI:
2792 LongTy, // abi_version
2793 IvarOffsets->getType(), // ivar_offsets
2794 Properties->getType(), // properties
2795 IntPtrTy, // strong_pointers
2796 IntPtrTy // weak_pointers
2797 );
2798
2799 ConstantInitBuilder Builder(CGM);
2800 auto Elements = Builder.beginStruct(ClassTy);
2801
2802 // Fill in the structure
2803
2804 // isa
2805 Elements.addBitCast(MetaClass, PtrToInt8Ty);
2806 // super_class
2807 Elements.add(SuperClass);
2808 // name
2809 Elements.add(MakeConstantString(Name, ".class_name"));
2810 // version
2811 Elements.addInt(LongTy, 0);
2812 // info
2813 Elements.addInt(LongTy, info);
2814 // instance_size
2815 if (isMeta) {
2816 llvm::DataLayout td(&TheModule);
2817 Elements.addInt(LongTy,
2818 td.getTypeSizeInBits(ClassTy) /
2819 CGM.getContext().getCharWidth());
2820 } else
2821 Elements.add(InstanceSize);
2822 // ivars
2823 Elements.add(IVars);
2824 // methods
2825 Elements.add(Methods);
2826 // These are all filled in by the runtime, so we pretend
2827 // dtable
2828 Elements.add(NULLPtr);
2829 // subclass_list
2830 Elements.add(NULLPtr);
2831 // sibling_class
2832 Elements.add(NULLPtr);
2833 // protocols
2834 Elements.addBitCast(Protocols, PtrTy);
2835 // gc_object_type
2836 Elements.add(NULLPtr);
2837 // abi_version
2838 Elements.addInt(LongTy, ClassABIVersion);
2839 // ivar_offsets
2840 Elements.add(IvarOffsets);
2841 // properties
2842 Elements.add(Properties);
2843 // strong_pointers
2844 Elements.add(StrongIvarBitmap);
2845 // weak_pointers
2846 Elements.add(WeakIvarBitmap);
2847 // Create an instance of the structure
2848 // This is now an externally visible symbol, so that we can speed up class
2849 // messages in the next ABI. We may already have some weak references to
2850 // this, so check and fix them properly.
2851 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
2852 std::string(Name));
2853 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
2854 llvm::Constant *Class =
2855 Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
2856 llvm::GlobalValue::ExternalLinkage);
2857 if (ClassRef) {
2858 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
2859 ClassRef->getType()));
2860 ClassRef->removeFromParent();
2861 Class->setName(ClassSym);
2862 }
2863 return Class;
2864}
2865
2866llvm::Constant *CGObjCGNU::
2867GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
2868 // Get the method structure type.
2869 llvm::StructType *ObjCMethodDescTy =
2870 llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
2871 ASTContext &Context = CGM.getContext();
2872 ConstantInitBuilder Builder(CGM);
2873 auto MethodList = Builder.beginStruct();
2874 MethodList.addInt(IntTy, Methods.size());
2875 auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
2876 for (auto *M : Methods) {
2877 auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
2878 Method.add(MakeConstantString(M->getSelector().getAsString()));
2879 Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
2880 Method.finishAndAddTo(MethodArray);
2881 }
2882 MethodArray.finishAndAddTo(MethodList);
2883 return MethodList.finishAndCreateGlobal(".objc_method_list",
2884 CGM.getPointerAlign());
2885}
2886
2887// Create the protocol list structure used in classes, categories and so on
2888llvm::Constant *
2889CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
2890
2891 ConstantInitBuilder Builder(CGM);
2892 auto ProtocolList = Builder.beginStruct();
2893 ProtocolList.add(NULLPtr);
2894 ProtocolList.addInt(LongTy, Protocols.size());
2895
2896 auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
2897 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
2898 iter != endIter ; iter++) {
2899 llvm::Constant *protocol = nullptr;
2900 llvm::StringMap<llvm::Constant*>::iterator value =
2901 ExistingProtocols.find(*iter);
2902 if (value == ExistingProtocols.end()) {
2903 protocol = GenerateEmptyProtocol(*iter);
2904 } else {
2905 protocol = value->getValue();
2906 }
2907 Elements.addBitCast(protocol, PtrToInt8Ty);
2908 }
2909 Elements.finishAndAddTo(ProtocolList);
2910 return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
2911 CGM.getPointerAlign());
2912}
2913
2914llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
2915 const ObjCProtocolDecl *PD) {
2916 llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
2917 if (!protocol)
2918 GenerateProtocol(PD);
2919 llvm::Type *T =
2920 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
2921 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
2922}
2923
2924llvm::Constant *
2925CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
2926 llvm::Constant *ProtocolList = GenerateProtocolList({});
2927 llvm::Constant *MethodList = GenerateProtocolMethodList({});
2928 MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty);
2929 // Protocols are objects containing lists of the methods implemented and
2930 // protocols adopted.
2931 ConstantInitBuilder Builder(CGM);
2932 auto Elements = Builder.beginStruct();
2933
2934 // The isa pointer must be set to a magic number so the runtime knows it's
2935 // the correct layout.
2936 Elements.add(llvm::ConstantExpr::getIntToPtr(
2937 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
2938
2939 Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
2940 Elements.add(ProtocolList); /* .protocol_list */
2941 Elements.add(MethodList); /* .instance_methods */
2942 Elements.add(MethodList); /* .class_methods */
2943 Elements.add(MethodList); /* .optional_instance_methods */
2944 Elements.add(MethodList); /* .optional_class_methods */
2945 Elements.add(NULLPtr); /* .properties */
2946 Elements.add(NULLPtr); /* .optional_properties */
2947 return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
2948 CGM.getPointerAlign());
2949}
2950
2951void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
2952 std::string ProtocolName = PD->getNameAsString();
2953
2954 // Use the protocol definition, if there is one.
2955 if (const ObjCProtocolDecl *Def = PD->getDefinition())
2956 PD = Def;
2957
2958 SmallVector<std::string, 16> Protocols;
2959 for (const auto *PI : PD->protocols())
2960 Protocols.push_back(PI->getNameAsString());
2961 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
2962 SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
2963 for (const auto *I : PD->instance_methods())
2964 if (I->isOptional())
2965 OptionalInstanceMethods.push_back(I);
2966 else
2967 InstanceMethods.push_back(I);
2968 // Collect information about class methods:
2969 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
2970 SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
2971 for (const auto *I : PD->class_methods())
2972 if (I->isOptional())
2973 OptionalClassMethods.push_back(I);
2974 else
2975 ClassMethods.push_back(I);
2976
2977 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
2978 llvm::Constant *InstanceMethodList =
2979 GenerateProtocolMethodList(InstanceMethods);
2980 llvm::Constant *ClassMethodList =
2981 GenerateProtocolMethodList(ClassMethods);
2982 llvm::Constant *OptionalInstanceMethodList =
2983 GenerateProtocolMethodList(OptionalInstanceMethods);
2984 llvm::Constant *OptionalClassMethodList =
2985 GenerateProtocolMethodList(OptionalClassMethods);
2986
2987 // Property metadata: name, attributes, isSynthesized, setter name, setter
2988 // types, getter name, getter types.
2989 // The isSynthesized value is always set to 0 in a protocol. It exists to
2990 // simplify the runtime library by allowing it to use the same data
2991 // structures for protocol metadata everywhere.
2992
2993 llvm::Constant *PropertyList =
2994 GeneratePropertyList(nullptr, PD, false, false);
2995 llvm::Constant *OptionalPropertyList =
2996 GeneratePropertyList(nullptr, PD, false, true);
2997
2998 // Protocols are objects containing lists of the methods implemented and
2999 // protocols adopted.
3000 // The isa pointer must be set to a magic number so the runtime knows it's
3001 // the correct layout.
3002 ConstantInitBuilder Builder(CGM);
3003 auto Elements = Builder.beginStruct();
3004 Elements.add(
3005 llvm::ConstantExpr::getIntToPtr(
3006 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3007 Elements.add(MakeConstantString(ProtocolName));
3008 Elements.add(ProtocolList);
3009 Elements.add(InstanceMethodList);
3010 Elements.add(ClassMethodList);
3011 Elements.add(OptionalInstanceMethodList);
3012 Elements.add(OptionalClassMethodList);
3013 Elements.add(PropertyList);
3014 Elements.add(OptionalPropertyList);
3015 ExistingProtocols[ProtocolName] =
3016 llvm::ConstantExpr::getBitCast(
3017 Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()),
3018 IdTy);
3019}
3020void CGObjCGNU::GenerateProtocolHolderCategory() {
3021 // Collect information about instance methods
3022
3023 ConstantInitBuilder Builder(CGM);
3024 auto Elements = Builder.beginStruct();
3025
3026 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3027 const std::string CategoryName = "AnotherHack";
3028 Elements.add(MakeConstantString(CategoryName));
3029 Elements.add(MakeConstantString(ClassName));
3030 // Instance method list
3031 Elements.addBitCast(GenerateMethodList(
3032 ClassName, CategoryName, {}, false), PtrTy);
3033 // Class method list
3034 Elements.addBitCast(GenerateMethodList(
3035 ClassName, CategoryName, {}, true), PtrTy);
3036
3037 // Protocol list
3038 ConstantInitBuilder ProtocolListBuilder(CGM);
3039 auto ProtocolList = ProtocolListBuilder.beginStruct();
3040 ProtocolList.add(NULLPtr);
3041 ProtocolList.addInt(LongTy, ExistingProtocols.size());
3042 auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3043 for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3044 iter != endIter ; iter++) {
3045 ProtocolElements.addBitCast(iter->getValue(), PtrTy);
3046 }
3047 ProtocolElements.finishAndAddTo(ProtocolList);
3048 Elements.addBitCast(
3049 ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3050 CGM.getPointerAlign()),
3051 PtrTy);
3052 Categories.push_back(llvm::ConstantExpr::getBitCast(
3053 Elements.finishAndCreateGlobal("", CGM.getPointerAlign()),
3054 PtrTy));
3055}
3056
3057/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3058/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3059/// bits set to their values, LSB first, while larger ones are stored in a
3060/// structure of this / form:
3061///
3062/// struct { int32_t length; int32_t values[length]; };
3063///
3064/// The values in the array are stored in host-endian format, with the least
3065/// significant bit being assumed to come first in the bitfield. Therefore, a
3066/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3067/// bitfield / with the 63rd bit set will be 1<<64.
3068llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3069 int bitCount = bits.size();
3070 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3071 if (bitCount < ptrBits) {
3072 uint64_t val = 1;
3073 for (int i=0 ; i<bitCount ; ++i) {
3074 if (bits[i]) val |= 1ULL<<(i+1);
3075 }
3076 return llvm::ConstantInt::get(IntPtrTy, val);
3077 }
3078 SmallVector<llvm::Constant *, 8> values;
3079 int v=0;
3080 while (v < bitCount) {
3081 int32_t word = 0;
3082 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
3083 if (bits[v]) word |= 1<<i;
3084 v++;
3085 }
3086 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3087 }
3088
3089 ConstantInitBuilder builder(CGM);
3090 auto fields = builder.beginStruct();
3091 fields.addInt(Int32Ty, values.size());
3092 auto array = fields.beginArray();
3093 for (auto v : values) array.add(v);
3094 array.finishAndAddTo(fields);
3095
3096 llvm::Constant *GS =
3097 fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3098 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3099 return ptr;
3100}
3101
3102void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3103 const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3104 std::string ClassName = Class->getNameAsString();
3105 std::string CategoryName = OCD->getNameAsString();
3106
3107 // Collect the names of referenced protocols
3108 SmallVector<std::string, 16> Protocols;
3109 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3110 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
3111 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
3112 E = Protos.end(); I != E; ++I)
3113 Protocols.push_back((*I)->getNameAsString());
3114
3115 ConstantInitBuilder Builder(CGM);
3116 auto Elements = Builder.beginStruct();
3117 Elements.add(MakeConstantString(CategoryName));
3118 Elements.add(MakeConstantString(ClassName));
3119 // Instance method list
3120 SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3121 InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3122 OCD->instmeth_end());
3123 Elements.addBitCast(
3124 GenerateMethodList(ClassName, CategoryName, InstanceMethods, false),
3125 PtrTy);
3126 // Class method list
3127
3128 SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3129 ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3130 OCD->classmeth_end());
3131 Elements.addBitCast(
3132 GenerateMethodList(ClassName, CategoryName, ClassMethods, true),
3133 PtrTy);
3134 // Protocol list
3135 Elements.addBitCast(GenerateProtocolList(Protocols), PtrTy);
3136 if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3137 const ObjCCategoryDecl *Category =
3138 Class->FindCategoryDeclaration(OCD->getIdentifier());
3139 if (Category) {
3140 // Instance properties
3141 Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy);
3142 // Class properties
3143 Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy);
3144 } else {
3145 Elements.addNullPointer(PtrTy);
3146 Elements.addNullPointer(PtrTy);
3147 }
3148 }
3149
3150 Categories.push_back(llvm::ConstantExpr::getBitCast(
3151 Elements.finishAndCreateGlobal(
3152 std::string(".objc_category_")+ClassName+CategoryName,
3153 CGM.getPointerAlign()),
3154 PtrTy));
3155}
3156
3157llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3158 const ObjCContainerDecl *OCD,
3159 bool isClassProperty,
3160 bool protocolOptionalProperties) {
3161
3162 SmallVector<const ObjCPropertyDecl *, 16> Properties;
3163 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3164 bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3165 ASTContext &Context = CGM.getContext();
3166
3167 std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3168 = [&](const ObjCProtocolDecl *Proto) {
3169 for (const auto *P : Proto->protocols())
3170 collectProtocolProperties(P);
3171 for (const auto *PD : Proto->properties()) {
3172 if (isClassProperty != PD->isClassProperty())
3173 continue;
3174 // Skip any properties that are declared in protocols that this class
3175 // conforms to but are not actually implemented by this class.
3176 if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3177 continue;
3178 if (!PropertySet.insert(PD->getIdentifier()).second)
3179 continue;
3180 Properties.push_back(PD);
3181 }
3182 };
3183
3184 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3185 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3186 for (auto *PD : ClassExt->properties()) {
3187 if (isClassProperty != PD->isClassProperty())
3188 continue;
3189 PropertySet.insert(PD->getIdentifier());
3190 Properties.push_back(PD);
3191 }
3192
3193 for (const auto *PD : OCD->properties()) {
3194 if (isClassProperty != PD->isClassProperty())
3195 continue;
3196 // If we're generating a list for a protocol, skip optional / required ones
3197 // when generating the other list.
3198 if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3199 continue;
3200 // Don't emit duplicate metadata for properties that were already in a
3201 // class extension.
3202 if (!PropertySet.insert(PD->getIdentifier()).second)
3203 continue;
3204
3205 Properties.push_back(PD);
3206 }
3207
3208 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3209 for (const auto *P : OID->all_referenced_protocols())
3210 collectProtocolProperties(P);
3211 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3212 for (const auto *P : CD->protocols())
3213 collectProtocolProperties(P);
3214
3215 auto numProperties = Properties.size();
3216
3217 if (numProperties == 0)
3218 return NULLPtr;
3219
3220 ConstantInitBuilder builder(CGM);
3221 auto propertyList = builder.beginStruct();
3222 auto properties = PushPropertyListHeader(propertyList, numProperties);
3223
3224 // Add all of the property methods need adding to the method list and to the
3225 // property metadata list.
3226 for (auto *property : Properties) {
3227 bool isSynthesized = false;
3228 bool isDynamic = false;
3229 if (!isProtocol) {
3230 auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3231 if (propertyImpl) {
3232 isSynthesized = (propertyImpl->getPropertyImplementation() ==
3233 ObjCPropertyImplDecl::Synthesize);
3234 isDynamic = (propertyImpl->getPropertyImplementation() ==
3235 ObjCPropertyImplDecl::Dynamic);
3236 }
3237 }
3238 PushProperty(properties, property, Container, isSynthesized, isDynamic);
3239 }
3240 properties.finishAndAddTo(propertyList);
3241
3242 return propertyList.finishAndCreateGlobal(".objc_property_list",
3243 CGM.getPointerAlign());
3244}
3245
3246void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3247 // Get the class declaration for which the alias is specified.
3248 ObjCInterfaceDecl *ClassDecl =
3249 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3250 ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3251 OAD->getNameAsString());
3252}
3253
3254void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3255 ASTContext &Context = CGM.getContext();
3256
3257 // Get the superclass name.
3258 const ObjCInterfaceDecl * SuperClassDecl =
3259 OID->getClassInterface()->getSuperClass();
3260 std::string SuperClassName;
3261 if (SuperClassDecl) {
3262 SuperClassName = SuperClassDecl->getNameAsString();
3263 EmitClassRef(SuperClassName);
3264 }
3265
3266 // Get the class name
3267 ObjCInterfaceDecl *ClassDecl =
3268 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3269 std::string ClassName = ClassDecl->getNameAsString();
3270
3271 // Emit the symbol that is used to generate linker errors if this class is
3272 // referenced in other modules but not declared.
3273 std::string classSymbolName = "__objc_class_name_" + ClassName;
3274 if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3275 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3276 } else {
3277 new llvm::GlobalVariable(TheModule, LongTy, false,
3278 llvm::GlobalValue::ExternalLinkage,
3279 llvm::ConstantInt::get(LongTy, 0),
3280 classSymbolName);
3281 }
3282
3283 // Get the size of instances.
3284 int instanceSize =
3285 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3286
3287 // Collect information about instance variables.
3288 SmallVector<llvm::Constant*, 16> IvarNames;
3289 SmallVector<llvm::Constant*, 16> IvarTypes;
3290 SmallVector<llvm::Constant*, 16> IvarOffsets;
3291 SmallVector<llvm::Constant*, 16> IvarAligns;
3292 SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3293
3294 ConstantInitBuilder IvarOffsetBuilder(CGM);
3295 auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3296 SmallVector<bool, 16> WeakIvars;
3297 SmallVector<bool, 16> StrongIvars;
3298
3299 int superInstanceSize = !SuperClassDecl ? 0 :
3300 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3301 // For non-fragile ivars, set the instance size to 0 - {the size of just this
3302 // class}. The runtime will then set this to the correct value on load.
3303 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3304 instanceSize = 0 - (instanceSize - superInstanceSize);
3305 }
3306
3307 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3308 IVD = IVD->getNextIvar()) {
3309 // Store the name
3310 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3311 // Get the type encoding for this ivar
3312 std::string TypeStr;
3313 Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3314 IvarTypes.push_back(MakeConstantString(TypeStr));
3315 IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3316 Context.getTypeSize(IVD->getType())));
3317 // Get the offset
3318 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3319 uint64_t Offset = BaseOffset;
3320 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3321 Offset = BaseOffset - superInstanceSize;
3322 }
3323 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3324 // Create the direct offset value
3325 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3326 IVD->getNameAsString();
3327
3328 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3329 if (OffsetVar) {
3330 OffsetVar->setInitializer(OffsetValue);
3331 // If this is the real definition, change its linkage type so that
3332 // different modules will use this one, rather than their private
3333 // copy.
3334 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3335 } else
3336 OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3337 false, llvm::GlobalValue::ExternalLinkage,
3338 OffsetValue, OffsetName);
3339 IvarOffsets.push_back(OffsetValue);
3340 IvarOffsetValues.add(OffsetVar);
3341 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3342 IvarOwnership.push_back(lt);
3343 switch (lt) {
3344 case Qualifiers::OCL_Strong:
3345 StrongIvars.push_back(true);
3346 WeakIvars.push_back(false);
3347 break;
3348 case Qualifiers::OCL_Weak:
3349 StrongIvars.push_back(false);
3350 WeakIvars.push_back(true);
3351 break;
3352 default:
3353 StrongIvars.push_back(false);
3354 WeakIvars.push_back(false);
3355 }
3356 }
3357 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3358 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3359 llvm::GlobalVariable *IvarOffsetArray =
3360 IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3361 CGM.getPointerAlign());
3362
3363 // Collect information about instance methods
3364 SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3365 InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3366 OID->instmeth_end());
3367
3368 SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3369 ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3370 OID->classmeth_end());
3371
3372 // Collect the same information about synthesized properties, which don't
3373 // show up in the instance method lists.
3374 for (auto *propertyImpl : OID->property_impls())
3375 if (propertyImpl->getPropertyImplementation() ==
3376 ObjCPropertyImplDecl::Synthesize) {
3377 ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
3378 auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
3379 if (accessor)
3380 InstanceMethods.push_back(accessor);
3381 };
3382 addPropertyMethod(property->getGetterMethodDecl());
3383 addPropertyMethod(property->getSetterMethodDecl());
3384 }
3385
3386 llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3387
3388 // Collect the names of referenced protocols
3389 SmallVector<std::string, 16> Protocols;
3390 for (const auto *I : ClassDecl->protocols())
3391 Protocols.push_back(I->getNameAsString());
3392
3393 // Get the superclass pointer.
3394 llvm::Constant *SuperClass;
3395 if (!SuperClassName.empty()) {
3396 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3397 } else {
3398 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3399 }
3400 // Empty vector used to construct empty method lists
3401 SmallVector<llvm::Constant*, 1> empty;
3402 // Generate the method and instance variable lists
3403 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3404 InstanceMethods, false);
3405 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3406 ClassMethods, true);
3407 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3408 IvarOffsets, IvarAligns, IvarOwnership);
3409 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3410 // we emit a symbol containing the offset for each ivar in the class. This
3411 // allows code compiled for the non-Fragile ABI to inherit from code compiled
3412 // for the legacy ABI, without causing problems. The converse is also
3413 // possible, but causes all ivar accesses to be fragile.
3414
3415 // Offset pointer for getting at the correct field in the ivar list when
3416 // setting up the alias. These are: The base address for the global, the
3417 // ivar array (second field), the ivar in this list (set for each ivar), and
3418 // the offset (third field in ivar structure)
3419 llvm::Type *IndexTy = Int32Ty;
3420 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3421 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3422 llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3423
3424 unsigned ivarIndex = 0;
3425 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3426 IVD = IVD->getNextIvar()) {
3427 const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3428 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3429 // Get the correct ivar field
3430 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3431 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3432 offsetPointerIndexes);
3433 // Get the existing variable, if one exists.
3434 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3435 if (offset) {
3436 offset->setInitializer(offsetValue);
3437 // If this is the real definition, change its linkage type so that
3438 // different modules will use this one, rather than their private
3439 // copy.
3440 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3441 } else
3442 // Add a new alias if there isn't one already.
3443 new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3444 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3445 ++ivarIndex;
3446 }
3447 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3448
3449 //Generate metaclass for class methods
3450 llvm::Constant *MetaClassStruct = GenerateClassStructure(
3451 NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3452 NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3453 GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3454 CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3455 OID->getClassInterface());
3456
3457 // Generate the class structure
3458 llvm::Constant *ClassStruct = GenerateClassStructure(
3459 MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3460 llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3461 GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3462 StrongIvarBitmap, WeakIvarBitmap);
3463 CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3464 OID->getClassInterface());
3465
3466 // Resolve the class aliases, if they exist.
3467 if (ClassPtrAlias) {
3468 ClassPtrAlias->replaceAllUsesWith(
3469 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
3470 ClassPtrAlias->eraseFromParent();
3471 ClassPtrAlias = nullptr;
3472 }
3473 if (MetaClassPtrAlias) {
3474 MetaClassPtrAlias->replaceAllUsesWith(
3475 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
3476 MetaClassPtrAlias->eraseFromParent();
3477 MetaClassPtrAlias = nullptr;
3478 }
3479
3480 // Add class structure to list to be added to the symtab later
3481 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
3482 Classes.push_back(ClassStruct);
3483}
3484
3485llvm::Function *CGObjCGNU::ModuleInitFunction() {
3486 // Only emit an ObjC load function if no Objective-C stuff has been called
3487 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3488 ExistingProtocols.empty() && SelectorTable.empty())
3489 return nullptr;
3490
3491 // Add all referenced protocols to a category.
3492 GenerateProtocolHolderCategory();
3493
3494 llvm::StructType *selStructTy =
3495 dyn_cast<llvm::StructType>(SelectorTy->getElementType());
3496 llvm::Type *selStructPtrTy = SelectorTy;
3497 if (!selStructTy) {
3498 selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3499 { PtrToInt8Ty, PtrToInt8Ty });
3500 selStructPtrTy = llvm::PointerType::getUnqual(selStructTy);
3501 }
3502
3503 // Generate statics list:
3504 llvm::Constant *statics = NULLPtr;
3505 if (!ConstantStrings.empty()) {
3506 llvm::GlobalVariable *fileStatics = [&] {
3507 ConstantInitBuilder builder(CGM);
3508 auto staticsStruct = builder.beginStruct();
3509
3510 StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3511 if (stringClass.empty()) stringClass = "NXConstantString";
3512 staticsStruct.add(MakeConstantString(stringClass,
3513 ".objc_static_class_name"));
3514
3515 auto array = staticsStruct.beginArray();
3516 array.addAll(ConstantStrings);
3517 array.add(NULLPtr);
3518 array.finishAndAddTo(staticsStruct);
3519
3520 return staticsStruct.finishAndCreateGlobal(".objc_statics",
3521 CGM.getPointerAlign());
3522 }();
3523
3524 ConstantInitBuilder builder(CGM);
3525 auto allStaticsArray = builder.beginArray(fileStatics->getType());
3526 allStaticsArray.add(fileStatics);
3527 allStaticsArray.addNullPointer(fileStatics->getType());
3528
3529 statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3530 CGM.getPointerAlign());
3531 statics = llvm::ConstantExpr::getBitCast(statics, PtrTy);
3532 }
3533
3534 // Array of classes, categories, and constant objects.
3535
3536 SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3537 unsigned selectorCount;
3538
3539 // Pointer to an array of selectors used in this module.
3540 llvm::GlobalVariable *selectorList = [&] {
3541 ConstantInitBuilder builder(CGM);
3542 auto selectors = builder.beginArray(selStructTy);
3543 auto &table = SelectorTable; // MSVC workaround
3544 std::vector<Selector> allSelectors;
3545 for (auto &entry : table)
3546 allSelectors.push_back(entry.first);
3547 llvm::sort(allSelectors);
3548
3549 for (auto &untypedSel : allSelectors) {
3550 std::string selNameStr = untypedSel.getAsString();
3551 llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3552
3553 for (TypedSelector &sel : table[untypedSel]) {
3554 llvm::Constant *selectorTypeEncoding = NULLPtr;
3555 if (!sel.first.empty())
3556 selectorTypeEncoding =
3557 MakeConstantString(sel.first, ".objc_sel_types");
3558
3559 auto selStruct = selectors.beginStruct(selStructTy);
3560 selStruct.add(selName);
3561 selStruct.add(selectorTypeEncoding);
3562 selStruct.finishAndAddTo(selectors);
3563
3564 // Store the selector alias for later replacement
3565 selectorAliases.push_back(sel.second);
3566 }
3567 }
3568
3569 // Remember the number of entries in the selector table.
3570 selectorCount = selectors.size();
3571
3572 // NULL-terminate the selector list. This should not actually be required,
3573 // because the selector list has a length field. Unfortunately, the GCC
3574 // runtime decides to ignore the length field and expects a NULL terminator,
3575 // and GCC cooperates with this by always setting the length to 0.
3576 auto selStruct = selectors.beginStruct(selStructTy);
3577 selStruct.add(NULLPtr);
3578 selStruct.add(NULLPtr);
3579 selStruct.finishAndAddTo(selectors);
3580
3581 return selectors.finishAndCreateGlobal(".objc_selector_list",
3582 CGM.getPointerAlign());
3583 }();
3584
3585 // Now that all of the static selectors exist, create pointers to them.
3586 for (unsigned i = 0; i < selectorCount; ++i) {
3587 llvm::Constant *idxs[] = {
3588 Zeros[0],
3589 llvm::ConstantInt::get(Int32Ty, i)
3590 };
3591 // FIXME: We're generating redundant loads and stores here!
3592 llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3593 selectorList->getValueType(), selectorList, idxs);
3594 // If selectors are defined as an opaque type, cast the pointer to this
3595 // type.
3596 selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy);
3597 selectorAliases[i]->replaceAllUsesWith(selPtr);
3598 selectorAliases[i]->eraseFromParent();
3599 }
3600
3601 llvm::GlobalVariable *symtab = [&] {
3602 ConstantInitBuilder builder(CGM);
3603 auto symtab = builder.beginStruct();
3604
3605 // Number of static selectors
3606 symtab.addInt(LongTy, selectorCount);
3607
3608 symtab.addBitCast(selectorList, selStructPtrTy);
3609
3610 // Number of classes defined.
3611 symtab.addInt(CGM.Int16Ty, Classes.size());
3612 // Number of categories defined
3613 symtab.addInt(CGM.Int16Ty, Categories.size());
3614
3615 // Create an array of classes, then categories, then static object instances
3616 auto classList = symtab.beginArray(PtrToInt8Ty);
3617 classList.addAll(Classes);
3618 classList.addAll(Categories);
3619 // NULL-terminated list of static object instances (mainly constant strings)
3620 classList.add(statics);
3621 classList.add(NULLPtr);
3622 classList.finishAndAddTo(symtab);
3623
3624 // Construct the symbol table.
3625 return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3626 }();
3627
3628 // The symbol table is contained in a module which has some version-checking
3629 // constants
3630 llvm::Constant *module = [&] {
3631 llvm::Type *moduleEltTys[] = {
3632 LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3633 };
3634 llvm::StructType *moduleTy =
3635 llvm::StructType::get(CGM.getLLVMContext(),
3636 makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3637
3638 ConstantInitBuilder builder(CGM);
3639 auto module = builder.beginStruct(moduleTy);
3640 // Runtime version, used for ABI compatibility checking.
3641 module.addInt(LongTy, RuntimeVersion);
3642 // sizeof(ModuleTy)
3643 module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3644
3645 // The path to the source file where this module was declared
3646 SourceManager &SM = CGM.getContext().getSourceManager();
3647 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
3648 std::string path =
3649 (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str();
3650 module.add(MakeConstantString(path, ".objc_source_file_name"));
3651 module.add(symtab);
3652
3653 if (RuntimeVersion >= 10) {
3654 switch (CGM.getLangOpts().getGC()) {
3655 case LangOptions::GCOnly:
3656 module.addInt(IntTy, 2);
3657 break;
3658 case LangOptions::NonGC:
3659 if (CGM.getLangOpts().ObjCAutoRefCount)
3660 module.addInt(IntTy, 1);
3661 else
3662 module.addInt(IntTy, 0);
3663 break;
3664 case LangOptions::HybridGC:
3665 module.addInt(IntTy, 1);
3666 break;
3667 }
3668 }
3669
3670 return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3671 }();
3672
3673 // Create the load function calling the runtime entry point with the module
3674 // structure
3675 llvm::Function * LoadFunction = llvm::Function::Create(
3676 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3677 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3678 &TheModule);
3679 llvm::BasicBlock *EntryBB =
3680 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3681 CGBuilderTy Builder(CGM, VMContext);
3682 Builder.SetInsertPoint(EntryBB);
3683
3684 llvm::FunctionType *FT =
3685 llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3686 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3687 Builder.CreateCall(Register, module);
3688
3689 if (!ClassAliases.empty()) {
3690 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3691 llvm::FunctionType *RegisterAliasTy =
3692 llvm::FunctionType::get(Builder.getVoidTy(),
3693 ArgTypes, false);
3694 llvm::Function *RegisterAlias = llvm::Function::Create(
3695 RegisterAliasTy,
3696 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3697 &TheModule);
3698 llvm::BasicBlock *AliasBB =
3699 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3700 llvm::BasicBlock *NoAliasBB =
3701 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3702
3703 // Branch based on whether the runtime provided class_registerAlias_np()
3704 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3705 llvm::Constant::getNullValue(RegisterAlias->getType()));
3706 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3707
3708 // The true branch (has alias registration function):
3709 Builder.SetInsertPoint(AliasBB);
3710 // Emit alias registration calls:
3711 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3712 iter != ClassAliases.end(); ++iter) {
3713 llvm::Constant *TheClass =
3714 TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3715 if (TheClass) {
3716 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
3717 Builder.CreateCall(RegisterAlias,
3718 {TheClass, MakeConstantString(iter->second)});
3719 }
3720 }
3721 // Jump to end:
3722 Builder.CreateBr(NoAliasBB);
3723
3724 // Missing alias registration function, just return from the function:
3725 Builder.SetInsertPoint(NoAliasBB);
3726 }
3727 Builder.CreateRetVoid();
3728
3729 return LoadFunction;
3730}
3731
3732llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3733 const ObjCContainerDecl *CD) {
3734 const ObjCCategoryImplDecl *OCD =
3735 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
3736 StringRef CategoryName = OCD ? OCD->getName() : "";
3737 StringRef ClassName = CD->getName();
3738 Selector MethodName = OMD->getSelector();
3739 bool isClassMethod = !OMD->isInstanceMethod();
3740
3741 CodeGenTypes &Types = CGM.getTypes();
3742 llvm::FunctionType *MethodTy =
3743 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3744 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
3745 MethodName, isClassMethod);
3746
3747 llvm::Function *Method
3748 = llvm::Function::Create(MethodTy,
3749 llvm::GlobalValue::InternalLinkage,
3750 FunctionName,
3751 &TheModule);
3752 return Method;
3753}
3754
3755llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
3756 return GetPropertyFn;
3757}
3758
3759llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
3760 return SetPropertyFn;
3761}
3762
3763llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3764 bool copy) {
3765 return nullptr;
3766}
3767
3768llvm::Constant *CGObjCGNU::GetGetStructFunction() {
3769 return GetStructPropertyFn;
3770}
3771
3772llvm::Constant *CGObjCGNU::GetSetStructFunction() {
3773 return SetStructPropertyFn;
3774}
3775
3776llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
3777 return nullptr;
3778}
3779
3780llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
3781 return nullptr;
3782}
3783
3784llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
3785 return EnumerationMutationFn;
3786}
3787
3788void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
3789 const ObjCAtSynchronizedStmt &S) {
3790 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
3791}
3792
3793
3794void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
3795 const ObjCAtTryStmt &S) {
3796 // Unlike the Apple non-fragile runtimes, which also uses
3797 // unwind-based zero cost exceptions, the GNU Objective C runtime's
3798 // EH support isn't a veneer over C++ EH. Instead, exception
3799 // objects are created by objc_exception_throw and destroyed by
3800 // the personality function; this avoids the need for bracketing
3801 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
3802 // (or even _Unwind_DeleteException), but probably doesn't
3803 // interoperate very well with foreign exceptions.
3804 //
3805 // In Objective-C++ mode, we actually emit something equivalent to the C++
3806 // exception handler.
3807 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
3808}
3809
3810void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
3811 const ObjCAtThrowStmt &S,
3812 bool ClearInsertionPoint) {
3813 llvm::Value *ExceptionAsObject;
3814 bool isRethrow = false;
3815
3816 if (const Expr *ThrowExpr = S.getThrowExpr()) {
3817 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
3818 ExceptionAsObject = Exception;
3819 } else {
3820 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&(((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack
.back()) && "Unexpected rethrow outside @catch block."
) ? static_cast<void> (0) : __assert_fail ("(!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && \"Unexpected rethrow outside @catch block.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 3821, __PRETTY_FUNCTION__))
3821 "Unexpected rethrow outside @catch block.")(((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack
.back()) && "Unexpected rethrow outside @catch block."
) ? static_cast<void> (0) : __assert_fail ("(!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && \"Unexpected rethrow outside @catch block.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 3821, __PRETTY_FUNCTION__))
;
3822 ExceptionAsObject = CGF.ObjCEHValueStack.back();
3823 isRethrow = true;
3824 }
3825 if (isRethrow && usesSEHExceptions) {
3826 // For SEH, ExceptionAsObject may be undef, because the catch handler is
3827 // not passed it for catchalls and so it is not visible to the catch
3828 // funclet. The real thrown object will still be live on the stack at this
3829 // point and will be rethrown. If we are explicitly rethrowing the object
3830 // that was passed into the `@catch` block, then this code path is not
3831 // reached and we will instead call `objc_exception_throw` with an explicit
3832 // argument.
3833 CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn).setDoesNotReturn();
3834 }
3835 else {
3836 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
3837 llvm::CallSite Throw =
3838 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
3839 Throw.setDoesNotReturn();
3840 }
3841 CGF.Builder.CreateUnreachable();
3842 if (ClearInsertionPoint)
3843 CGF.Builder.ClearInsertionPoint();
3844}
3845
3846llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
3847 Address AddrWeakObj) {
3848 CGBuilderTy &B = CGF.Builder;
3849 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
3850 return B.CreateCall(WeakReadFn.getType(), WeakReadFn,
3851 AddrWeakObj.getPointer());
3852}
3853
3854void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
3855 llvm::Value *src, Address dst) {
3856 CGBuilderTy &B = CGF.Builder;
3857 src = EnforceType(B, src, IdTy);
3858 dst = EnforceType(B, dst, PtrToIdTy);
3859 B.CreateCall(WeakAssignFn.getType(), WeakAssignFn,
3860 {src, dst.getPointer()});
3861}
3862
3863void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
3864 llvm::Value *src, Address dst,
3865 bool threadlocal) {
3866 CGBuilderTy &B = CGF.Builder;
3867 src = EnforceType(B, src, IdTy);
3868 dst = EnforceType(B, dst, PtrToIdTy);
3869 // FIXME. Add threadloca assign API
3870 assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI")((!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI"
) ? static_cast<void> (0) : __assert_fail ("!threadlocal && \"EmitObjCGlobalAssign - Threal Local API NYI\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 3870, __PRETTY_FUNCTION__))
;
3871 B.CreateCall(GlobalAssignFn.getType(), GlobalAssignFn,
3872 {src, dst.getPointer()});
3873}
3874
3875void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
3876 llvm::Value *src, Address dst,
3877 llvm::Value *ivarOffset) {
3878 CGBuilderTy &B = CGF.Builder;
3879 src = EnforceType(B, src, IdTy);
3880 dst = EnforceType(B, dst, IdTy);
3881 B.CreateCall(IvarAssignFn.getType(), IvarAssignFn,
3882 {src, dst.getPointer(), ivarOffset});
3883}
3884
3885void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
3886 llvm::Value *src, Address dst) {
3887 CGBuilderTy &B = CGF.Builder;
3888 src = EnforceType(B, src, IdTy);
3889 dst = EnforceType(B, dst, PtrToIdTy);
3890 B.CreateCall(StrongCastAssignFn.getType(), StrongCastAssignFn,
3891 {src, dst.getPointer()});
3892}
3893
3894void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
3895 Address DestPtr,
3896 Address SrcPtr,
3897 llvm::Value *Size) {
3898 CGBuilderTy &B = CGF.Builder;
3899 DestPtr = EnforceType(B, DestPtr, PtrTy);
3900 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
3901
3902 B.CreateCall(MemMoveFn.getType(), MemMoveFn,
3903 {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
3904}
3905
3906llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
3907 const ObjCInterfaceDecl *ID,
3908 const ObjCIvarDecl *Ivar) {
3909 const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
3910 // Emit the variable and initialize it with what we think the correct value
3911 // is. This allows code compiled with non-fragile ivars to work correctly
3912 // when linked against code which isn't (most of the time).
3913 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
3914 if (!IvarOffsetPointer)
3915 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
3916 llvm::Type::getInt32PtrTy(VMContext), false,
3917 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
3918 return IvarOffsetPointer;
3919}
3920
3921LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
3922 QualType ObjectTy,
3923 llvm::Value *BaseValue,
3924 const ObjCIvarDecl *Ivar,
3925 unsigned CVRQualifiers) {
3926 const ObjCInterfaceDecl *ID =
3927 ObjectTy->getAs<ObjCObjectType>()->getInterface();
3928 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
3929 EmitIvarOffset(CGF, ID, Ivar));
3930}
3931
3932static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
3933 const ObjCInterfaceDecl *OID,
3934 const ObjCIvarDecl *OIVD) {
3935 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
3936 next = next->getNextIvar()) {
3937 if (OIVD == next)
3938 return OID;
3939 }
3940
3941 // Otherwise check in the super class.
3942 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
3943 return FindIvarInterface(Context, Super, OIVD);
3944
3945 return nullptr;
3946}
3947
3948llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
3949 const ObjCInterfaceDecl *Interface,
3950 const ObjCIvarDecl *Ivar) {
3951 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3952 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
3953
3954 // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
3955 // and ExternalLinkage, so create a reference to the ivar global and rely on
3956 // the definition being created as part of GenerateClass.
3957 if (RuntimeVersion < 10 ||
3958 CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
3959 return CGF.Builder.CreateZExtOrBitCast(
3960 CGF.Builder.CreateAlignedLoad(
3961 Int32Ty, CGF.Builder.CreateAlignedLoad(
3962 ObjCIvarOffsetVariable(Interface, Ivar),
3963 CGF.getPointerAlign(), "ivar"),
3964 CharUnits::fromQuantity(4)),
3965 PtrDiffTy);
3966 std::string name = "__objc_ivar_offset_value_" +
3967 Interface->getNameAsString() +"." + Ivar->getNameAsString();
3968 CharUnits Align = CGM.getIntAlign();
3969 llvm::Value *Offset = TheModule.getGlobalVariable(name);
3970 if (!Offset) {
3971 auto GV = new llvm::GlobalVariable(TheModule, IntTy,
3972 false, llvm::GlobalValue::LinkOnceAnyLinkage,
3973 llvm::Constant::getNullValue(IntTy), name);
3974 GV->setAlignment(Align.getQuantity());
3975 Offset = GV;
3976 }
3977 Offset = CGF.Builder.CreateAlignedLoad(Offset, Align);
3978 if (Offset->getType() != PtrDiffTy)
3979 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
3980 return Offset;
3981 }
3982 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
3983 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
3984}
3985
3986CGObjCRuntime *
3987clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
3988 auto Runtime = CGM.getLangOpts().ObjCRuntime;
3989 switch (Runtime.getKind()) {
3990 case ObjCRuntime::GNUstep:
3991 if (Runtime.getVersion() >= VersionTuple(2, 0))
3992 return new CGObjCGNUstep2(CGM);
3993 return new CGObjCGNUstep(CGM);
3994
3995 case ObjCRuntime::GCC:
3996 return new CGObjCGCC(CGM);
3997
3998 case ObjCRuntime::ObjFW:
3999 return new CGObjCObjFW(CGM);
4000
4001 case ObjCRuntime::FragileMacOSX:
4002 case ObjCRuntime::MacOSX:
4003 case ObjCRuntime::iOS:
4004 case ObjCRuntime::WatchOS:
4005 llvm_unreachable("these runtimes are not GNU runtimes")::llvm::llvm_unreachable_internal("these runtimes are not GNU runtimes"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 4005)
;
4006 }
4007 llvm_unreachable("bad runtime")::llvm::llvm_unreachable_internal("bad runtime", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/CodeGen/CGObjCGNU.cpp"
, 4007)
;
4008}

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h

1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some functions that are useful for math stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MATHEXTRAS_H
15#define LLVM_SUPPORT_MATHEXTRAS_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/SwapByteOrder.h"
19#include <algorithm>
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <limits>
24#include <type_traits>
25
26#ifdef __ANDROID_NDK__
27#include <android/api-level.h>
28#endif
29
30#ifdef _MSC_VER
31// Declare these intrinsics manually rather including intrin.h. It's very
32// expensive, and MathExtras.h is popular.
33// #include <intrin.h>
34extern "C" {
35unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
36unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
37unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
38unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
39}
40#endif
41
42namespace llvm {
43/// The behavior an operation has on an input of 0.
44enum ZeroBehavior {
45 /// The returned value is undefined.
46 ZB_Undefined,
47 /// The returned value is numeric_limits<T>::max()
48 ZB_Max,
49 /// The returned value is numeric_limits<T>::digits
50 ZB_Width
51};
52
53namespace detail {
54template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
55 static std::size_t count(T Val, ZeroBehavior) {
56 if (!Val)
57 return std::numeric_limits<T>::digits;
58 if (Val & 0x1)
59 return 0;
60
61 // Bisection method.
62 std::size_t ZeroBits = 0;
63 T Shift = std::numeric_limits<T>::digits >> 1;
64 T Mask = std::numeric_limits<T>::max() >> Shift;
65 while (Shift) {
66 if ((Val & Mask) == 0) {
67 Val >>= Shift;
68 ZeroBits |= Shift;
69 }
70 Shift >>= 1;
71 Mask >>= Shift;
72 }
73 return ZeroBits;
74 }
75};
76
77#if __GNUC__4 >= 4 || defined(_MSC_VER)
78template <typename T> struct TrailingZerosCounter<T, 4> {
79 static std::size_t count(T Val, ZeroBehavior ZB) {
80 if (ZB != ZB_Undefined && Val == 0)
81 return 32;
82
83#if __has_builtin(__builtin_ctz)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
84 return __builtin_ctz(Val);
85#elif defined(_MSC_VER)
86 unsigned long Index;
87 _BitScanForward(&Index, Val);
88 return Index;
89#endif
90 }
91};
92
93#if !defined(_MSC_VER) || defined(_M_X64)
94template <typename T> struct TrailingZerosCounter<T, 8> {
95 static std::size_t count(T Val, ZeroBehavior ZB) {
96 if (ZB != ZB_Undefined && Val == 0)
97 return 64;
98
99#if __has_builtin(__builtin_ctzll)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
100 return __builtin_ctzll(Val);
101#elif defined(_MSC_VER)
102 unsigned long Index;
103 _BitScanForward64(&Index, Val);
104 return Index;
105#endif
106 }
107};
108#endif
109#endif
110} // namespace detail
111
112/// Count number of 0's from the least significant bit to the most
113/// stopping at the first 1.
114///
115/// Only unsigned integral types are allowed.
116///
117/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
118/// valid arguments.
119template <typename T>
120std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
121 static_assert(std::numeric_limits<T>::is_integer &&
122 !std::numeric_limits<T>::is_signed,
123 "Only unsigned integral types are allowed.");
124 return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
125}
126
127namespace detail {
128template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
129 static std::size_t count(T Val, ZeroBehavior) {
130 if (!Val)
131 return std::numeric_limits<T>::digits;
132
133 // Bisection method.
134 std::size_t ZeroBits = 0;
135 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
136 T Tmp = Val >> Shift;
137 if (Tmp)
138 Val = Tmp;
139 else
140 ZeroBits |= Shift;
141 }
142 return ZeroBits;
143 }
144};
145
146#if __GNUC__4 >= 4 || defined(_MSC_VER)
147template <typename T> struct LeadingZerosCounter<T, 4> {
148 static std::size_t count(T Val, ZeroBehavior ZB) {
149 if (ZB != ZB_Undefined && Val == 0)
150 return 32;
151
152#if __has_builtin(__builtin_clz)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
153 return __builtin_clz(Val);
154#elif defined(_MSC_VER)
155 unsigned long Index;
156 _BitScanReverse(&Index, Val);
157 return Index ^ 31;
158#endif
159 }
160};
161
162#if !defined(_MSC_VER) || defined(_M_X64)
163template <typename T> struct LeadingZerosCounter<T, 8> {
164 static std::size_t count(T Val, ZeroBehavior ZB) {
165 if (ZB != ZB_Undefined && Val == 0)
166 return 64;
167
168#if __has_builtin(__builtin_clzll)1 || LLVM_GNUC_PREREQ(4, 0, 0)((4 << 20) + (2 << 10) + 1 >= ((4) << 20
) + ((0) << 10) + (0))
169 return __builtin_clzll(Val);
170#elif defined(_MSC_VER)
171 unsigned long Index;
172 _BitScanReverse64(&Index, Val);
173 return Index ^ 63;
174#endif
175 }
176};
177#endif
178#endif
179} // namespace detail
180
181/// Count number of 0's from the most significant bit to the least
182/// stopping at the first 1.
183///
184/// Only unsigned integral types are allowed.
185///
186/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
187/// valid arguments.
188template <typename T>
189std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
190 static_assert(std::numeric_limits<T>::is_integer &&
191 !std::numeric_limits<T>::is_signed,
192 "Only unsigned integral types are allowed.");
193 return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
194}
195
196/// Get the index of the first set bit starting from the least
197/// significant bit.
198///
199/// Only unsigned integral types are allowed.
200///
201/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
202/// valid arguments.
203template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
204 if (ZB == ZB_Max && Val == 0)
205 return std::numeric_limits<T>::max();
206
207 return countTrailingZeros(Val, ZB_Undefined);
208}
209
210/// Create a bitmask with the N right-most bits set to 1, and all other
211/// bits set to 0. Only unsigned types are allowed.
212template <typename T> T maskTrailingOnes(unsigned N) {
213 static_assert(std::is_unsigned<T>::value, "Invalid type!");
214 const unsigned Bits = CHAR_BIT8 * sizeof(T);
215 assert(N <= Bits && "Invalid bit index")((N <= Bits && "Invalid bit index") ? static_cast<
void> (0) : __assert_fail ("N <= Bits && \"Invalid bit index\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 215, __PRETTY_FUNCTION__))
;
216 return N == 0 ? 0 : (T(-1) >> (Bits - N));
217}
218
219/// Create a bitmask with the N left-most bits set to 1, and all other
220/// bits set to 0. Only unsigned types are allowed.
221template <typename T> T maskLeadingOnes(unsigned N) {
222 return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
223}
224
225/// Create a bitmask with the N right-most bits set to 0, and all other
226/// bits set to 1. Only unsigned types are allowed.
227template <typename T> T maskTrailingZeros(unsigned N) {
228 return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
229}
230
231/// Create a bitmask with the N left-most bits set to 0, and all other
232/// bits set to 1. Only unsigned types are allowed.
233template <typename T> T maskLeadingZeros(unsigned N) {
234 return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N);
235}
236
237/// Get the index of the last set bit starting from the least
238/// significant bit.
239///
240/// Only unsigned integral types are allowed.
241///
242/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
243/// valid arguments.
244template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
245 if (ZB == ZB_Max && Val == 0)
246 return std::numeric_limits<T>::max();
247
248 // Use ^ instead of - because both gcc and llvm can remove the associated ^
249 // in the __builtin_clz intrinsic on x86.
250 return countLeadingZeros(Val, ZB_Undefined) ^
251 (std::numeric_limits<T>::digits - 1);
252}
253
254/// Macro compressed bit reversal table for 256 bits.
255///
256/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
257static const unsigned char BitReverseTable256[256] = {
258#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
259#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
260#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
261 R6(0), R6(2), R6(1), R6(3)
262#undef R2
263#undef R4
264#undef R6
265};
266
267/// Reverse the bits in \p Val.
268template <typename T>
269T reverseBits(T Val) {
270 unsigned char in[sizeof(Val)];
271 unsigned char out[sizeof(Val)];
272 std::memcpy(in, &Val, sizeof(Val));
273 for (unsigned i = 0; i < sizeof(Val); ++i)
274 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
275 std::memcpy(&Val, out, sizeof(Val));
276 return Val;
277}
278
279// NOTE: The following support functions use the _32/_64 extensions instead of
280// type overloading so that signed and unsigned integers can be used without
281// ambiguity.
282
283/// Return the high 32 bits of a 64 bit value.
284constexpr inline uint32_t Hi_32(uint64_t Value) {
285 return static_cast<uint32_t>(Value >> 32);
286}
287
288/// Return the low 32 bits of a 64 bit value.
289constexpr inline uint32_t Lo_32(uint64_t Value) {
290 return static_cast<uint32_t>(Value);
291}
292
293/// Make a 64-bit integer from a high / low pair of 32-bit integers.
294constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
295 return ((uint64_t)High << 32) | (uint64_t)Low;
296}
297
298/// Checks if an integer fits into the given bit width.
299template <unsigned N> constexpr inline bool isInt(int64_t x) {
300 return N >= 64 || (-(INT64_C(1)1L<<(N-1)) <= x && x < (INT64_C(1)1L<<(N-1)));
301}
302// Template specializations to get better code for common cases.
303template <> constexpr inline bool isInt<8>(int64_t x) {
304 return static_cast<int8_t>(x) == x;
305}
306template <> constexpr inline bool isInt<16>(int64_t x) {
307 return static_cast<int16_t>(x) == x;
308}
309template <> constexpr inline bool isInt<32>(int64_t x) {
310 return static_cast<int32_t>(x) == x;
311}
312
313/// Checks if a signed integer is an N bit number shifted left by S.
314template <unsigned N, unsigned S>
315constexpr inline bool isShiftedInt(int64_t x) {
316 static_assert(
317 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
318 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
319 return isInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
320}
321
322/// Checks if an unsigned integer fits into the given bit width.
323///
324/// This is written as two functions rather than as simply
325///
326/// return N >= 64 || X < (UINT64_C(1) << N);
327///
328/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
329/// left too many places.
330template <unsigned N>
331constexpr inline typename std::enable_if<(N < 64), bool>::type
332isUInt(uint64_t X) {
333 static_assert(N > 0, "isUInt<0> doesn't make sense");
334 return X < (UINT64_C(1)1UL << (N));
335}
336template <unsigned N>
337constexpr inline typename std::enable_if<N >= 64, bool>::type
338isUInt(uint64_t X) {
339 return true;
340}
341
342// Template specializations to get better code for common cases.
343template <> constexpr inline bool isUInt<8>(uint64_t x) {
344 return static_cast<uint8_t>(x) == x;
345}
346template <> constexpr inline bool isUInt<16>(uint64_t x) {
347 return static_cast<uint16_t>(x) == x;
348}
349template <> constexpr inline bool isUInt<32>(uint64_t x) {
350 return static_cast<uint32_t>(x) == x;
351}
352
353/// Checks if a unsigned integer is an N bit number shifted left by S.
354template <unsigned N, unsigned S>
355constexpr inline bool isShiftedUInt(uint64_t x) {
356 static_assert(
357 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
358 static_assert(N + S <= 64,
359 "isShiftedUInt<N, S> with N + S > 64 is too wide.");
360 // Per the two static_asserts above, S must be strictly less than 64. So
361 // 1 << S is not undefined behavior.
362 return isUInt<N + S>(x) && (x % (UINT64_C(1)1UL << S) == 0);
363}
364
365/// Gets the maximum value for a N-bit unsigned integer.
366inline uint64_t maxUIntN(uint64_t N) {
367 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 367, __PRETTY_FUNCTION__))
;
368
369 // uint64_t(1) << 64 is undefined behavior, so we can't do
370 // (uint64_t(1) << N) - 1
371 // without checking first that N != 64. But this works and doesn't have a
372 // branch.
373 return UINT64_MAX(18446744073709551615UL) >> (64 - N);
374}
375
376/// Gets the minimum value for a N-bit signed integer.
377inline int64_t minIntN(int64_t N) {
378 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 378, __PRETTY_FUNCTION__))
;
379
380 return -(UINT64_C(1)1UL<<(N-1));
381}
382
383/// Gets the maximum value for a N-bit signed integer.
384inline int64_t maxIntN(int64_t N) {
385 assert(N > 0 && N <= 64 && "integer width out of range")((N > 0 && N <= 64 && "integer width out of range"
) ? static_cast<void> (0) : __assert_fail ("N > 0 && N <= 64 && \"integer width out of range\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 385, __PRETTY_FUNCTION__))
;
386
387 // This relies on two's complement wraparound when N == 64, so we convert to
388 // int64_t only at the very end to avoid UB.
389 return (UINT64_C(1)1UL << (N - 1)) - 1;
390}
391
392/// Checks if an unsigned integer fits into the given (dynamic) bit width.
393inline bool isUIntN(unsigned N, uint64_t x) {
394 return N >= 64 || x <= maxUIntN(N);
395}
396
397/// Checks if an signed integer fits into the given (dynamic) bit width.
398inline bool isIntN(unsigned N, int64_t x) {
399 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
400}
401
402/// Return true if the argument is a non-empty sequence of ones starting at the
403/// least significant bit with the remainder zero (32 bit version).
404/// Ex. isMask_32(0x0000FFFFU) == true.
405constexpr inline bool isMask_32(uint32_t Value) {
406 return Value && ((Value + 1) & Value) == 0;
407}
408
409/// Return true if the argument is a non-empty sequence of ones starting at the
410/// least significant bit with the remainder zero (64 bit version).
411constexpr inline bool isMask_64(uint64_t Value) {
412 return Value && ((Value + 1) & Value) == 0;
413}
414
415/// Return true if the argument contains a non-empty sequence of ones with the
416/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
417constexpr inline bool isShiftedMask_32(uint32_t Value) {
418 return Value && isMask_32((Value - 1) | Value);
419}
420
421/// Return true if the argument contains a non-empty sequence of ones with the
422/// remainder zero (64 bit version.)
423constexpr inline bool isShiftedMask_64(uint64_t Value) {
424 return Value && isMask_64((Value - 1) | Value);
425}
426
427/// Return true if the argument is a power of two > 0.
428/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
429constexpr inline bool isPowerOf2_32(uint32_t Value) {
430 return Value && !(Value & (Value - 1));
431}
432
433/// Return true if the argument is a power of two > 0 (64 bit edition.)
434constexpr inline bool isPowerOf2_64(uint64_t Value) {
435 return Value && !(Value & (Value - 1));
436}
437
438/// Return a byte-swapped representation of the 16-bit argument.
439inline uint16_t ByteSwap_16(uint16_t Value) {
440 return sys::SwapByteOrder_16(Value);
441}
442
443/// Return a byte-swapped representation of the 32-bit argument.
444inline uint32_t ByteSwap_32(uint32_t Value) {
445 return sys::SwapByteOrder_32(Value);
446}
447
448/// Return a byte-swapped representation of the 64-bit argument.
449inline uint64_t ByteSwap_64(uint64_t Value) {
450 return sys::SwapByteOrder_64(Value);
451}
452
453/// Count the number of ones from the most significant bit to the first
454/// zero bit.
455///
456/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
457/// Only unsigned integral types are allowed.
458///
459/// \param ZB the behavior on an input of all ones. Only ZB_Width and
460/// ZB_Undefined are valid arguments.
461template <typename T>
462std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
463 static_assert(std::numeric_limits<T>::is_integer &&
464 !std::numeric_limits<T>::is_signed,
465 "Only unsigned integral types are allowed.");
466 return countLeadingZeros<T>(~Value, ZB);
467}
468
469/// Count the number of ones from the least significant bit to the first
470/// zero bit.
471///
472/// Ex. countTrailingOnes(0x00FF00FF) == 8.
473/// Only unsigned integral types are allowed.
474///
475/// \param ZB the behavior on an input of all ones. Only ZB_Width and
476/// ZB_Undefined are valid arguments.
477template <typename T>
478std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
479 static_assert(std::numeric_limits<T>::is_integer &&
480 !std::numeric_limits<T>::is_signed,
481 "Only unsigned integral types are allowed.");
482 return countTrailingZeros<T>(~Value, ZB);
483}
484
485namespace detail {
486template <typename T, std::size_t SizeOfT> struct PopulationCounter {
487 static unsigned count(T Value) {
488 // Generic version, forward to 32 bits.
489 static_assert(SizeOfT <= 4, "Not implemented!");
490#if __GNUC__4 >= 4
491 return __builtin_popcount(Value);
492#else
493 uint32_t v = Value;
494 v = v - ((v >> 1) & 0x55555555);
495 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
496 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
497#endif
498 }
499};
500
501template <typename T> struct PopulationCounter<T, 8> {
502 static unsigned count(T Value) {
503#if __GNUC__4 >= 4
504 return __builtin_popcountll(Value);
505#else
506 uint64_t v = Value;
507 v = v - ((v >> 1) & 0x5555555555555555ULL);
508 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
509 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
510 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
511#endif
512 }
513};
514} // namespace detail
515
516/// Count the number of set bits in a value.
517/// Ex. countPopulation(0xF000F000) = 8
518/// Returns 0 if the word is zero.
519template <typename T>
520inline unsigned countPopulation(T Value) {
521 static_assert(std::numeric_limits<T>::is_integer &&
522 !std::numeric_limits<T>::is_signed,
523 "Only unsigned integral types are allowed.");
524 return detail::PopulationCounter<T, sizeof(T)>::count(Value);
525}
526
527/// Return the log base 2 of the specified value.
528inline double Log2(double Value) {
529#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
530 return __builtin_log(Value) / __builtin_log(2.0);
531#else
532 return log2(Value);
533#endif
534}
535
536/// Return the floor log base 2 of the specified value, -1 if the value is zero.
537/// (32 bit edition.)
538/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
539inline unsigned Log2_32(uint32_t Value) {
540 return 31 - countLeadingZeros(Value);
16
Returning the value 4294967295
541}
542
543/// Return the floor log base 2 of the specified value, -1 if the value is zero.
544/// (64 bit edition.)
545inline unsigned Log2_64(uint64_t Value) {
546 return 63 - countLeadingZeros(Value);
547}
548
549/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
550/// (32 bit edition).
551/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
552inline unsigned Log2_32_Ceil(uint32_t Value) {
553 return 32 - countLeadingZeros(Value - 1);
554}
555
556/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
557/// (64 bit edition.)
558inline unsigned Log2_64_Ceil(uint64_t Value) {
559 return 64 - countLeadingZeros(Value - 1);
560}
561
562/// Return the greatest common divisor of the values using Euclid's algorithm.
563inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
564 while (B) {
565 uint64_t T = B;
566 B = A % B;
567 A = T;
568 }
569 return A;
570}
571
572/// This function takes a 64-bit integer and returns the bit equivalent double.
573inline double BitsToDouble(uint64_t Bits) {
574 double D;
575 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
576 memcpy(&D, &Bits, sizeof(Bits));
577 return D;
578}
579
580/// This function takes a 32-bit integer and returns the bit equivalent float.
581inline float BitsToFloat(uint32_t Bits) {
582 float F;
583 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
584 memcpy(&F, &Bits, sizeof(Bits));
585 return F;
586}
587
588/// This function takes a double and returns the bit equivalent 64-bit integer.
589/// Note that copying doubles around changes the bits of NaNs on some hosts,
590/// notably x86, so this routine cannot be used if these bits are needed.
591inline uint64_t DoubleToBits(double Double) {
592 uint64_t Bits;
593 static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
594 memcpy(&Bits, &Double, sizeof(Double));
595 return Bits;
596}
597
598/// This function takes a float and returns the bit equivalent 32-bit integer.
599/// Note that copying floats around changes the bits of NaNs on some hosts,
600/// notably x86, so this routine cannot be used if these bits are needed.
601inline uint32_t FloatToBits(float Float) {
602 uint32_t Bits;
603 static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
604 memcpy(&Bits, &Float, sizeof(Float));
605 return Bits;
606}
607
608/// A and B are either alignments or offsets. Return the minimum alignment that
609/// may be assumed after adding the two together.
610constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
611 // The largest power of 2 that divides both A and B.
612 //
613 // Replace "-Value" by "1+~Value" in the following commented code to avoid
614 // MSVC warning C4146
615 // return (A | B) & -(A | B);
616 return (A | B) & (1 + ~(A | B));
617}
618
619/// Aligns \c Addr to \c Alignment bytes, rounding up.
620///
621/// Alignment should be a power of two. This method rounds up, so
622/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
623inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
624 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&((Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!") ? static_cast<void>
(0) : __assert_fail ("Alignment && isPowerOf2_64((uint64_t)Alignment) && \"Alignment is not a power of two!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 625, __PRETTY_FUNCTION__))
625 "Alignment is not a power of two!")((Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!") ? static_cast<void>
(0) : __assert_fail ("Alignment && isPowerOf2_64((uint64_t)Alignment) && \"Alignment is not a power of two!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 625, __PRETTY_FUNCTION__))
;
626
627 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr)(((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr) ? static_cast
<void> (0) : __assert_fail ("(uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 627, __PRETTY_FUNCTION__))
;
628
629 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
630}
631
632/// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
633/// bytes, rounding up.
634inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
635 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
636}
637
638/// Returns the next power of two (in 64-bits) that is strictly greater than A.
639/// Returns zero on overflow.
640inline uint64_t NextPowerOf2(uint64_t A) {
641 A |= (A >> 1);
642 A |= (A >> 2);
643 A |= (A >> 4);
644 A |= (A >> 8);
645 A |= (A >> 16);
646 A |= (A >> 32);
647 return A + 1;
648}
649
650/// Returns the power of two which is less than or equal to the given value.
651/// Essentially, it is a floor operation across the domain of powers of two.
652inline uint64_t PowerOf2Floor(uint64_t A) {
653 if (!A) return 0;
654 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
655}
656
657/// Returns the power of two which is greater than or equal to the given value.
658/// Essentially, it is a ceil operation across the domain of powers of two.
659inline uint64_t PowerOf2Ceil(uint64_t A) {
660 if (!A)
661 return 0;
662 return NextPowerOf2(A - 1);
663}
664
665/// Returns the next integer (mod 2**64) that is greater than or equal to
666/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
667///
668/// If non-zero \p Skew is specified, the return value will be a minimal
669/// integer that is greater than or equal to \p Value and equal to
670/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
671/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
672///
673/// Examples:
674/// \code
675/// alignTo(5, 8) = 8
676/// alignTo(17, 8) = 24
677/// alignTo(~0LL, 8) = 0
678/// alignTo(321, 255) = 510
679///
680/// alignTo(5, 8, 7) = 7
681/// alignTo(17, 8, 1) = 17
682/// alignTo(~0LL, 8, 3) = 3
683/// alignTo(321, 255, 42) = 552
684/// \endcode
685inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
686 assert(Align != 0u && "Align can't be 0.")((Align != 0u && "Align can't be 0.") ? static_cast<
void> (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 686, __PRETTY_FUNCTION__))
;
687 Skew %= Align;
688 return (Value + Align - 1 - Skew) / Align * Align + Skew;
689}
690
691/// Returns the next integer (mod 2**64) that is greater than or equal to
692/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
693template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
694 static_assert(Align != 0u, "Align must be non-zero");
695 return (Value + Align - 1) / Align * Align;
696}
697
698/// Returns the integer ceil(Numerator / Denominator).
699inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
700 return alignTo(Numerator, Denominator) / Denominator;
701}
702
703/// \c alignTo for contexts where a constant expression is required.
704/// \sa alignTo
705///
706/// \todo FIXME: remove when \c constexpr becomes really \c constexpr
707template <uint64_t Align>
708struct AlignTo {
709 static_assert(Align != 0u, "Align must be non-zero");
710 template <uint64_t Value>
711 struct from_value {
712 static const uint64_t value = (Value + Align - 1) / Align * Align;
713 };
714};
715
716/// Returns the largest uint64_t less than or equal to \p Value and is
717/// \p Skew mod \p Align. \p Align must be non-zero
718inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
719 assert(Align != 0u && "Align can't be 0.")((Align != 0u && "Align can't be 0.") ? static_cast<
void> (0) : __assert_fail ("Align != 0u && \"Align can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 719, __PRETTY_FUNCTION__))
;
720 Skew %= Align;
721 return (Value - Skew) / Align * Align + Skew;
722}
723
724/// Returns the offset to the next integer (mod 2**64) that is greater than
725/// or equal to \p Value and is a multiple of \p Align. \p Align must be
726/// non-zero.
727inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
728 return alignTo(Value, Align) - Value;
729}
730
731/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
732/// Requires 0 < B <= 32.
733template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
734 static_assert(B > 0, "Bit width can't be 0.");
735 static_assert(B <= 32, "Bit width out of range.");
736 return int32_t(X << (32 - B)) >> (32 - B);
737}
738
739/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
740/// Requires 0 < B < 32.
741inline int32_t SignExtend32(uint32_t X, unsigned B) {
742 assert(B > 0 && "Bit width can't be 0.")((B > 0 && "Bit width can't be 0.") ? static_cast<
void> (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 742, __PRETTY_FUNCTION__))
;
743 assert(B <= 32 && "Bit width out of range.")((B <= 32 && "Bit width out of range.") ? static_cast
<void> (0) : __assert_fail ("B <= 32 && \"Bit width out of range.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 743, __PRETTY_FUNCTION__))
;
744 return int32_t(X << (32 - B)) >> (32 - B);
745}
746
747/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
748/// Requires 0 < B < 64.
749template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
750 static_assert(B > 0, "Bit width can't be 0.");
751 static_assert(B <= 64, "Bit width out of range.");
752 return int64_t(x << (64 - B)) >> (64 - B);
753}
754
755/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
756/// Requires 0 < B < 64.
757inline int64_t SignExtend64(uint64_t X, unsigned B) {
758 assert(B > 0 && "Bit width can't be 0.")((B > 0 && "Bit width can't be 0.") ? static_cast<
void> (0) : __assert_fail ("B > 0 && \"Bit width can't be 0.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 758, __PRETTY_FUNCTION__))
;
759 assert(B <= 64 && "Bit width out of range.")((B <= 64 && "Bit width out of range.") ? static_cast
<void> (0) : __assert_fail ("B <= 64 && \"Bit width out of range.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/MathExtras.h"
, 759, __PRETTY_FUNCTION__))
;
760 return int64_t(X << (64 - B)) >> (64 - B);
761}
762
763/// Subtract two unsigned integers, X and Y, of type T and return the absolute
764/// value of the result.
765template <typename T>
766typename std::enable_if<std::is_unsigned<T>::value, T>::type
767AbsoluteDifference(T X, T Y) {
768 return std::max(X, Y) - std::min(X, Y);
769}
770
771/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
772/// maximum representable value of T on overflow. ResultOverflowed indicates if
773/// the result is larger than the maximum representable value of type T.
774template <typename T>
775typename std::enable_if<std::is_unsigned<T>::value, T>::type
776SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
777 bool Dummy;
778 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
779 // Hacker's Delight, p. 29
780 T Z = X + Y;
781 Overflowed = (Z < X || Z < Y);
782 if (Overflowed)
783 return std::numeric_limits<T>::max();
784 else
785 return Z;
786}
787
788/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
789/// maximum representable value of T on overflow. ResultOverflowed indicates if
790/// the result is larger than the maximum representable value of type T.
791template <typename T>
792typename std::enable_if<std::is_unsigned<T>::value, T>::type
793SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
794 bool Dummy;
795 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
796
797 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
798 // because it fails for uint16_t (where multiplication can have undefined
799 // behavior due to promotion to int), and requires a division in addition
800 // to the multiplication.
801
802 Overflowed = false;
803
804 // Log2(Z) would be either Log2Z or Log2Z + 1.
805 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
806 // will necessarily be less than Log2Max as desired.
807 int Log2Z = Log2_64(X) + Log2_64(Y);
808 const T Max = std::numeric_limits<T>::max();
809 int Log2Max = Log2_64(Max);
810 if (Log2Z < Log2Max) {
811 return X * Y;
812 }
813 if (Log2Z > Log2Max) {
814 Overflowed = true;
815 return Max;
816 }
817
818 // We're going to use the top bit, and maybe overflow one
819 // bit past it. Multiply all but the bottom bit then add
820 // that on at the end.
821 T Z = (X >> 1) * Y;
822 if (Z & ~(Max >> 1)) {
823 Overflowed = true;
824 return Max;
825 }
826 Z <<= 1;
827 if (X & 1)
828 return SaturatingAdd(Z, Y, ResultOverflowed);
829
830 return Z;
831}
832
833/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
834/// the product. Clamp the result to the maximum representable value of T on
835/// overflow. ResultOverflowed indicates if the result is larger than the
836/// maximum representable value of type T.
837template <typename T>
838typename std::enable_if<std::is_unsigned<T>::value, T>::type
839SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
840 bool Dummy;
841 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
842
843 T Product = SaturatingMultiply(X, Y, &Overflowed);
844 if (Overflowed)
845 return Product;
846
847 return SaturatingAdd(A, Product, &Overflowed);
848}
849
850/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
851extern const float huge_valf;
852} // End llvm namespace
853
854#endif