Bug Summary

File:tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp
Warning:line 2761, column 20
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGOpenMPRuntime.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp

1//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides a class for OpenMP runtime code generation.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGOpenMPRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "clang/CodeGen/ConstantInitBuilder.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/StmtOpenMP.h"
21#include "clang/Basic/BitmaskEnum.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/Bitcode/BitcodeReader.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/GlobalValue.h"
26#include "llvm/IR/Value.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30
31using namespace clang;
32using namespace CodeGen;
33
34namespace {
35/// Base class for handling code generation inside OpenMP regions.
36class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
37public:
38 /// Kinds of OpenMP regions used in codegen.
39 enum CGOpenMPRegionKind {
40 /// Region with outlined function for standalone 'parallel'
41 /// directive.
42 ParallelOutlinedRegion,
43 /// Region with outlined function for standalone 'task' directive.
44 TaskOutlinedRegion,
45 /// Region for constructs that do not require function outlining,
46 /// like 'for', 'sections', 'atomic' etc. directives.
47 InlinedRegion,
48 /// Region with outlined function for standalone 'target' directive.
49 TargetRegion,
50 };
51
52 CGOpenMPRegionInfo(const CapturedStmt &CS,
53 const CGOpenMPRegionKind RegionKind,
54 const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
55 bool HasCancel)
56 : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
57 CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
58
59 CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
60 const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
61 bool HasCancel)
62 : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
63 Kind(Kind), HasCancel(HasCancel) {}
64
65 /// Get a variable or parameter for storing global thread id
66 /// inside OpenMP construct.
67 virtual const VarDecl *getThreadIDVariable() const = 0;
68
69 /// Emit the captured statement body.
70 void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
71
72 /// Get an LValue for the current ThreadID variable.
73 /// \return LValue for thread id variable. This LValue always has type int32*.
74 virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
75
76 virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
77
78 CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
79
80 OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
81
82 bool hasCancel() const { return HasCancel; }
83
84 static bool classof(const CGCapturedStmtInfo *Info) {
85 return Info->getKind() == CR_OpenMP;
86 }
87
88 ~CGOpenMPRegionInfo() override = default;
89
90protected:
91 CGOpenMPRegionKind RegionKind;
92 RegionCodeGenTy CodeGen;
93 OpenMPDirectiveKind Kind;
94 bool HasCancel;
95};
96
97/// API for captured statement code generation in OpenMP constructs.
98class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
99public:
100 CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
101 const RegionCodeGenTy &CodeGen,
102 OpenMPDirectiveKind Kind, bool HasCancel,
103 StringRef HelperName)
104 : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
105 HasCancel),
106 ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
107 assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.")((ThreadIDVar != nullptr && "No ThreadID in OpenMP region."
) ? static_cast<void> (0) : __assert_fail ("ThreadIDVar != nullptr && \"No ThreadID in OpenMP region.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 107, __PRETTY_FUNCTION__))
;
108 }
109
110 /// Get a variable or parameter for storing global thread id
111 /// inside OpenMP construct.
112 const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
113
114 /// Get the name of the capture helper.
115 StringRef getHelperName() const override { return HelperName; }
116
117 static bool classof(const CGCapturedStmtInfo *Info) {
118 return CGOpenMPRegionInfo::classof(Info) &&
119 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
120 ParallelOutlinedRegion;
121 }
122
123private:
124 /// A variable or parameter storing global thread id for OpenMP
125 /// constructs.
126 const VarDecl *ThreadIDVar;
127 StringRef HelperName;
128};
129
130/// API for captured statement code generation in OpenMP constructs.
131class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
132public:
133 class UntiedTaskActionTy final : public PrePostActionTy {
134 bool Untied;
135 const VarDecl *PartIDVar;
136 const RegionCodeGenTy UntiedCodeGen;
137 llvm::SwitchInst *UntiedSwitch = nullptr;
138
139 public:
140 UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
141 const RegionCodeGenTy &UntiedCodeGen)
142 : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
143 void Enter(CodeGenFunction &CGF) override {
144 if (Untied) {
145 // Emit task switching point.
146 LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
147 CGF.GetAddrOfLocalVar(PartIDVar),
148 PartIDVar->getType()->castAs<PointerType>());
149 llvm::Value *Res =
150 CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
151 llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
152 UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
153 CGF.EmitBlock(DoneBB);
154 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
155 CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
156 UntiedSwitch->addCase(CGF.Builder.getInt32(0),
157 CGF.Builder.GetInsertBlock());
158 emitUntiedSwitch(CGF);
159 }
160 }
161 void emitUntiedSwitch(CodeGenFunction &CGF) const {
162 if (Untied) {
163 LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
164 CGF.GetAddrOfLocalVar(PartIDVar),
165 PartIDVar->getType()->castAs<PointerType>());
166 CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
167 PartIdLVal);
168 UntiedCodeGen(CGF);
169 CodeGenFunction::JumpDest CurPoint =
170 CGF.getJumpDestInCurrentScope(".untied.next.");
171 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
172 CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
173 UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
174 CGF.Builder.GetInsertBlock());
175 CGF.EmitBranchThroughCleanup(CurPoint);
176 CGF.EmitBlock(CurPoint.getBlock());
177 }
178 }
179 unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
180 };
181 CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
182 const VarDecl *ThreadIDVar,
183 const RegionCodeGenTy &CodeGen,
184 OpenMPDirectiveKind Kind, bool HasCancel,
185 const UntiedTaskActionTy &Action)
186 : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
187 ThreadIDVar(ThreadIDVar), Action(Action) {
188 assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.")((ThreadIDVar != nullptr && "No ThreadID in OpenMP region."
) ? static_cast<void> (0) : __assert_fail ("ThreadIDVar != nullptr && \"No ThreadID in OpenMP region.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 188, __PRETTY_FUNCTION__))
;
189 }
190
191 /// Get a variable or parameter for storing global thread id
192 /// inside OpenMP construct.
193 const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
194
195 /// Get an LValue for the current ThreadID variable.
196 LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
197
198 /// Get the name of the capture helper.
199 StringRef getHelperName() const override { return ".omp_outlined."; }
200
201 void emitUntiedSwitch(CodeGenFunction &CGF) override {
202 Action.emitUntiedSwitch(CGF);
203 }
204
205 static bool classof(const CGCapturedStmtInfo *Info) {
206 return CGOpenMPRegionInfo::classof(Info) &&
207 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
208 TaskOutlinedRegion;
209 }
210
211private:
212 /// A variable or parameter storing global thread id for OpenMP
213 /// constructs.
214 const VarDecl *ThreadIDVar;
215 /// Action for emitting code for untied tasks.
216 const UntiedTaskActionTy &Action;
217};
218
219/// API for inlined captured statement code generation in OpenMP
220/// constructs.
221class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
222public:
223 CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
224 const RegionCodeGenTy &CodeGen,
225 OpenMPDirectiveKind Kind, bool HasCancel)
226 : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
227 OldCSI(OldCSI),
228 OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
229
230 // Retrieve the value of the context parameter.
231 llvm::Value *getContextValue() const override {
232 if (OuterRegionInfo)
233 return OuterRegionInfo->getContextValue();
234 llvm_unreachable("No context value for inlined OpenMP region")::llvm::llvm_unreachable_internal("No context value for inlined OpenMP region"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 234)
;
235 }
236
237 void setContextValue(llvm::Value *V) override {
238 if (OuterRegionInfo) {
239 OuterRegionInfo->setContextValue(V);
240 return;
241 }
242 llvm_unreachable("No context value for inlined OpenMP region")::llvm::llvm_unreachable_internal("No context value for inlined OpenMP region"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 242)
;
243 }
244
245 /// Lookup the captured field decl for a variable.
246 const FieldDecl *lookup(const VarDecl *VD) const override {
247 if (OuterRegionInfo)
248 return OuterRegionInfo->lookup(VD);
249 // If there is no outer outlined region,no need to lookup in a list of
250 // captured variables, we can use the original one.
251 return nullptr;
252 }
253
254 FieldDecl *getThisFieldDecl() const override {
255 if (OuterRegionInfo)
256 return OuterRegionInfo->getThisFieldDecl();
257 return nullptr;
258 }
259
260 /// Get a variable or parameter for storing global thread id
261 /// inside OpenMP construct.
262 const VarDecl *getThreadIDVariable() const override {
263 if (OuterRegionInfo)
264 return OuterRegionInfo->getThreadIDVariable();
265 return nullptr;
266 }
267
268 /// Get an LValue for the current ThreadID variable.
269 LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
270 if (OuterRegionInfo)
271 return OuterRegionInfo->getThreadIDVariableLValue(CGF);
272 llvm_unreachable("No LValue for inlined OpenMP construct")::llvm::llvm_unreachable_internal("No LValue for inlined OpenMP construct"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 272)
;
273 }
274
275 /// Get the name of the capture helper.
276 StringRef getHelperName() const override {
277 if (auto *OuterRegionInfo = getOldCSI())
278 return OuterRegionInfo->getHelperName();
279 llvm_unreachable("No helper name for inlined OpenMP construct")::llvm::llvm_unreachable_internal("No helper name for inlined OpenMP construct"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 279)
;
280 }
281
282 void emitUntiedSwitch(CodeGenFunction &CGF) override {
283 if (OuterRegionInfo)
284 OuterRegionInfo->emitUntiedSwitch(CGF);
285 }
286
287 CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
288
289 static bool classof(const CGCapturedStmtInfo *Info) {
290 return CGOpenMPRegionInfo::classof(Info) &&
291 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
292 }
293
294 ~CGOpenMPInlinedRegionInfo() override = default;
295
296private:
297 /// CodeGen info about outer OpenMP region.
298 CodeGenFunction::CGCapturedStmtInfo *OldCSI;
299 CGOpenMPRegionInfo *OuterRegionInfo;
300};
301
302/// API for captured statement code generation in OpenMP target
303/// constructs. For this captures, implicit parameters are used instead of the
304/// captured fields. The name of the target region has to be unique in a given
305/// application so it is provided by the client, because only the client has
306/// the information to generate that.
307class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
308public:
309 CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
310 const RegionCodeGenTy &CodeGen, StringRef HelperName)
311 : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
312 /*HasCancel=*/false),
313 HelperName(HelperName) {}
314
315 /// This is unused for target regions because each starts executing
316 /// with a single thread.
317 const VarDecl *getThreadIDVariable() const override { return nullptr; }
318
319 /// Get the name of the capture helper.
320 StringRef getHelperName() const override { return HelperName; }
321
322 static bool classof(const CGCapturedStmtInfo *Info) {
323 return CGOpenMPRegionInfo::classof(Info) &&
324 cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
325 }
326
327private:
328 StringRef HelperName;
329};
330
331static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
332 llvm_unreachable("No codegen for expressions")::llvm::llvm_unreachable_internal("No codegen for expressions"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 332)
;
333}
334/// API for generation of expressions captured in a innermost OpenMP
335/// region.
336class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
337public:
338 CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
339 : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
340 OMPD_unknown,
341 /*HasCancel=*/false),
342 PrivScope(CGF) {
343 // Make sure the globals captured in the provided statement are local by
344 // using the privatization logic. We assume the same variable is not
345 // captured more than once.
346 for (const auto &C : CS.captures()) {
347 if (!C.capturesVariable() && !C.capturesVariableByCopy())
348 continue;
349
350 const VarDecl *VD = C.getCapturedVar();
351 if (VD->isLocalVarDeclOrParm())
352 continue;
353
354 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
355 /*RefersToEnclosingVariableOrCapture=*/false,
356 VD->getType().getNonReferenceType(), VK_LValue,
357 C.getLocation());
358 PrivScope.addPrivate(
359 VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(); });
360 }
361 (void)PrivScope.Privatize();
362 }
363
364 /// Lookup the captured field decl for a variable.
365 const FieldDecl *lookup(const VarDecl *VD) const override {
366 if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
367 return FD;
368 return nullptr;
369 }
370
371 /// Emit the captured statement body.
372 void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
373 llvm_unreachable("No body for expressions")::llvm::llvm_unreachable_internal("No body for expressions", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 373)
;
374 }
375
376 /// Get a variable or parameter for storing global thread id
377 /// inside OpenMP construct.
378 const VarDecl *getThreadIDVariable() const override {
379 llvm_unreachable("No thread id for expressions")::llvm::llvm_unreachable_internal("No thread id for expressions"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 379)
;
380 }
381
382 /// Get the name of the capture helper.
383 StringRef getHelperName() const override {
384 llvm_unreachable("No helper name for expressions")::llvm::llvm_unreachable_internal("No helper name for expressions"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 384)
;
385 }
386
387 static bool classof(const CGCapturedStmtInfo *Info) { return false; }
388
389private:
390 /// Private scope to capture global variables.
391 CodeGenFunction::OMPPrivateScope PrivScope;
392};
393
394/// RAII for emitting code of OpenMP constructs.
395class InlinedOpenMPRegionRAII {
396 CodeGenFunction &CGF;
397 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
398 FieldDecl *LambdaThisCaptureField = nullptr;
399 const CodeGen::CGBlockInfo *BlockInfo = nullptr;
400
401public:
402 /// Constructs region for combined constructs.
403 /// \param CodeGen Code generation sequence for combined directives. Includes
404 /// a list of functions used for code generation of implicitly inlined
405 /// regions.
406 InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
407 OpenMPDirectiveKind Kind, bool HasCancel)
408 : CGF(CGF) {
409 // Start emission for the construct.
410 CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
411 CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
412 std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
413 LambdaThisCaptureField = CGF.LambdaThisCaptureField;
414 CGF.LambdaThisCaptureField = nullptr;
415 BlockInfo = CGF.BlockInfo;
416 CGF.BlockInfo = nullptr;
417 }
418
419 ~InlinedOpenMPRegionRAII() {
420 // Restore original CapturedStmtInfo only if we're done with code emission.
421 auto *OldCSI =
422 cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
423 delete CGF.CapturedStmtInfo;
424 CGF.CapturedStmtInfo = OldCSI;
425 std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
426 CGF.LambdaThisCaptureField = LambdaThisCaptureField;
427 CGF.BlockInfo = BlockInfo;
428 }
429};
430
431/// Values for bit flags used in the ident_t to describe the fields.
432/// All enumeric elements are named and described in accordance with the code
433/// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
434enum OpenMPLocationFlags : unsigned {
435 /// Use trampoline for internal microtask.
436 OMP_IDENT_IMD = 0x01,
437 /// Use c-style ident structure.
438 OMP_IDENT_KMPC = 0x02,
439 /// Atomic reduction option for kmpc_reduce.
440 OMP_ATOMIC_REDUCE = 0x10,
441 /// Explicit 'barrier' directive.
442 OMP_IDENT_BARRIER_EXPL = 0x20,
443 /// Implicit barrier in code.
444 OMP_IDENT_BARRIER_IMPL = 0x40,
445 /// Implicit barrier in 'for' directive.
446 OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
447 /// Implicit barrier in 'sections' directive.
448 OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
449 /// Implicit barrier in 'single' directive.
450 OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
451 /// Call of __kmp_for_static_init for static loop.
452 OMP_IDENT_WORK_LOOP = 0x200,
453 /// Call of __kmp_for_static_init for sections.
454 OMP_IDENT_WORK_SECTIONS = 0x400,
455 /// Call of __kmp_for_static_init for distribute.
456 OMP_IDENT_WORK_DISTRIBUTE = 0x800,
457 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)LLVM_BITMASK_LARGEST_ENUMERATOR = OMP_IDENT_WORK_DISTRIBUTE
458};
459
460namespace {
461LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE()using ::llvm::BitmaskEnumDetail::operator~; using ::llvm::BitmaskEnumDetail
::operator|; using ::llvm::BitmaskEnumDetail::operator&; using
::llvm::BitmaskEnumDetail::operator^; using ::llvm::BitmaskEnumDetail
::operator|=; using ::llvm::BitmaskEnumDetail::operator&=
; using ::llvm::BitmaskEnumDetail::operator^=
;
462/// Values for bit flags for marking which requires clauses have been used.
463enum OpenMPOffloadingRequiresDirFlags : int64_t {
464 /// flag undefined.
465 OMP_REQ_UNDEFINED = 0x000,
466 /// no requires clause present.
467 OMP_REQ_NONE = 0x001,
468 /// reverse_offload clause.
469 OMP_REQ_REVERSE_OFFLOAD = 0x002,
470 /// unified_address clause.
471 OMP_REQ_UNIFIED_ADDRESS = 0x004,
472 /// unified_shared_memory clause.
473 OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
474 /// dynamic_allocators clause.
475 OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
476 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)LLVM_BITMASK_LARGEST_ENUMERATOR = OMP_REQ_DYNAMIC_ALLOCATORS
477};
478} // anonymous namespace
479
480/// Describes ident structure that describes a source location.
481/// All descriptions are taken from
482/// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
483/// Original structure:
484/// typedef struct ident {
485/// kmp_int32 reserved_1; /**< might be used in Fortran;
486/// see above */
487/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
488/// KMP_IDENT_KMPC identifies this union
489/// member */
490/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
491/// see above */
492///#if USE_ITT_BUILD
493/// /* but currently used for storing
494/// region-specific ITT */
495/// /* contextual information. */
496///#endif /* USE_ITT_BUILD */
497/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
498/// C++ */
499/// char const *psource; /**< String describing the source location.
500/// The string is composed of semi-colon separated
501// fields which describe the source file,
502/// the function and a pair of line numbers that
503/// delimit the construct.
504/// */
505/// } ident_t;
506enum IdentFieldIndex {
507 /// might be used in Fortran
508 IdentField_Reserved_1,
509 /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
510 IdentField_Flags,
511 /// Not really used in Fortran any more
512 IdentField_Reserved_2,
513 /// Source[4] in Fortran, do not use for C++
514 IdentField_Reserved_3,
515 /// String describing the source location. The string is composed of
516 /// semi-colon separated fields which describe the source file, the function
517 /// and a pair of line numbers that delimit the construct.
518 IdentField_PSource
519};
520
521/// Schedule types for 'omp for' loops (these enumerators are taken from
522/// the enum sched_type in kmp.h).
523enum OpenMPSchedType {
524 /// Lower bound for default (unordered) versions.
525 OMP_sch_lower = 32,
526 OMP_sch_static_chunked = 33,
527 OMP_sch_static = 34,
528 OMP_sch_dynamic_chunked = 35,
529 OMP_sch_guided_chunked = 36,
530 OMP_sch_runtime = 37,
531 OMP_sch_auto = 38,
532 /// static with chunk adjustment (e.g., simd)
533 OMP_sch_static_balanced_chunked = 45,
534 /// Lower bound for 'ordered' versions.
535 OMP_ord_lower = 64,
536 OMP_ord_static_chunked = 65,
537 OMP_ord_static = 66,
538 OMP_ord_dynamic_chunked = 67,
539 OMP_ord_guided_chunked = 68,
540 OMP_ord_runtime = 69,
541 OMP_ord_auto = 70,
542 OMP_sch_default = OMP_sch_static,
543 /// dist_schedule types
544 OMP_dist_sch_static_chunked = 91,
545 OMP_dist_sch_static = 92,
546 /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
547 /// Set if the monotonic schedule modifier was present.
548 OMP_sch_modifier_monotonic = (1 << 29),
549 /// Set if the nonmonotonic schedule modifier was present.
550 OMP_sch_modifier_nonmonotonic = (1 << 30),
551};
552
553enum OpenMPRTLFunction {
554 /// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
555 /// kmpc_micro microtask, ...);
556 OMPRTL__kmpc_fork_call,
557 /// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
558 /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
559 OMPRTL__kmpc_threadprivate_cached,
560 /// Call to void __kmpc_threadprivate_register( ident_t *,
561 /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
562 OMPRTL__kmpc_threadprivate_register,
563 // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
564 OMPRTL__kmpc_global_thread_num,
565 // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
566 // kmp_critical_name *crit);
567 OMPRTL__kmpc_critical,
568 // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
569 // global_tid, kmp_critical_name *crit, uintptr_t hint);
570 OMPRTL__kmpc_critical_with_hint,
571 // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
572 // kmp_critical_name *crit);
573 OMPRTL__kmpc_end_critical,
574 // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
575 // global_tid);
576 OMPRTL__kmpc_cancel_barrier,
577 // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
578 OMPRTL__kmpc_barrier,
579 // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
580 OMPRTL__kmpc_for_static_fini,
581 // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
582 // global_tid);
583 OMPRTL__kmpc_serialized_parallel,
584 // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
585 // global_tid);
586 OMPRTL__kmpc_end_serialized_parallel,
587 // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
588 // kmp_int32 num_threads);
589 OMPRTL__kmpc_push_num_threads,
590 // Call to void __kmpc_flush(ident_t *loc);
591 OMPRTL__kmpc_flush,
592 // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
593 OMPRTL__kmpc_master,
594 // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
595 OMPRTL__kmpc_end_master,
596 // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
597 // int end_part);
598 OMPRTL__kmpc_omp_taskyield,
599 // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
600 OMPRTL__kmpc_single,
601 // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
602 OMPRTL__kmpc_end_single,
603 // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
604 // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
605 // kmp_routine_entry_t *task_entry);
606 OMPRTL__kmpc_omp_task_alloc,
607 // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
608 // new_task);
609 OMPRTL__kmpc_omp_task,
610 // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
611 // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
612 // kmp_int32 didit);
613 OMPRTL__kmpc_copyprivate,
614 // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
615 // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
616 // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
617 OMPRTL__kmpc_reduce,
618 // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
619 // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
620 // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
621 // *lck);
622 OMPRTL__kmpc_reduce_nowait,
623 // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
624 // kmp_critical_name *lck);
625 OMPRTL__kmpc_end_reduce,
626 // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
627 // kmp_critical_name *lck);
628 OMPRTL__kmpc_end_reduce_nowait,
629 // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
630 // kmp_task_t * new_task);
631 OMPRTL__kmpc_omp_task_begin_if0,
632 // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
633 // kmp_task_t * new_task);
634 OMPRTL__kmpc_omp_task_complete_if0,
635 // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
636 OMPRTL__kmpc_ordered,
637 // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
638 OMPRTL__kmpc_end_ordered,
639 // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
640 // global_tid);
641 OMPRTL__kmpc_omp_taskwait,
642 // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
643 OMPRTL__kmpc_taskgroup,
644 // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
645 OMPRTL__kmpc_end_taskgroup,
646 // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
647 // int proc_bind);
648 OMPRTL__kmpc_push_proc_bind,
649 // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
650 // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
651 // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
652 OMPRTL__kmpc_omp_task_with_deps,
653 // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
654 // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
655 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
656 OMPRTL__kmpc_omp_wait_deps,
657 // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
658 // global_tid, kmp_int32 cncl_kind);
659 OMPRTL__kmpc_cancellationpoint,
660 // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
661 // kmp_int32 cncl_kind);
662 OMPRTL__kmpc_cancel,
663 // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
664 // kmp_int32 num_teams, kmp_int32 thread_limit);
665 OMPRTL__kmpc_push_num_teams,
666 // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
667 // microtask, ...);
668 OMPRTL__kmpc_fork_teams,
669 // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
670 // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
671 // sched, kmp_uint64 grainsize, void *task_dup);
672 OMPRTL__kmpc_taskloop,
673 // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
674 // num_dims, struct kmp_dim *dims);
675 OMPRTL__kmpc_doacross_init,
676 // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
677 OMPRTL__kmpc_doacross_fini,
678 // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
679 // *vec);
680 OMPRTL__kmpc_doacross_post,
681 // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
682 // *vec);
683 OMPRTL__kmpc_doacross_wait,
684 // Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
685 // *data);
686 OMPRTL__kmpc_task_reduction_init,
687 // Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
688 // *d);
689 OMPRTL__kmpc_task_reduction_get_th_data,
690 // Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
691 OMPRTL__kmpc_alloc,
692 // Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
693 OMPRTL__kmpc_free,
694
695 //
696 // Offloading related calls
697 //
698 // Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
699 // size);
700 OMPRTL__kmpc_push_target_tripcount,
701 // Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
702 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
703 // *arg_types);
704 OMPRTL__tgt_target,
705 // Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
706 // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
707 // *arg_types);
708 OMPRTL__tgt_target_nowait,
709 // Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
710 // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
711 // *arg_types, int32_t num_teams, int32_t thread_limit);
712 OMPRTL__tgt_target_teams,
713 // Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
714 // *host_ptr, int32_t arg_num, void** args_base, void **args, size_t
715 // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
716 OMPRTL__tgt_target_teams_nowait,
717 // Call to void __tgt_register_requires(int64_t flags);
718 OMPRTL__tgt_register_requires,
719 // Call to void __tgt_register_lib(__tgt_bin_desc *desc);
720 OMPRTL__tgt_register_lib,
721 // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
722 OMPRTL__tgt_unregister_lib,
723 // Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
724 // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
725 OMPRTL__tgt_target_data_begin,
726 // Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
727 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
728 // *arg_types);
729 OMPRTL__tgt_target_data_begin_nowait,
730 // Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
731 // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
732 OMPRTL__tgt_target_data_end,
733 // Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
734 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
735 // *arg_types);
736 OMPRTL__tgt_target_data_end_nowait,
737 // Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
738 // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
739 OMPRTL__tgt_target_data_update,
740 // Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
741 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
742 // *arg_types);
743 OMPRTL__tgt_target_data_update_nowait,
744};
745
746/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
747/// region.
748class CleanupTy final : public EHScopeStack::Cleanup {
749 PrePostActionTy *Action;
750
751public:
752 explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
753 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
754 if (!CGF.HaveInsertPoint())
755 return;
756 Action->Exit(CGF);
757 }
758};
759
760} // anonymous namespace
761
762void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
763 CodeGenFunction::RunCleanupsScope Scope(CGF);
764 if (PrePostAction) {
765 CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
766 Callback(CodeGen, CGF, *PrePostAction);
767 } else {
768 PrePostActionTy Action;
769 Callback(CodeGen, CGF, Action);
770 }
771}
772
773/// Check if the combiner is a call to UDR combiner and if it is so return the
774/// UDR decl used for reduction.
775static const OMPDeclareReductionDecl *
776getReductionInit(const Expr *ReductionOp) {
777 if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
778 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
779 if (const auto *DRE =
780 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
781 if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
782 return DRD;
783 return nullptr;
784}
785
786static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
787 const OMPDeclareReductionDecl *DRD,
788 const Expr *InitOp,
789 Address Private, Address Original,
790 QualType Ty) {
791 if (DRD->getInitializer()) {
792 std::pair<llvm::Function *, llvm::Function *> Reduction =
793 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
794 const auto *CE = cast<CallExpr>(InitOp);
795 const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
796 const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
797 const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
798 const auto *LHSDRE =
799 cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
800 const auto *RHSDRE =
801 cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
802 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
803 PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
804 [=]() { return Private; });
805 PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
806 [=]() { return Original; });
807 (void)PrivateScope.Privatize();
808 RValue Func = RValue::get(Reduction.second);
809 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
810 CGF.EmitIgnoredExpr(InitOp);
811 } else {
812 llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
813 std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
814 auto *GV = new llvm::GlobalVariable(
815 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
816 llvm::GlobalValue::PrivateLinkage, Init, Name);
817 LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
818 RValue InitRVal;
819 switch (CGF.getEvaluationKind(Ty)) {
820 case TEK_Scalar:
821 InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
822 break;
823 case TEK_Complex:
824 InitRVal =
825 RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
826 break;
827 case TEK_Aggregate:
828 InitRVal = RValue::getAggregate(LV.getAddress());
829 break;
830 }
831 OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
832 CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
833 CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
834 /*IsInitializer=*/false);
835 }
836}
837
838/// Emit initialization of arrays of complex types.
839/// \param DestAddr Address of the array.
840/// \param Type Type of array.
841/// \param Init Initial expression of array.
842/// \param SrcAddr Address of the original array.
843static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
844 QualType Type, bool EmitDeclareReductionInit,
845 const Expr *Init,
846 const OMPDeclareReductionDecl *DRD,
847 Address SrcAddr = Address::invalid()) {
848 // Perform element-by-element initialization.
849 QualType ElementTy;
850
851 // Drill down to the base element type on both arrays.
852 const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
853 llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
854 DestAddr =
855 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
856 if (DRD)
857 SrcAddr =
858 CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
859
860 llvm::Value *SrcBegin = nullptr;
861 if (DRD)
862 SrcBegin = SrcAddr.getPointer();
863 llvm::Value *DestBegin = DestAddr.getPointer();
864 // Cast from pointer to array type to pointer to single element.
865 llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
866 // The basic structure here is a while-do loop.
867 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
868 llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
869 llvm::Value *IsEmpty =
870 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
871 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
872
873 // Enter the loop body, making that address the current address.
874 llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
875 CGF.EmitBlock(BodyBB);
876
877 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
878
879 llvm::PHINode *SrcElementPHI = nullptr;
880 Address SrcElementCurrent = Address::invalid();
881 if (DRD) {
882 SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
883 "omp.arraycpy.srcElementPast");
884 SrcElementPHI->addIncoming(SrcBegin, EntryBB);
885 SrcElementCurrent =
886 Address(SrcElementPHI,
887 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
888 }
889 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
890 DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
891 DestElementPHI->addIncoming(DestBegin, EntryBB);
892 Address DestElementCurrent =
893 Address(DestElementPHI,
894 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
895
896 // Emit copy.
897 {
898 CodeGenFunction::RunCleanupsScope InitScope(CGF);
899 if (EmitDeclareReductionInit) {
900 emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
901 SrcElementCurrent, ElementTy);
902 } else
903 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
904 /*IsInitializer=*/false);
905 }
906
907 if (DRD) {
908 // Shift the address forward by one element.
909 llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
910 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
911 SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
912 }
913
914 // Shift the address forward by one element.
915 llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
916 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
917 // Check whether we've reached the end.
918 llvm::Value *Done =
919 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
920 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
921 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
922
923 // Done.
924 CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
925}
926
927LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
928 return CGF.EmitOMPSharedLValue(E);
929}
930
931LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
932 const Expr *E) {
933 if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
934 return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
935 return LValue();
936}
937
938void ReductionCodeGen::emitAggregateInitialization(
939 CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
940 const OMPDeclareReductionDecl *DRD) {
941 // Emit VarDecl with copy init for arrays.
942 // Get the address of the original variable captured in current
943 // captured region.
944 const auto *PrivateVD =
945 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
946 bool EmitDeclareReductionInit =
947 DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
948 EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
949 EmitDeclareReductionInit,
950 EmitDeclareReductionInit ? ClausesData[N].ReductionOp
951 : PrivateVD->getInit(),
952 DRD, SharedLVal.getAddress());
953}
954
955ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
956 ArrayRef<const Expr *> Privates,
957 ArrayRef<const Expr *> ReductionOps) {
958 ClausesData.reserve(Shareds.size());
959 SharedAddresses.reserve(Shareds.size());
960 Sizes.reserve(Shareds.size());
961 BaseDecls.reserve(Shareds.size());
962 auto IPriv = Privates.begin();
963 auto IRed = ReductionOps.begin();
964 for (const Expr *Ref : Shareds) {
965 ClausesData.emplace_back(Ref, *IPriv, *IRed);
966 std::advance(IPriv, 1);
967 std::advance(IRed, 1);
968 }
969}
970
971void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
972 assert(SharedAddresses.size() == N &&((SharedAddresses.size() == N && "Number of generated lvalues must be exactly N."
) ? static_cast<void> (0) : __assert_fail ("SharedAddresses.size() == N && \"Number of generated lvalues must be exactly N.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 973, __PRETTY_FUNCTION__))
973 "Number of generated lvalues must be exactly N.")((SharedAddresses.size() == N && "Number of generated lvalues must be exactly N."
) ? static_cast<void> (0) : __assert_fail ("SharedAddresses.size() == N && \"Number of generated lvalues must be exactly N.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 973, __PRETTY_FUNCTION__))
;
974 LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
975 LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
976 SharedAddresses.emplace_back(First, Second);
977}
978
979void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
980 const auto *PrivateVD =
981 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
982 QualType PrivateType = PrivateVD->getType();
983 bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
984 if (!PrivateType->isVariablyModifiedType()) {
985 Sizes.emplace_back(
986 CGF.getTypeSize(
987 SharedAddresses[N].first.getType().getNonReferenceType()),
988 nullptr);
989 return;
990 }
991 llvm::Value *Size;
992 llvm::Value *SizeInChars;
993 auto *ElemType =
994 cast<llvm::PointerType>(SharedAddresses[N].first.getPointer()->getType())
995 ->getElementType();
996 auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
997 if (AsArraySection) {
998 Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(),
999 SharedAddresses[N].first.getPointer());
1000 Size = CGF.Builder.CreateNUWAdd(
1001 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
1002 SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
1003 } else {
1004 SizeInChars = CGF.getTypeSize(
1005 SharedAddresses[N].first.getType().getNonReferenceType());
1006 Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
1007 }
1008 Sizes.emplace_back(SizeInChars, Size);
1009 CodeGenFunction::OpaqueValueMapping OpaqueMap(
1010 CGF,
1011 cast<OpaqueValueExpr>(
1012 CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
1013 RValue::get(Size));
1014 CGF.EmitVariablyModifiedType(PrivateType);
1015}
1016
1017void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
1018 llvm::Value *Size) {
1019 const auto *PrivateVD =
1020 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1021 QualType PrivateType = PrivateVD->getType();
1022 if (!PrivateType->isVariablyModifiedType()) {
1023 assert(!Size && !Sizes[N].second &&((!Size && !Sizes[N].second && "Size should be nullptr for non-variably modified reduction "
"items.") ? static_cast<void> (0) : __assert_fail ("!Size && !Sizes[N].second && \"Size should be nullptr for non-variably modified reduction \" \"items.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1025, __PRETTY_FUNCTION__))
1024 "Size should be nullptr for non-variably modified reduction "((!Size && !Sizes[N].second && "Size should be nullptr for non-variably modified reduction "
"items.") ? static_cast<void> (0) : __assert_fail ("!Size && !Sizes[N].second && \"Size should be nullptr for non-variably modified reduction \" \"items.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1025, __PRETTY_FUNCTION__))
1025 "items.")((!Size && !Sizes[N].second && "Size should be nullptr for non-variably modified reduction "
"items.") ? static_cast<void> (0) : __assert_fail ("!Size && !Sizes[N].second && \"Size should be nullptr for non-variably modified reduction \" \"items.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1025, __PRETTY_FUNCTION__))
;
1026 return;
1027 }
1028 CodeGenFunction::OpaqueValueMapping OpaqueMap(
1029 CGF,
1030 cast<OpaqueValueExpr>(
1031 CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
1032 RValue::get(Size));
1033 CGF.EmitVariablyModifiedType(PrivateType);
1034}
1035
1036void ReductionCodeGen::emitInitialization(
1037 CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
1038 llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
1039 assert(SharedAddresses.size() > N && "No variable was generated")((SharedAddresses.size() > N && "No variable was generated"
) ? static_cast<void> (0) : __assert_fail ("SharedAddresses.size() > N && \"No variable was generated\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1039, __PRETTY_FUNCTION__))
;
1040 const auto *PrivateVD =
1041 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1042 const OMPDeclareReductionDecl *DRD =
1043 getReductionInit(ClausesData[N].ReductionOp);
1044 QualType PrivateType = PrivateVD->getType();
1045 PrivateAddr = CGF.Builder.CreateElementBitCast(
1046 PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1047 QualType SharedType = SharedAddresses[N].first.getType();
1048 SharedLVal = CGF.MakeAddrLValue(
1049 CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(),
1050 CGF.ConvertTypeForMem(SharedType)),
1051 SharedType, SharedAddresses[N].first.getBaseInfo(),
1052 CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
1053 if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
1054 emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
1055 } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1056 emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
1057 PrivateAddr, SharedLVal.getAddress(),
1058 SharedLVal.getType());
1059 } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
1060 !CGF.isTrivialInitializer(PrivateVD->getInit())) {
1061 CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
1062 PrivateVD->getType().getQualifiers(),
1063 /*IsInitializer=*/false);
1064 }
1065}
1066
1067bool ReductionCodeGen::needCleanups(unsigned N) {
1068 const auto *PrivateVD =
1069 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1070 QualType PrivateType = PrivateVD->getType();
1071 QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1072 return DTorKind != QualType::DK_none;
1073}
1074
1075void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
1076 Address PrivateAddr) {
1077 const auto *PrivateVD =
1078 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1079 QualType PrivateType = PrivateVD->getType();
1080 QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1081 if (needCleanups(N)) {
1082 PrivateAddr = CGF.Builder.CreateElementBitCast(
1083 PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1084 CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
1085 }
1086}
1087
1088static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1089 LValue BaseLV) {
1090 BaseTy = BaseTy.getNonReferenceType();
1091 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1092 !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1093 if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
1094 BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
1095 } else {
1096 LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy);
1097 BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
1098 }
1099 BaseTy = BaseTy->getPointeeType();
1100 }
1101 return CGF.MakeAddrLValue(
1102 CGF.Builder.CreateElementBitCast(BaseLV.getAddress(),
1103 CGF.ConvertTypeForMem(ElTy)),
1104 BaseLV.getType(), BaseLV.getBaseInfo(),
1105 CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
1106}
1107
1108static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1109 llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
1110 llvm::Value *Addr) {
1111 Address Tmp = Address::invalid();
1112 Address TopTmp = Address::invalid();
1113 Address MostTopTmp = Address::invalid();
1114 BaseTy = BaseTy.getNonReferenceType();
1115 while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1116 !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1117 Tmp = CGF.CreateMemTemp(BaseTy);
1118 if (TopTmp.isValid())
1119 CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
1120 else
1121 MostTopTmp = Tmp;
1122 TopTmp = Tmp;
1123 BaseTy = BaseTy->getPointeeType();
1124 }
1125 llvm::Type *Ty = BaseLVType;
1126 if (Tmp.isValid())
1127 Ty = Tmp.getElementType();
1128 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
1129 if (Tmp.isValid()) {
1130 CGF.Builder.CreateStore(Addr, Tmp);
1131 return MostTopTmp;
1132 }
1133 return Address(Addr, BaseLVAlignment);
1134}
1135
1136static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
1137 const VarDecl *OrigVD = nullptr;
1138 if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
1139 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
1140 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
1141 Base = TempOASE->getBase()->IgnoreParenImpCasts();
1142 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1143 Base = TempASE->getBase()->IgnoreParenImpCasts();
1144 DE = cast<DeclRefExpr>(Base);
1145 OrigVD = cast<VarDecl>(DE->getDecl());
1146 } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
1147 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
1148 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1149 Base = TempASE->getBase()->IgnoreParenImpCasts();
1150 DE = cast<DeclRefExpr>(Base);
1151 OrigVD = cast<VarDecl>(DE->getDecl());
1152 }
1153 return OrigVD;
1154}
1155
1156Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
1157 Address PrivateAddr) {
1158 const DeclRefExpr *DE;
1159 if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
1160 BaseDecls.emplace_back(OrigVD);
1161 LValue OriginalBaseLValue = CGF.EmitLValue(DE);
1162 LValue BaseLValue =
1163 loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1164 OriginalBaseLValue);
1165 llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1166 BaseLValue.getPointer(), SharedAddresses[N].first.getPointer());
1167 llvm::Value *PrivatePointer =
1168 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1169 PrivateAddr.getPointer(),
1170 SharedAddresses[N].first.getAddress().getType());
1171 llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1172 return castToBase(CGF, OrigVD->getType(),
1173 SharedAddresses[N].first.getType(),
1174 OriginalBaseLValue.getAddress().getType(),
1175 OriginalBaseLValue.getAlignment(), Ptr);
1176 }
1177 BaseDecls.emplace_back(
1178 cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1179 return PrivateAddr;
1180}
1181
1182bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1183 const OMPDeclareReductionDecl *DRD =
1184 getReductionInit(ClausesData[N].ReductionOp);
1185 return DRD && DRD->getInitializer();
1186}
1187
1188LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1189 return CGF.EmitLoadOfPointerLValue(
1190 CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1191 getThreadIDVariable()->getType()->castAs<PointerType>());
1192}
1193
1194void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1195 if (!CGF.HaveInsertPoint())
1196 return;
1197 // 1.2.2 OpenMP Language Terminology
1198 // Structured block - An executable statement with a single entry at the
1199 // top and a single exit at the bottom.
1200 // The point of exit cannot be a branch out of the structured block.
1201 // longjmp() and throw() must not violate the entry/exit criteria.
1202 CGF.EHStack.pushTerminate();
1203 CodeGen(CGF);
1204 CGF.EHStack.popTerminate();
1205}
1206
1207LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1208 CodeGenFunction &CGF) {
1209 return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1210 getThreadIDVariable()->getType(),
1211 AlignmentSource::Decl);
1212}
1213
1214static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1215 QualType FieldTy) {
1216 auto *Field = FieldDecl::Create(
1217 C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1218 C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1219 /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1220 Field->setAccess(AS_public);
1221 DC->addDecl(Field);
1222 return Field;
1223}
1224
1225CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1226 StringRef Separator)
1227 : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1228 OffloadEntriesInfoManager(CGM) {
1229 ASTContext &C = CGM.getContext();
1230 RecordDecl *RD = C.buildImplicitRecord("ident_t");
1231 QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
1232 RD->startDefinition();
1233 // reserved_1
1234 addFieldToRecordDecl(C, RD, KmpInt32Ty);
1235 // flags
1236 addFieldToRecordDecl(C, RD, KmpInt32Ty);
1237 // reserved_2
1238 addFieldToRecordDecl(C, RD, KmpInt32Ty);
1239 // reserved_3
1240 addFieldToRecordDecl(C, RD, KmpInt32Ty);
1241 // psource
1242 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
1243 RD->completeDefinition();
1244 IdentQTy = C.getRecordType(RD);
1245 IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
1246 KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1247
1248 loadOffloadInfoMetadata();
1249}
1250
1251void CGOpenMPRuntime::clear() {
1252 InternalVars.clear();
1253 // Clean non-target variable declarations possibly used only in debug info.
1254 for (const auto &Data : EmittedNonTargetVariables) {
1255 if (!Data.getValue().pointsToAliveValue())
1256 continue;
1257 auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1258 if (!GV)
1259 continue;
1260 if (!GV->isDeclaration() || GV->getNumUses() > 0)
1261 continue;
1262 GV->eraseFromParent();
1263 }
1264}
1265
1266std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1267 SmallString<128> Buffer;
1268 llvm::raw_svector_ostream OS(Buffer);
1269 StringRef Sep = FirstSeparator;
1270 for (StringRef Part : Parts) {
1271 OS << Sep << Part;
1272 Sep = Separator;
1273 }
1274 return OS.str();
1275}
1276
1277static llvm::Function *
1278emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1279 const Expr *CombinerInitializer, const VarDecl *In,
1280 const VarDecl *Out, bool IsCombiner) {
1281 // void .omp_combiner.(Ty *in, Ty *out);
1282 ASTContext &C = CGM.getContext();
1283 QualType PtrTy = C.getPointerType(Ty).withRestrict();
1284 FunctionArgList Args;
1285 ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1286 /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1287 ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1288 /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1289 Args.push_back(&OmpOutParm);
1290 Args.push_back(&OmpInParm);
1291 const CGFunctionInfo &FnInfo =
1292 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1293 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1294 std::string Name = CGM.getOpenMPRuntime().getName(
1295 {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1296 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1297 Name, &CGM.getModule());
1298 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1299 if (CGM.getLangOpts().Optimize) {
1300 Fn->removeFnAttr(llvm::Attribute::NoInline);
1301 Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1302 Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1303 }
1304 CodeGenFunction CGF(CGM);
1305 // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1306 // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1307 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1308 Out->getLocation());
1309 CodeGenFunction::OMPPrivateScope Scope(CGF);
1310 Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1311 Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1312 return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1313 .getAddress();
1314 });
1315 Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1316 Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1317 return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1318 .getAddress();
1319 });
1320 (void)Scope.Privatize();
1321 if (!IsCombiner && Out->hasInit() &&
1322 !CGF.isTrivialInitializer(Out->getInit())) {
1323 CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1324 Out->getType().getQualifiers(),
1325 /*IsInitializer=*/true);
1326 }
1327 if (CombinerInitializer)
1328 CGF.EmitIgnoredExpr(CombinerInitializer);
1329 Scope.ForceCleanup();
1330 CGF.FinishFunction();
1331 return Fn;
1332}
1333
1334void CGOpenMPRuntime::emitUserDefinedReduction(
1335 CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1336 if (UDRMap.count(D) > 0)
1337 return;
1338 llvm::Function *Combiner = emitCombinerOrInitializer(
1339 CGM, D->getType(), D->getCombiner(),
1340 cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1341 cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1342 /*IsCombiner=*/true);
1343 llvm::Function *Initializer = nullptr;
1344 if (const Expr *Init = D->getInitializer()) {
1345 Initializer = emitCombinerOrInitializer(
1346 CGM, D->getType(),
1347 D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1348 : nullptr,
1349 cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1350 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1351 /*IsCombiner=*/false);
1352 }
1353 UDRMap.try_emplace(D, Combiner, Initializer);
1354 if (CGF) {
1355 auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1356 Decls.second.push_back(D);
1357 }
1358}
1359
1360std::pair<llvm::Function *, llvm::Function *>
1361CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1362 auto I = UDRMap.find(D);
1363 if (I != UDRMap.end())
1364 return I->second;
1365 emitUserDefinedReduction(/*CGF=*/nullptr, D);
1366 return UDRMap.lookup(D);
1367}
1368
1369static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1370 CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1371 const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1372 const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1373 assert(ThreadIDVar->getType()->isPointerType() &&((ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 *"
) ? static_cast<void> (0) : __assert_fail ("ThreadIDVar->getType()->isPointerType() && \"thread id variable must be of type kmp_int32 *\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1374, __PRETTY_FUNCTION__))
1374 "thread id variable must be of type kmp_int32 *")((ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 *"
) ? static_cast<void> (0) : __assert_fail ("ThreadIDVar->getType()->isPointerType() && \"thread id variable must be of type kmp_int32 *\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1374, __PRETTY_FUNCTION__))
;
1375 CodeGenFunction CGF(CGM, true);
1376 bool HasCancel = false;
1377 if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1378 HasCancel = OPD->hasCancel();
1379 else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1380 HasCancel = OPSD->hasCancel();
1381 else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1382 HasCancel = OPFD->hasCancel();
1383 else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1384 HasCancel = OPFD->hasCancel();
1385 else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1386 HasCancel = OPFD->hasCancel();
1387 else if (const auto *OPFD =
1388 dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1389 HasCancel = OPFD->hasCancel();
1390 else if (const auto *OPFD =
1391 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1392 HasCancel = OPFD->hasCancel();
1393 CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1394 HasCancel, OutlinedHelperName);
1395 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1396 return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
1397}
1398
1399llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1400 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1401 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1402 const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1403 return emitParallelOrTeamsOutlinedFunction(
1404 CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1405}
1406
1407llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1408 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1409 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1410 const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1411 return emitParallelOrTeamsOutlinedFunction(
1412 CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1413}
1414
1415llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1416 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1417 const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1418 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1419 bool Tied, unsigned &NumberOfParts) {
1420 auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1421 PrePostActionTy &) {
1422 llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1423 llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1424 llvm::Value *TaskArgs[] = {
1425 UpLoc, ThreadID,
1426 CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1427 TaskTVar->getType()->castAs<PointerType>())
1428 .getPointer()};
1429 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
1430 };
1431 CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1432 UntiedCodeGen);
1433 CodeGen.setAction(Action);
1434 assert(!ThreadIDVar->getType()->isPointerType() &&((!ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 for tasks"
) ? static_cast<void> (0) : __assert_fail ("!ThreadIDVar->getType()->isPointerType() && \"thread id variable must be of type kmp_int32 for tasks\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1435, __PRETTY_FUNCTION__))
1435 "thread id variable must be of type kmp_int32 for tasks")((!ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 for tasks"
) ? static_cast<void> (0) : __assert_fail ("!ThreadIDVar->getType()->isPointerType() && \"thread id variable must be of type kmp_int32 for tasks\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1435, __PRETTY_FUNCTION__))
;
1436 const OpenMPDirectiveKind Region =
1437 isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1438 : OMPD_task;
1439 const CapturedStmt *CS = D.getCapturedStmt(Region);
1440 const auto *TD = dyn_cast<OMPTaskDirective>(&D);
1441 CodeGenFunction CGF(CGM, true);
1442 CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1443 InnermostKind,
1444 TD ? TD->hasCancel() : false, Action);
1445 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1446 llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1447 if (!Tied)
1448 NumberOfParts = Action.getNumberOfParts();
1449 return Res;
1450}
1451
1452static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1453 const RecordDecl *RD, const CGRecordLayout &RL,
1454 ArrayRef<llvm::Constant *> Data) {
1455 llvm::StructType *StructTy = RL.getLLVMType();
1456 unsigned PrevIdx = 0;
1457 ConstantInitBuilder CIBuilder(CGM);
1458 auto DI = Data.begin();
1459 for (const FieldDecl *FD : RD->fields()) {
1460 unsigned Idx = RL.getLLVMFieldNo(FD);
1461 // Fill the alignment.
1462 for (unsigned I = PrevIdx; I < Idx; ++I)
1463 Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1464 PrevIdx = Idx + 1;
1465 Fields.add(*DI);
1466 ++DI;
1467 }
1468}
1469
1470template <class... As>
1471static llvm::GlobalVariable *
1472createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1473 ArrayRef<llvm::Constant *> Data, const Twine &Name,
1474 As &&... Args) {
1475 const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1476 const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1477 ConstantInitBuilder CIBuilder(CGM);
1478 ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1479 buildStructValue(Fields, CGM, RD, RL, Data);
1480 return Fields.finishAndCreateGlobal(
1481 Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1482 std::forward<As>(Args)...);
1483}
1484
1485template <typename T>
1486static void
1487createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1488 ArrayRef<llvm::Constant *> Data,
1489 T &Parent) {
1490 const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1491 const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1492 ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1493 buildStructValue(Fields, CGM, RD, RL, Data);
1494 Fields.finishAndAddTo(Parent);
1495}
1496
1497Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
1498 CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1499 unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1500 FlagsTy FlagsKey(Flags, Reserved2Flags);
1501 llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
1502 if (!Entry) {
1503 if (!DefaultOpenMPPSource) {
1504 // Initialize default location for psource field of ident_t structure of
1505 // all ident_t objects. Format is ";file;function;line;column;;".
1506 // Taken from
1507 // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp
1508 DefaultOpenMPPSource =
1509 CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
1510 DefaultOpenMPPSource =
1511 llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
1512 }
1513
1514 llvm::Constant *Data[] = {
1515 llvm::ConstantInt::getNullValue(CGM.Int32Ty),
1516 llvm::ConstantInt::get(CGM.Int32Ty, Flags),
1517 llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
1518 llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
1519 llvm::GlobalValue *DefaultOpenMPLocation =
1520 createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
1521 llvm::GlobalValue::PrivateLinkage);
1522 DefaultOpenMPLocation->setUnnamedAddr(
1523 llvm::GlobalValue::UnnamedAddr::Global);
1524
1525 OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
1526 }
1527 return Address(Entry, Align);
1528}
1529
1530void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1531 bool AtCurrentPoint) {
1532 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1533 assert(!Elem.second.ServiceInsertPt && "Insert point is set already.")((!Elem.second.ServiceInsertPt && "Insert point is set already."
) ? static_cast<void> (0) : __assert_fail ("!Elem.second.ServiceInsertPt && \"Insert point is set already.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1533, __PRETTY_FUNCTION__))
;
1534
1535 llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1536 if (AtCurrentPoint) {
1537 Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1538 Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1539 } else {
1540 Elem.second.ServiceInsertPt =
1541 new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1542 Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1543 }
1544}
1545
1546void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1547 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1548 if (Elem.second.ServiceInsertPt) {
1549 llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1550 Elem.second.ServiceInsertPt = nullptr;
1551 Ptr->eraseFromParent();
1552 }
1553}
1554
1555llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1556 SourceLocation Loc,
1557 unsigned Flags) {
1558 Flags |= OMP_IDENT_KMPC;
1559 // If no debug info is generated - return global default location.
1560 if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1561 Loc.isInvalid())
1562 return getOrCreateDefaultLocation(Flags).getPointer();
1563
1564 assert(CGF.CurFn && "No function in current CodeGenFunction.")((CGF.CurFn && "No function in current CodeGenFunction."
) ? static_cast<void> (0) : __assert_fail ("CGF.CurFn && \"No function in current CodeGenFunction.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1564, __PRETTY_FUNCTION__))
;
1565
1566 CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1567 Address LocValue = Address::invalid();
1568 auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1569 if (I != OpenMPLocThreadIDMap.end())
1570 LocValue = Address(I->second.DebugLoc, Align);
1571
1572 // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
1573 // GetOpenMPThreadID was called before this routine.
1574 if (!LocValue.isValid()) {
1575 // Generate "ident_t .kmpc_loc.addr;"
1576 Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
1577 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1578 Elem.second.DebugLoc = AI.getPointer();
1579 LocValue = AI;
1580
1581 if (!Elem.second.ServiceInsertPt)
1582 setLocThreadIdInsertPt(CGF);
1583 CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1584 CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1585 CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
1586 CGF.getTypeSize(IdentQTy));
1587 }
1588
1589 // char **psource = &.kmpc_loc_<flags>.addr.psource;
1590 LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
1591 auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
1592 LValue PSource =
1593 CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
1594
1595 llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
1596 if (OMPDebugLoc == nullptr) {
1597 SmallString<128> Buffer2;
1598 llvm::raw_svector_ostream OS2(Buffer2);
1599 // Build debug location
1600 PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1601 OS2 << ";" << PLoc.getFilename() << ";";
1602 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1603 OS2 << FD->getQualifiedNameAsString();
1604 OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1605 OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
1606 OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
1607 }
1608 // *psource = ";<File>;<Function>;<Line>;<Column>;;";
1609 CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
1610
1611 // Our callers always pass this to a runtime function, so for
1612 // convenience, go ahead and return a naked pointer.
1613 return LocValue.getPointer();
1614}
1615
1616llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1617 SourceLocation Loc) {
1618 assert(CGF.CurFn && "No function in current CodeGenFunction.")((CGF.CurFn && "No function in current CodeGenFunction."
) ? static_cast<void> (0) : __assert_fail ("CGF.CurFn && \"No function in current CodeGenFunction.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1618, __PRETTY_FUNCTION__))
;
1619
1620 llvm::Value *ThreadID = nullptr;
1621 // Check whether we've already cached a load of the thread id in this
1622 // function.
1623 auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1624 if (I != OpenMPLocThreadIDMap.end()) {
1625 ThreadID = I->second.ThreadID;
1626 if (ThreadID != nullptr)
1627 return ThreadID;
1628 }
1629 // If exceptions are enabled, do not use parameter to avoid possible crash.
1630 if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1631 !CGF.getLangOpts().CXXExceptions ||
1632 CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
1633 if (auto *OMPRegionInfo =
1634 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1635 if (OMPRegionInfo->getThreadIDVariable()) {
1636 // Check if this an outlined function with thread id passed as argument.
1637 LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1638 ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1639 // If value loaded in entry block, cache it and use it everywhere in
1640 // function.
1641 if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
1642 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1643 Elem.second.ThreadID = ThreadID;
1644 }
1645 return ThreadID;
1646 }
1647 }
1648 }
1649
1650 // This is not an outlined function region - need to call __kmpc_int32
1651 // kmpc_global_thread_num(ident_t *loc).
1652 // Generate thread id value and cache this value for use across the
1653 // function.
1654 auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1655 if (!Elem.second.ServiceInsertPt)
1656 setLocThreadIdInsertPt(CGF);
1657 CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1658 CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1659 llvm::CallInst *Call = CGF.Builder.CreateCall(
1660 createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
1661 emitUpdateLocation(CGF, Loc));
1662 Call->setCallingConv(CGF.getRuntimeCC());
1663 Elem.second.ThreadID = Call;
1664 return Call;
1665}
1666
1667void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1668 assert(CGF.CurFn && "No function in current CodeGenFunction.")((CGF.CurFn && "No function in current CodeGenFunction."
) ? static_cast<void> (0) : __assert_fail ("CGF.CurFn && \"No function in current CodeGenFunction.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1668, __PRETTY_FUNCTION__))
;
1669 if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1670 clearLocThreadIdInsertPt(CGF);
1671 OpenMPLocThreadIDMap.erase(CGF.CurFn);
1672 }
1673 if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1674 for(auto *D : FunctionUDRMap[CGF.CurFn])
1675 UDRMap.erase(D);
1676 FunctionUDRMap.erase(CGF.CurFn);
1677 }
1678}
1679
1680llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1681 return IdentTy->getPointerTo();
1682}
1683
1684llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1685 if (!Kmpc_MicroTy) {
1686 // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1687 llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1688 llvm::PointerType::getUnqual(CGM.Int32Ty)};
1689 Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1690 }
1691 return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1692}
1693
1694llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
1695 llvm::FunctionCallee RTLFn = nullptr;
1696 switch (static_cast<OpenMPRTLFunction>(Function)) {
1697 case OMPRTL__kmpc_fork_call: {
1698 // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
1699 // microtask, ...);
1700 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1701 getKmpc_MicroPointerTy()};
1702 auto *FnTy =
1703 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
1704 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
1705 if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
1706 if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
1707 llvm::LLVMContext &Ctx = F->getContext();
1708 llvm::MDBuilder MDB(Ctx);
1709 // Annotate the callback behavior of the __kmpc_fork_call:
1710 // - The callback callee is argument number 2 (microtask).
1711 // - The first two arguments of the callback callee are unknown (-1).
1712 // - All variadic arguments to the __kmpc_fork_call are passed to the
1713 // callback callee.
1714 F->addMetadata(
1715 llvm::LLVMContext::MD_callback,
1716 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1717 2, {-1, -1},
1718 /* VarArgsArePassed */ true)}));
1719 }
1720 }
1721 break;
1722 }
1723 case OMPRTL__kmpc_global_thread_num: {
1724 // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
1725 llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1726 auto *FnTy =
1727 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1728 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
1729 break;
1730 }
1731 case OMPRTL__kmpc_threadprivate_cached: {
1732 // Build void *__kmpc_threadprivate_cached(ident_t *loc,
1733 // kmp_int32 global_tid, void *data, size_t size, void ***cache);
1734 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1735 CGM.VoidPtrTy, CGM.SizeTy,
1736 CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
1737 auto *FnTy =
1738 llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
1739 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
1740 break;
1741 }
1742 case OMPRTL__kmpc_critical: {
1743 // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
1744 // kmp_critical_name *crit);
1745 llvm::Type *TypeParams[] = {
1746 getIdentTyPointerTy(), CGM.Int32Ty,
1747 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1748 auto *FnTy =
1749 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1750 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
1751 break;
1752 }
1753 case OMPRTL__kmpc_critical_with_hint: {
1754 // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
1755 // kmp_critical_name *crit, uintptr_t hint);
1756 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1757 llvm::PointerType::getUnqual(KmpCriticalNameTy),
1758 CGM.IntPtrTy};
1759 auto *FnTy =
1760 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1761 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
1762 break;
1763 }
1764 case OMPRTL__kmpc_threadprivate_register: {
1765 // Build void __kmpc_threadprivate_register(ident_t *, void *data,
1766 // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
1767 // typedef void *(*kmpc_ctor)(void *);
1768 auto *KmpcCtorTy =
1769 llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1770 /*isVarArg*/ false)->getPointerTo();
1771 // typedef void *(*kmpc_cctor)(void *, void *);
1772 llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1773 auto *KmpcCopyCtorTy =
1774 llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
1775 /*isVarArg*/ false)
1776 ->getPointerTo();
1777 // typedef void (*kmpc_dtor)(void *);
1778 auto *KmpcDtorTy =
1779 llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
1780 ->getPointerTo();
1781 llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
1782 KmpcCopyCtorTy, KmpcDtorTy};
1783 auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
1784 /*isVarArg*/ false);
1785 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
1786 break;
1787 }
1788 case OMPRTL__kmpc_end_critical: {
1789 // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
1790 // kmp_critical_name *crit);
1791 llvm::Type *TypeParams[] = {
1792 getIdentTyPointerTy(), CGM.Int32Ty,
1793 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1794 auto *FnTy =
1795 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1796 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
1797 break;
1798 }
1799 case OMPRTL__kmpc_cancel_barrier: {
1800 // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
1801 // global_tid);
1802 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1803 auto *FnTy =
1804 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1805 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
1806 break;
1807 }
1808 case OMPRTL__kmpc_barrier: {
1809 // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
1810 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1811 auto *FnTy =
1812 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1813 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
1814 break;
1815 }
1816 case OMPRTL__kmpc_for_static_fini: {
1817 // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
1818 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1819 auto *FnTy =
1820 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1821 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
1822 break;
1823 }
1824 case OMPRTL__kmpc_push_num_threads: {
1825 // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
1826 // kmp_int32 num_threads)
1827 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1828 CGM.Int32Ty};
1829 auto *FnTy =
1830 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1831 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
1832 break;
1833 }
1834 case OMPRTL__kmpc_serialized_parallel: {
1835 // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
1836 // global_tid);
1837 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1838 auto *FnTy =
1839 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1840 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
1841 break;
1842 }
1843 case OMPRTL__kmpc_end_serialized_parallel: {
1844 // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
1845 // global_tid);
1846 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1847 auto *FnTy =
1848 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1849 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
1850 break;
1851 }
1852 case OMPRTL__kmpc_flush: {
1853 // Build void __kmpc_flush(ident_t *loc);
1854 llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1855 auto *FnTy =
1856 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1857 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
1858 break;
1859 }
1860 case OMPRTL__kmpc_master: {
1861 // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
1862 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1863 auto *FnTy =
1864 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1865 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
1866 break;
1867 }
1868 case OMPRTL__kmpc_end_master: {
1869 // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
1870 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1871 auto *FnTy =
1872 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1873 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
1874 break;
1875 }
1876 case OMPRTL__kmpc_omp_taskyield: {
1877 // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
1878 // int end_part);
1879 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
1880 auto *FnTy =
1881 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1882 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
1883 break;
1884 }
1885 case OMPRTL__kmpc_single: {
1886 // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
1887 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1888 auto *FnTy =
1889 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1890 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
1891 break;
1892 }
1893 case OMPRTL__kmpc_end_single: {
1894 // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
1895 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1896 auto *FnTy =
1897 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1898 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
1899 break;
1900 }
1901 case OMPRTL__kmpc_omp_task_alloc: {
1902 // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
1903 // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1904 // kmp_routine_entry_t *task_entry);
1905 assert(KmpRoutineEntryPtrTy != nullptr &&((KmpRoutineEntryPtrTy != nullptr && "Type kmp_routine_entry_t must be created."
) ? static_cast<void> (0) : __assert_fail ("KmpRoutineEntryPtrTy != nullptr && \"Type kmp_routine_entry_t must be created.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1906, __PRETTY_FUNCTION__))
1906 "Type kmp_routine_entry_t must be created.")((KmpRoutineEntryPtrTy != nullptr && "Type kmp_routine_entry_t must be created."
) ? static_cast<void> (0) : __assert_fail ("KmpRoutineEntryPtrTy != nullptr && \"Type kmp_routine_entry_t must be created.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 1906, __PRETTY_FUNCTION__))
;
1907 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
1908 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
1909 // Return void * and then cast to particular kmp_task_t type.
1910 auto *FnTy =
1911 llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
1912 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
1913 break;
1914 }
1915 case OMPRTL__kmpc_omp_task: {
1916 // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1917 // *new_task);
1918 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1919 CGM.VoidPtrTy};
1920 auto *FnTy =
1921 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1922 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
1923 break;
1924 }
1925 case OMPRTL__kmpc_copyprivate: {
1926 // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
1927 // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
1928 // kmp_int32 didit);
1929 llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1930 auto *CpyFnTy =
1931 llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
1932 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
1933 CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
1934 CGM.Int32Ty};
1935 auto *FnTy =
1936 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1937 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
1938 break;
1939 }
1940 case OMPRTL__kmpc_reduce: {
1941 // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
1942 // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
1943 // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
1944 llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1945 auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1946 /*isVarArg=*/false);
1947 llvm::Type *TypeParams[] = {
1948 getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1949 CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1950 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1951 auto *FnTy =
1952 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1953 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
1954 break;
1955 }
1956 case OMPRTL__kmpc_reduce_nowait: {
1957 // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
1958 // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
1959 // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
1960 // *lck);
1961 llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1962 auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
1963 /*isVarArg=*/false);
1964 llvm::Type *TypeParams[] = {
1965 getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
1966 CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
1967 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1968 auto *FnTy =
1969 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
1970 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
1971 break;
1972 }
1973 case OMPRTL__kmpc_end_reduce: {
1974 // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
1975 // kmp_critical_name *lck);
1976 llvm::Type *TypeParams[] = {
1977 getIdentTyPointerTy(), CGM.Int32Ty,
1978 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1979 auto *FnTy =
1980 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1981 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
1982 break;
1983 }
1984 case OMPRTL__kmpc_end_reduce_nowait: {
1985 // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
1986 // kmp_critical_name *lck);
1987 llvm::Type *TypeParams[] = {
1988 getIdentTyPointerTy(), CGM.Int32Ty,
1989 llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1990 auto *FnTy =
1991 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1992 RTLFn =
1993 CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
1994 break;
1995 }
1996 case OMPRTL__kmpc_omp_task_begin_if0: {
1997 // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
1998 // *new_task);
1999 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2000 CGM.VoidPtrTy};
2001 auto *FnTy =
2002 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2003 RTLFn =
2004 CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
2005 break;
2006 }
2007 case OMPRTL__kmpc_omp_task_complete_if0: {
2008 // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
2009 // *new_task);
2010 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2011 CGM.VoidPtrTy};
2012 auto *FnTy =
2013 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2014 RTLFn = CGM.CreateRuntimeFunction(FnTy,
2015 /*Name=*/"__kmpc_omp_task_complete_if0");
2016 break;
2017 }
2018 case OMPRTL__kmpc_ordered: {
2019 // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
2020 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2021 auto *FnTy =
2022 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2023 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
2024 break;
2025 }
2026 case OMPRTL__kmpc_end_ordered: {
2027 // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
2028 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2029 auto *FnTy =
2030 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2031 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
2032 break;
2033 }
2034 case OMPRTL__kmpc_omp_taskwait: {
2035 // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
2036 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2037 auto *FnTy =
2038 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2039 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
2040 break;
2041 }
2042 case OMPRTL__kmpc_taskgroup: {
2043 // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
2044 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2045 auto *FnTy =
2046 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2047 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
2048 break;
2049 }
2050 case OMPRTL__kmpc_end_taskgroup: {
2051 // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
2052 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2053 auto *FnTy =
2054 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2055 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
2056 break;
2057 }
2058 case OMPRTL__kmpc_push_proc_bind: {
2059 // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
2060 // int proc_bind)
2061 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2062 auto *FnTy =
2063 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2064 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
2065 break;
2066 }
2067 case OMPRTL__kmpc_omp_task_with_deps: {
2068 // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
2069 // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
2070 // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
2071 llvm::Type *TypeParams[] = {
2072 getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
2073 CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
2074 auto *FnTy =
2075 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2076 RTLFn =
2077 CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
2078 break;
2079 }
2080 case OMPRTL__kmpc_omp_wait_deps: {
2081 // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
2082 // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
2083 // kmp_depend_info_t *noalias_dep_list);
2084 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2085 CGM.Int32Ty, CGM.VoidPtrTy,
2086 CGM.Int32Ty, CGM.VoidPtrTy};
2087 auto *FnTy =
2088 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2089 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
2090 break;
2091 }
2092 case OMPRTL__kmpc_cancellationpoint: {
2093 // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
2094 // global_tid, kmp_int32 cncl_kind)
2095 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2096 auto *FnTy =
2097 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2098 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
2099 break;
2100 }
2101 case OMPRTL__kmpc_cancel: {
2102 // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
2103 // kmp_int32 cncl_kind)
2104 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2105 auto *FnTy =
2106 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2107 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
2108 break;
2109 }
2110 case OMPRTL__kmpc_push_num_teams: {
2111 // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
2112 // kmp_int32 num_teams, kmp_int32 num_threads)
2113 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
2114 CGM.Int32Ty};
2115 auto *FnTy =
2116 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2117 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
2118 break;
2119 }
2120 case OMPRTL__kmpc_fork_teams: {
2121 // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
2122 // microtask, ...);
2123 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2124 getKmpc_MicroPointerTy()};
2125 auto *FnTy =
2126 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
2127 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
2128 if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
2129 if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
2130 llvm::LLVMContext &Ctx = F->getContext();
2131 llvm::MDBuilder MDB(Ctx);
2132 // Annotate the callback behavior of the __kmpc_fork_teams:
2133 // - The callback callee is argument number 2 (microtask).
2134 // - The first two arguments of the callback callee are unknown (-1).
2135 // - All variadic arguments to the __kmpc_fork_teams are passed to the
2136 // callback callee.
2137 F->addMetadata(
2138 llvm::LLVMContext::MD_callback,
2139 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2140 2, {-1, -1},
2141 /* VarArgsArePassed */ true)}));
2142 }
2143 }
2144 break;
2145 }
2146 case OMPRTL__kmpc_taskloop: {
2147 // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
2148 // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
2149 // sched, kmp_uint64 grainsize, void *task_dup);
2150 llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2151 CGM.IntTy,
2152 CGM.VoidPtrTy,
2153 CGM.IntTy,
2154 CGM.Int64Ty->getPointerTo(),
2155 CGM.Int64Ty->getPointerTo(),
2156 CGM.Int64Ty,
2157 CGM.IntTy,
2158 CGM.IntTy,
2159 CGM.Int64Ty,
2160 CGM.VoidPtrTy};
2161 auto *FnTy =
2162 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2163 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
2164 break;
2165 }
2166 case OMPRTL__kmpc_doacross_init: {
2167 // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
2168 // num_dims, struct kmp_dim *dims);
2169 llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2170 CGM.Int32Ty,
2171 CGM.Int32Ty,
2172 CGM.VoidPtrTy};
2173 auto *FnTy =
2174 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2175 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
2176 break;
2177 }
2178 case OMPRTL__kmpc_doacross_fini: {
2179 // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
2180 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2181 auto *FnTy =
2182 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2183 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
2184 break;
2185 }
2186 case OMPRTL__kmpc_doacross_post: {
2187 // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
2188 // *vec);
2189 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2190 CGM.Int64Ty->getPointerTo()};
2191 auto *FnTy =
2192 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2193 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
2194 break;
2195 }
2196 case OMPRTL__kmpc_doacross_wait: {
2197 // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
2198 // *vec);
2199 llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2200 CGM.Int64Ty->getPointerTo()};
2201 auto *FnTy =
2202 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2203 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
2204 break;
2205 }
2206 case OMPRTL__kmpc_task_reduction_init: {
2207 // Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
2208 // *data);
2209 llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
2210 auto *FnTy =
2211 llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2212 RTLFn =
2213 CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
2214 break;
2215 }
2216 case OMPRTL__kmpc_task_reduction_get_th_data: {
2217 // Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
2218 // *d);
2219 llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
2220 auto *FnTy =
2221 llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2222 RTLFn = CGM.CreateRuntimeFunction(
2223 FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
2224 break;
2225 }
2226 case OMPRTL__kmpc_alloc: {
2227 // Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t
2228 // al); omp_allocator_handle_t type is void *.
2229 llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy};
2230 auto *FnTy =
2231 llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2232 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc");
2233 break;
2234 }
2235 case OMPRTL__kmpc_free: {
2236 // Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t
2237 // al); omp_allocator_handle_t type is void *.
2238 llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
2239 auto *FnTy =
2240 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2241 RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free");
2242 break;
2243 }
2244 case OMPRTL__kmpc_push_target_tripcount: {
2245 // Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
2246 // size);
2247 llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
2248 llvm::FunctionType *FnTy =
2249 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2250 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
2251 break;
2252 }
2253 case OMPRTL__tgt_target: {
2254 // Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
2255 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2256 // *arg_types);
2257 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2258 CGM.VoidPtrTy,
2259 CGM.Int32Ty,
2260 CGM.VoidPtrPtrTy,
2261 CGM.VoidPtrPtrTy,
2262 CGM.SizeTy->getPointerTo(),
2263 CGM.Int64Ty->getPointerTo()};
2264 auto *FnTy =
2265 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2266 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
2267 break;
2268 }
2269 case OMPRTL__tgt_target_nowait: {
2270 // Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
2271 // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
2272 // int64_t *arg_types);
2273 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2274 CGM.VoidPtrTy,
2275 CGM.Int32Ty,
2276 CGM.VoidPtrPtrTy,
2277 CGM.VoidPtrPtrTy,
2278 CGM.SizeTy->getPointerTo(),
2279 CGM.Int64Ty->getPointerTo()};
2280 auto *FnTy =
2281 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2282 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
2283 break;
2284 }
2285 case OMPRTL__tgt_target_teams: {
2286 // Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
2287 // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
2288 // int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2289 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2290 CGM.VoidPtrTy,
2291 CGM.Int32Ty,
2292 CGM.VoidPtrPtrTy,
2293 CGM.VoidPtrPtrTy,
2294 CGM.SizeTy->getPointerTo(),
2295 CGM.Int64Ty->getPointerTo(),
2296 CGM.Int32Ty,
2297 CGM.Int32Ty};
2298 auto *FnTy =
2299 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2300 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
2301 break;
2302 }
2303 case OMPRTL__tgt_target_teams_nowait: {
2304 // Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
2305 // *host_ptr, int32_t arg_num, void** args_base, void **args, size_t
2306 // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2307 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2308 CGM.VoidPtrTy,
2309 CGM.Int32Ty,
2310 CGM.VoidPtrPtrTy,
2311 CGM.VoidPtrPtrTy,
2312 CGM.SizeTy->getPointerTo(),
2313 CGM.Int64Ty->getPointerTo(),
2314 CGM.Int32Ty,
2315 CGM.Int32Ty};
2316 auto *FnTy =
2317 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2318 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
2319 break;
2320 }
2321 case OMPRTL__tgt_register_requires: {
2322 // Build void __tgt_register_requires(int64_t flags);
2323 llvm::Type *TypeParams[] = {CGM.Int64Ty};
2324 auto *FnTy =
2325 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2326 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires");
2327 break;
2328 }
2329 case OMPRTL__tgt_register_lib: {
2330 // Build void __tgt_register_lib(__tgt_bin_desc *desc);
2331 QualType ParamTy =
2332 CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
2333 llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
2334 auto *FnTy =
2335 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2336 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
2337 break;
2338 }
2339 case OMPRTL__tgt_unregister_lib: {
2340 // Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
2341 QualType ParamTy =
2342 CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
2343 llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
2344 auto *FnTy =
2345 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2346 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
2347 break;
2348 }
2349 case OMPRTL__tgt_target_data_begin: {
2350 // Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
2351 // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
2352 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2353 CGM.Int32Ty,
2354 CGM.VoidPtrPtrTy,
2355 CGM.VoidPtrPtrTy,
2356 CGM.SizeTy->getPointerTo(),
2357 CGM.Int64Ty->getPointerTo()};
2358 auto *FnTy =
2359 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2360 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
2361 break;
2362 }
2363 case OMPRTL__tgt_target_data_begin_nowait: {
2364 // Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
2365 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2366 // *arg_types);
2367 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2368 CGM.Int32Ty,
2369 CGM.VoidPtrPtrTy,
2370 CGM.VoidPtrPtrTy,
2371 CGM.SizeTy->getPointerTo(),
2372 CGM.Int64Ty->getPointerTo()};
2373 auto *FnTy =
2374 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2375 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
2376 break;
2377 }
2378 case OMPRTL__tgt_target_data_end: {
2379 // Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
2380 // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
2381 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2382 CGM.Int32Ty,
2383 CGM.VoidPtrPtrTy,
2384 CGM.VoidPtrPtrTy,
2385 CGM.SizeTy->getPointerTo(),
2386 CGM.Int64Ty->getPointerTo()};
2387 auto *FnTy =
2388 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2389 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
2390 break;
2391 }
2392 case OMPRTL__tgt_target_data_end_nowait: {
2393 // Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
2394 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2395 // *arg_types);
2396 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2397 CGM.Int32Ty,
2398 CGM.VoidPtrPtrTy,
2399 CGM.VoidPtrPtrTy,
2400 CGM.SizeTy->getPointerTo(),
2401 CGM.Int64Ty->getPointerTo()};
2402 auto *FnTy =
2403 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2404 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
2405 break;
2406 }
2407 case OMPRTL__tgt_target_data_update: {
2408 // Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
2409 // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
2410 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2411 CGM.Int32Ty,
2412 CGM.VoidPtrPtrTy,
2413 CGM.VoidPtrPtrTy,
2414 CGM.SizeTy->getPointerTo(),
2415 CGM.Int64Ty->getPointerTo()};
2416 auto *FnTy =
2417 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2418 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
2419 break;
2420 }
2421 case OMPRTL__tgt_target_data_update_nowait: {
2422 // Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
2423 // arg_num, void** args_base, void **args, size_t *arg_sizes, int64_t
2424 // *arg_types);
2425 llvm::Type *TypeParams[] = {CGM.Int64Ty,
2426 CGM.Int32Ty,
2427 CGM.VoidPtrPtrTy,
2428 CGM.VoidPtrPtrTy,
2429 CGM.SizeTy->getPointerTo(),
2430 CGM.Int64Ty->getPointerTo()};
2431 auto *FnTy =
2432 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2433 RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
2434 break;
2435 }
2436 }
2437 assert(RTLFn && "Unable to find OpenMP runtime function")((RTLFn && "Unable to find OpenMP runtime function") ?
static_cast<void> (0) : __assert_fail ("RTLFn && \"Unable to find OpenMP runtime function\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2437, __PRETTY_FUNCTION__))
;
2438 return RTLFn;
2439}
2440
2441llvm::FunctionCallee
2442CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
2443 assert((IVSize == 32 || IVSize == 64) &&(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2444, __PRETTY_FUNCTION__))
2444 "IV size is not compatible with the omp runtime")(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2444, __PRETTY_FUNCTION__))
;
2445 StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
2446 : "__kmpc_for_static_init_4u")
2447 : (IVSigned ? "__kmpc_for_static_init_8"
2448 : "__kmpc_for_static_init_8u");
2449 llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2450 auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2451 llvm::Type *TypeParams[] = {
2452 getIdentTyPointerTy(), // loc
2453 CGM.Int32Ty, // tid
2454 CGM.Int32Ty, // schedtype
2455 llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2456 PtrTy, // p_lower
2457 PtrTy, // p_upper
2458 PtrTy, // p_stride
2459 ITy, // incr
2460 ITy // chunk
2461 };
2462 auto *FnTy =
2463 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2464 return CGM.CreateRuntimeFunction(FnTy, Name);
2465}
2466
2467llvm::FunctionCallee
2468CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
2469 assert((IVSize == 32 || IVSize == 64) &&(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2470, __PRETTY_FUNCTION__))
2470 "IV size is not compatible with the omp runtime")(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2470, __PRETTY_FUNCTION__))
;
2471 StringRef Name =
2472 IVSize == 32
2473 ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
2474 : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
2475 llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2476 llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
2477 CGM.Int32Ty, // tid
2478 CGM.Int32Ty, // schedtype
2479 ITy, // lower
2480 ITy, // upper
2481 ITy, // stride
2482 ITy // chunk
2483 };
2484 auto *FnTy =
2485 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2486 return CGM.CreateRuntimeFunction(FnTy, Name);
2487}
2488
2489llvm::FunctionCallee
2490CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
2491 assert((IVSize == 32 || IVSize == 64) &&(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2492, __PRETTY_FUNCTION__))
2492 "IV size is not compatible with the omp runtime")(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2492, __PRETTY_FUNCTION__))
;
2493 StringRef Name =
2494 IVSize == 32
2495 ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
2496 : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
2497 llvm::Type *TypeParams[] = {
2498 getIdentTyPointerTy(), // loc
2499 CGM.Int32Ty, // tid
2500 };
2501 auto *FnTy =
2502 llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2503 return CGM.CreateRuntimeFunction(FnTy, Name);
2504}
2505
2506llvm::FunctionCallee
2507CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
2508 assert((IVSize == 32 || IVSize == 64) &&(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2509, __PRETTY_FUNCTION__))
2509 "IV size is not compatible with the omp runtime")(((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"
) ? static_cast<void> (0) : __assert_fail ("(IVSize == 32 || IVSize == 64) && \"IV size is not compatible with the omp runtime\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2509, __PRETTY_FUNCTION__))
;
2510 StringRef Name =
2511 IVSize == 32
2512 ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
2513 : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
2514 llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2515 auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2516 llvm::Type *TypeParams[] = {
2517 getIdentTyPointerTy(), // loc
2518 CGM.Int32Ty, // tid
2519 llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2520 PtrTy, // p_lower
2521 PtrTy, // p_upper
2522 PtrTy // p_stride
2523 };
2524 auto *FnTy =
2525 llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2526 return CGM.CreateRuntimeFunction(FnTy, Name);
2527}
2528
2529Address CGOpenMPRuntime::getAddrOfDeclareTargetLink(const VarDecl *VD) {
2530 if (CGM.getLangOpts().OpenMPSimd)
2531 return Address::invalid();
2532 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2533 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2534 if (Res && *Res == OMPDeclareTargetDeclAttr::MT_Link) {
2535 SmallString<64> PtrName;
2536 {
2537 llvm::raw_svector_ostream OS(PtrName);
2538 OS << CGM.getMangledName(GlobalDecl(VD)) << "_decl_tgt_link_ptr";
2539 }
2540 llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
2541 if (!Ptr) {
2542 QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
2543 Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
2544 PtrName);
2545 if (!CGM.getLangOpts().OpenMPIsDevice) {
2546 auto *GV = cast<llvm::GlobalVariable>(Ptr);
2547 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
2548 GV->setInitializer(CGM.GetAddrOfGlobal(VD));
2549 }
2550 CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ptr));
2551 registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
2552 }
2553 return Address(Ptr, CGM.getContext().getDeclAlign(VD));
2554 }
2555 return Address::invalid();
2556}
2557
2558llvm::Constant *
2559CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
2560 assert(!CGM.getLangOpts().OpenMPUseTLS ||((!CGM.getLangOpts().OpenMPUseTLS || !CGM.getContext().getTargetInfo
().isTLSSupported()) ? static_cast<void> (0) : __assert_fail
("!CGM.getLangOpts().OpenMPUseTLS || !CGM.getContext().getTargetInfo().isTLSSupported()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2561, __PRETTY_FUNCTION__))
2561 !CGM.getContext().getTargetInfo().isTLSSupported())((!CGM.getLangOpts().OpenMPUseTLS || !CGM.getContext().getTargetInfo
().isTLSSupported()) ? static_cast<void> (0) : __assert_fail
("!CGM.getLangOpts().OpenMPUseTLS || !CGM.getContext().getTargetInfo().isTLSSupported()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2561, __PRETTY_FUNCTION__))
;
2562 // Lookup the entry, lazily creating it if necessary.
2563 std::string Suffix = getName({"cache", ""});
2564 return getOrCreateInternalVariable(
2565 CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
2566}
2567
2568Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
2569 const VarDecl *VD,
2570 Address VDAddr,
2571 SourceLocation Loc) {
2572 if (CGM.getLangOpts().OpenMPUseTLS &&
2573 CGM.getContext().getTargetInfo().isTLSSupported())
2574 return VDAddr;
2575
2576 llvm::Type *VarTy = VDAddr.getElementType();
2577 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2578 CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
2579 CGM.Int8PtrTy),
2580 CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
2581 getOrCreateThreadPrivateCache(VD)};
2582 return Address(CGF.EmitRuntimeCall(
2583 createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
2584 VDAddr.getAlignment());
2585}
2586
2587void CGOpenMPRuntime::emitThreadPrivateVarInit(
2588 CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
2589 llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
2590 // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
2591 // library.
2592 llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
2593 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
2594 OMPLoc);
2595 // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
2596 // to register constructor/destructor for variable.
2597 llvm::Value *Args[] = {
2598 OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
2599 Ctor, CopyCtor, Dtor};
2600 CGF.EmitRuntimeCall(
2601 createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
2602}
2603
2604llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
2605 const VarDecl *VD, Address VDAddr, SourceLocation Loc,
2606 bool PerformInit, CodeGenFunction *CGF) {
2607 if (CGM.getLangOpts().OpenMPUseTLS &&
2608 CGM.getContext().getTargetInfo().isTLSSupported())
2609 return nullptr;
2610
2611 VD = VD->getDefinition(CGM.getContext());
2612 if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
2613 QualType ASTTy = VD->getType();
2614
2615 llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
2616 const Expr *Init = VD->getAnyInitializer();
2617 if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2618 // Generate function that re-emits the declaration's initializer into the
2619 // threadprivate copy of the variable VD
2620 CodeGenFunction CtorCGF(CGM);
2621 FunctionArgList Args;
2622 ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2623 /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2624 ImplicitParamDecl::Other);
2625 Args.push_back(&Dst);
2626
2627 const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2628 CGM.getContext().VoidPtrTy, Args);
2629 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2630 std::string Name = getName({"__kmpc_global_ctor_", ""});
2631 llvm::Function *Fn =
2632 CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2633 CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
2634 Args, Loc, Loc);
2635 llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
2636 CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2637 CGM.getContext().VoidPtrTy, Dst.getLocation());
2638 Address Arg = Address(ArgVal, VDAddr.getAlignment());
2639 Arg = CtorCGF.Builder.CreateElementBitCast(
2640 Arg, CtorCGF.ConvertTypeForMem(ASTTy));
2641 CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
2642 /*IsInitializer=*/true);
2643 ArgVal = CtorCGF.EmitLoadOfScalar(
2644 CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2645 CGM.getContext().VoidPtrTy, Dst.getLocation());
2646 CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
2647 CtorCGF.FinishFunction();
2648 Ctor = Fn;
2649 }
2650 if (VD->getType().isDestructedType() != QualType::DK_none) {
2651 // Generate function that emits destructor call for the threadprivate copy
2652 // of the variable VD
2653 CodeGenFunction DtorCGF(CGM);
2654 FunctionArgList Args;
2655 ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2656 /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2657 ImplicitParamDecl::Other);
2658 Args.push_back(&Dst);
2659
2660 const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2661 CGM.getContext().VoidTy, Args);
2662 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2663 std::string Name = getName({"__kmpc_global_dtor_", ""});
2664 llvm::Function *Fn =
2665 CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2666 auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2667 DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
2668 Loc, Loc);
2669 // Create a scope with an artificial location for the body of this function.
2670 auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2671 llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
2672 DtorCGF.GetAddrOfLocalVar(&Dst),
2673 /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
2674 DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
2675 DtorCGF.getDestroyer(ASTTy.isDestructedType()),
2676 DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
2677 DtorCGF.FinishFunction();
2678 Dtor = Fn;
2679 }
2680 // Do not emit init function if it is not required.
2681 if (!Ctor && !Dtor)
2682 return nullptr;
2683
2684 llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
2685 auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
2686 /*isVarArg=*/false)
2687 ->getPointerTo();
2688 // Copying constructor for the threadprivate variable.
2689 // Must be NULL - reserved by runtime, but currently it requires that this
2690 // parameter is always NULL. Otherwise it fires assertion.
2691 CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
2692 if (Ctor == nullptr) {
2693 auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
2694 /*isVarArg=*/false)
2695 ->getPointerTo();
2696 Ctor = llvm::Constant::getNullValue(CtorTy);
2697 }
2698 if (Dtor == nullptr) {
2699 auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
2700 /*isVarArg=*/false)
2701 ->getPointerTo();
2702 Dtor = llvm::Constant::getNullValue(DtorTy);
2703 }
2704 if (!CGF) {
2705 auto *InitFunctionTy =
2706 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
2707 std::string Name = getName({"__omp_threadprivate_init_", ""});
2708 llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
2709 InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
2710 CodeGenFunction InitCGF(CGM);
2711 FunctionArgList ArgList;
2712 InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
2713 CGM.getTypes().arrangeNullaryFunction(), ArgList,
2714 Loc, Loc);
2715 emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2716 InitCGF.FinishFunction();
2717 return InitFunction;
2718 }
2719 emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2720 }
2721 return nullptr;
2722}
2723
2724/// Obtain information that uniquely identifies a target entry. This
2725/// consists of the file and device IDs as well as line number associated with
2726/// the relevant entry source location.
2727static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
2728 unsigned &DeviceID, unsigned &FileID,
2729 unsigned &LineNum) {
2730 SourceManager &SM = C.getSourceManager();
2731
2732 // The loc should be always valid and have a file ID (the user cannot use
2733 // #pragma directives in macros)
2734
2735 assert(Loc.isValid() && "Source location is expected to be always valid.")((Loc.isValid() && "Source location is expected to be always valid."
) ? static_cast<void> (0) : __assert_fail ("Loc.isValid() && \"Source location is expected to be always valid.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2735, __PRETTY_FUNCTION__))
;
2736
2737 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2738 assert(PLoc.isValid() && "Source location is expected to be always valid.")((PLoc.isValid() && "Source location is expected to be always valid."
) ? static_cast<void> (0) : __assert_fail ("PLoc.isValid() && \"Source location is expected to be always valid.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 2738, __PRETTY_FUNCTION__))
;
2739
2740 llvm::sys::fs::UniqueID ID;
2741 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
2742 SM.getDiagnostics().Report(diag::err_cannot_open_file)
2743 << PLoc.getFilename() << EC.message();
2744
2745 DeviceID = ID.getDevice();
2746 FileID = ID.getFile();
2747 LineNum = PLoc.getLine();
2748}
2749
2750bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
2751 llvm::GlobalVariable *Addr,
2752 bool PerformInit) {
2753 Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2754 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2755 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link)
1
Assuming the condition is false
2
Taking false branch
2756 return CGM.getLangOpts().OpenMPIsDevice;
2757 VD = VD->getDefinition(CGM.getContext());
3
Calling 'VarDecl::getDefinition'
5
Returning from 'VarDecl::getDefinition'
6
Value assigned to 'VD'
2758 if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
7
Assuming 'VD' is null
8
Taking false branch
2759 return CGM.getLangOpts().OpenMPIsDevice;
2760
2761 QualType ASTTy = VD->getType();
9
Called C++ object pointer is null
2762
2763 SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
2764 // Produce the unique prefix to identify the new target regions. We use
2765 // the source location of the variable declaration which we know to not
2766 // conflict with any target region.
2767 unsigned DeviceID;
2768 unsigned FileID;
2769 unsigned Line;
2770 getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
2771 SmallString<128> Buffer, Out;
2772 {
2773 llvm::raw_svector_ostream OS(Buffer);
2774 OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
2775 << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
2776 }
2777
2778 const Expr *Init = VD->getAnyInitializer();
2779 if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2780 llvm::Constant *Ctor;
2781 llvm::Constant *ID;
2782 if (CGM.getLangOpts().OpenMPIsDevice) {
2783 // Generate function that re-emits the declaration's initializer into
2784 // the threadprivate copy of the variable VD
2785 CodeGenFunction CtorCGF(CGM);
2786
2787 const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2788 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2789 llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2790 FTy, Twine(Buffer, "_ctor"), FI, Loc);
2791 auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
2792 CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2793 FunctionArgList(), Loc, Loc);
2794 auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
2795 CtorCGF.EmitAnyExprToMem(Init,
2796 Address(Addr, CGM.getContext().getDeclAlign(VD)),
2797 Init->getType().getQualifiers(),
2798 /*IsInitializer=*/true);
2799 CtorCGF.FinishFunction();
2800 Ctor = Fn;
2801 ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
2802 CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
2803 } else {
2804 Ctor = new llvm::GlobalVariable(
2805 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
2806 llvm::GlobalValue::PrivateLinkage,
2807 llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
2808 ID = Ctor;
2809 }
2810
2811 // Register the information for the entry associated with the constructor.
2812 Out.clear();
2813 OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
2814 DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
2815 ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
2816 }
2817 if (VD->getType().isDestructedType() != QualType::DK_none) {
2818 llvm::Constant *Dtor;
2819 llvm::Constant *ID;
2820 if (CGM.getLangOpts().OpenMPIsDevice) {
2821 // Generate function that emits destructor call for the threadprivate
2822 // copy of the variable VD
2823 CodeGenFunction DtorCGF(CGM);
2824
2825 const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2826 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2827 llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2828 FTy, Twine(Buffer, "_dtor"), FI, Loc);
2829 auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2830 DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2831 FunctionArgList(), Loc, Loc);
2832 // Create a scope with an artificial location for the body of this
2833 // function.
2834 auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2835 DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
2836 ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
2837 DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
2838 DtorCGF.FinishFunction();
2839 Dtor = Fn;
2840 ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
2841 CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
2842 } else {
2843 Dtor = new llvm::GlobalVariable(
2844 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
2845 llvm::GlobalValue::PrivateLinkage,
2846 llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
2847 ID = Dtor;
2848 }
2849 // Register the information for the entry associated with the destructor.
2850 Out.clear();
2851 OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
2852 DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
2853 ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
2854 }
2855 return CGM.getLangOpts().OpenMPIsDevice;
2856}
2857
2858Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
2859 QualType VarType,
2860 StringRef Name) {
2861 std::string Suffix = getName({"artificial", ""});
2862 std::string CacheSuffix = getName({"cache", ""});
2863 llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
2864 llvm::Value *GAddr =
2865 getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
2866 llvm::Value *Args[] = {
2867 emitUpdateLocation(CGF, SourceLocation()),
2868 getThreadID(CGF, SourceLocation()),
2869 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
2870 CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
2871 /*IsSigned=*/false),
2872 getOrCreateInternalVariable(
2873 CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
2874 return Address(
2875 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2876 CGF.EmitRuntimeCall(
2877 createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
2878 VarLVType->getPointerTo(/*AddrSpace=*/0)),
2879 CGM.getPointerAlign());
2880}
2881
2882void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
2883 const RegionCodeGenTy &ThenGen,
2884 const RegionCodeGenTy &ElseGen) {
2885 CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2886
2887 // If the condition constant folds and can be elided, try to avoid emitting
2888 // the condition and the dead arm of the if/else.
2889 bool CondConstant;
2890 if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2891 if (CondConstant)
2892 ThenGen(CGF);
2893 else
2894 ElseGen(CGF);
2895 return;
2896 }
2897
2898 // Otherwise, the condition did not fold, or we couldn't elide it. Just
2899 // emit the conditional branch.
2900 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2901 llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2902 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2903 CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2904
2905 // Emit the 'then' code.
2906 CGF.EmitBlock(ThenBlock);
2907 ThenGen(CGF);
2908 CGF.EmitBranch(ContBlock);
2909 // Emit the 'else' code if present.
2910 // There is no need to emit line number for unconditional branch.
2911 (void)ApplyDebugLocation::CreateEmpty(CGF);
2912 CGF.EmitBlock(ElseBlock);
2913 ElseGen(CGF);
2914 // There is no need to emit line number for unconditional branch.
2915 (void)ApplyDebugLocation::CreateEmpty(CGF);
2916 CGF.EmitBranch(ContBlock);
2917 // Emit the continuation block for code after the if.
2918 CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2919}
2920
2921void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2922 llvm::Function *OutlinedFn,
2923 ArrayRef<llvm::Value *> CapturedVars,
2924 const Expr *IfCond) {
2925 if (!CGF.HaveInsertPoint())
2926 return;
2927 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2928 auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
2929 PrePostActionTy &) {
2930 // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2931 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2932 llvm::Value *Args[] = {
2933 RTLoc,
2934 CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2935 CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2936 llvm::SmallVector<llvm::Value *, 16> RealArgs;
2937 RealArgs.append(std::begin(Args), std::end(Args));
2938 RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2939
2940 llvm::FunctionCallee RTLFn =
2941 RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
2942 CGF.EmitRuntimeCall(RTLFn, RealArgs);
2943 };
2944 auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
2945 PrePostActionTy &) {
2946 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2947 llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2948 // Build calls:
2949 // __kmpc_serialized_parallel(&Loc, GTid);
2950 llvm::Value *Args[] = {RTLoc, ThreadID};
2951 CGF.EmitRuntimeCall(
2952 RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
2953
2954 // OutlinedFn(&GTid, &zero, CapturedStruct);
2955 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2956 /*Name*/ ".zero.addr");
2957 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2958 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2959 // ThreadId for serialized parallels is 0.
2960 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2961 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2962 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2963 RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2964
2965 // __kmpc_end_serialized_parallel(&Loc, GTid);
2966 llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2967 CGF.EmitRuntimeCall(
2968 RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
2969 EndArgs);
2970 };
2971 if (IfCond) {
2972 emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
2973 } else {
2974 RegionCodeGenTy ThenRCG(ThenGen);
2975 ThenRCG(CGF);
2976 }
2977}
2978
2979// If we're inside an (outlined) parallel region, use the region info's
2980// thread-ID variable (it is passed in a first argument of the outlined function
2981// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2982// regular serial code region, get thread ID by calling kmp_int32
2983// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2984// return the address of that temp.
2985Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2986 SourceLocation Loc) {
2987 if (auto *OMPRegionInfo =
2988 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2989 if (OMPRegionInfo->getThreadIDVariable())
2990 return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
2991
2992 llvm::Value *ThreadID = getThreadID(CGF, Loc);
2993 QualType Int32Ty =
2994 CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2995 Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2996 CGF.EmitStoreOfScalar(ThreadID,
2997 CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2998
2999 return ThreadIDTemp;
3000}
3001
3002llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
3003 llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
3004 SmallString<256> Buffer;
3005 llvm::raw_svector_ostream Out(Buffer);
3006 Out << Name;
3007 StringRef RuntimeName = Out.str();
3008 auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
3009 if (Elem.second) {
3010 assert(Elem.second->getType()->getPointerElementType() == Ty &&((Elem.second->getType()->getPointerElementType() == Ty
&& "OMP internal variable has different type than requested"
) ? static_cast<void> (0) : __assert_fail ("Elem.second->getType()->getPointerElementType() == Ty && \"OMP internal variable has different type than requested\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3011, __PRETTY_FUNCTION__))
3011 "OMP internal variable has different type than requested")((Elem.second->getType()->getPointerElementType() == Ty
&& "OMP internal variable has different type than requested"
) ? static_cast<void> (0) : __assert_fail ("Elem.second->getType()->getPointerElementType() == Ty && \"OMP internal variable has different type than requested\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3011, __PRETTY_FUNCTION__))
;
3012 return &*Elem.second;
3013 }
3014
3015 return Elem.second = new llvm::GlobalVariable(
3016 CGM.getModule(), Ty, /*IsConstant*/ false,
3017 llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
3018 Elem.first(), /*InsertBefore=*/nullptr,
3019 llvm::GlobalValue::NotThreadLocal, AddressSpace);
3020}
3021
3022llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
3023 std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
3024 std::string Name = getName({Prefix, "var"});
3025 return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
3026}
3027
3028namespace {
3029/// Common pre(post)-action for different OpenMP constructs.
3030class CommonActionTy final : public PrePostActionTy {
3031 llvm::FunctionCallee EnterCallee;
3032 ArrayRef<llvm::Value *> EnterArgs;
3033 llvm::FunctionCallee ExitCallee;
3034 ArrayRef<llvm::Value *> ExitArgs;
3035 bool Conditional;
3036 llvm::BasicBlock *ContBlock = nullptr;
3037
3038public:
3039 CommonActionTy(llvm::FunctionCallee EnterCallee,
3040 ArrayRef<llvm::Value *> EnterArgs,
3041 llvm::FunctionCallee ExitCallee,
3042 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
3043 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
3044 ExitArgs(ExitArgs), Conditional(Conditional) {}
3045 void Enter(CodeGenFunction &CGF) override {
3046 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
3047 if (Conditional) {
3048 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
3049 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
3050 ContBlock = CGF.createBasicBlock("omp_if.end");
3051 // Generate the branch (If-stmt)
3052 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
3053 CGF.EmitBlock(ThenBlock);
3054 }
3055 }
3056 void Done(CodeGenFunction &CGF) {
3057 // Emit the rest of blocks/branches
3058 CGF.EmitBranch(ContBlock);
3059 CGF.EmitBlock(ContBlock, true);
3060 }
3061 void Exit(CodeGenFunction &CGF) override {
3062 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
3063 }
3064};
3065} // anonymous namespace
3066
3067void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
3068 StringRef CriticalName,
3069 const RegionCodeGenTy &CriticalOpGen,
3070 SourceLocation Loc, const Expr *Hint) {
3071 // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
3072 // CriticalOpGen();
3073 // __kmpc_end_critical(ident_t *, gtid, Lock);
3074 // Prepare arguments and build a call to __kmpc_critical
3075 if (!CGF.HaveInsertPoint())
3076 return;
3077 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3078 getCriticalRegionLock(CriticalName)};
3079 llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
3080 std::end(Args));
3081 if (Hint) {
3082 EnterArgs.push_back(CGF.Builder.CreateIntCast(
3083 CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
3084 }
3085 CommonActionTy Action(
3086 createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
3087 : OMPRTL__kmpc_critical),
3088 EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
3089 CriticalOpGen.setAction(Action);
3090 emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
3091}
3092
3093void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
3094 const RegionCodeGenTy &MasterOpGen,
3095 SourceLocation Loc) {
3096 if (!CGF.HaveInsertPoint())
3097 return;
3098 // if(__kmpc_master(ident_t *, gtid)) {
3099 // MasterOpGen();
3100 // __kmpc_end_master(ident_t *, gtid);
3101 // }
3102 // Prepare arguments and build a call to __kmpc_master
3103 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3104 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
3105 createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
3106 /*Conditional=*/true);
3107 MasterOpGen.setAction(Action);
3108 emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
3109 Action.Done(CGF);
3110}
3111
3112void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
3113 SourceLocation Loc) {
3114 if (!CGF.HaveInsertPoint())
3115 return;
3116 // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
3117 llvm::Value *Args[] = {
3118 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3119 llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
3120 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
3121 if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
3122 Region->emitUntiedSwitch(CGF);
3123}
3124
3125void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
3126 const RegionCodeGenTy &TaskgroupOpGen,
3127 SourceLocation Loc) {
3128 if (!CGF.HaveInsertPoint())
3129 return;
3130 // __kmpc_taskgroup(ident_t *, gtid);
3131 // TaskgroupOpGen();
3132 // __kmpc_end_taskgroup(ident_t *, gtid);
3133 // Prepare arguments and build a call to __kmpc_taskgroup
3134 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3135 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
3136 createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
3137 Args);
3138 TaskgroupOpGen.setAction(Action);
3139 emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
3140}
3141
3142/// Given an array of pointers to variables, project the address of a
3143/// given variable.
3144static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
3145 unsigned Index, const VarDecl *Var) {
3146 // Pull out the pointer to the variable.
3147 Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
3148 llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
3149
3150 Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
3151 Addr = CGF.Builder.CreateElementBitCast(
3152 Addr, CGF.ConvertTypeForMem(Var->getType()));
3153 return Addr;
3154}
3155
3156static llvm::Value *emitCopyprivateCopyFunction(
3157 CodeGenModule &CGM, llvm::Type *ArgsType,
3158 ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
3159 ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
3160 SourceLocation Loc) {
3161 ASTContext &C = CGM.getContext();
3162 // void copy_func(void *LHSArg, void *RHSArg);
3163 FunctionArgList Args;
3164 ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3165 ImplicitParamDecl::Other);
3166 ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3167 ImplicitParamDecl::Other);
3168 Args.push_back(&LHSArg);
3169 Args.push_back(&RHSArg);
3170 const auto &CGFI =
3171 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3172 std::string Name =
3173 CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
3174 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
3175 llvm::GlobalValue::InternalLinkage, Name,
3176 &CGM.getModule());
3177 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3178 Fn->setDoesNotRecurse();
3179 CodeGenFunction CGF(CGM);
3180 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3181 // Dest = (void*[n])(LHSArg);
3182 // Src = (void*[n])(RHSArg);
3183 Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3184 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
3185 ArgsType), CGF.getPointerAlign());
3186 Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3187 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
3188 ArgsType), CGF.getPointerAlign());
3189 // *(Type0*)Dst[0] = *(Type0*)Src[0];
3190 // *(Type1*)Dst[1] = *(Type1*)Src[1];
3191 // ...
3192 // *(Typen*)Dst[n] = *(Typen*)Src[n];
3193 for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
3194 const auto *DestVar =
3195 cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
3196 Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
3197
3198 const auto *SrcVar =
3199 cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
3200 Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
3201
3202 const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
3203 QualType Type = VD->getType();
3204 CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
3205 }
3206 CGF.FinishFunction();
3207 return Fn;
3208}
3209
3210void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
3211 const RegionCodeGenTy &SingleOpGen,
3212 SourceLocation Loc,
3213 ArrayRef<const Expr *> CopyprivateVars,
3214 ArrayRef<const Expr *> SrcExprs,
3215 ArrayRef<const Expr *> DstExprs,
3216 ArrayRef<const Expr *> AssignmentOps) {
3217 if (!CGF.HaveInsertPoint())
3218 return;
3219 assert(CopyprivateVars.size() == SrcExprs.size() &&((CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars
.size() == DstExprs.size() && CopyprivateVars.size() ==
AssignmentOps.size()) ? static_cast<void> (0) : __assert_fail
("CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars.size() == DstExprs.size() && CopyprivateVars.size() == AssignmentOps.size()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3221, __PRETTY_FUNCTION__))
3220 CopyprivateVars.size() == DstExprs.size() &&((CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars
.size() == DstExprs.size() && CopyprivateVars.size() ==
AssignmentOps.size()) ? static_cast<void> (0) : __assert_fail
("CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars.size() == DstExprs.size() && CopyprivateVars.size() == AssignmentOps.size()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3221, __PRETTY_FUNCTION__))
3221 CopyprivateVars.size() == AssignmentOps.size())((CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars
.size() == DstExprs.size() && CopyprivateVars.size() ==
AssignmentOps.size()) ? static_cast<void> (0) : __assert_fail
("CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars.size() == DstExprs.size() && CopyprivateVars.size() == AssignmentOps.size()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3221, __PRETTY_FUNCTION__))
;
3222 ASTContext &C = CGM.getContext();
3223 // int32 did_it = 0;
3224 // if(__kmpc_single(ident_t *, gtid)) {
3225 // SingleOpGen();
3226 // __kmpc_end_single(ident_t *, gtid);
3227 // did_it = 1;
3228 // }
3229 // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3230 // <copy_func>, did_it);
3231
3232 Address DidIt = Address::invalid();
3233 if (!CopyprivateVars.empty()) {
3234 // int32 did_it = 0;
3235 QualType KmpInt32Ty =
3236 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3237 DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
3238 CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
3239 }
3240 // Prepare arguments and build a call to __kmpc_single
3241 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3242 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
3243 createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
3244 /*Conditional=*/true);
3245 SingleOpGen.setAction(Action);
3246 emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
3247 if (DidIt.isValid()) {
3248 // did_it = 1;
3249 CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
3250 }
3251 Action.Done(CGF);
3252 // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3253 // <copy_func>, did_it);
3254 if (DidIt.isValid()) {
3255 llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
3256 QualType CopyprivateArrayTy =
3257 C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
3258 /*IndexTypeQuals=*/0);
3259 // Create a list of all private variables for copyprivate.
3260 Address CopyprivateList =
3261 CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
3262 for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
3263 Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
3264 CGF.Builder.CreateStore(
3265 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3266 CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
3267 Elem);
3268 }
3269 // Build function that copies private values from single region to all other
3270 // threads in the corresponding parallel region.
3271 llvm::Value *CpyFn = emitCopyprivateCopyFunction(
3272 CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
3273 CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
3274 llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
3275 Address CL =
3276 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
3277 CGF.VoidPtrTy);
3278 llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
3279 llvm::Value *Args[] = {
3280 emitUpdateLocation(CGF, Loc), // ident_t *<loc>
3281 getThreadID(CGF, Loc), // i32 <gtid>
3282 BufSize, // size_t <buf_size>
3283 CL.getPointer(), // void *<copyprivate list>
3284 CpyFn, // void (*) (void *, void *) <copy_func>
3285 DidItVal // i32 did_it
3286 };
3287 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
3288 }
3289}
3290
3291void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
3292 const RegionCodeGenTy &OrderedOpGen,
3293 SourceLocation Loc, bool IsThreads) {
3294 if (!CGF.HaveInsertPoint())
3295 return;
3296 // __kmpc_ordered(ident_t *, gtid);
3297 // OrderedOpGen();
3298 // __kmpc_end_ordered(ident_t *, gtid);
3299 // Prepare arguments and build a call to __kmpc_ordered
3300 if (IsThreads) {
3301 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3302 CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
3303 createRuntimeFunction(OMPRTL__kmpc_end_ordered),
3304 Args);
3305 OrderedOpGen.setAction(Action);
3306 emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3307 return;
3308 }
3309 emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3310}
3311
3312unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
3313 unsigned Flags;
3314 if (Kind == OMPD_for)
3315 Flags = OMP_IDENT_BARRIER_IMPL_FOR;
3316 else if (Kind == OMPD_sections)
3317 Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
3318 else if (Kind == OMPD_single)
3319 Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
3320 else if (Kind == OMPD_barrier)
3321 Flags = OMP_IDENT_BARRIER_EXPL;
3322 else
3323 Flags = OMP_IDENT_BARRIER_IMPL;
3324 return Flags;
3325}
3326
3327void CGOpenMPRuntime::getDefaultScheduleAndChunk(
3328 CodeGenFunction &CGF, const OMPLoopDirective &S,
3329 OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
3330 // Check if the loop directive is actually a doacross loop directive. In this
3331 // case choose static, 1 schedule.
3332 if (llvm::any_of(
3333 S.getClausesOfKind<OMPOrderedClause>(),
3334 [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
3335 ScheduleKind = OMPC_SCHEDULE_static;
3336 // Chunk size is 1 in this case.
3337 llvm::APInt ChunkSize(32, 1);
3338 ChunkExpr = IntegerLiteral::Create(
3339 CGF.getContext(), ChunkSize,
3340 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3341 SourceLocation());
3342 }
3343}
3344
3345void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
3346 OpenMPDirectiveKind Kind, bool EmitChecks,
3347 bool ForceSimpleCall) {
3348 if (!CGF.HaveInsertPoint())
3349 return;
3350 // Build call __kmpc_cancel_barrier(loc, thread_id);
3351 // Build call __kmpc_barrier(loc, thread_id);
3352 unsigned Flags = getDefaultFlagsForBarriers(Kind);
3353 // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
3354 // thread_id);
3355 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
3356 getThreadID(CGF, Loc)};
3357 if (auto *OMPRegionInfo =
3358 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
3359 if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
3360 llvm::Value *Result = CGF.EmitRuntimeCall(
3361 createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
3362 if (EmitChecks) {
3363 // if (__kmpc_cancel_barrier()) {
3364 // exit from construct;
3365 // }
3366 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
3367 llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
3368 llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
3369 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
3370 CGF.EmitBlock(ExitBB);
3371 // exit from construct;
3372 CodeGenFunction::JumpDest CancelDestination =
3373 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
3374 CGF.EmitBranchThroughCleanup(CancelDestination);
3375 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
3376 }
3377 return;
3378 }
3379 }
3380 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
3381}
3382
3383/// Map the OpenMP loop schedule to the runtime enumeration.
3384static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
3385 bool Chunked, bool Ordered) {
3386 switch (ScheduleKind) {
3387 case OMPC_SCHEDULE_static:
3388 return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
3389 : (Ordered ? OMP_ord_static : OMP_sch_static);
3390 case OMPC_SCHEDULE_dynamic:
3391 return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
3392 case OMPC_SCHEDULE_guided:
3393 return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
3394 case OMPC_SCHEDULE_runtime:
3395 return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
3396 case OMPC_SCHEDULE_auto:
3397 return Ordered ? OMP_ord_auto : OMP_sch_auto;
3398 case OMPC_SCHEDULE_unknown:
3399 assert(!Chunked && "chunk was specified but schedule kind not known")((!Chunked && "chunk was specified but schedule kind not known"
) ? static_cast<void> (0) : __assert_fail ("!Chunked && \"chunk was specified but schedule kind not known\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3399, __PRETTY_FUNCTION__))
;
3400 return Ordered ? OMP_ord_static : OMP_sch_static;
3401 }
3402 llvm_unreachable("Unexpected runtime schedule")::llvm::llvm_unreachable_internal("Unexpected runtime schedule"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3402)
;
3403}
3404
3405/// Map the OpenMP distribute schedule to the runtime enumeration.
3406static OpenMPSchedType
3407getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
3408 // only static is allowed for dist_schedule
3409 return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
3410}
3411
3412bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
3413 bool Chunked) const {
3414 OpenMPSchedType Schedule =
3415 getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3416 return Schedule == OMP_sch_static;
3417}
3418
3419bool CGOpenMPRuntime::isStaticNonchunked(
3420 OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3421 OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3422 return Schedule == OMP_dist_sch_static;
3423}
3424
3425bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
3426 bool Chunked) const {
3427 OpenMPSchedType Schedule =
3428 getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3429 return Schedule == OMP_sch_static_chunked;
3430}
3431
3432bool CGOpenMPRuntime::isStaticChunked(
3433 OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3434 OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3435 return Schedule == OMP_dist_sch_static_chunked;
3436}
3437
3438bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
3439 OpenMPSchedType Schedule =
3440 getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
3441 assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here")((Schedule != OMP_sch_static_chunked && "cannot be chunked here"
) ? static_cast<void> (0) : __assert_fail ("Schedule != OMP_sch_static_chunked && \"cannot be chunked here\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3441, __PRETTY_FUNCTION__))
;
3442 return Schedule != OMP_sch_static;
3443}
3444
3445static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
3446 OpenMPScheduleClauseModifier M1,
3447 OpenMPScheduleClauseModifier M2) {
3448 int Modifier = 0;
3449 switch (M1) {
3450 case OMPC_SCHEDULE_MODIFIER_monotonic:
3451 Modifier = OMP_sch_modifier_monotonic;
3452 break;
3453 case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3454 Modifier = OMP_sch_modifier_nonmonotonic;
3455 break;
3456 case OMPC_SCHEDULE_MODIFIER_simd:
3457 if (Schedule == OMP_sch_static_chunked)
3458 Schedule = OMP_sch_static_balanced_chunked;
3459 break;
3460 case OMPC_SCHEDULE_MODIFIER_last:
3461 case OMPC_SCHEDULE_MODIFIER_unknown:
3462 break;
3463 }
3464 switch (M2) {
3465 case OMPC_SCHEDULE_MODIFIER_monotonic:
3466 Modifier = OMP_sch_modifier_monotonic;
3467 break;
3468 case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3469 Modifier = OMP_sch_modifier_nonmonotonic;
3470 break;
3471 case OMPC_SCHEDULE_MODIFIER_simd:
3472 if (Schedule == OMP_sch_static_chunked)
3473 Schedule = OMP_sch_static_balanced_chunked;
3474 break;
3475 case OMPC_SCHEDULE_MODIFIER_last:
3476 case OMPC_SCHEDULE_MODIFIER_unknown:
3477 break;
3478 }
3479 return Schedule | Modifier;
3480}
3481
3482void CGOpenMPRuntime::emitForDispatchInit(
3483 CodeGenFunction &CGF, SourceLocation Loc,
3484 const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
3485 bool Ordered, const DispatchRTInput &DispatchValues) {
3486 if (!CGF.HaveInsertPoint())
3487 return;
3488 OpenMPSchedType Schedule = getRuntimeSchedule(
3489 ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
3490 assert(Ordered ||((Ordered || (Schedule != OMP_sch_static && Schedule !=
OMP_sch_static_chunked && Schedule != OMP_ord_static
&& Schedule != OMP_ord_static_chunked && Schedule
!= OMP_sch_static_balanced_chunked)) ? static_cast<void>
(0) : __assert_fail ("Ordered || (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && Schedule != OMP_sch_static_balanced_chunked)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3493, __PRETTY_FUNCTION__))
3491 (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&((Ordered || (Schedule != OMP_sch_static && Schedule !=
OMP_sch_static_chunked && Schedule != OMP_ord_static
&& Schedule != OMP_ord_static_chunked && Schedule
!= OMP_sch_static_balanced_chunked)) ? static_cast<void>
(0) : __assert_fail ("Ordered || (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && Schedule != OMP_sch_static_balanced_chunked)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3493, __PRETTY_FUNCTION__))
3492 Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&((Ordered || (Schedule != OMP_sch_static && Schedule !=
OMP_sch_static_chunked && Schedule != OMP_ord_static
&& Schedule != OMP_ord_static_chunked && Schedule
!= OMP_sch_static_balanced_chunked)) ? static_cast<void>
(0) : __assert_fail ("Ordered || (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && Schedule != OMP_sch_static_balanced_chunked)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3493, __PRETTY_FUNCTION__))
3493 Schedule != OMP_sch_static_balanced_chunked))((Ordered || (Schedule != OMP_sch_static && Schedule !=
OMP_sch_static_chunked && Schedule != OMP_ord_static
&& Schedule != OMP_ord_static_chunked && Schedule
!= OMP_sch_static_balanced_chunked)) ? static_cast<void>
(0) : __assert_fail ("Ordered || (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && Schedule != OMP_sch_static_balanced_chunked)"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3493, __PRETTY_FUNCTION__))
;
3494 // Call __kmpc_dispatch_init(
3495 // ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
3496 // kmp_int[32|64] lower, kmp_int[32|64] upper,
3497 // kmp_int[32|64] stride, kmp_int[32|64] chunk);
3498
3499 // If the Chunk was not specified in the clause - use default value 1.
3500 llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
3501 : CGF.Builder.getIntN(IVSize, 1);
3502 llvm::Value *Args[] = {
3503 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3504 CGF.Builder.getInt32(addMonoNonMonoModifier(
3505 Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
3506 DispatchValues.LB, // Lower
3507 DispatchValues.UB, // Upper
3508 CGF.Builder.getIntN(IVSize, 1), // Stride
3509 Chunk // Chunk
3510 };
3511 CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
3512}
3513
3514static void emitForStaticInitCall(
3515 CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
3516 llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
3517 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
3518 const CGOpenMPRuntime::StaticRTInput &Values) {
3519 if (!CGF.HaveInsertPoint())
3520 return;
3521
3522 assert(!Values.Ordered)((!Values.Ordered) ? static_cast<void> (0) : __assert_fail
("!Values.Ordered", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3522, __PRETTY_FUNCTION__))
;
3523 assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||((Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked
|| Schedule == OMP_sch_static_balanced_chunked || Schedule ==
OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule
== OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked
) ? static_cast<void> (0) : __assert_fail ("Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3527, __PRETTY_FUNCTION__))
3524 Schedule == OMP_sch_static_balanced_chunked ||((Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked
|| Schedule == OMP_sch_static_balanced_chunked || Schedule ==
OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule
== OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked
) ? static_cast<void> (0) : __assert_fail ("Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3527, __PRETTY_FUNCTION__))
3525 Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||((Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked
|| Schedule == OMP_sch_static_balanced_chunked || Schedule ==
OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule
== OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked
) ? static_cast<void> (0) : __assert_fail ("Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3527, __PRETTY_FUNCTION__))
3526 Schedule == OMP_dist_sch_static ||((Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked
|| Schedule == OMP_sch_static_balanced_chunked || Schedule ==
OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule
== OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked
) ? static_cast<void> (0) : __assert_fail ("Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3527, __PRETTY_FUNCTION__))
3527 Schedule == OMP_dist_sch_static_chunked)((Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked
|| Schedule == OMP_sch_static_balanced_chunked || Schedule ==
OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule
== OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked
) ? static_cast<void> (0) : __assert_fail ("Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3527, __PRETTY_FUNCTION__))
;
3528
3529 // Call __kmpc_for_static_init(
3530 // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
3531 // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
3532 // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
3533 // kmp_int[32|64] incr, kmp_int[32|64] chunk);
3534 llvm::Value *Chunk = Values.Chunk;
3535 if (Chunk == nullptr) {
3536 assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||(((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static) && "expected static non-chunked schedule"
) ? static_cast<void> (0) : __assert_fail ("(Schedule == OMP_sch_static || Schedule == OMP_ord_static || Schedule == OMP_dist_sch_static) && \"expected static non-chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3538, __PRETTY_FUNCTION__))
3537 Schedule == OMP_dist_sch_static) &&(((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static) && "expected static non-chunked schedule"
) ? static_cast<void> (0) : __assert_fail ("(Schedule == OMP_sch_static || Schedule == OMP_ord_static || Schedule == OMP_dist_sch_static) && \"expected static non-chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3538, __PRETTY_FUNCTION__))
3538 "expected static non-chunked schedule")(((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static) && "expected static non-chunked schedule"
) ? static_cast<void> (0) : __assert_fail ("(Schedule == OMP_sch_static || Schedule == OMP_ord_static || Schedule == OMP_dist_sch_static) && \"expected static non-chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3538, __PRETTY_FUNCTION__))
;
3539 // If the Chunk was not specified in the clause - use default value 1.
3540 Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
3541 } else {
3542 assert((Schedule == OMP_sch_static_chunked ||(((Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked
|| Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked
) && "expected static chunked schedule") ? static_cast
<void> (0) : __assert_fail ("(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked) && \"expected static chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3546, __PRETTY_FUNCTION__))
3543 Schedule == OMP_sch_static_balanced_chunked ||(((Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked
|| Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked
) && "expected static chunked schedule") ? static_cast
<void> (0) : __assert_fail ("(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked) && \"expected static chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3546, __PRETTY_FUNCTION__))
3544 Schedule == OMP_ord_static_chunked ||(((Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked
|| Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked
) && "expected static chunked schedule") ? static_cast
<void> (0) : __assert_fail ("(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked) && \"expected static chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3546, __PRETTY_FUNCTION__))
3545 Schedule == OMP_dist_sch_static_chunked) &&(((Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked
|| Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked
) && "expected static chunked schedule") ? static_cast
<void> (0) : __assert_fail ("(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked) && \"expected static chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3546, __PRETTY_FUNCTION__))
3546 "expected static chunked schedule")(((Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked
|| Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked
) && "expected static chunked schedule") ? static_cast
<void> (0) : __assert_fail ("(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked) && \"expected static chunked schedule\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3546, __PRETTY_FUNCTION__))
;
3547 }
3548 llvm::Value *Args[] = {
3549 UpdateLocation,
3550 ThreadId,
3551 CGF.Builder.getInt32(addMonoNonMonoModifier(Schedule, M1,
3552 M2)), // Schedule type
3553 Values.IL.getPointer(), // &isLastIter
3554 Values.LB.getPointer(), // &LB
3555 Values.UB.getPointer(), // &UB
3556 Values.ST.getPointer(), // &Stride
3557 CGF.Builder.getIntN(Values.IVSize, 1), // Incr
3558 Chunk // Chunk
3559 };
3560 CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
3561}
3562
3563void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
3564 SourceLocation Loc,
3565 OpenMPDirectiveKind DKind,
3566 const OpenMPScheduleTy &ScheduleKind,
3567 const StaticRTInput &Values) {
3568 OpenMPSchedType ScheduleNum = getRuntimeSchedule(
3569 ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
3570 assert(isOpenMPWorksharingDirective(DKind) &&((isOpenMPWorksharingDirective(DKind) && "Expected loop-based or sections-based directive."
) ? static_cast<void> (0) : __assert_fail ("isOpenMPWorksharingDirective(DKind) && \"Expected loop-based or sections-based directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3571, __PRETTY_FUNCTION__))
3571 "Expected loop-based or sections-based directive.")((isOpenMPWorksharingDirective(DKind) && "Expected loop-based or sections-based directive."
) ? static_cast<void> (0) : __assert_fail ("isOpenMPWorksharingDirective(DKind) && \"Expected loop-based or sections-based directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3571, __PRETTY_FUNCTION__))
;
3572 llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
3573 isOpenMPLoopDirective(DKind)
3574 ? OMP_IDENT_WORK_LOOP
3575 : OMP_IDENT_WORK_SECTIONS);
3576 llvm::Value *ThreadId = getThreadID(CGF, Loc);
3577 llvm::FunctionCallee StaticInitFunction =
3578 createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3579 emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3580 ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
3581}
3582
3583void CGOpenMPRuntime::emitDistributeStaticInit(
3584 CodeGenFunction &CGF, SourceLocation Loc,
3585 OpenMPDistScheduleClauseKind SchedKind,
3586 const CGOpenMPRuntime::StaticRTInput &Values) {
3587 OpenMPSchedType ScheduleNum =
3588 getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
3589 llvm::Value *UpdatedLocation =
3590 emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
3591 llvm::Value *ThreadId = getThreadID(CGF, Loc);
3592 llvm::FunctionCallee StaticInitFunction =
3593 createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3594 emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3595 ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
3596 OMPC_SCHEDULE_MODIFIER_unknown, Values);
3597}
3598
3599void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
3600 SourceLocation Loc,
3601 OpenMPDirectiveKind DKind) {
3602 if (!CGF.HaveInsertPoint())
3603 return;
3604 // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
3605 llvm::Value *Args[] = {
3606 emitUpdateLocation(CGF, Loc,
3607 isOpenMPDistributeDirective(DKind)
3608 ? OMP_IDENT_WORK_DISTRIBUTE
3609 : isOpenMPLoopDirective(DKind)
3610 ? OMP_IDENT_WORK_LOOP
3611 : OMP_IDENT_WORK_SECTIONS),
3612 getThreadID(CGF, Loc)};
3613 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
3614 Args);
3615}
3616
3617void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
3618 SourceLocation Loc,
3619 unsigned IVSize,
3620 bool IVSigned) {
3621 if (!CGF.HaveInsertPoint())
3622 return;
3623 // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
3624 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3625 CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
3626}
3627
3628llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
3629 SourceLocation Loc, unsigned IVSize,
3630 bool IVSigned, Address IL,
3631 Address LB, Address UB,
3632 Address ST) {
3633 // Call __kmpc_dispatch_next(
3634 // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
3635 // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
3636 // kmp_int[32|64] *p_stride);
3637 llvm::Value *Args[] = {
3638 emitUpdateLocation(CGF, Loc),
3639 getThreadID(CGF, Loc),
3640 IL.getPointer(), // &isLastIter
3641 LB.getPointer(), // &Lower
3642 UB.getPointer(), // &Upper
3643 ST.getPointer() // &Stride
3644 };
3645 llvm::Value *Call =
3646 CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
3647 return CGF.EmitScalarConversion(
3648 Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
3649 CGF.getContext().BoolTy, Loc);
3650}
3651
3652void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
3653 llvm::Value *NumThreads,
3654 SourceLocation Loc) {
3655 if (!CGF.HaveInsertPoint())
3656 return;
3657 // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
3658 llvm::Value *Args[] = {
3659 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3660 CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
3661 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
3662 Args);
3663}
3664
3665void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
3666 OpenMPProcBindClauseKind ProcBind,
3667 SourceLocation Loc) {
3668 if (!CGF.HaveInsertPoint())
3669 return;
3670 // Constants for proc bind value accepted by the runtime.
3671 enum ProcBindTy {
3672 ProcBindFalse = 0,
3673 ProcBindTrue,
3674 ProcBindMaster,
3675 ProcBindClose,
3676 ProcBindSpread,
3677 ProcBindIntel,
3678 ProcBindDefault
3679 } RuntimeProcBind;
3680 switch (ProcBind) {
3681 case OMPC_PROC_BIND_master:
3682 RuntimeProcBind = ProcBindMaster;
3683 break;
3684 case OMPC_PROC_BIND_close:
3685 RuntimeProcBind = ProcBindClose;
3686 break;
3687 case OMPC_PROC_BIND_spread:
3688 RuntimeProcBind = ProcBindSpread;
3689 break;
3690 case OMPC_PROC_BIND_unknown:
3691 llvm_unreachable("Unsupported proc_bind value.")::llvm::llvm_unreachable_internal("Unsupported proc_bind value."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3691)
;
3692 }
3693 // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
3694 llvm::Value *Args[] = {
3695 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3696 llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
3697 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
3698}
3699
3700void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
3701 SourceLocation Loc) {
3702 if (!CGF.HaveInsertPoint())
3703 return;
3704 // Build call void __kmpc_flush(ident_t *loc)
3705 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
3706 emitUpdateLocation(CGF, Loc));
3707}
3708
3709namespace {
3710/// Indexes of fields for type kmp_task_t.
3711enum KmpTaskTFields {
3712 /// List of shared variables.
3713 KmpTaskTShareds,
3714 /// Task routine.
3715 KmpTaskTRoutine,
3716 /// Partition id for the untied tasks.
3717 KmpTaskTPartId,
3718 /// Function with call of destructors for private variables.
3719 Data1,
3720 /// Task priority.
3721 Data2,
3722 /// (Taskloops only) Lower bound.
3723 KmpTaskTLowerBound,
3724 /// (Taskloops only) Upper bound.
3725 KmpTaskTUpperBound,
3726 /// (Taskloops only) Stride.
3727 KmpTaskTStride,
3728 /// (Taskloops only) Is last iteration flag.
3729 KmpTaskTLastIter,
3730 /// (Taskloops only) Reduction data.
3731 KmpTaskTReductions,
3732};
3733} // anonymous namespace
3734
3735bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
3736 return OffloadEntriesTargetRegion.empty() &&
3737 OffloadEntriesDeviceGlobalVar.empty();
3738}
3739
3740/// Initialize target region entry.
3741void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3742 initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3743 StringRef ParentName, unsigned LineNum,
3744 unsigned Order) {
3745 assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "((CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device " "code generation.") ? static_cast
<void> (0) : __assert_fail ("CGM.getLangOpts().OpenMPIsDevice && \"Initialization of entries is \" \"only required for the device \" \"code generation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3747, __PRETTY_FUNCTION__))
3746 "only required for the device "((CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device " "code generation.") ? static_cast
<void> (0) : __assert_fail ("CGM.getLangOpts().OpenMPIsDevice && \"Initialization of entries is \" \"only required for the device \" \"code generation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3747, __PRETTY_FUNCTION__))
3747 "code generation.")((CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device " "code generation.") ? static_cast
<void> (0) : __assert_fail ("CGM.getLangOpts().OpenMPIsDevice && \"Initialization of entries is \" \"only required for the device \" \"code generation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3747, __PRETTY_FUNCTION__))
;
3748 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
3749 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
3750 OMPTargetRegionEntryTargetRegion);
3751 ++OffloadingEntriesNum;
3752}
3753
3754void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3755 registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3756 StringRef ParentName, unsigned LineNum,
3757 llvm::Constant *Addr, llvm::Constant *ID,
3758 OMPTargetRegionEntryKind Flags) {
3759 // If we are emitting code for a target, the entry is already initialized,
3760 // only has to be registered.
3761 if (CGM.getLangOpts().OpenMPIsDevice) {
3762 if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
3763 unsigned DiagID = CGM.getDiags().getCustomDiagID(
3764 DiagnosticsEngine::Error,
3765 "Unable to find target region on line '%0' in the device code.");
3766 CGM.getDiags().Report(DiagID) << LineNum;
3767 return;
3768 }
3769 auto &Entry =
3770 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
3771 assert(Entry.isValid() && "Entry not initialized!")((Entry.isValid() && "Entry not initialized!") ? static_cast
<void> (0) : __assert_fail ("Entry.isValid() && \"Entry not initialized!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3771, __PRETTY_FUNCTION__))
;
3772 Entry.setAddress(Addr);
3773 Entry.setID(ID);
3774 Entry.setFlags(Flags);
3775 } else {
3776 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
3777 OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
3778 ++OffloadingEntriesNum;
3779 }
3780}
3781
3782bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
3783 unsigned DeviceID, unsigned FileID, StringRef ParentName,
3784 unsigned LineNum) const {
3785 auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
3786 if (PerDevice == OffloadEntriesTargetRegion.end())
3787 return false;
3788 auto PerFile = PerDevice->second.find(FileID);
3789 if (PerFile == PerDevice->second.end())
3790 return false;
3791 auto PerParentName = PerFile->second.find(ParentName);
3792 if (PerParentName == PerFile->second.end())
3793 return false;
3794 auto PerLine = PerParentName->second.find(LineNum);
3795 if (PerLine == PerParentName->second.end())
3796 return false;
3797 // Fail if this entry is already registered.
3798 if (PerLine->second.getAddress() || PerLine->second.getID())
3799 return false;
3800 return true;
3801}
3802
3803void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
3804 const OffloadTargetRegionEntryInfoActTy &Action) {
3805 // Scan all target region entries and perform the provided action.
3806 for (const auto &D : OffloadEntriesTargetRegion)
3807 for (const auto &F : D.second)
3808 for (const auto &P : F.second)
3809 for (const auto &L : P.second)
3810 Action(D.first, F.first, P.first(), L.first, L.second);
3811}
3812
3813void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3814 initializeDeviceGlobalVarEntryInfo(StringRef Name,
3815 OMPTargetGlobalVarEntryKind Flags,
3816 unsigned Order) {
3817 assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "((CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device " "code generation.") ? static_cast
<void> (0) : __assert_fail ("CGM.getLangOpts().OpenMPIsDevice && \"Initialization of entries is \" \"only required for the device \" \"code generation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3819, __PRETTY_FUNCTION__))
3818 "only required for the device "((CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device " "code generation.") ? static_cast
<void> (0) : __assert_fail ("CGM.getLangOpts().OpenMPIsDevice && \"Initialization of entries is \" \"only required for the device \" \"code generation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3819, __PRETTY_FUNCTION__))
3819 "code generation.")((CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device " "code generation.") ? static_cast
<void> (0) : __assert_fail ("CGM.getLangOpts().OpenMPIsDevice && \"Initialization of entries is \" \"only required for the device \" \"code generation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3819, __PRETTY_FUNCTION__))
;
3820 OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3821 ++OffloadingEntriesNum;
3822}
3823
3824void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3825 registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3826 CharUnits VarSize,
3827 OMPTargetGlobalVarEntryKind Flags,
3828 llvm::GlobalValue::LinkageTypes Linkage) {
3829 if (CGM.getLangOpts().OpenMPIsDevice) {
3830 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3831 assert(Entry.isValid() && Entry.getFlags() == Flags &&((Entry.isValid() && Entry.getFlags() == Flags &&
"Entry not initialized!") ? static_cast<void> (0) : __assert_fail
("Entry.isValid() && Entry.getFlags() == Flags && \"Entry not initialized!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3832, __PRETTY_FUNCTION__))
3832 "Entry not initialized!")((Entry.isValid() && Entry.getFlags() == Flags &&
"Entry not initialized!") ? static_cast<void> (0) : __assert_fail
("Entry.isValid() && Entry.getFlags() == Flags && \"Entry not initialized!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3832, __PRETTY_FUNCTION__))
;
3833 assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&(((!Entry.getAddress() || Entry.getAddress() == Addr) &&
"Resetting with the new address.") ? static_cast<void>
(0) : __assert_fail ("(!Entry.getAddress() || Entry.getAddress() == Addr) && \"Resetting with the new address.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3834, __PRETTY_FUNCTION__))
3834 "Resetting with the new address.")(((!Entry.getAddress() || Entry.getAddress() == Addr) &&
"Resetting with the new address.") ? static_cast<void>
(0) : __assert_fail ("(!Entry.getAddress() || Entry.getAddress() == Addr) && \"Resetting with the new address.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3834, __PRETTY_FUNCTION__))
;
3835 if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
3836 if (Entry.getVarSize().isZero()) {
3837 Entry.setVarSize(VarSize);
3838 Entry.setLinkage(Linkage);
3839 }
3840 return;
3841 }
3842 Entry.setVarSize(VarSize);
3843 Entry.setLinkage(Linkage);
3844 Entry.setAddress(Addr);
3845 } else {
3846 if (hasDeviceGlobalVarEntryInfo(VarName)) {
3847 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3848 assert(Entry.isValid() && Entry.getFlags() == Flags &&((Entry.isValid() && Entry.getFlags() == Flags &&
"Entry not initialized!") ? static_cast<void> (0) : __assert_fail
("Entry.isValid() && Entry.getFlags() == Flags && \"Entry not initialized!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3849, __PRETTY_FUNCTION__))
3849 "Entry not initialized!")((Entry.isValid() && Entry.getFlags() == Flags &&
"Entry not initialized!") ? static_cast<void> (0) : __assert_fail
("Entry.isValid() && Entry.getFlags() == Flags && \"Entry not initialized!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3849, __PRETTY_FUNCTION__))
;
3850 assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&(((!Entry.getAddress() || Entry.getAddress() == Addr) &&
"Resetting with the new address.") ? static_cast<void>
(0) : __assert_fail ("(!Entry.getAddress() || Entry.getAddress() == Addr) && \"Resetting with the new address.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3851, __PRETTY_FUNCTION__))
3851 "Resetting with the new address.")(((!Entry.getAddress() || Entry.getAddress() == Addr) &&
"Resetting with the new address.") ? static_cast<void>
(0) : __assert_fail ("(!Entry.getAddress() || Entry.getAddress() == Addr) && \"Resetting with the new address.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3851, __PRETTY_FUNCTION__))
;
3852 if (Entry.getVarSize().isZero()) {
3853 Entry.setVarSize(VarSize);
3854 Entry.setLinkage(Linkage);
3855 }
3856 return;
3857 }
3858 OffloadEntriesDeviceGlobalVar.try_emplace(
3859 VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3860 ++OffloadingEntriesNum;
3861 }
3862}
3863
3864void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
3865 actOnDeviceGlobalVarEntriesInfo(
3866 const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3867 // Scan all target region entries and perform the provided action.
3868 for (const auto &E : OffloadEntriesDeviceGlobalVar)
3869 Action(E.getKey(), E.getValue());
3870}
3871
3872llvm::Function *
3873CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
3874 // If we don't have entries or if we are emitting code for the device, we
3875 // don't need to do anything.
3876 if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
3877 return nullptr;
3878
3879 llvm::Module &M = CGM.getModule();
3880 ASTContext &C = CGM.getContext();
3881
3882 // Get list of devices we care about
3883 const std::vector<llvm::Triple> &Devices = CGM.getLangOpts().OMPTargetTriples;
3884
3885 // We should be creating an offloading descriptor only if there are devices
3886 // specified.
3887 assert(!Devices.empty() && "No OpenMP offloading devices??")((!Devices.empty() && "No OpenMP offloading devices??"
) ? static_cast<void> (0) : __assert_fail ("!Devices.empty() && \"No OpenMP offloading devices??\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 3887, __PRETTY_FUNCTION__))
;
3888
3889 // Create the external variables that will point to the begin and end of the
3890 // host entries section. These will be defined by the linker.
3891 llvm::Type *OffloadEntryTy =
3892 CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
3893 std::string EntriesBeginName = getName({"omp_offloading", "entries_begin"});
3894 auto *HostEntriesBegin = new llvm::GlobalVariable(
3895 M, OffloadEntryTy, /*isConstant=*/true,
3896 llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
3897 EntriesBeginName);
3898 std::string EntriesEndName = getName({"omp_offloading", "entries_end"});
3899 auto *HostEntriesEnd =
3900 new llvm::GlobalVariable(M, OffloadEntryTy, /*isConstant=*/true,
3901 llvm::GlobalValue::ExternalLinkage,
3902 /*Initializer=*/nullptr, EntriesEndName);
3903
3904 // Create all device images
3905 auto *DeviceImageTy = cast<llvm::StructType>(
3906 CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
3907 ConstantInitBuilder DeviceImagesBuilder(CGM);
3908 ConstantArrayBuilder DeviceImagesEntries =
3909 DeviceImagesBuilder.beginArray(DeviceImageTy);
3910
3911 for (const llvm::Triple &Device : Devices) {
3912 StringRef T = Device.getTriple();
3913 std::string BeginName = getName({"omp_offloading", "img_start", ""});
3914 auto *ImgBegin = new llvm::GlobalVariable(
3915 M, CGM.Int8Ty, /*isConstant=*/true,
3916 llvm::GlobalValue::ExternalWeakLinkage,
3917 /*Initializer=*/nullptr, Twine(BeginName).concat(T));
3918 std::string EndName = getName({"omp_offloading", "img_end", ""});
3919 auto *ImgEnd = new llvm::GlobalVariable(
3920 M, CGM.Int8Ty, /*isConstant=*/true,
3921 llvm::GlobalValue::ExternalWeakLinkage,
3922 /*Initializer=*/nullptr, Twine(EndName).concat(T));
3923
3924 llvm::Constant *Data[] = {ImgBegin, ImgEnd, HostEntriesBegin,
3925 HostEntriesEnd};
3926 createConstantGlobalStructAndAddToParent(CGM, getTgtDeviceImageQTy(), Data,
3927 DeviceImagesEntries);
3928 }
3929
3930 // Create device images global array.
3931 std::string ImagesName = getName({"omp_offloading", "device_images"});
3932 llvm::GlobalVariable *DeviceImages =
3933 DeviceImagesEntries.finishAndCreateGlobal(ImagesName,
3934 CGM.getPointerAlign(),
3935 /*isConstant=*/true);
3936 DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3937
3938 // This is a Zero array to be used in the creation of the constant expressions
3939 llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
3940 llvm::Constant::getNullValue(CGM.Int32Ty)};
3941
3942 // Create the target region descriptor.
3943 llvm::Constant *Data[] = {
3944 llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()),
3945 llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(),
3946 DeviceImages, Index),
3947 HostEntriesBegin, HostEntriesEnd};
3948 std::string Descriptor = getName({"omp_offloading", "descriptor"});
3949 llvm::GlobalVariable *Desc = createGlobalStruct(
3950 CGM, getTgtBinaryDescriptorQTy(), /*IsConstant=*/true, Data, Descriptor);
3951
3952 // Emit code to register or unregister the descriptor at execution
3953 // startup or closing, respectively.
3954
3955 llvm::Function *UnRegFn;
3956 {
3957 FunctionArgList Args;
3958 ImplicitParamDecl DummyPtr(C, C.VoidPtrTy, ImplicitParamDecl::Other);
3959 Args.push_back(&DummyPtr);
3960
3961 CodeGenFunction CGF(CGM);
3962 // Disable debug info for global (de-)initializer because they are not part
3963 // of some particular construct.
3964 CGF.disableDebugInfo();
3965 const auto &FI =
3966 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3967 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
3968 std::string UnregName = getName({"omp_offloading", "descriptor_unreg"});
3969 UnRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, UnregName, FI);
3970 CGF.StartFunction(GlobalDecl(), C.VoidTy, UnRegFn, FI, Args);
3971 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
3972 Desc);
3973 CGF.FinishFunction();
3974 }
3975 llvm::Function *RegFn;
3976 {
3977 CodeGenFunction CGF(CGM);
3978 // Disable debug info for global (de-)initializer because they are not part
3979 // of some particular construct.
3980 CGF.disableDebugInfo();
3981 const auto &FI = CGM.getTypes().arrangeNullaryFunction();
3982 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
3983
3984 // Encode offload target triples into the registration function name. It
3985 // will serve as a comdat key for the registration/unregistration code for
3986 // this particular combination of offloading targets.
3987 SmallVector<StringRef, 4U> RegFnNameParts(Devices.size() + 2U);
3988 RegFnNameParts[0] = "omp_offloading";
3989 RegFnNameParts[1] = "descriptor_reg";
3990 llvm::transform(Devices, std::next(RegFnNameParts.begin(), 2),
3991 [](const llvm::Triple &T) -> const std::string& {
3992 return T.getTriple();
3993 });
3994 llvm::sort(std::next(RegFnNameParts.begin(), 2), RegFnNameParts.end());
3995 std::string Descriptor = getName(RegFnNameParts);
3996 RegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, Descriptor, FI);
3997 CGF.StartFunction(GlobalDecl(), C.VoidTy, RegFn, FI, FunctionArgList());
3998 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_lib), Desc);
3999 // Create a variable to drive the registration and unregistration of the
4000 // descriptor, so we can reuse the logic that emits Ctors and Dtors.
4001 ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(),
4002 SourceLocation(), nullptr, C.CharTy,
4003 ImplicitParamDecl::Other);
4004 CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
4005 CGF.FinishFunction();
4006 }
4007 if (CGM.supportsCOMDAT()) {
4008 // It is sufficient to call registration function only once, so create a
4009 // COMDAT group for registration/unregistration functions and associated
4010 // data. That would reduce startup time and code size. Registration
4011 // function serves as a COMDAT group key.
4012 llvm::Comdat *ComdatKey = M.getOrInsertComdat(RegFn->getName());
4013 RegFn->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4014 RegFn->setVisibility(llvm::GlobalValue::HiddenVisibility);
4015 RegFn->setComdat(ComdatKey);
4016 UnRegFn->setComdat(ComdatKey);
4017 DeviceImages->setComdat(ComdatKey);
4018 Desc->setComdat(ComdatKey);
4019 }
4020 return RegFn;
4021}
4022
4023void CGOpenMPRuntime::createOffloadEntry(
4024 llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
4025 llvm::GlobalValue::LinkageTypes Linkage) {
4026 StringRef Name = Addr->getName();
4027 llvm::Module &M = CGM.getModule();
4028 llvm::LLVMContext &C = M.getContext();
4029
4030 // Create constant string with the name.
4031 llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
4032
4033 std::string StringName = getName({"omp_offloading", "entry_name"});
4034 auto *Str = new llvm::GlobalVariable(
4035 M, StrPtrInit->getType(), /*isConstant=*/true,
4036 llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
4037 Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4038
4039 llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
4040 llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
4041 llvm::ConstantInt::get(CGM.SizeTy, Size),
4042 llvm::ConstantInt::get(CGM.Int32Ty, Flags),
4043 llvm::ConstantInt::get(CGM.Int32Ty, 0)};
4044 std::string EntryName = getName({"omp_offloading", "entry", ""});
4045 llvm::GlobalVariable *Entry = createGlobalStruct(
4046 CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
4047 Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
4048
4049 // The entry has to be created in the section the linker expects it to be.
4050 std::string Section = getName({"omp_offloading", "entries"});
4051 Entry->setSection(Section);
4052}
4053
4054void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
4055 // Emit the offloading entries and metadata so that the device codegen side
4056 // can easily figure out what to emit. The produced metadata looks like
4057 // this:
4058 //
4059 // !omp_offload.info = !{!1, ...}
4060 //
4061 // Right now we only generate metadata for function that contain target
4062 // regions.
4063
4064 // If we do not have entries, we don't need to do anything.
4065 if (OffloadEntriesInfoManager.empty())
4066 return;
4067
4068 llvm::Module &M = CGM.getModule();
4069 llvm::LLVMContext &C = M.getContext();
4070 SmallVector<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
4071 OrderedEntries(OffloadEntriesInfoManager.size());
4072 llvm::SmallVector<StringRef, 16> ParentFunctions(
4073 OffloadEntriesInfoManager.size());
4074
4075 // Auxiliary methods to create metadata values and strings.
4076 auto &&GetMDInt = [this](unsigned V) {
4077 return llvm::ConstantAsMetadata::get(
4078 llvm::ConstantInt::get(CGM.Int32Ty, V));
4079 };
4080
4081 auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
4082
4083 // Create the offloading info metadata node.
4084 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
4085
4086 // Create function that emits metadata for each target region entry;
4087 auto &&TargetRegionMetadataEmitter =
4088 [&C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, &GetMDString](
4089 unsigned DeviceID, unsigned FileID, StringRef ParentName,
4090 unsigned Line,
4091 const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
4092 // Generate metadata for target regions. Each entry of this metadata
4093 // contains:
4094 // - Entry 0 -> Kind of this type of metadata (0).
4095 // - Entry 1 -> Device ID of the file where the entry was identified.
4096 // - Entry 2 -> File ID of the file where the entry was identified.
4097 // - Entry 3 -> Mangled name of the function where the entry was
4098 // identified.
4099 // - Entry 4 -> Line in the file where the entry was identified.
4100 // - Entry 5 -> Order the entry was created.
4101 // The first element of the metadata node is the kind.
4102 llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
4103 GetMDInt(FileID), GetMDString(ParentName),
4104 GetMDInt(Line), GetMDInt(E.getOrder())};
4105
4106 // Save this entry in the right position of the ordered entries array.
4107 OrderedEntries[E.getOrder()] = &E;
4108 ParentFunctions[E.getOrder()] = ParentName;
4109
4110 // Add metadata to the named metadata node.
4111 MD->addOperand(llvm::MDNode::get(C, Ops));
4112 };
4113
4114 OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
4115 TargetRegionMetadataEmitter);
4116
4117 // Create function that emits metadata for each device global variable entry;
4118 auto &&DeviceGlobalVarMetadataEmitter =
4119 [&C, &OrderedEntries, &GetMDInt, &GetMDString,
4120 MD](StringRef MangledName,
4121 const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
4122 &E) {
4123 // Generate metadata for global variables. Each entry of this metadata
4124 // contains:
4125 // - Entry 0 -> Kind of this type of metadata (1).
4126 // - Entry 1 -> Mangled name of the variable.
4127 // - Entry 2 -> Declare target kind.
4128 // - Entry 3 -> Order the entry was created.
4129 // The first element of the metadata node is the kind.
4130 llvm::Metadata *Ops[] = {
4131 GetMDInt(E.getKind()), GetMDString(MangledName),
4132 GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
4133
4134 // Save this entry in the right position of the ordered entries array.
4135 OrderedEntries[E.getOrder()] = &E;
4136
4137 // Add metadata to the named metadata node.
4138 MD->addOperand(llvm::MDNode::get(C, Ops));
4139 };
4140
4141 OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
4142 DeviceGlobalVarMetadataEmitter);
4143
4144 for (const auto *E : OrderedEntries) {
4145 assert(E && "All ordered entries must exist!")((E && "All ordered entries must exist!") ? static_cast
<void> (0) : __assert_fail ("E && \"All ordered entries must exist!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4145, __PRETTY_FUNCTION__))
;
4146 if (const auto *CE =
4147 dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
4148 E)) {
4149 if (!CE->getID() || !CE->getAddress()) {
4150 // Do not blame the entry if the parent funtion is not emitted.
4151 StringRef FnName = ParentFunctions[CE->getOrder()];
4152 if (!CGM.GetGlobalValue(FnName))
4153 continue;
4154 unsigned DiagID = CGM.getDiags().getCustomDiagID(
4155 DiagnosticsEngine::Error,
4156 "Offloading entry for target region is incorrect: either the "
4157 "address or the ID is invalid.");
4158 CGM.getDiags().Report(DiagID);
4159 continue;
4160 }
4161 createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
4162 CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
4163 } else if (const auto *CE =
4164 dyn_cast<OffloadEntriesInfoManagerTy::
4165 OffloadEntryInfoDeviceGlobalVar>(E)) {
4166 OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
4167 static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4168 CE->getFlags());
4169 switch (Flags) {
4170 case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
4171 if (!CE->getAddress()) {
4172 unsigned DiagID = CGM.getDiags().getCustomDiagID(
4173 DiagnosticsEngine::Error,
4174 "Offloading entry for declare target variable is incorrect: the "
4175 "address is invalid.");
4176 CGM.getDiags().Report(DiagID);
4177 continue;
4178 }
4179 // The vaiable has no definition - no need to add the entry.
4180 if (CE->getVarSize().isZero())
4181 continue;
4182 break;
4183 }
4184 case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
4185 assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||((((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress
()) || (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress
())) && "Declaret target link address is set.") ? static_cast
<void> (0) : __assert_fail ("((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) || (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) && \"Declaret target link address is set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4187, __PRETTY_FUNCTION__))
4186 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&((((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress
()) || (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress
())) && "Declaret target link address is set.") ? static_cast
<void> (0) : __assert_fail ("((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) || (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) && \"Declaret target link address is set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4187, __PRETTY_FUNCTION__))
4187 "Declaret target link address is set.")((((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress
()) || (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress
())) && "Declaret target link address is set.") ? static_cast
<void> (0) : __assert_fail ("((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) || (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) && \"Declaret target link address is set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4187, __PRETTY_FUNCTION__))
;
4188 if (CGM.getLangOpts().OpenMPIsDevice)
4189 continue;
4190 if (!CE->getAddress()) {
4191 unsigned DiagID = CGM.getDiags().getCustomDiagID(
4192 DiagnosticsEngine::Error,
4193 "Offloading entry for declare target variable is incorrect: the "
4194 "address is invalid.");
4195 CGM.getDiags().Report(DiagID);
4196 continue;
4197 }
4198 break;
4199 }
4200 createOffloadEntry(CE->getAddress(), CE->getAddress(),
4201 CE->getVarSize().getQuantity(), Flags,
4202 CE->getLinkage());
4203 } else {
4204 llvm_unreachable("Unsupported entry kind.")::llvm::llvm_unreachable_internal("Unsupported entry kind.", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4204)
;
4205 }
4206 }
4207}
4208
4209/// Loads all the offload entries information from the host IR
4210/// metadata.
4211void CGOpenMPRuntime::loadOffloadInfoMetadata() {
4212 // If we are in target mode, load the metadata from the host IR. This code has
4213 // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
4214
4215 if (!CGM.getLangOpts().OpenMPIsDevice)
4216 return;
4217
4218 if (CGM.getLangOpts().OMPHostIRFile.empty())
4219 return;
4220
4221 auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
4222 if (auto EC = Buf.getError()) {
4223 CGM.getDiags().Report(diag::err_cannot_open_file)
4224 << CGM.getLangOpts().OMPHostIRFile << EC.message();
4225 return;
4226 }
4227
4228 llvm::LLVMContext C;
4229 auto ME = expectedToErrorOrAndEmitErrors(
4230 C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
4231
4232 if (auto EC = ME.getError()) {
4233 unsigned DiagID = CGM.getDiags().getCustomDiagID(
4234 DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
4235 CGM.getDiags().Report(DiagID)
4236 << CGM.getLangOpts().OMPHostIRFile << EC.message();
4237 return;
4238 }
4239
4240 llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
4241 if (!MD)
4242 return;
4243
4244 for (llvm::MDNode *MN : MD->operands()) {
4245 auto &&GetMDInt = [MN](unsigned Idx) {
4246 auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
4247 return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
4248 };
4249
4250 auto &&GetMDString = [MN](unsigned Idx) {
4251 auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
4252 return V->getString();
4253 };
4254
4255 switch (GetMDInt(0)) {
4256 default:
4257 llvm_unreachable("Unexpected metadata!")::llvm::llvm_unreachable_internal("Unexpected metadata!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4257)
;
4258 break;
4259 case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4260 OffloadingEntryInfoTargetRegion:
4261 OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
4262 /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
4263 /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
4264 /*Order=*/GetMDInt(5));
4265 break;
4266 case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4267 OffloadingEntryInfoDeviceGlobalVar:
4268 OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
4269 /*MangledName=*/GetMDString(1),
4270 static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4271 /*Flags=*/GetMDInt(2)),
4272 /*Order=*/GetMDInt(3));
4273 break;
4274 }
4275 }
4276}
4277
4278void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
4279 if (!KmpRoutineEntryPtrTy) {
4280 // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
4281 ASTContext &C = CGM.getContext();
4282 QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
4283 FunctionProtoType::ExtProtoInfo EPI;
4284 KmpRoutineEntryPtrQTy = C.getPointerType(
4285 C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
4286 KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
4287 }
4288}
4289
4290QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
4291 // Make sure the type of the entry is already created. This is the type we
4292 // have to create:
4293 // struct __tgt_offload_entry{
4294 // void *addr; // Pointer to the offload entry info.
4295 // // (function or global)
4296 // char *name; // Name of the function or global.
4297 // size_t size; // Size of the entry info (0 if it a function).
4298 // int32_t flags; // Flags associated with the entry, e.g. 'link'.
4299 // int32_t reserved; // Reserved, to use by the runtime library.
4300 // };
4301 if (TgtOffloadEntryQTy.isNull()) {
4302 ASTContext &C = CGM.getContext();
4303 RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
4304 RD->startDefinition();
4305 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4306 addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
4307 addFieldToRecordDecl(C, RD, C.getSizeType());
4308 addFieldToRecordDecl(
4309 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4310 addFieldToRecordDecl(
4311 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4312 RD->completeDefinition();
4313 RD->addAttr(PackedAttr::CreateImplicit(C));
4314 TgtOffloadEntryQTy = C.getRecordType(RD);
4315 }
4316 return TgtOffloadEntryQTy;
4317}
4318
4319QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
4320 // These are the types we need to build:
4321 // struct __tgt_device_image{
4322 // void *ImageStart; // Pointer to the target code start.
4323 // void *ImageEnd; // Pointer to the target code end.
4324 // // We also add the host entries to the device image, as it may be useful
4325 // // for the target runtime to have access to that information.
4326 // __tgt_offload_entry *EntriesBegin; // Begin of the table with all
4327 // // the entries.
4328 // __tgt_offload_entry *EntriesEnd; // End of the table with all the
4329 // // entries (non inclusive).
4330 // };
4331 if (TgtDeviceImageQTy.isNull()) {
4332 ASTContext &C = CGM.getContext();
4333 RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image");
4334 RD->startDefinition();
4335 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4336 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4337 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4338 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4339 RD->completeDefinition();
4340 TgtDeviceImageQTy = C.getRecordType(RD);
4341 }
4342 return TgtDeviceImageQTy;
4343}
4344
4345QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
4346 // struct __tgt_bin_desc{
4347 // int32_t NumDevices; // Number of devices supported.
4348 // __tgt_device_image *DeviceImages; // Arrays of device images
4349 // // (one per device).
4350 // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the
4351 // // entries.
4352 // __tgt_offload_entry *EntriesEnd; // End of the table with all the
4353 // // entries (non inclusive).
4354 // };
4355 if (TgtBinaryDescriptorQTy.isNull()) {
4356 ASTContext &C = CGM.getContext();
4357 RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc");
4358 RD->startDefinition();
4359 addFieldToRecordDecl(
4360 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4361 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
4362 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4363 addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
4364 RD->completeDefinition();
4365 TgtBinaryDescriptorQTy = C.getRecordType(RD);
4366 }
4367 return TgtBinaryDescriptorQTy;
4368}
4369
4370namespace {
4371struct PrivateHelpersTy {
4372 PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
4373 const VarDecl *PrivateElemInit)
4374 : Original(Original), PrivateCopy(PrivateCopy),
4375 PrivateElemInit(PrivateElemInit) {}
4376 const VarDecl *Original;
4377 const VarDecl *PrivateCopy;
4378 const VarDecl *PrivateElemInit;
4379};
4380typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
4381} // anonymous namespace
4382
4383static RecordDecl *
4384createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
4385 if (!Privates.empty()) {
4386 ASTContext &C = CGM.getContext();
4387 // Build struct .kmp_privates_t. {
4388 // /* private vars */
4389 // };
4390 RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
4391 RD->startDefinition();
4392 for (const auto &Pair : Privates) {
4393 const VarDecl *VD = Pair.second.Original;
4394 QualType Type = VD->getType().getNonReferenceType();
4395 FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
4396 if (VD->hasAttrs()) {
4397 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
4398 E(VD->getAttrs().end());
4399 I != E; ++I)
4400 FD->addAttr(*I);
4401 }
4402 }
4403 RD->completeDefinition();
4404 return RD;
4405 }
4406 return nullptr;
4407}
4408
4409static RecordDecl *
4410createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
4411 QualType KmpInt32Ty,
4412 QualType KmpRoutineEntryPointerQTy) {
4413 ASTContext &C = CGM.getContext();
4414 // Build struct kmp_task_t {
4415 // void * shareds;
4416 // kmp_routine_entry_t routine;
4417 // kmp_int32 part_id;
4418 // kmp_cmplrdata_t data1;
4419 // kmp_cmplrdata_t data2;
4420 // For taskloops additional fields:
4421 // kmp_uint64 lb;
4422 // kmp_uint64 ub;
4423 // kmp_int64 st;
4424 // kmp_int32 liter;
4425 // void * reductions;
4426 // };
4427 RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
4428 UD->startDefinition();
4429 addFieldToRecordDecl(C, UD, KmpInt32Ty);
4430 addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
4431 UD->completeDefinition();
4432 QualType KmpCmplrdataTy = C.getRecordType(UD);
4433 RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
4434 RD->startDefinition();
4435 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4436 addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
4437 addFieldToRecordDecl(C, RD, KmpInt32Ty);
4438 addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4439 addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4440 if (isOpenMPTaskLoopDirective(Kind)) {
4441 QualType KmpUInt64Ty =
4442 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
4443 QualType KmpInt64Ty =
4444 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
4445 addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4446 addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4447 addFieldToRecordDecl(C, RD, KmpInt64Ty);
4448 addFieldToRecordDecl(C, RD, KmpInt32Ty);
4449 addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4450 }
4451 RD->completeDefinition();
4452 return RD;
4453}
4454
4455static RecordDecl *
4456createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
4457 ArrayRef<PrivateDataTy> Privates) {
4458 ASTContext &C = CGM.getContext();
4459 // Build struct kmp_task_t_with_privates {
4460 // kmp_task_t task_data;
4461 // .kmp_privates_t. privates;
4462 // };
4463 RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
4464 RD->startDefinition();
4465 addFieldToRecordDecl(C, RD, KmpTaskTQTy);
4466 if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
4467 addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
4468 RD->completeDefinition();
4469 return RD;
4470}
4471
4472/// Emit a proxy function which accepts kmp_task_t as the second
4473/// argument.
4474/// \code
4475/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
4476/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
4477/// For taskloops:
4478/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4479/// tt->reductions, tt->shareds);
4480/// return 0;
4481/// }
4482/// \endcode
4483static llvm::Function *
4484emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
4485 OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
4486 QualType KmpTaskTWithPrivatesPtrQTy,
4487 QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
4488 QualType SharedsPtrTy, llvm::Function *TaskFunction,
4489 llvm::Value *TaskPrivatesMap) {
4490 ASTContext &C = CGM.getContext();
4491 FunctionArgList Args;
4492 ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4493 ImplicitParamDecl::Other);
4494 ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4495 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4496 ImplicitParamDecl::Other);
4497 Args.push_back(&GtidArg);
4498 Args.push_back(&TaskTypeArg);
4499 const auto &TaskEntryFnInfo =
4500 CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4501 llvm::FunctionType *TaskEntryTy =
4502 CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
4503 std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
4504 auto *TaskEntry = llvm::Function::Create(
4505 TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4506 CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
4507 TaskEntry->setDoesNotRecurse();
4508 CodeGenFunction CGF(CGM);
4509 CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
4510 Loc, Loc);
4511
4512 // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
4513 // tt,
4514 // For taskloops:
4515 // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4516 // tt->task_data.shareds);
4517 llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
4518 CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
4519 LValue TDBase = CGF.EmitLoadOfPointerLValue(
4520 CGF.GetAddrOfLocalVar(&TaskTypeArg),
4521 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4522 const auto *KmpTaskTWithPrivatesQTyRD =
4523 cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4524 LValue Base =
4525 CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4526 const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4527 auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
4528 LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
4529 llvm::Value *PartidParam = PartIdLVal.getPointer();
4530
4531 auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
4532 LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
4533 llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4534 CGF.EmitLoadOfScalar(SharedsLVal, Loc),
4535 CGF.ConvertTypeForMem(SharedsPtrTy));
4536
4537 auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4538 llvm::Value *PrivatesParam;
4539 if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
4540 LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
4541 PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4542 PrivatesLVal.getPointer(), CGF.VoidPtrTy);
4543 } else {
4544 PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4545 }
4546
4547 llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
4548 TaskPrivatesMap,
4549 CGF.Builder
4550 .CreatePointerBitCastOrAddrSpaceCast(
4551 TDBase.getAddress(), CGF.VoidPtrTy)
4552 .getPointer()};
4553 SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
4554 std::end(CommonArgs));
4555 if (isOpenMPTaskLoopDirective(Kind)) {
4556 auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
4557 LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
4558 llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
4559 auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
4560 LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
4561 llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
4562 auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
4563 LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
4564 llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
4565 auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4566 LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4567 llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
4568 auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
4569 LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
4570 llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
4571 CallArgs.push_back(LBParam);
4572 CallArgs.push_back(UBParam);
4573 CallArgs.push_back(StParam);
4574 CallArgs.push_back(LIParam);
4575 CallArgs.push_back(RParam);
4576 }
4577 CallArgs.push_back(SharedsParam);
4578
4579 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
4580 CallArgs);
4581 CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
4582 CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
4583 CGF.FinishFunction();
4584 return TaskEntry;
4585}
4586
4587static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
4588 SourceLocation Loc,
4589 QualType KmpInt32Ty,
4590 QualType KmpTaskTWithPrivatesPtrQTy,
4591 QualType KmpTaskTWithPrivatesQTy) {
4592 ASTContext &C = CGM.getContext();
4593 FunctionArgList Args;
4594 ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4595 ImplicitParamDecl::Other);
4596 ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4597 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4598 ImplicitParamDecl::Other);
4599 Args.push_back(&GtidArg);
4600 Args.push_back(&TaskTypeArg);
4601 const auto &DestructorFnInfo =
4602 CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4603 llvm::FunctionType *DestructorFnTy =
4604 CGM.getTypes().GetFunctionType(DestructorFnInfo);
4605 std::string Name =
4606 CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
4607 auto *DestructorFn =
4608 llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
4609 Name, &CGM.getModule());
4610 CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
4611 DestructorFnInfo);
4612 DestructorFn->setDoesNotRecurse();
4613 CodeGenFunction CGF(CGM);
4614 CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
4615 Args, Loc, Loc);
4616
4617 LValue Base = CGF.EmitLoadOfPointerLValue(
4618 CGF.GetAddrOfLocalVar(&TaskTypeArg),
4619 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4620 const auto *KmpTaskTWithPrivatesQTyRD =
4621 cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4622 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4623 Base = CGF.EmitLValueForField(Base, *FI);
4624 for (const auto *Field :
4625 cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
4626 if (QualType::DestructionKind DtorKind =
4627 Field->getType().isDestructedType()) {
4628 LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
4629 CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
4630 }
4631 }
4632 CGF.FinishFunction();
4633 return DestructorFn;
4634}
4635
4636/// Emit a privates mapping function for correct handling of private and
4637/// firstprivate variables.
4638/// \code
4639/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
4640/// **noalias priv1,..., <tyn> **noalias privn) {
4641/// *priv1 = &.privates.priv1;
4642/// ...;
4643/// *privn = &.privates.privn;
4644/// }
4645/// \endcode
4646static llvm::Value *
4647emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
4648 ArrayRef<const Expr *> PrivateVars,
4649 ArrayRef<const Expr *> FirstprivateVars,
4650 ArrayRef<const Expr *> LastprivateVars,
4651 QualType PrivatesQTy,
4652 ArrayRef<PrivateDataTy> Privates) {
4653 ASTContext &C = CGM.getContext();
4654 FunctionArgList Args;
4655 ImplicitParamDecl TaskPrivatesArg(
4656 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4657 C.getPointerType(PrivatesQTy).withConst().withRestrict(),
4658 ImplicitParamDecl::Other);
4659 Args.push_back(&TaskPrivatesArg);
4660 llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
4661 unsigned Counter = 1;
4662 for (const Expr *E : PrivateVars) {
4663 Args.push_back(ImplicitParamDecl::Create(
4664 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4665 C.getPointerType(C.getPointerType(E->getType()))
4666 .withConst()
4667 .withRestrict(),
4668 ImplicitParamDecl::Other));
4669 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4670 PrivateVarsPos[VD] = Counter;
4671 ++Counter;
4672 }
4673 for (const Expr *E : FirstprivateVars) {
4674 Args.push_back(ImplicitParamDecl::Create(
4675 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4676 C.getPointerType(C.getPointerType(E->getType()))
4677 .withConst()
4678 .withRestrict(),
4679 ImplicitParamDecl::Other));
4680 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4681 PrivateVarsPos[VD] = Counter;
4682 ++Counter;
4683 }
4684 for (const Expr *E : LastprivateVars) {
4685 Args.push_back(ImplicitParamDecl::Create(
4686 C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4687 C.getPointerType(C.getPointerType(E->getType()))
4688 .withConst()
4689 .withRestrict(),
4690 ImplicitParamDecl::Other));
4691 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4692 PrivateVarsPos[VD] = Counter;
4693 ++Counter;
4694 }
4695 const auto &TaskPrivatesMapFnInfo =
4696 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4697 llvm::FunctionType *TaskPrivatesMapTy =
4698 CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
4699 std::string Name =
4700 CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
4701 auto *TaskPrivatesMap = llvm::Function::Create(
4702 TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
4703 &CGM.getModule());
4704 CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
4705 TaskPrivatesMapFnInfo);
4706 if (CGM.getLangOpts().Optimize) {
4707 TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
4708 TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
4709 TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
4710 }
4711 CodeGenFunction CGF(CGM);
4712 CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
4713 TaskPrivatesMapFnInfo, Args, Loc, Loc);
4714
4715 // *privi = &.privates.privi;
4716 LValue Base = CGF.EmitLoadOfPointerLValue(
4717 CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
4718 TaskPrivatesArg.getType()->castAs<PointerType>());
4719 const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
4720 Counter = 0;
4721 for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
4722 LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
4723 const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
4724 LValue RefLVal =
4725 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
4726 LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
4727 RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
4728 CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
4729 ++Counter;
4730 }
4731 CGF.FinishFunction();
4732 return TaskPrivatesMap;
4733}
4734
4735/// Emit initialization for private variables in task-based directives.
4736static void emitPrivatesInit(CodeGenFunction &CGF,
4737 const OMPExecutableDirective &D,
4738 Address KmpTaskSharedsPtr, LValue TDBase,
4739 const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4740 QualType SharedsTy, QualType SharedsPtrTy,
4741 const OMPTaskDataTy &Data,
4742 ArrayRef<PrivateDataTy> Privates, bool ForDup) {
4743 ASTContext &C = CGF.getContext();
4744 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4745 LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
4746 OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
4747 ? OMPD_taskloop
4748 : OMPD_task;
4749 const CapturedStmt &CS = *D.getCapturedStmt(Kind);
4750 CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
4751 LValue SrcBase;
4752 bool IsTargetTask =
4753 isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
4754 isOpenMPTargetExecutionDirective(D.getDirectiveKind());
4755 // For target-based directives skip 3 firstprivate arrays BasePointersArray,
4756 // PointersArray and SizesArray. The original variables for these arrays are
4757 // not captured and we get their addresses explicitly.
4758 if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
4759 (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
4760 SrcBase = CGF.MakeAddrLValue(
4761 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4762 KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
4763 SharedsTy);
4764 }
4765 FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
4766 for (const PrivateDataTy &Pair : Privates) {
4767 const VarDecl *VD = Pair.second.PrivateCopy;
4768 const Expr *Init = VD->getAnyInitializer();
4769 if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
4770 !CGF.isTrivialInitializer(Init)))) {
4771 LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
4772 if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
4773 const VarDecl *OriginalVD = Pair.second.Original;
4774 // Check if the variable is the target-based BasePointersArray,
4775 // PointersArray or SizesArray.
4776 LValue SharedRefLValue;
4777 QualType Type = PrivateLValue.getType();
4778 const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
4779 if (IsTargetTask && !SharedField) {
4780 assert(isa<ImplicitParamDecl>(OriginalVD) &&((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
4781 isa<CapturedDecl>(OriginalVD->getDeclContext()) &&((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
4782 cast<CapturedDecl>(OriginalVD->getDeclContext())((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
4783 ->getNumParams() == 0 &&((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
4784 isa<TranslationUnitDecl>(((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
4785 cast<CapturedDecl>(OriginalVD->getDeclContext())((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
4786 ->getDeclContext()) &&((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
4787 "Expected artificial target data variable.")((isa<ImplicitParamDecl>(OriginalVD) && isa<
CapturedDecl>(OriginalVD->getDeclContext()) && cast
<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams
() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl
>(OriginalVD->getDeclContext()) ->getDeclContext()) &&
"Expected artificial target data variable.") ? static_cast<
void> (0) : __assert_fail ("isa<ImplicitParamDecl>(OriginalVD) && isa<CapturedDecl>(OriginalVD->getDeclContext()) && cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa<TranslationUnitDecl>( cast<CapturedDecl>(OriginalVD->getDeclContext()) ->getDeclContext()) && \"Expected artificial target data variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4787, __PRETTY_FUNCTION__))
;
4788 SharedRefLValue =
4789 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
4790 } else {
4791 SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
4792 SharedRefLValue = CGF.MakeAddrLValue(
4793 Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
4794 SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
4795 SharedRefLValue.getTBAAInfo());
4796 }
4797 if (Type->isArrayType()) {
4798 // Initialize firstprivate array.
4799 if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
4800 // Perform simple memcpy.
4801 CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
4802 } else {
4803 // Initialize firstprivate array using element-by-element
4804 // initialization.
4805 CGF.EmitOMPAggregateAssign(
4806 PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
4807 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
4808 Address SrcElement) {
4809 // Clean up any temporaries needed by the initialization.
4810 CodeGenFunction::OMPPrivateScope InitScope(CGF);
4811 InitScope.addPrivate(
4812 Elem, [SrcElement]() -> Address { return SrcElement; });
4813 (void)InitScope.Privatize();
4814 // Emit initialization for single element.
4815 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
4816 CGF, &CapturesInfo);
4817 CGF.EmitAnyExprToMem(Init, DestElement,
4818 Init->getType().getQualifiers(),
4819 /*IsInitializer=*/false);
4820 });
4821 }
4822 } else {
4823 CodeGenFunction::OMPPrivateScope InitScope(CGF);
4824 InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
4825 return SharedRefLValue.getAddress();
4826 });
4827 (void)InitScope.Privatize();
4828 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
4829 CGF.EmitExprAsInit(Init, VD, PrivateLValue,
4830 /*capturedByInit=*/false);
4831 }
4832 } else {
4833 CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
4834 }
4835 }
4836 ++FI;
4837 }
4838}
4839
4840/// Check if duplication function is required for taskloops.
4841static bool checkInitIsRequired(CodeGenFunction &CGF,
4842 ArrayRef<PrivateDataTy> Privates) {
4843 bool InitRequired = false;
4844 for (const PrivateDataTy &Pair : Privates) {
4845 const VarDecl *VD = Pair.second.PrivateCopy;
4846 const Expr *Init = VD->getAnyInitializer();
4847 InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
4848 !CGF.isTrivialInitializer(Init));
4849 if (InitRequired)
4850 break;
4851 }
4852 return InitRequired;
4853}
4854
4855
4856/// Emit task_dup function (for initialization of
4857/// private/firstprivate/lastprivate vars and last_iter flag)
4858/// \code
4859/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
4860/// lastpriv) {
4861/// // setup lastprivate flag
4862/// task_dst->last = lastpriv;
4863/// // could be constructor calls here...
4864/// }
4865/// \endcode
4866static llvm::Value *
4867emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
4868 const OMPExecutableDirective &D,
4869 QualType KmpTaskTWithPrivatesPtrQTy,
4870 const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4871 const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
4872 QualType SharedsPtrTy, const OMPTaskDataTy &Data,
4873 ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
4874 ASTContext &C = CGM.getContext();
4875 FunctionArgList Args;
4876 ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4877 KmpTaskTWithPrivatesPtrQTy,
4878 ImplicitParamDecl::Other);
4879 ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4880 KmpTaskTWithPrivatesPtrQTy,
4881 ImplicitParamDecl::Other);
4882 ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
4883 ImplicitParamDecl::Other);
4884 Args.push_back(&DstArg);
4885 Args.push_back(&SrcArg);
4886 Args.push_back(&LastprivArg);
4887 const auto &TaskDupFnInfo =
4888 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4889 llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
4890 std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
4891 auto *TaskDup = llvm::Function::Create(
4892 TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4893 CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
4894 TaskDup->setDoesNotRecurse();
4895 CodeGenFunction CGF(CGM);
4896 CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
4897 Loc);
4898
4899 LValue TDBase = CGF.EmitLoadOfPointerLValue(
4900 CGF.GetAddrOfLocalVar(&DstArg),
4901 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4902 // task_dst->liter = lastpriv;
4903 if (WithLastIter) {
4904 auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4905 LValue Base = CGF.EmitLValueForField(
4906 TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4907 LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4908 llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
4909 CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
4910 CGF.EmitStoreOfScalar(Lastpriv, LILVal);
4911 }
4912
4913 // Emit initial values for private copies (if any).
4914 assert(!Privates.empty())((!Privates.empty()) ? static_cast<void> (0) : __assert_fail
("!Privates.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 4914, __PRETTY_FUNCTION__))
;
4915 Address KmpTaskSharedsPtr = Address::invalid();
4916 if (!Data.FirstprivateVars.empty()) {
4917 LValue TDBase = CGF.EmitLoadOfPointerLValue(
4918 CGF.GetAddrOfLocalVar(&SrcArg),
4919 KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4920 LValue Base = CGF.EmitLValueForField(
4921 TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4922 KmpTaskSharedsPtr = Address(
4923 CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
4924 Base, *std::next(KmpTaskTQTyRD->field_begin(),
4925 KmpTaskTShareds)),
4926 Loc),
4927 CGF.getNaturalTypeAlignment(SharedsTy));
4928 }
4929 emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
4930 SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
4931 CGF.FinishFunction();
4932 return TaskDup;
4933}
4934
4935/// Checks if destructor function is required to be generated.
4936/// \return true if cleanups are required, false otherwise.
4937static bool
4938checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
4939 bool NeedsCleanup = false;
4940 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4941 const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
4942 for (const FieldDecl *FD : PrivateRD->fields()) {
4943 NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
4944 if (NeedsCleanup)
4945 break;
4946 }
4947 return NeedsCleanup;
4948}
4949
4950CGOpenMPRuntime::TaskResultTy
4951CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4952 const OMPExecutableDirective &D,
4953 llvm::Function *TaskFunction, QualType SharedsTy,
4954 Address Shareds, const OMPTaskDataTy &Data) {
4955 ASTContext &C = CGM.getContext();
4956 llvm::SmallVector<PrivateDataTy, 4> Privates;
4957 // Aggregate privates and sort them by the alignment.
4958 auto I = Data.PrivateCopies.begin();
4959 for (const Expr *E : Data.PrivateVars) {
4960 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4961 Privates.emplace_back(
4962 C.getDeclAlign(VD),
4963 PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4964 /*PrivateElemInit=*/nullptr));
4965 ++I;
4966 }
4967 I = Data.FirstprivateCopies.begin();
4968 auto IElemInitRef = Data.FirstprivateInits.begin();
4969 for (const Expr *E : Data.FirstprivateVars) {
4970 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4971 Privates.emplace_back(
4972 C.getDeclAlign(VD),
4973 PrivateHelpersTy(
4974 VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4975 cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4976 ++I;
4977 ++IElemInitRef;
4978 }
4979 I = Data.LastprivateCopies.begin();
4980 for (const Expr *E : Data.LastprivateVars) {
4981 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4982 Privates.emplace_back(
4983 C.getDeclAlign(VD),
4984 PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4985 /*PrivateElemInit=*/nullptr));
4986 ++I;
4987 }
4988 llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
4989 return L.first > R.first;
4990 });
4991 QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4992 // Build type kmp_routine_entry_t (if not built yet).
4993 emitKmpRoutineEntryT(KmpInt32Ty);
4994 // Build type kmp_task_t (if not built yet).
4995 if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4996 if (SavedKmpTaskloopTQTy.isNull()) {
4997 SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4998 CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4999 }
5000 KmpTaskTQTy = SavedKmpTaskloopTQTy;
5001 } else {
5002 assert((D.getDirectiveKind() == OMPD_task ||(((D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective
(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective
(D.getDirectiveKind())) && "Expected taskloop, task or target directive"
) ? static_cast<void> (0) : __assert_fail ("(D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) && \"Expected taskloop, task or target directive\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 5005, __PRETTY_FUNCTION__))
5003 isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||(((D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective
(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective
(D.getDirectiveKind())) && "Expected taskloop, task or target directive"
) ? static_cast<void> (0) : __assert_fail ("(D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) && \"Expected taskloop, task or target directive\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 5005, __PRETTY_FUNCTION__))
5004 isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&(((D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective
(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective
(D.getDirectiveKind())) && "Expected taskloop, task or target directive"
) ? static_cast<void> (0) : __assert_fail ("(D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) && \"Expected taskloop, task or target directive\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 5005, __PRETTY_FUNCTION__))
5005 "Expected taskloop, task or target directive")(((D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective
(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective
(D.getDirectiveKind())) && "Expected taskloop, task or target directive"
) ? static_cast<void> (0) : __assert_fail ("(D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) && \"Expected taskloop, task or target directive\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 5005, __PRETTY_FUNCTION__))
;
5006 if (SavedKmpTaskTQTy.isNull()) {
5007 SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
5008 CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
5009 }
5010 KmpTaskTQTy = SavedKmpTaskTQTy;
5011 }
5012 const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
5013 // Build particular struct kmp_task_t for the given task.
5014 const RecordDecl *KmpTaskTWithPrivatesQTyRD =
5015 createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
5016 QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
5017 QualType KmpTaskTWithPrivatesPtrQTy =
5018 C.getPointerType(KmpTaskTWithPrivatesQTy);
5019 llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
5020 llvm::Type *KmpTaskTWithPrivatesPtrTy =
5021 KmpTaskTWithPrivatesTy->getPointerTo();
5022 llvm::Value *KmpTaskTWithPrivatesTySize =
5023 CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
5024 QualType SharedsPtrTy = C.getPointerType(SharedsTy);
5025
5026 // Emit initial values for private copies (if any).
5027 llvm::Value *TaskPrivatesMap = nullptr;
5028 llvm::Type *TaskPrivatesMapTy =
5029 std::next(TaskFunction->arg_begin(), 3)->getType();
5030 if (!Privates.empty()) {
5031 auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
5032 TaskPrivatesMap = emitTaskPrivateMappingFunction(
5033 CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
5034 FI->getType(), Privates);
5035 TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5036 TaskPrivatesMap, TaskPrivatesMapTy);
5037 } else {
5038 TaskPrivatesMap = llvm::ConstantPointerNull::get(
5039 cast<llvm::PointerType>(TaskPrivatesMapTy));
5040 }
5041 // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
5042 // kmp_task_t *tt);
5043 llvm::Function *TaskEntry = emitProxyTaskFunction(
5044 CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
5045 KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
5046 TaskPrivatesMap);
5047
5048 // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
5049 // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
5050 // kmp_routine_entry_t *task_entry);
5051 // Task flags. Format is taken from
5052 // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
5053 // description of kmp_tasking_flags struct.
5054 enum {
5055 TiedFlag = 0x1,
5056 FinalFlag = 0x2,
5057 DestructorsFlag = 0x8,
5058 PriorityFlag = 0x20
5059 };
5060 unsigned Flags = Data.Tied ? TiedFlag : 0;
5061 bool NeedsCleanup = false;
5062 if (!Privates.empty()) {
5063 NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
5064 if (NeedsCleanup)
5065 Flags = Flags | DestructorsFlag;
5066 }
5067 if (Data.Priority.getInt())
5068 Flags = Flags | PriorityFlag;
5069 llvm::Value *TaskFlags =
5070 Data.Final.getPointer()
5071 ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
5072 CGF.Builder.getInt32(FinalFlag),
5073 CGF.Builder.getInt32(/*C=*/0))
5074 : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
5075 TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
5076 llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
5077 llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc),
5078 getThreadID(CGF, Loc), TaskFlags,
5079 KmpTaskTWithPrivatesTySize, SharedsSize,
5080 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5081 TaskEntry, KmpRoutineEntryPtrTy)};
5082 llvm::Value *NewTask = CGF.EmitRuntimeCall(
5083 createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
5084 llvm::Value *NewTaskNewTaskTTy =
5085 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5086 NewTask, KmpTaskTWithPrivatesPtrTy);
5087 LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
5088 KmpTaskTWithPrivatesQTy);
5089 LValue TDBase =
5090 CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
5091 // Fill the data in the resulting kmp_task_t record.
5092 // Copy shareds if there are any.
5093 Address KmpTaskSharedsPtr = Address::invalid();
5094 if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
5095 KmpTaskSharedsPtr =
5096 Address(CGF.EmitLoadOfScalar(
5097 CGF.EmitLValueForField(
5098 TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
5099 KmpTaskTShareds)),
5100 Loc),
5101 CGF.getNaturalTypeAlignment(SharedsTy));
5102 LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
5103 LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
5104 CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
5105 }
5106 // Emit initial values for private copies (if any).
5107 TaskResultTy Result;
5108 if (!Privates.empty()) {
5109 emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
5110 SharedsTy, SharedsPtrTy, Data, Privates,
5111 /*ForDup=*/false);
5112 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
5113 (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
5114 Result.TaskDupFn = emitTaskDupFunction(
5115 CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
5116 KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
5117 /*WithLastIter=*/!Data.LastprivateVars.empty());
5118 }
5119 }
5120 // Fields of union "kmp_cmplrdata_t" for destructors and priority.
5121 enum { Priority = 0, Destructors = 1 };
5122 // Provide pointer to function with destructors for privates.
5123 auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
5124 const RecordDecl *KmpCmplrdataUD =
5125 (*FI)->getType()->getAsUnionType()->getDecl();
5126 if (NeedsCleanup) {
5127 llvm::Value *DestructorFn = emitDestructorsFunction(
5128 CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
5129 KmpTaskTWithPrivatesQTy);
5130 LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
5131 LValue DestructorsLV = CGF.EmitLValueForField(
5132 Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
5133 CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5134 DestructorFn, KmpRoutineEntryPtrTy),
5135 DestructorsLV);
5136 }
5137 // Set priority.
5138 if (Data.Priority.getInt()) {
5139 LValue Data2LV = CGF.EmitLValueForField(
5140 TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
5141 LValue PriorityLV = CGF.EmitLValueForField(
5142 Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
5143 CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
5144 }
5145 Result.NewTask = NewTask;
5146 Result.TaskEntry = TaskEntry;
5147 Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
5148 Result.TDBase = TDBase;
5149 Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
5150 return Result;
5151}
5152
5153void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5154 const OMPExecutableDirective &D,
5155 llvm::Function *TaskFunction,
5156 QualType SharedsTy, Address Shareds,
5157 const Expr *IfCond,
5158 const OMPTaskDataTy &Data) {
5159 if (!CGF.HaveInsertPoint())
5160 return;
5161
5162 TaskResultTy Result =
5163 emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5164 llvm::Value *NewTask = Result.NewTask;
5165 llvm::Function *TaskEntry = Result.TaskEntry;
5166 llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5167 LValue TDBase = Result.TDBase;
5168 const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5169 ASTContext &C = CGM.getContext();
5170 // Process list of dependences.
5171 Address DependenciesArray = Address::invalid();
5172 unsigned NumDependencies = Data.Dependences.size();
5173 if (NumDependencies) {
5174 // Dependence kind for RTL.
5175 enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 };
5176 enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
5177 RecordDecl *KmpDependInfoRD;
5178 QualType FlagsTy =
5179 C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
5180 llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5181 if (KmpDependInfoTy.isNull()) {
5182 KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
5183 KmpDependInfoRD->startDefinition();
5184 addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
5185 addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
5186 addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
5187 KmpDependInfoRD->completeDefinition();
5188 KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
5189 } else {
5190 KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5191 }
5192 // Define type kmp_depend_info[<Dependences.size()>];
5193 QualType KmpDependInfoArrayTy = C.getConstantArrayType(
5194 KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
5195 ArrayType::Normal, /*IndexTypeQuals=*/0);
5196 // kmp_depend_info[<Dependences.size()>] deps;
5197 DependenciesArray =
5198 CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
5199 for (unsigned I = 0; I < NumDependencies; ++I) {
5200 const Expr *E = Data.Dependences[I].second;
5201 LValue Addr = CGF.EmitLValue(E);
5202 llvm::Value *Size;
5203 QualType Ty = E->getType();
5204 if (const auto *ASE =
5205 dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
5206 LValue UpAddrLVal =
5207 CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false);
5208 llvm::Value *UpAddr =
5209 CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
5210 llvm::Value *LowIntPtr =
5211 CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
5212 llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
5213 Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
5214 } else {
5215 Size = CGF.getTypeSize(Ty);
5216 }
5217 LValue Base = CGF.MakeAddrLValue(
5218 CGF.Builder.CreateConstArrayGEP(DependenciesArray, I),
5219 KmpDependInfoTy);
5220 // deps[i].base_addr = &<Dependences[i].second>;
5221 LValue BaseAddrLVal = CGF.EmitLValueForField(
5222 Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
5223 CGF.EmitStoreOfScalar(
5224 CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
5225 BaseAddrLVal);
5226 // deps[i].len = sizeof(<Dependences[i].second>);
5227 LValue LenLVal = CGF.EmitLValueForField(
5228 Base, *std::next(KmpDependInfoRD->field_begin(), Len));
5229 CGF.EmitStoreOfScalar(Size, LenLVal);
5230 // deps[i].flags = <Dependences[i].first>;
5231 RTLDependenceKindTy DepKind;
5232 switch (Data.Dependences[I].first) {
5233 case OMPC_DEPEND_in:
5234 DepKind = DepIn;
5235 break;
5236 // Out and InOut dependencies must use the same code.
5237 case OMPC_DEPEND_out:
5238 case OMPC_DEPEND_inout:
5239 DepKind = DepInOut;
5240 break;
5241 case OMPC_DEPEND_mutexinoutset:
5242 DepKind = DepMutexInOutSet;
5243 break;
5244 case OMPC_DEPEND_source:
5245 case OMPC_DEPEND_sink:
5246 case OMPC_DEPEND_unknown:
5247 llvm_unreachable("Unknown task dependence type")::llvm::llvm_unreachable_internal("Unknown task dependence type"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 5247)
;
5248 }
5249 LValue FlagsLVal = CGF.EmitLValueForField(
5250 Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5251 CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5252 FlagsLVal);
5253 }
5254 DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5255 CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy);
5256 }
5257
5258 // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5259 // libcall.
5260 // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5261 // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5262 // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5263 // list is not empty
5264 llvm::Value *ThreadID = getThreadID(CGF, Loc);
5265 llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5266 llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5267 llvm::Value *DepTaskArgs[7];
5268 if (NumDependencies) {
5269 DepTaskArgs[0] = UpLoc;
5270 DepTaskArgs[1] = ThreadID;
5271 DepTaskArgs[2] = NewTask;
5272 DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
5273 DepTaskArgs[4] = DependenciesArray.getPointer();
5274 DepTaskArgs[5] = CGF.Builder.getInt32(0);
5275 DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5276 }
5277 auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
5278 &TaskArgs,
5279 &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5280 if (!Data.Tied) {
5281 auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5282 LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5283 CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5284 }
5285 if (NumDependencies) {
5286 CGF.EmitRuntimeCall(
5287 createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
5288 } else {
5289 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
5290 TaskArgs);
5291 }
5292 // Check if parent region is untied and build return for untied task;
5293 if (auto *Region =
5294 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5295 Region->emitUntiedSwitch(CGF);
5296 };
5297
5298 llvm::Value *DepWaitTaskArgs[6];
5299 if (NumDependencies) {
5300 DepWaitTaskArgs[0] = UpLoc;
5301 DepWaitTaskArgs[1] = ThreadID;
5302 DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
5303 DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5304 DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5305 DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5306 }
5307 auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
5308 NumDependencies, &DepWaitTaskArgs,
5309 Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5310 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5311 CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5312 // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5313 // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5314 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5315 // is specified.
5316 if (NumDependencies)
5317 CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
5318 DepWaitTaskArgs);
5319 // Call proxy_task_entry(gtid, new_task);
5320 auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5321 Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5322 Action.Enter(CGF);
5323 llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5324 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5325 OutlinedFnArgs);
5326 };
5327
5328 // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5329 // kmp_task_t *new_task);
5330 // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5331 // kmp_task_t *new_task);
5332 RegionCodeGenTy RCG(CodeGen);
5333 CommonActionTy Action(
5334 RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
5335 RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
5336 RCG.setAction(Action);
5337 RCG(CGF);
5338 };
5339
5340 if (IfCond) {
5341 emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5342 } else {
5343 RegionCodeGenTy ThenRCG(ThenCodeGen);
5344 ThenRCG(CGF);
5345 }
5346}
5347
5348void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5349 const OMPLoopDirective &D,
5350 llvm::Function *TaskFunction,
5351 QualType SharedsTy, Address Shareds,
5352 const Expr *IfCond,
5353 const OMPTaskDataTy &Data) {
5354 if (!CGF.HaveInsertPoint())
5355 return;
5356 TaskResultTy Result =
5357 emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5358 // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5359 // libcall.
5360 // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5361 // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5362 // sched, kmp_uint64 grainsize, void *task_dup);
5363 llvm::Value *ThreadID = getThreadID(CGF, Loc);
5364 llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5365 llvm::Value *IfVal;
5366 if (IfCond) {
5367 IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5368 /*isSigned=*/true);
5369 } else {
5370 IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5371 }
5372
5373 LValue LBLVal = CGF.EmitLValueForField(
5374 Result.TDBase,
5375 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5376 const auto *LBVar =
5377 cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5378 CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
5379 /*IsInitializer=*/true);
5380 LValue UBLVal = CGF.EmitLValueForField(
5381 Result.TDBase,
5382 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5383 const auto *UBVar =
5384 cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5385 CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
5386 /*IsInitializer=*/true);
5387 LValue StLVal = CGF.EmitLValueForField(
5388 Result.TDBase,
5389 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5390 const auto *StVar =
5391 cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5392 CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
5393 /*IsInitializer=*/true);
5394 // Store reductions address.
5395 LValue RedLVal = CGF.EmitLValueForField(
5396 Result.TDBase,
5397 *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5398 if (Data.Reductions) {
5399 CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5400 } else {
5401 CGF.EmitNullInitialization(RedLVal.getAddress(),
5402 CGF.getContext().VoidPtrTy);
5403 }
5404 enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5405 llvm::Value *TaskArgs[] = {
5406 UpLoc,
5407 ThreadID,
5408 Result.NewTask,
5409 IfVal,
5410 LBLVal.getPointer(),
5411 UBLVal.getPointer(),
5412 CGF.EmitLoadOfScalar(StLVal, Loc),
5413 llvm::ConstantInt::getSigned(
5414 CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5415 llvm::ConstantInt::getSigned(
5416 CGF.IntTy, Data.Schedule.getPointer()
5417 ? Data.Schedule.getInt() ? NumTasks : Grainsize
5418 : NoSchedule),
5419 Data.Schedule.getPointer()
5420 ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5421 /*isSigned=*/false)
5422 : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5423 Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5424 Result.TaskDupFn, CGF.VoidPtrTy)
5425 : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5426 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
5427}
5428
5429/// Emit reduction operation for each element of array (required for
5430/// array sections) LHS op = RHS.
5431/// \param Type Type of array.
5432/// \param LHSVar Variable on the left side of the reduction operation
5433/// (references element of array in original variable).
5434/// \param RHSVar Variable on the right side of the reduction operation
5435/// (references element of array in original variable).
5436/// \param RedOpGen Generator of reduction operation with use of LHSVar and
5437/// RHSVar.
5438static void EmitOMPAggregateReduction(
5439 CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5440 const VarDecl *RHSVar,
5441 const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5442 const Expr *, const Expr *)> &RedOpGen,
5443 const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5444 const Expr *UpExpr = nullptr) {
5445 // Perform element-by-element initialization.
5446 QualType ElementTy;
5447 Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5448 Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5449
5450 // Drill down to the base element type on both arrays.
5451 const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5452 llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5453
5454 llvm::Value *RHSBegin = RHSAddr.getPointer();
5455 llvm::Value *LHSBegin = LHSAddr.getPointer();
5456 // Cast from pointer to array type to pointer to single element.
5457 llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5458 // The basic structure here is a while-do loop.
5459 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5460 llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5461 llvm::Value *IsEmpty =
5462 CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5463 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5464
5465 // Enter the loop body, making that address the current address.
5466 llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5467 CGF.EmitBlock(BodyBB);
5468
5469 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5470
5471 llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5472 RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5473 RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5474 Address RHSElementCurrent =
5475 Address(RHSElementPHI,
5476 RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5477
5478 llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5479 LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5480 LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5481 Address LHSElementCurrent =
5482 Address(LHSElementPHI,
5483 LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5484
5485 // Emit copy.
5486 CodeGenFunction::OMPPrivateScope Scope(CGF);
5487 Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5488 Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5489 Scope.Privatize();
5490 RedOpGen(CGF, XExpr, EExpr, UpExpr);
5491 Scope.ForceCleanup();
5492
5493 // Shift the address forward by one element.
5494 llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5495 LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5496 llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5497 RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5498 // Check whether we've reached the end.
5499 llvm::Value *Done =
5500 CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5501 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5502 LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5503 RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5504
5505 // Done.
5506 CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5507}
5508
5509/// Emit reduction combiner. If the combiner is a simple expression emit it as
5510/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5511/// UDR combiner function.
5512static void emitReductionCombiner(CodeGenFunction &CGF,
5513 const Expr *ReductionOp) {
5514 if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5515 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5516 if (const auto *DRE =
5517 dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5518 if (const auto *DRD =
5519 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5520 std::pair<llvm::Function *, llvm::Function *> Reduction =
5521 CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5522 RValue Func = RValue::get(Reduction.first);
5523 CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5524 CGF.EmitIgnoredExpr(ReductionOp);
5525 return;
5526 }
5527 CGF.EmitIgnoredExpr(ReductionOp);
5528}
5529
5530llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5531 SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5532 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5533 ArrayRef<const Expr *> ReductionOps) {
5534 ASTContext &C = CGM.getContext();
5535
5536 // void reduction_func(void *LHSArg, void *RHSArg);
5537 FunctionArgList Args;
5538 ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5539 ImplicitParamDecl::Other);
5540 ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5541 ImplicitParamDecl::Other);
5542 Args.push_back(&LHSArg);
5543 Args.push_back(&RHSArg);
5544 const auto &CGFI =
5545 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5546 std::string Name = getName({"omp", "reduction", "reduction_func"});
5547 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5548 llvm::GlobalValue::InternalLinkage, Name,
5549 &CGM.getModule());
5550 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5551 Fn->setDoesNotRecurse();
5552 CodeGenFunction CGF(CGM);
5553 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5554
5555 // Dst = (void*[n])(LHSArg);
5556 // Src = (void*[n])(RHSArg);
5557 Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5558 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5559 ArgsType), CGF.getPointerAlign());
5560 Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5561 CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5562 ArgsType), CGF.getPointerAlign());
5563
5564 // ...
5565 // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5566 // ...
5567 CodeGenFunction::OMPPrivateScope Scope(CGF);
5568 auto IPriv = Privates.begin();
5569 unsigned Idx = 0;
5570 for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5571 const auto *RHSVar =
5572 cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5573 Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5574 return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5575 });
5576 const auto *LHSVar =
5577 cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5578 Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5579 return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5580 });
5581 QualType PrivTy = (*IPriv)->getType();
5582 if (PrivTy->isVariablyModifiedType()) {
5583 // Get array size and emit VLA type.
5584 ++Idx;
5585 Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5586 llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5587 const VariableArrayType *VLA =
5588 CGF.getContext().getAsVariableArrayType(PrivTy);
5589 const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5590 CodeGenFunction::OpaqueValueMapping OpaqueMap(
5591 CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5592 CGF.EmitVariablyModifiedType(PrivTy);
5593 }
5594 }
5595 Scope.Privatize();
5596 IPriv = Privates.begin();
5597 auto ILHS = LHSExprs.begin();
5598 auto IRHS = RHSExprs.begin();
5599 for (const Expr *E : ReductionOps) {
5600 if ((*IPriv)->getType()->isArrayType()) {
5601 // Emit reduction for array section.
5602 const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5603 const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5604 EmitOMPAggregateReduction(
5605 CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5606 [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5607 emitReductionCombiner(CGF, E);
5608 });
5609 } else {
5610 // Emit reduction for array subscript or single variable.
5611 emitReductionCombiner(CGF, E);
5612 }
5613 ++IPriv;
5614 ++ILHS;
5615 ++IRHS;
5616 }
5617 Scope.ForceCleanup();
5618 CGF.FinishFunction();
5619 return Fn;
5620}
5621
5622void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5623 const Expr *ReductionOp,
5624 const Expr *PrivateRef,
5625 const DeclRefExpr *LHS,
5626 const DeclRefExpr *RHS) {
5627 if (PrivateRef->getType()->isArrayType()) {
5628 // Emit reduction for array section.
5629 const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5630 const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5631 EmitOMPAggregateReduction(
5632 CGF, PrivateRef->getType(), LHSVar, RHSVar,
5633 [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5634 emitReductionCombiner(CGF, ReductionOp);
5635 });
5636 } else {
5637 // Emit reduction for array subscript or single variable.
5638 emitReductionCombiner(CGF, ReductionOp);
5639 }
5640}
5641
5642void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5643 ArrayRef<const Expr *> Privates,
5644 ArrayRef<const Expr *> LHSExprs,
5645 ArrayRef<const Expr *> RHSExprs,
5646 ArrayRef<const Expr *> ReductionOps,
5647 ReductionOptionsTy Options) {
5648 if (!CGF.HaveInsertPoint())
5649 return;
5650
5651 bool WithNowait = Options.WithNowait;
5652 bool SimpleReduction = Options.SimpleReduction;
5653
5654 // Next code should be emitted for reduction:
5655 //
5656 // static kmp_critical_name lock = { 0 };
5657 //
5658 // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5659 // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5660 // ...
5661 // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5662 // *(Type<n>-1*)rhs[<n>-1]);
5663 // }
5664 //
5665 // ...
5666 // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5667 // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5668 // RedList, reduce_func, &<lock>)) {
5669 // case 1:
5670 // ...
5671 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5672 // ...
5673 // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5674 // break;
5675 // case 2:
5676 // ...
5677 // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5678 // ...
5679 // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5680 // break;
5681 // default:;
5682 // }
5683 //
5684 // if SimpleReduction is true, only the next code is generated:
5685 // ...
5686 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5687 // ...
5688
5689 ASTContext &C = CGM.getContext();
5690
5691 if (SimpleReduction) {
5692 CodeGenFunction::RunCleanupsScope Scope(CGF);
5693 auto IPriv = Privates.begin();
5694 auto ILHS = LHSExprs.begin();
5695 auto IRHS = RHSExprs.begin();
5696 for (const Expr *E : ReductionOps) {
5697 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5698 cast<DeclRefExpr>(*IRHS));
5699 ++IPriv;
5700 ++ILHS;
5701 ++IRHS;
5702 }
5703 return;
5704 }
5705
5706 // 1. Build a list of reduction variables.
5707 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5708 auto Size = RHSExprs.size();
5709 for (const Expr *E : Privates) {
5710 if (E->getType()->isVariablyModifiedType())
5711 // Reserve place for array size.
5712 ++Size;
5713 }
5714 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5715 QualType ReductionArrayTy =
5716 C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
5717 /*IndexTypeQuals=*/0);
5718 Address ReductionList =
5719 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5720 auto IPriv = Privates.begin();
5721 unsigned Idx = 0;
5722 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5723 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5724 CGF.Builder.CreateStore(
5725 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5726 CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
5727 Elem);
5728 if ((*IPriv)->getType()->isVariablyModifiedType()) {
5729 // Store array size.
5730 ++Idx;
5731 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5732 llvm::Value *Size = CGF.Builder.CreateIntCast(
5733 CGF.getVLASize(
5734 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5735 .NumElts,
5736 CGF.SizeTy, /*isSigned=*/false);
5737 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5738 Elem);
5739 }
5740 }
5741
5742 // 2. Emit reduce_func().
5743 llvm::Function *ReductionFn = emitReductionFunction(
5744 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5745 LHSExprs, RHSExprs, ReductionOps);
5746
5747 // 3. Create static kmp_critical_name lock = { 0 };
5748 std::string Name = getName({"reduction"});
5749 llvm::Value *Lock = getCriticalRegionLock(Name);
5750
5751 // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5752 // RedList, reduce_func, &<lock>);
5753 llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5754 llvm::Value *ThreadId = getThreadID(CGF, Loc);
5755 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5756 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5757 ReductionList.getPointer(), CGF.VoidPtrTy);
5758 llvm::Value *Args[] = {
5759 IdentTLoc, // ident_t *<loc>
5760 ThreadId, // i32 <gtid>
5761 CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5762 ReductionArrayTySize, // size_type sizeof(RedList)
5763 RL, // void *RedList
5764 ReductionFn, // void (*) (void *, void *) <reduce_func>
5765 Lock // kmp_critical_name *&<lock>
5766 };
5767 llvm::Value *Res = CGF.EmitRuntimeCall(
5768 createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
5769 : OMPRTL__kmpc_reduce),
5770 Args);
5771
5772 // 5. Build switch(res)
5773 llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5774 llvm::SwitchInst *SwInst =
5775 CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5776
5777 // 6. Build case 1:
5778 // ...
5779 // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5780 // ...
5781 // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5782 // break;
5783 llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5784 SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5785 CGF.EmitBlock(Case1BB);
5786
5787 // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5788 llvm::Value *EndArgs[] = {
5789 IdentTLoc, // ident_t *<loc>
5790 ThreadId, // i32 <gtid>
5791 Lock // kmp_critical_name *&<lock>
5792 };
5793 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5794 CodeGenFunction &CGF, PrePostActionTy &Action) {
5795 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5796 auto IPriv = Privates.begin();
5797 auto ILHS = LHSExprs.begin();
5798 auto IRHS = RHSExprs.begin();
5799 for (const Expr *E : ReductionOps) {
5800 RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5801 cast<DeclRefExpr>(*IRHS));
5802 ++IPriv;
5803 ++ILHS;
5804 ++IRHS;
5805 }
5806 };
5807 RegionCodeGenTy RCG(CodeGen);
5808 CommonActionTy Action(
5809 nullptr, llvm::None,
5810 createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
5811 : OMPRTL__kmpc_end_reduce),
5812 EndArgs);
5813 RCG.setAction(Action);
5814 RCG(CGF);
5815
5816 CGF.EmitBranch(DefaultBB);
5817
5818 // 7. Build case 2:
5819 // ...
5820 // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5821 // ...
5822 // break;
5823 llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5824 SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5825 CGF.EmitBlock(Case2BB);
5826
5827 auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5828 CodeGenFunction &CGF, PrePostActionTy &Action) {
5829 auto ILHS = LHSExprs.begin();
5830 auto IRHS = RHSExprs.begin();
5831 auto IPriv = Privates.begin();
5832 for (const Expr *E : ReductionOps) {
5833 const Expr *XExpr = nullptr;
5834 const Expr *EExpr = nullptr;
5835 const Expr *UpExpr = nullptr;
5836 BinaryOperatorKind BO = BO_Comma;
5837 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5838 if (BO->getOpcode() == BO_Assign) {
5839 XExpr = BO->getLHS();
5840 UpExpr = BO->getRHS();
5841 }
5842 }
5843 // Try to emit update expression as a simple atomic.
5844 const Expr *RHSExpr = UpExpr;
5845 if (RHSExpr) {
5846 // Analyze RHS part of the whole expression.
5847 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5848 RHSExpr->IgnoreParenImpCasts())) {
5849 // If this is a conditional operator, analyze its condition for
5850 // min/max reduction operator.
5851 RHSExpr = ACO->getCond();
5852 }
5853 if (const auto *BORHS =
5854 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5855 EExpr = BORHS->getRHS();
5856 BO = BORHS->getOpcode();
5857 }
5858 }
5859 if (XExpr) {
5860 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5861 auto &&AtomicRedGen = [BO, VD,
5862 Loc](CodeGenFunction &CGF, const Expr *XExpr,
5863 const Expr *EExpr, const Expr *UpExpr) {
5864 LValue X = CGF.EmitLValue(XExpr);
5865 RValue E;
5866 if (EExpr)
5867 E = CGF.EmitAnyExpr(EExpr);
5868 CGF.EmitOMPAtomicSimpleUpdateExpr(
5869 X, E, BO, /*IsXLHSInRHSPart=*/true,
5870 llvm::AtomicOrdering::Monotonic, Loc,
5871 [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5872 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5873 PrivateScope.addPrivate(
5874 VD, [&CGF, VD, XRValue, Loc]() {
5875 Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5876 CGF.emitOMPSimpleStore(
5877 CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5878 VD->getType().getNonReferenceType(), Loc);
5879 return LHSTemp;
5880 });
5881 (void)PrivateScope.Privatize();
5882 return CGF.EmitAnyExpr(UpExpr);
5883 });
5884 };
5885 if ((*IPriv)->getType()->isArrayType()) {
5886 // Emit atomic reduction for array section.
5887 const auto *RHSVar =
5888 cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5889 EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5890 AtomicRedGen, XExpr, EExpr, UpExpr);
5891 } else {
5892 // Emit atomic reduction for array subscript or single variable.
5893 AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5894 }
5895 } else {
5896 // Emit as a critical region.
5897 auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5898 const Expr *, const Expr *) {
5899 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5900 std::string Name = RT.getName({"atomic_reduction"});
5901 RT.emitCriticalRegion(
5902 CGF, Name,
5903 [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5904 Action.Enter(CGF);
5905 emitReductionCombiner(CGF, E);
5906 },
5907 Loc);
5908 };
5909 if ((*IPriv)->getType()->isArrayType()) {
5910 const auto *LHSVar =
5911 cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5912 const auto *RHSVar =
5913 cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5914 EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5915 CritRedGen);
5916 } else {
5917 CritRedGen(CGF, nullptr, nullptr, nullptr);
5918 }
5919 }
5920 ++ILHS;
5921 ++IRHS;
5922 ++IPriv;
5923 }
5924 };
5925 RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5926 if (!WithNowait) {
5927 // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5928 llvm::Value *EndArgs[] = {
5929 IdentTLoc, // ident_t *<loc>
5930 ThreadId, // i32 <gtid>
5931 Lock // kmp_critical_name *&<lock>
5932 };
5933 CommonActionTy Action(nullptr, llvm::None,
5934 createRuntimeFunction(OMPRTL__kmpc_end_reduce),
5935 EndArgs);
5936 AtomicRCG.setAction(Action);
5937 AtomicRCG(CGF);
5938 } else {
5939 AtomicRCG(CGF);
5940 }
5941
5942 CGF.EmitBranch(DefaultBB);
5943 CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5944}
5945
5946/// Generates unique name for artificial threadprivate variables.
5947/// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
5948static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5949 const Expr *Ref) {
5950 SmallString<256> Buffer;
5951 llvm::raw_svector_ostream Out(Buffer);
5952 const clang::DeclRefExpr *DE;
5953 const VarDecl *D = ::getBaseDecl(Ref, DE);
5954 if (!D)
5955 D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5956 D = D->getCanonicalDecl();
5957 std::string Name = CGM.getOpenMPRuntime().getName(
5958 {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5959 Out << Prefix << Name << "_"
5960 << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5961 return Out.str();
5962}
5963
5964/// Emits reduction initializer function:
5965/// \code
5966/// void @.red_init(void* %arg) {
5967/// %0 = bitcast void* %arg to <type>*
5968/// store <type> <init>, <type>* %0
5969/// ret void
5970/// }
5971/// \endcode
5972static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5973 SourceLocation Loc,
5974 ReductionCodeGen &RCG, unsigned N) {
5975 ASTContext &C = CGM.getContext();
5976 FunctionArgList Args;
5977 ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5978 ImplicitParamDecl::Other);
5979 Args.emplace_back(&Param);
5980 const auto &FnInfo =
5981 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5982 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5983 std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5984 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5985 Name, &CGM.getModule());
5986 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5987 Fn->setDoesNotRecurse();
5988 CodeGenFunction CGF(CGM);
5989 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5990 Address PrivateAddr = CGF.EmitLoadOfPointer(
5991 CGF.GetAddrOfLocalVar(&Param),
5992 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5993 llvm::Value *Size = nullptr;
5994 // If the size of the reduction item is non-constant, load it from global
5995 // threadprivate variable.
5996 if (RCG.getSizes(N).second) {
5997 Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5998 CGF, CGM.getContext().getSizeType(),
5999 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6000 Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6001 CGM.getContext().getSizeType(), Loc);
6002 }
6003 RCG.emitAggregateType(CGF, N, Size);
6004 LValue SharedLVal;
6005 // If initializer uses initializer from declare reduction construct, emit a
6006 // pointer to the address of the original reduction item (reuired by reduction
6007 // initializer)
6008 if (RCG.usesReductionInitializer(N)) {
6009 Address SharedAddr =
6010 CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6011 CGF, CGM.getContext().VoidPtrTy,
6012 generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
6013 SharedAddr = CGF.EmitLoadOfPointer(
6014 SharedAddr,
6015 CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
6016 SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
6017 } else {
6018 SharedLVal = CGF.MakeNaturalAlignAddrLValue(
6019 llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
6020 CGM.getContext().VoidPtrTy);
6021 }
6022 // Emit the initializer:
6023 // %0 = bitcast void* %arg to <type>*
6024 // store <type> <init>, <type>* %0
6025 RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
6026 [](CodeGenFunction &) { return false; });
6027 CGF.FinishFunction();
6028 return Fn;
6029}
6030
6031/// Emits reduction combiner function:
6032/// \code
6033/// void @.red_comb(void* %arg0, void* %arg1) {
6034/// %lhs = bitcast void* %arg0 to <type>*
6035/// %rhs = bitcast void* %arg1 to <type>*
6036/// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
6037/// store <type> %2, <type>* %lhs
6038/// ret void
6039/// }
6040/// \endcode
6041static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
6042 SourceLocation Loc,
6043 ReductionCodeGen &RCG, unsigned N,
6044 const Expr *ReductionOp,
6045 const Expr *LHS, const Expr *RHS,
6046 const Expr *PrivateRef) {
6047 ASTContext &C = CGM.getContext();
6048 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
6049 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
6050 FunctionArgList Args;
6051 ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
6052 C.VoidPtrTy, ImplicitParamDecl::Other);
6053 ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6054 ImplicitParamDecl::Other);
6055 Args.emplace_back(&ParamInOut);
6056 Args.emplace_back(&ParamIn);
6057 const auto &FnInfo =
6058 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6059 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6060 std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
6061 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6062 Name, &CGM.getModule());
6063 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6064 Fn->setDoesNotRecurse();
6065 CodeGenFunction CGF(CGM);
6066 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6067 llvm::Value *Size = nullptr;
6068 // If the size of the reduction item is non-constant, load it from global
6069 // threadprivate variable.
6070 if (RCG.getSizes(N).second) {
6071 Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6072 CGF, CGM.getContext().getSizeType(),
6073 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6074 Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6075 CGM.getContext().getSizeType(), Loc);
6076 }
6077 RCG.emitAggregateType(CGF, N, Size);
6078 // Remap lhs and rhs variables to the addresses of the function arguments.
6079 // %lhs = bitcast void* %arg0 to <type>*
6080 // %rhs = bitcast void* %arg1 to <type>*
6081 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6082 PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
6083 // Pull out the pointer to the variable.
6084 Address PtrAddr = CGF.EmitLoadOfPointer(
6085 CGF.GetAddrOfLocalVar(&ParamInOut),
6086 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6087 return CGF.Builder.CreateElementBitCast(
6088 PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
6089 });
6090 PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
6091 // Pull out the pointer to the variable.
6092 Address PtrAddr = CGF.EmitLoadOfPointer(
6093 CGF.GetAddrOfLocalVar(&ParamIn),
6094 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6095 return CGF.Builder.CreateElementBitCast(
6096 PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
6097 });
6098 PrivateScope.Privatize();
6099 // Emit the combiner body:
6100 // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
6101 // store <type> %2, <type>* %lhs
6102 CGM.getOpenMPRuntime().emitSingleReductionCombiner(
6103 CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
6104 cast<DeclRefExpr>(RHS));
6105 CGF.FinishFunction();
6106 return Fn;
6107}
6108
6109/// Emits reduction finalizer function:
6110/// \code
6111/// void @.red_fini(void* %arg) {
6112/// %0 = bitcast void* %arg to <type>*
6113/// <destroy>(<type>* %0)
6114/// ret void
6115/// }
6116/// \endcode
6117static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
6118 SourceLocation Loc,
6119 ReductionCodeGen &RCG, unsigned N) {
6120 if (!RCG.needCleanups(N))
6121 return nullptr;
6122 ASTContext &C = CGM.getContext();
6123 FunctionArgList Args;
6124 ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6125 ImplicitParamDecl::Other);
6126 Args.emplace_back(&Param);
6127 const auto &FnInfo =
6128 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6129 llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6130 std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
6131 auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6132 Name, &CGM.getModule());
6133 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6134 Fn->setDoesNotRecurse();
6135 CodeGenFunction CGF(CGM);
6136 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6137 Address PrivateAddr = CGF.EmitLoadOfPointer(
6138 CGF.GetAddrOfLocalVar(&Param),
6139 C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6140 llvm::Value *Size = nullptr;
6141 // If the size of the reduction item is non-constant, load it from global
6142 // threadprivate variable.
6143 if (RCG.getSizes(N).second) {
6144 Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6145 CGF, CGM.getContext().getSizeType(),
6146 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6147 Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6148 CGM.getContext().getSizeType(), Loc);
6149 }
6150 RCG.emitAggregateType(CGF, N, Size);
6151 // Emit the finalizer body:
6152 // <destroy>(<type>* %0)
6153 RCG.emitCleanups(CGF, N, PrivateAddr);
6154 CGF.FinishFunction();
6155 return Fn;
6156}
6157
6158llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6159 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6160 ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6161 if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6162 return nullptr;
6163
6164 // Build typedef struct:
6165 // kmp_task_red_input {
6166 // void *reduce_shar; // shared reduction item
6167 // size_t reduce_size; // size of data item
6168 // void *reduce_init; // data initialization routine
6169 // void *reduce_fini; // data finalization routine
6170 // void *reduce_comb; // data combiner routine
6171 // kmp_task_red_flags_t flags; // flags for additional info from compiler
6172 // } kmp_task_red_input_t;
6173 ASTContext &C = CGM.getContext();
6174 RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
6175 RD->startDefinition();
6176 const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6177 const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6178 const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6179 const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6180 const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6181 const FieldDecl *FlagsFD = addFieldToRecordDecl(
6182 C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6183 RD->completeDefinition();
6184 QualType RDType = C.getRecordType(RD);
6185 unsigned Size = Data.ReductionVars.size();
6186 llvm::APInt ArraySize(/*numBits=*/64, Size);
6187 QualType ArrayRDType = C.getConstantArrayType(
6188 RDType, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
6189 // kmp_task_red_input_t .rd_input.[Size];
6190 Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6191 ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
6192 Data.ReductionOps);
6193 for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6194 // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6195 llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6196 llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6197 llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6198 TaskRedInput.getPointer(), Idxs,
6199 /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6200 ".rd_input.gep.");
6201 LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6202 // ElemLVal.reduce_shar = &Shareds[Cnt];
6203 LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6204 RCG.emitSharedLValue(CGF, Cnt);
6205 llvm::Value *CastedShared =
6206 CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer());
6207 CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6208 RCG.emitAggregateType(CGF, Cnt);
6209 llvm::Value *SizeValInChars;
6210 llvm::Value *SizeVal;
6211 std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6212 // We use delayed creation/initialization for VLAs, array sections and
6213 // custom reduction initializations. It is required because runtime does not
6214 // provide the way to pass the sizes of VLAs/array sections to
6215 // initializer/combiner/finalizer functions and does not pass the pointer to
6216 // original reduction item to the initializer. Instead threadprivate global
6217 // variables are used to store these values and use them in the functions.
6218 bool DelayedCreation = !!SizeVal;
6219 SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6220 /*isSigned=*/false);
6221 LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6222 CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6223 // ElemLVal.reduce_init = init;
6224 LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6225 llvm::Value *InitAddr =
6226 CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6227 CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6228 DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
6229 // ElemLVal.reduce_fini = fini;
6230 LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6231 llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6232 llvm::Value *FiniAddr = Fini
6233 ? CGF.EmitCastToVoidPtr(Fini)
6234 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6235 CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6236 // ElemLVal.reduce_comb = comb;
6237 LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6238 llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6239 CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6240 RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6241 CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6242 // ElemLVal.flags = 0;
6243 LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6244 if (DelayedCreation) {
6245 CGF.EmitStoreOfScalar(
6246 llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*IsSigned=*/true),
6247 FlagsLVal);
6248 } else
6249 CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType());
6250 }
6251 // Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
6252 // *data);
6253 llvm::Value *Args[] = {
6254 CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6255 /*isSigned=*/true),
6256 llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6257 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6258 CGM.VoidPtrTy)};
6259 return CGF.EmitRuntimeCall(
6260 createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
6261}
6262
6263void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6264 SourceLocation Loc,
6265 ReductionCodeGen &RCG,
6266 unsigned N) {
6267 auto Sizes = RCG.getSizes(N);
6268 // Emit threadprivate global variable if the type is non-constant
6269 // (Sizes.second = nullptr).
6270 if (Sizes.second) {
6271 llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6272 /*isSigned=*/false);
6273 Address SizeAddr = getAddrOfArtificialThreadPrivate(
6274 CGF, CGM.getContext().getSizeType(),
6275 generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6276 CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6277 }
6278 // Store address of the original reduction item if custom initializer is used.
6279 if (RCG.usesReductionInitializer(N)) {
6280 Address SharedAddr = getAddrOfArtificialThreadPrivate(
6281 CGF, CGM.getContext().VoidPtrTy,
6282 generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
6283 CGF.Builder.CreateStore(
6284 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6285 RCG.getSharedLValue(N).getPointer(), CGM.VoidPtrTy),
6286 SharedAddr, /*IsVolatile=*/false);
6287 }
6288}
6289
6290Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6291 SourceLocation Loc,
6292 llvm::Value *ReductionsPtr,
6293 LValue SharedLVal) {
6294 // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6295 // *d);
6296 llvm::Value *Args[] = {
6297 CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6298 /*isSigned=*/true),
6299 ReductionsPtr,
6300 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(SharedLVal.getPointer(),
6301 CGM.VoidPtrTy)};
6302 return Address(
6303 CGF.EmitRuntimeCall(
6304 createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
6305 SharedLVal.getAlignment());
6306}
6307
6308void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6309 SourceLocation Loc) {
6310 if (!CGF.HaveInsertPoint())
6311 return;
6312 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6313 // global_tid);
6314 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6315 // Ignore return result until untied tasks are supported.
6316 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
6317 if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6318 Region->emitUntiedSwitch(CGF);
6319}
6320
6321void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6322 OpenMPDirectiveKind InnerKind,
6323 const RegionCodeGenTy &CodeGen,
6324 bool HasCancel) {
6325 if (!CGF.HaveInsertPoint())
6326 return;
6327 InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6328 CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6329}
6330
6331namespace {
6332enum RTCancelKind {
6333 CancelNoreq = 0,
6334 CancelParallel = 1,
6335 CancelLoop = 2,
6336 CancelSections = 3,
6337 CancelTaskgroup = 4
6338};
6339} // anonymous namespace
6340
6341static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6342 RTCancelKind CancelKind = CancelNoreq;
6343 if (CancelRegion == OMPD_parallel)
6344 CancelKind = CancelParallel;
6345 else if (CancelRegion == OMPD_for)
6346 CancelKind = CancelLoop;
6347 else if (CancelRegion == OMPD_sections)
6348 CancelKind = CancelSections;
6349 else {
6350 assert(CancelRegion == OMPD_taskgroup)((CancelRegion == OMPD_taskgroup) ? static_cast<void> (
0) : __assert_fail ("CancelRegion == OMPD_taskgroup", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6350, __PRETTY_FUNCTION__))
;
6351 CancelKind = CancelTaskgroup;
6352 }
6353 return CancelKind;
6354}
6355
6356void CGOpenMPRuntime::emitCancellationPointCall(
6357 CodeGenFunction &CGF, SourceLocation Loc,
6358 OpenMPDirectiveKind CancelRegion) {
6359 if (!CGF.HaveInsertPoint())
6360 return;
6361 // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6362 // global_tid, kmp_int32 cncl_kind);
6363 if (auto *OMPRegionInfo =
6364 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6365 // For 'cancellation point taskgroup', the task region info may not have a
6366 // cancel. This may instead happen in another adjacent task.
6367 if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6368 llvm::Value *Args[] = {
6369 emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6370 CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6371 // Ignore return result until untied tasks are supported.
6372 llvm::Value *Result = CGF.EmitRuntimeCall(
6373 createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
6374 // if (__kmpc_cancellationpoint()) {
6375 // exit from construct;
6376 // }
6377 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6378 llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6379 llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6380 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6381 CGF.EmitBlock(ExitBB);
6382 // exit from construct;
6383 CodeGenFunction::JumpDest CancelDest =
6384 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6385 CGF.EmitBranchThroughCleanup(CancelDest);
6386 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6387 }
6388 }
6389}
6390
6391void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6392 const Expr *IfCond,
6393 OpenMPDirectiveKind CancelRegion) {
6394 if (!CGF.HaveInsertPoint())
6395 return;
6396 // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6397 // kmp_int32 cncl_kind);
6398 if (auto *OMPRegionInfo =
6399 dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6400 auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
6401 PrePostActionTy &) {
6402 CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6403 llvm::Value *Args[] = {
6404 RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6405 CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6406 // Ignore return result until untied tasks are supported.
6407 llvm::Value *Result = CGF.EmitRuntimeCall(
6408 RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
6409 // if (__kmpc_cancel()) {
6410 // exit from construct;
6411 // }
6412 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6413 llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6414 llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6415 CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6416 CGF.EmitBlock(ExitBB);
6417 // exit from construct;
6418 CodeGenFunction::JumpDest CancelDest =
6419 CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6420 CGF.EmitBranchThroughCleanup(CancelDest);
6421 CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6422 };
6423 if (IfCond) {
6424 emitOMPIfClause(CGF, IfCond, ThenGen,
6425 [](CodeGenFunction &, PrePostActionTy &) {});
6426 } else {
6427 RegionCodeGenTy ThenRCG(ThenGen);
6428 ThenRCG(CGF);
6429 }
6430 }
6431}
6432
6433void CGOpenMPRuntime::emitTargetOutlinedFunction(
6434 const OMPExecutableDirective &D, StringRef ParentName,
6435 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6436 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6437 assert(!ParentName.empty() && "Invalid target region parent name!")((!ParentName.empty() && "Invalid target region parent name!"
) ? static_cast<void> (0) : __assert_fail ("!ParentName.empty() && \"Invalid target region parent name!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6437, __PRETTY_FUNCTION__))
;
6438 HasEmittedTargetRegion = true;
6439 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6440 IsOffloadEntry, CodeGen);
6441}
6442
6443void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6444 const OMPExecutableDirective &D, StringRef ParentName,
6445 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6446 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6447 // Create a unique name for the entry function using the source location
6448 // information of the current target region. The name will be something like:
6449 //
6450 // __omp_offloading_DD_FFFF_PP_lBB
6451 //
6452 // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6453 // mangled name of the function that encloses the target region and BB is the
6454 // line number of the target region.
6455
6456 unsigned DeviceID;
6457 unsigned FileID;
6458 unsigned Line;
6459 getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6460 Line);
6461 SmallString<64> EntryFnName;
6462 {
6463 llvm::raw_svector_ostream OS(EntryFnName);
6464 OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6465 << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6466 }
6467
6468 const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6469
6470 CodeGenFunction CGF(CGM, true);
6471 CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6472 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6473
6474 OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
6475
6476 // If this target outline function is not an offload entry, we don't need to
6477 // register it.
6478 if (!IsOffloadEntry)
6479 return;
6480
6481 // The target region ID is used by the runtime library to identify the current
6482 // target region, so it only has to be unique and not necessarily point to
6483 // anything. It could be the pointer to the outlined function that implements
6484 // the target region, but we aren't using that so that the compiler doesn't
6485 // need to keep that, and could therefore inline the host function if proven
6486 // worthwhile during optimization. In the other hand, if emitting code for the
6487 // device, the ID has to be the function address so that it can retrieved from
6488 // the offloading entry and launched by the runtime library. We also mark the
6489 // outlined function to have external linkage in case we are emitting code for
6490 // the device, because these functions will be entry points to the device.
6491
6492 if (CGM.getLangOpts().OpenMPIsDevice) {
6493 OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6494 OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6495 OutlinedFn->setDSOLocal(false);
6496 } else {
6497 std::string Name = getName({EntryFnName, "region_id"});
6498 OutlinedFnID = new llvm::GlobalVariable(
6499 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6500 llvm::GlobalValue::WeakAnyLinkage,
6501 llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6502 }
6503
6504 // Register the information for the entry associated with this target region.
6505 OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6506 DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6507 OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6508}
6509
6510/// Checks if the expression is constant or does not have non-trivial function
6511/// calls.
6512static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6513 // We can skip constant expressions.
6514 // We can skip expressions with trivial calls or simple expressions.
6515 return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6516 !E->hasNonTrivialCall(Ctx)) &&
6517 !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6518}
6519
6520const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6521 const Stmt *Body) {
6522 const Stmt *Child = Body->IgnoreContainers();
6523 while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6524 Child = nullptr;
6525 for (const Stmt *S : C->body()) {
6526 if (const auto *E = dyn_cast<Expr>(S)) {
6527 if (isTrivial(Ctx, E))
6528 continue;
6529 }
6530 // Some of the statements can be ignored.
6531 if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6532 isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6533 continue;
6534 // Analyze declarations.
6535 if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6536 if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
6537 if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6538 isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6539 isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6540 isa<UsingDirectiveDecl>(D) ||
6541 isa<OMPDeclareReductionDecl>(D) ||
6542 isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6543 return true;
6544 const auto *VD = dyn_cast<VarDecl>(D);
6545 if (!VD)
6546 return false;
6547 return VD->isConstexpr() ||
6548 ((VD->getType().isTrivialType(Ctx) ||
6549 VD->getType()->isReferenceType()) &&
6550 (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
6551 }))
6552 continue;
6553 }
6554 // Found multiple children - cannot get the one child only.
6555 if (Child)
6556 return nullptr;
6557 Child = S;
6558 }
6559 if (Child)
6560 Child = Child->IgnoreContainers();
6561 }
6562 return Child;
6563}
6564
6565/// Emit the number of teams for a target directive. Inspect the num_teams
6566/// clause associated with a teams construct combined or closely nested
6567/// with the target directive.
6568///
6569/// Emit a team of size one for directives such as 'target parallel' that
6570/// have no associated teams construct.
6571///
6572/// Otherwise, return nullptr.
6573static llvm::Value *
6574emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6575 const OMPExecutableDirective &D) {
6576 assert(!CGF.getLangOpts().OpenMPIsDevice &&((!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted "
"only for the host!") ? static_cast<void> (0) : __assert_fail
("!CGF.getLangOpts().OpenMPIsDevice && \"Clauses associated with the teams directive expected to be emitted \" \"only for the host!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6578, __PRETTY_FUNCTION__))
6577 "Clauses associated with the teams directive expected to be emitted "((!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted "
"only for the host!") ? static_cast<void> (0) : __assert_fail
("!CGF.getLangOpts().OpenMPIsDevice && \"Clauses associated with the teams directive expected to be emitted \" \"only for the host!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6578, __PRETTY_FUNCTION__))
6578 "only for the host!")((!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted "
"only for the host!") ? static_cast<void> (0) : __assert_fail
("!CGF.getLangOpts().OpenMPIsDevice && \"Clauses associated with the teams directive expected to be emitted \" \"only for the host!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6578, __PRETTY_FUNCTION__))
;
6579 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6580 assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&((isOpenMPTargetExecutionDirective(DirectiveKind) && "Expected target-based executable directive."
) ? static_cast<void> (0) : __assert_fail ("isOpenMPTargetExecutionDirective(DirectiveKind) && \"Expected target-based executable directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6581, __PRETTY_FUNCTION__))
6581 "Expected target-based executable directive.")((isOpenMPTargetExecutionDirective(DirectiveKind) && "Expected target-based executable directive."
) ? static_cast<void> (0) : __assert_fail ("isOpenMPTargetExecutionDirective(DirectiveKind) && \"Expected target-based executable directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6581, __PRETTY_FUNCTION__))
;
6582 CGBuilderTy &Bld = CGF.Builder;
6583 switch (DirectiveKind) {
6584 case OMPD_target: {
6585 const auto *CS = D.getInnermostCapturedStmt();
6586 const auto *Body =
6587 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6588 const Stmt *ChildStmt =
6589 CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6590 if (const auto *NestedDir =
6591 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6592 if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6593 if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6594 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6595 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6596 const Expr *NumTeams =
6597 NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6598 llvm::Value *NumTeamsVal =
6599 CGF.EmitScalarExpr(NumTeams,
6600 /*IgnoreResultAssign*/ true);
6601 return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6602 /*IsSigned=*/true);
6603 }
6604 return Bld.getInt32(0);
6605 }
6606 if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6607 isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6608 return Bld.getInt32(1);
6609 return Bld.getInt32(0);
6610 }
6611 return nullptr;
6612 }
6613 case OMPD_target_teams:
6614 case OMPD_target_teams_distribute:
6615 case OMPD_target_teams_distribute_simd:
6616 case OMPD_target_teams_distribute_parallel_for:
6617 case OMPD_target_teams_distribute_parallel_for_simd: {
6618 if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6619 CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6620 const Expr *NumTeams =
6621 D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6622 llvm::Value *NumTeamsVal =
6623 CGF.EmitScalarExpr(NumTeams,
6624 /*IgnoreResultAssign*/ true);
6625 return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6626 /*IsSigned=*/true);
6627 }
6628 return Bld.getInt32(0);
6629 }
6630 case OMPD_target_parallel:
6631 case OMPD_target_parallel_for:
6632 case OMPD_target_parallel_for_simd:
6633 case OMPD_target_simd:
6634 return Bld.getInt32(1);
6635 case OMPD_parallel:
6636 case OMPD_for:
6637 case OMPD_parallel_for:
6638 case OMPD_parallel_sections:
6639 case OMPD_for_simd:
6640 case OMPD_parallel_for_simd:
6641 case OMPD_cancel:
6642 case OMPD_cancellation_point:
6643 case OMPD_ordered:
6644 case OMPD_threadprivate:
6645 case OMPD_allocate:
6646 case OMPD_task:
6647 case OMPD_simd:
6648 case OMPD_sections:
6649 case OMPD_section:
6650 case OMPD_single:
6651 case OMPD_master:
6652 case OMPD_critical:
6653 case OMPD_taskyield:
6654 case OMPD_barrier:
6655 case OMPD_taskwait:
6656 case OMPD_taskgroup:
6657 case OMPD_atomic:
6658 case OMPD_flush:
6659 case OMPD_teams:
6660 case OMPD_target_data:
6661 case OMPD_target_exit_data:
6662 case OMPD_target_enter_data:
6663 case OMPD_distribute:
6664 case OMPD_distribute_simd:
6665 case OMPD_distribute_parallel_for:
6666 case OMPD_distribute_parallel_for_simd:
6667 case OMPD_teams_distribute:
6668 case OMPD_teams_distribute_simd:
6669 case OMPD_teams_distribute_parallel_for:
6670 case OMPD_teams_distribute_parallel_for_simd:
6671 case OMPD_target_update:
6672 case OMPD_declare_simd:
6673 case OMPD_declare_target:
6674 case OMPD_end_declare_target:
6675 case OMPD_declare_reduction:
6676 case OMPD_declare_mapper:
6677 case OMPD_taskloop:
6678 case OMPD_taskloop_simd:
6679 case OMPD_requires:
6680 case OMPD_unknown:
6681 break;
6682 }
6683 llvm_unreachable("Unexpected directive kind.")::llvm::llvm_unreachable_internal("Unexpected directive kind."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6683)
;
6684}
6685
6686static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6687 llvm::Value *DefaultThreadLimitVal) {
6688 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6689 CGF.getContext(), CS->getCapturedStmt());
6690 if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6691 if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6692 llvm::Value *NumThreads = nullptr;
6693 llvm::Value *CondVal = nullptr;
6694 // Handle if clause. If if clause present, the number of threads is
6695 // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6696 if (Dir->hasClausesOfKind<OMPIfClause>()) {
6697 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6698 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6699 const OMPIfClause *IfClause = nullptr;
6700 for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6701 if (C->getNameModifier() == OMPD_unknown ||
6702 C->getNameModifier() == OMPD_parallel) {
6703 IfClause = C;
6704 break;
6705 }
6706 }
6707 if (IfClause) {
6708 const Expr *Cond = IfClause->getCondition();
6709 bool Result;
6710 if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6711 if (!Result)
6712 return CGF.Builder.getInt32(1);
6713 } else {
6714 CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6715 if (const auto *PreInit =
6716 cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6717 for (const auto *I : PreInit->decls()) {
6718 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6719 CGF.EmitVarDecl(cast<VarDecl>(*I));
6720 } else {
6721 CodeGenFunction::AutoVarEmission Emission =
6722 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6723 CGF.EmitAutoVarCleanups(Emission);
6724 }
6725 }
6726 }
6727 CondVal = CGF.EvaluateExprAsBool(Cond);
6728 }
6729 }
6730 }
6731 // Check the value of num_threads clause iff if clause was not specified
6732 // or is not evaluated to false.
6733 if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6734 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6735 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6736 const auto *NumThreadsClause =
6737 Dir->getSingleClause<OMPNumThreadsClause>();
6738 CodeGenFunction::LexicalScope Scope(
6739 CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6740 if (const auto *PreInit =
6741 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6742 for (const auto *I : PreInit->decls()) {
6743 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6744 CGF.EmitVarDecl(cast<VarDecl>(*I));
6745 } else {
6746 CodeGenFunction::AutoVarEmission Emission =
6747 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6748 CGF.EmitAutoVarCleanups(Emission);
6749 }
6750 }
6751 }
6752 NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6753 NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6754 /*IsSigned=*/false);
6755 if (DefaultThreadLimitVal)
6756 NumThreads = CGF.Builder.CreateSelect(
6757 CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6758 DefaultThreadLimitVal, NumThreads);
6759 } else {
6760 NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6761 : CGF.Builder.getInt32(0);
6762 }
6763 // Process condition of the if clause.
6764 if (CondVal) {
6765 NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6766 CGF.Builder.getInt32(1));
6767 }
6768 return NumThreads;
6769 }
6770 if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6771 return CGF.Builder.getInt32(1);
6772 return DefaultThreadLimitVal;
6773 }
6774 return DefaultThreadLimitVal ? DefaultThreadLimitVal
6775 : CGF.Builder.getInt32(0);
6776}
6777
6778/// Emit the number of threads for a target directive. Inspect the
6779/// thread_limit clause associated with a teams construct combined or closely
6780/// nested with the target directive.
6781///
6782/// Emit the num_threads clause for directives such as 'target parallel' that
6783/// have no associated teams construct.
6784///
6785/// Otherwise, return nullptr.
6786static llvm::Value *
6787emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6788 const OMPExecutableDirective &D) {
6789 assert(!CGF.getLangOpts().OpenMPIsDevice &&((!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted "
"only for the host!") ? static_cast<void> (0) : __assert_fail
("!CGF.getLangOpts().OpenMPIsDevice && \"Clauses associated with the teams directive expected to be emitted \" \"only for the host!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6791, __PRETTY_FUNCTION__))
6790 "Clauses associated with the teams directive expected to be emitted "((!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted "
"only for the host!") ? static_cast<void> (0) : __assert_fail
("!CGF.getLangOpts().OpenMPIsDevice && \"Clauses associated with the teams directive expected to be emitted \" \"only for the host!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6791, __PRETTY_FUNCTION__))
6791 "only for the host!")((!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted "
"only for the host!") ? static_cast<void> (0) : __assert_fail
("!CGF.getLangOpts().OpenMPIsDevice && \"Clauses associated with the teams directive expected to be emitted \" \"only for the host!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6791, __PRETTY_FUNCTION__))
;
6792 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6793 assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&((isOpenMPTargetExecutionDirective(DirectiveKind) && "Expected target-based executable directive."
) ? static_cast<void> (0) : __assert_fail ("isOpenMPTargetExecutionDirective(DirectiveKind) && \"Expected target-based executable directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6794, __PRETTY_FUNCTION__))
6794 "Expected target-based executable directive.")((isOpenMPTargetExecutionDirective(DirectiveKind) && "Expected target-based executable directive."
) ? static_cast<void> (0) : __assert_fail ("isOpenMPTargetExecutionDirective(DirectiveKind) && \"Expected target-based executable directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6794, __PRETTY_FUNCTION__))
;
6795 CGBuilderTy &Bld = CGF.Builder;
6796 llvm::Value *ThreadLimitVal = nullptr;
6797 llvm::Value *NumThreadsVal = nullptr;
6798 switch (DirectiveKind) {
6799 case OMPD_target: {
6800 const CapturedStmt *CS = D.getInnermostCapturedStmt();
6801 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6802 return NumThreads;
6803 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6804 CGF.getContext(), CS->getCapturedStmt());
6805 if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6806 if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6807 CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6808 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6809 const auto *ThreadLimitClause =
6810 Dir->getSingleClause<OMPThreadLimitClause>();
6811 CodeGenFunction::LexicalScope Scope(
6812 CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6813 if (const auto *PreInit =
6814 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6815 for (const auto *I : PreInit->decls()) {
6816 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6817 CGF.EmitVarDecl(cast<VarDecl>(*I));
6818 } else {
6819 CodeGenFunction::AutoVarEmission Emission =
6820 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6821 CGF.EmitAutoVarCleanups(Emission);
6822 }
6823 }
6824 }
6825 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6826 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6827 ThreadLimitVal =
6828 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*IsSigned=*/false);
6829 }
6830 if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6831 !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6832 CS = Dir->getInnermostCapturedStmt();
6833 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6834 CGF.getContext(), CS->getCapturedStmt());
6835 Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6836 }
6837 if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6838 !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6839 CS = Dir->getInnermostCapturedStmt();
6840 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6841 return NumThreads;
6842 }
6843 if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6844 return Bld.getInt32(1);
6845 }
6846 return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6847 }
6848 case OMPD_target_teams: {
6849 if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6850 CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6851 const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6852 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6853 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6854 ThreadLimitVal =
6855 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*IsSigned=*/false);
6856 }
6857 const CapturedStmt *CS = D.getInnermostCapturedStmt();
6858 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6859 return NumThreads;
6860 const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6861 CGF.getContext(), CS->getCapturedStmt());
6862 if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6863 if (Dir->getDirectiveKind() == OMPD_distribute) {
6864 CS = Dir->getInnermostCapturedStmt();
6865 if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6866 return NumThreads;
6867 }
6868 }
6869 return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6870 }
6871 case OMPD_target_teams_distribute:
6872 if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6873 CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6874 const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6875 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6876 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6877 ThreadLimitVal =
6878 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*IsSigned=*/false);
6879 }
6880 return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6881 case OMPD_target_parallel:
6882 case OMPD_target_parallel_for:
6883 case OMPD_target_parallel_for_simd:
6884 case OMPD_target_teams_distribute_parallel_for:
6885 case OMPD_target_teams_distribute_parallel_for_simd: {
6886 llvm::Value *CondVal = nullptr;
6887 // Handle if clause. If if clause present, the number of threads is
6888 // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6889 if (D.hasClausesOfKind<OMPIfClause>()) {
6890 const OMPIfClause *IfClause = nullptr;
6891 for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6892 if (C->getNameModifier() == OMPD_unknown ||
6893 C->getNameModifier() == OMPD_parallel) {
6894 IfClause = C;
6895 break;
6896 }
6897 }
6898 if (IfClause) {
6899 const Expr *Cond = IfClause->getCondition();
6900 bool Result;
6901 if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6902 if (!Result)
6903 return Bld.getInt32(1);
6904 } else {
6905 CodeGenFunction::RunCleanupsScope Scope(CGF);
6906 CondVal = CGF.EvaluateExprAsBool(Cond);
6907 }
6908 }
6909 }
6910 if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6911 CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6912 const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6913 llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6914 ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6915 ThreadLimitVal =
6916 Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*IsSigned=*/false);
6917 }
6918 if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6919 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6920 const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6921 llvm::Value *NumThreads = CGF.EmitScalarExpr(
6922 NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6923 NumThreadsVal =
6924 Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*IsSigned=*/false);
6925 ThreadLimitVal = ThreadLimitVal
6926 ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6927 ThreadLimitVal),
6928 NumThreadsVal, ThreadLimitVal)
6929 : NumThreadsVal;
6930 }
6931 if (!ThreadLimitVal)
6932 ThreadLimitVal = Bld.getInt32(0);
6933 if (CondVal)
6934 return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6935 return ThreadLimitVal;
6936 }
6937 case OMPD_target_teams_distribute_simd:
6938 case OMPD_target_simd:
6939 return Bld.getInt32(1);
6940 case OMPD_parallel:
6941 case OMPD_for:
6942 case OMPD_parallel_for:
6943 case OMPD_parallel_sections:
6944 case OMPD_for_simd:
6945 case OMPD_parallel_for_simd:
6946 case OMPD_cancel:
6947 case OMPD_cancellation_point:
6948 case OMPD_ordered:
6949 case OMPD_threadprivate:
6950 case OMPD_allocate:
6951 case OMPD_task:
6952 case OMPD_simd:
6953 case OMPD_sections:
6954 case OMPD_section:
6955 case OMPD_single:
6956 case OMPD_master:
6957 case OMPD_critical:
6958 case OMPD_taskyield:
6959 case OMPD_barrier:
6960 case OMPD_taskwait:
6961 case OMPD_taskgroup:
6962 case OMPD_atomic:
6963 case OMPD_flush:
6964 case OMPD_teams:
6965 case OMPD_target_data:
6966 case OMPD_target_exit_data:
6967 case OMPD_target_enter_data:
6968 case OMPD_distribute:
6969 case OMPD_distribute_simd:
6970 case OMPD_distribute_parallel_for:
6971 case OMPD_distribute_parallel_for_simd:
6972 case OMPD_teams_distribute:
6973 case OMPD_teams_distribute_simd:
6974 case OMPD_teams_distribute_parallel_for:
6975 case OMPD_teams_distribute_parallel_for_simd:
6976 case OMPD_target_update:
6977 case OMPD_declare_simd:
6978 case OMPD_declare_target:
6979 case OMPD_end_declare_target:
6980 case OMPD_declare_reduction:
6981 case OMPD_declare_mapper:
6982 case OMPD_taskloop:
6983 case OMPD_taskloop_simd:
6984 case OMPD_requires:
6985 case OMPD_unknown:
6986 break;
6987 }
6988 llvm_unreachable("Unsupported directive kind.")::llvm::llvm_unreachable_internal("Unsupported directive kind."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 6988)
;
6989}
6990
6991namespace {
6992LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE()using ::llvm::BitmaskEnumDetail::operator~; using ::llvm::BitmaskEnumDetail
::operator|; using ::llvm::BitmaskEnumDetail::operator&; using
::llvm::BitmaskEnumDetail::operator^; using ::llvm::BitmaskEnumDetail
::operator|=; using ::llvm::BitmaskEnumDetail::operator&=
; using ::llvm::BitmaskEnumDetail::operator^=
;
6993
6994// Utility to handle information from clauses associated with a given
6995// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
6996// It provides a convenient interface to obtain the information and generate
6997// code for that information.
6998class MappableExprsHandler {
6999public:
7000 /// Values for bit flags used to specify the mapping type for
7001 /// offloading.
7002 enum OpenMPOffloadMappingFlags : uint64_t {
7003 /// No flags
7004 OMP_MAP_NONE = 0x0,
7005 /// Allocate memory on the device and move data from host to device.
7006 OMP_MAP_TO = 0x01,
7007 /// Allocate memory on the device and move data from device to host.
7008 OMP_MAP_FROM = 0x02,
7009 /// Always perform the requested mapping action on the element, even
7010 /// if it was already mapped before.
7011 OMP_MAP_ALWAYS = 0x04,
7012 /// Delete the element from the device environment, ignoring the
7013 /// current reference count associated with the element.
7014 OMP_MAP_DELETE = 0x08,
7015 /// The element being mapped is a pointer-pointee pair; both the
7016 /// pointer and the pointee should be mapped.
7017 OMP_MAP_PTR_AND_OBJ = 0x10,
7018 /// This flags signals that the base address of an entry should be
7019 /// passed to the target kernel as an argument.
7020 OMP_MAP_TARGET_PARAM = 0x20,
7021 /// Signal that the runtime library has to return the device pointer
7022 /// in the current position for the data being mapped. Used when we have the
7023 /// use_device_ptr clause.
7024 OMP_MAP_RETURN_PARAM = 0x40,
7025 /// This flag signals that the reference being passed is a pointer to
7026 /// private data.
7027 OMP_MAP_PRIVATE = 0x80,
7028 /// Pass the element to the device by value.
7029 OMP_MAP_LITERAL = 0x100,
7030 /// Implicit map
7031 OMP_MAP_IMPLICIT = 0x200,
7032 /// The 16 MSBs of the flags indicate whether the entry is member of some
7033 /// struct/class.
7034 OMP_MAP_MEMBER_OF = 0xffff000000000000,
7035 LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF)LLVM_BITMASK_LARGEST_ENUMERATOR = OMP_MAP_MEMBER_OF,
7036 };
7037
7038 /// Class that associates information with a base pointer to be passed to the
7039 /// runtime library.
7040 class BasePointerInfo {
7041 /// The base pointer.
7042 llvm::Value *Ptr = nullptr;
7043 /// The base declaration that refers to this device pointer, or null if
7044 /// there is none.
7045 const ValueDecl *DevPtrDecl = nullptr;
7046
7047 public:
7048 BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
7049 : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
7050 llvm::Value *operator*() const { return Ptr; }
7051 const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
7052 void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
7053 };
7054
7055 using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
7056 using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
7057 using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
7058
7059 /// Map between a struct and the its lowest & highest elements which have been
7060 /// mapped.
7061 /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
7062 /// HE(FieldIndex, Pointer)}
7063 struct StructRangeInfoTy {
7064 std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
7065 0, Address::invalid()};
7066 std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7067 0, Address::invalid()};
7068 Address Base = Address::invalid();
7069 };
7070
7071private:
7072 /// Kind that defines how a device pointer has to be returned.
7073 struct MapInfo {
7074 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7075 OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7076 ArrayRef<OpenMPMapModifierKind> MapModifiers;
7077 bool ReturnDevicePointer = false;
7078 bool IsImplicit = false;
7079
7080 MapInfo() = default;
7081 MapInfo(
7082 OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7083 OpenMPMapClauseKind MapType,
7084 ArrayRef<OpenMPMapModifierKind> MapModifiers,
7085 bool ReturnDevicePointer, bool IsImplicit)
7086 : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7087 ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
7088 };
7089
7090 /// If use_device_ptr is used on a pointer which is a struct member and there
7091 /// is no map information about it, then emission of that entry is deferred
7092 /// until the whole struct has been processed.
7093 struct DeferredDevicePtrEntryTy {
7094 const Expr *IE = nullptr;
7095 const ValueDecl *VD = nullptr;
7096
7097 DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
7098 : IE(IE), VD(VD) {}
7099 };
7100
7101 /// Directive from where the map clauses were extracted.
7102 const OMPExecutableDirective &CurDir;
7103
7104 /// Function the directive is being generated for.
7105 CodeGenFunction &CGF;
7106
7107 /// Set of all first private variables in the current directive.
7108 llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls;
7109
7110 /// Map between device pointer declarations and their expression components.
7111 /// The key value for declarations in 'this' is null.
7112 llvm::DenseMap<
7113 const ValueDecl *,
7114 SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7115 DevPointersMap;
7116
7117 llvm::Value *getExprTypeSize(const Expr *E) const {
7118 QualType ExprTy = E->getType().getCanonicalType();
7119
7120 // Reference types are ignored for mapping purposes.
7121 if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7122 ExprTy = RefTy->getPointeeType().getCanonicalType();
7123
7124 // Given that an array section is considered a built-in type, we need to
7125 // do the calculation based on the length of the section instead of relying
7126 // on CGF.getTypeSize(E->getType()).
7127 if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7128 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7129 OAE->getBase()->IgnoreParenImpCasts())
7130 .getCanonicalType();
7131
7132 // If there is no length associated with the expression, that means we
7133 // are using the whole length of the base.
7134 if (!OAE->getLength() && OAE->getColonLoc().isValid())
7135 return CGF.getTypeSize(BaseTy);
7136
7137 llvm::Value *ElemSize;
7138 if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7139 ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7140 } else {
7141 const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7142 assert(ATy && "Expecting array type if not a pointer type.")((ATy && "Expecting array type if not a pointer type."
) ? static_cast<void> (0) : __assert_fail ("ATy && \"Expecting array type if not a pointer type.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7142, __PRETTY_FUNCTION__))
;
7143 ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7144 }
7145
7146 // If we don't have a length at this point, that is because we have an
7147 // array section with a single element.
7148 if (!OAE->getLength())
7149 return ElemSize;
7150
7151 llvm::Value *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
7152 LengthVal =
7153 CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
7154 return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7155 }
7156 return CGF.getTypeSize(ExprTy);
7157 }
7158
7159 /// Return the corresponding bits for a given map clause modifier. Add
7160 /// a flag marking the map as a pointer if requested. Add a flag marking the
7161 /// map as the first one of a series of maps that relate to the same map
7162 /// expression.
7163 OpenMPOffloadMappingFlags getMapTypeBits(
7164 OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7165 bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
7166 OpenMPOffloadMappingFlags Bits =
7167 IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7168 switch (MapType) {
7169 case OMPC_MAP_alloc:
7170 case OMPC_MAP_release:
7171 // alloc and release is the default behavior in the runtime library, i.e.
7172 // if we don't pass any bits alloc/release that is what the runtime is
7173 // going to do. Therefore, we don't need to signal anything for these two
7174 // type modifiers.
7175 break;
7176 case OMPC_MAP_to:
7177 Bits |= OMP_MAP_TO;
7178 break;
7179 case OMPC_MAP_from:
7180 Bits |= OMP_MAP_FROM;
7181 break;
7182 case OMPC_MAP_tofrom:
7183 Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7184 break;
7185 case OMPC_MAP_delete:
7186 Bits |= OMP_MAP_DELETE;
7187 break;
7188 case OMPC_MAP_unknown:
7189 llvm_unreachable("Unexpected map type!")::llvm::llvm_unreachable_internal("Unexpected map type!", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7189)
;
7190 }
7191 if (AddPtrFlag)
7192 Bits |= OMP_MAP_PTR_AND_OBJ;
7193 if (AddIsTargetParamFlag)
7194 Bits |= OMP_MAP_TARGET_PARAM;
7195 if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7196 != MapModifiers.end())
7197 Bits |= OMP_MAP_ALWAYS;
7198 return Bits;
7199 }
7200
7201 /// Return true if the provided expression is a final array section. A
7202 /// final array section, is one whose length can't be proved to be one.
7203 bool isFinalArraySectionExpression(const Expr *E) const {
7204 const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7205
7206 // It is not an array section and therefore not a unity-size one.
7207 if (!OASE)
7208 return false;
7209
7210 // An array section with no colon always refer to a single element.
7211 if (OASE->getColonLoc().isInvalid())
7212 return false;
7213
7214 const Expr *Length = OASE->getLength();
7215
7216 // If we don't have a length we have to check if the array has size 1
7217 // for this dimension. Also, we should always expect a length if the
7218 // base type is pointer.
7219 if (!Length) {
7220 QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7221 OASE->getBase()->IgnoreParenImpCasts())
7222 .getCanonicalType();
7223 if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7224 return ATy->getSize().getSExtValue() != 1;
7225 // If we don't have a constant dimension length, we have to consider
7226 // the current section as having any size, so it is not necessarily
7227 // unitary. If it happen to be unity size, that's user fault.
7228 return true;
7229 }
7230
7231 // Check if the length evaluates to 1.
7232 Expr::EvalResult Result;
7233 if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7234 return true; // Can have more that size 1.
7235
7236 llvm::APSInt ConstLength = Result.Val.getInt();
7237 return ConstLength.getSExtValue() != 1;
7238 }
7239
7240 /// Generate the base pointers, section pointers, sizes and map type
7241 /// bits for the provided map type, map modifier, and expression components.
7242 /// \a IsFirstComponent should be set to true if the provided set of
7243 /// components is the first associated with a capture.
7244 void generateInfoForComponentList(
7245 OpenMPMapClauseKind MapType,
7246 ArrayRef<OpenMPMapModifierKind> MapModifiers,
7247 OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7248 MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
7249 MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
7250 StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
7251 bool IsImplicit,
7252 ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7253 OverlappedElements = llvm::None) const {
7254 // The following summarizes what has to be generated for each map and the
7255 // types below. The generated information is expressed in this order:
7256 // base pointer, section pointer, size, flags
7257 // (to add to the ones that come from the map type and modifier).
7258 //
7259 // double d;
7260 // int i[100];
7261 // float *p;
7262 //
7263 // struct S1 {
7264 // int i;
7265 // float f[50];
7266 // }
7267 // struct S2 {
7268 // int i;
7269 // float f[50];
7270 // S1 s;
7271 // double *p;
7272 // struct S2 *ps;
7273 // }
7274 // S2 s;
7275 // S2 *ps;
7276 //
7277 // map(d)
7278 // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7279 //
7280 // map(i)
7281 // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7282 //
7283 // map(i[1:23])
7284 // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7285 //
7286 // map(p)
7287 // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7288 //
7289 // map(p[1:24])
7290 // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7291 //
7292 // map(s)
7293 // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7294 //
7295 // map(s.i)
7296 // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7297 //
7298 // map(s.s.f)
7299 // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7300 //
7301 // map(s.p)
7302 // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7303 //
7304 // map(to: s.p[:22])
7305 // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7306 // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7307 // &(s.p), &(s.p[0]), 22*sizeof(double),
7308 // MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7309 // (*) alloc space for struct members, only this is a target parameter
7310 // (**) map the pointer (nothing to be mapped in this example) (the compiler
7311 // optimizes this entry out, same in the examples below)
7312 // (***) map the pointee (map: to)
7313 //
7314 // map(s.ps)
7315 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7316 //
7317 // map(from: s.ps->s.i)
7318 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7319 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7320 // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7321 //
7322 // map(to: s.ps->ps)
7323 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7324 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7325 // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO
7326 //
7327 // map(s.ps->ps->ps)
7328 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7329 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7330 // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7331 // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7332 //
7333 // map(to: s.ps->ps->s.f[:22])
7334 // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7335 // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7336 // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7337 // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7338 //
7339 // map(ps)
7340 // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7341 //
7342 // map(ps->i)
7343 // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7344 //
7345 // map(ps->s.f)
7346 // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7347 //
7348 // map(from: ps->p)
7349 // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7350 //
7351 // map(to: ps->p[:22])
7352 // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7353 // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7354 // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7355 //
7356 // map(ps->ps)
7357 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7358 //
7359 // map(from: ps->ps->s.i)
7360 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7361 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7362 // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7363 //
7364 // map(from: ps->ps->ps)
7365 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7366 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7367 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7368 //
7369 // map(ps->ps->ps->ps)
7370 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7371 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7372 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7373 // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7374 //
7375 // map(to: ps->ps->ps->s.f[:22])
7376 // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7377 // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7378 // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7379 // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7380 //
7381 // map(to: s.f[:22]) map(from: s.p[:33])
7382 // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7383 // sizeof(double*) (**), TARGET_PARAM
7384 // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7385 // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7386 // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7387 // (*) allocate contiguous space needed to fit all mapped members even if
7388 // we allocate space for members not mapped (in this example,
7389 // s.f[22..49] and s.s are not mapped, yet we must allocate space for
7390 // them as well because they fall between &s.f[0] and &s.p)
7391 //
7392 // map(from: s.f[:22]) map(to: ps->p[:33])
7393 // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7394 // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7395 // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7396 // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7397 // (*) the struct this entry pertains to is the 2nd element in the list of
7398 // arguments, hence MEMBER_OF(2)
7399 //
7400 // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7401 // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7402 // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7403 // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7404 // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7405 // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7406 // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7407 // (*) the struct this entry pertains to is the 4th element in the list
7408 // of arguments, hence MEMBER_OF(4)
7409
7410 // Track if the map information being generated is the first for a capture.
7411 bool IsCaptureFirstInfo = IsFirstComponentList;
7412 bool IsLink = false; // Is this variable a "declare target link"?
7413
7414 // Scan the components from the base to the complete expression.
7415 auto CI = Components.rbegin();
7416 auto CE = Components.rend();
7417 auto I = CI;
7418
7419 // Track if the map information being generated is the first for a list of
7420 // components.
7421 bool IsExpressionFirstInfo = true;
7422 Address BP = Address::invalid();
7423 const Expr *AssocExpr = I->getAssociatedExpression();
7424 const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7425 const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7426
7427 if (isa<MemberExpr>(AssocExpr)) {
7428 // The base is the 'this' pointer. The content of the pointer is going
7429 // to be the base of the field being mapped.
7430 BP = CGF.LoadCXXThisAddress();
7431 } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7432 (OASE &&
7433 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7434 BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
7435 } else {
7436 // The base is the reference to the variable.
7437 // BP = &Var.
7438 BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
7439 if (const auto *VD =
7440 dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7441 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7442 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
7443 if (*Res == OMPDeclareTargetDeclAttr::MT_Link) {
7444 IsLink = true;
7445 BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
7446 }
7447 }
7448
7449 // If the variable is a pointer and is being dereferenced (i.e. is not
7450 // the last component), the base has to be the pointer itself, not its
7451 // reference. References are ignored for mapping purposes.
7452 QualType Ty =
7453 I->getAssociatedDeclaration()->getType().getNonReferenceType();
7454 if (Ty->isAnyPointerType() && std::next(I) != CE) {
7455 BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7456
7457 // We do not need to generate individual map information for the
7458 // pointer, it can be associated with the combined storage.
7459 ++I;
7460 }
7461 }
7462
7463 // Track whether a component of the list should be marked as MEMBER_OF some
7464 // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7465 // in a component list should be marked as MEMBER_OF, all subsequent entries
7466 // do not belong to the base struct. E.g.
7467 // struct S2 s;
7468 // s.ps->ps->ps->f[:]
7469 // (1) (2) (3) (4)
7470 // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7471 // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7472 // is the pointee of ps(2) which is not member of struct s, so it should not
7473 // be marked as such (it is still PTR_AND_OBJ).
7474 // The variable is initialized to false so that PTR_AND_OBJ entries which
7475 // are not struct members are not considered (e.g. array of pointers to
7476 // data).
7477 bool ShouldBeMemberOf = false;
7478
7479 // Variable keeping track of whether or not we have encountered a component
7480 // in the component list which is a member expression. Useful when we have a
7481 // pointer or a final array section, in which case it is the previous
7482 // component in the list which tells us whether we have a member expression.
7483 // E.g. X.f[:]
7484 // While processing the final array section "[:]" it is "f" which tells us
7485 // whether we are dealing with a member of a declared struct.
7486 const MemberExpr *EncounteredME = nullptr;
7487
7488 for (; I != CE; ++I) {
7489 // If the current component is member of a struct (parent struct) mark it.
7490 if (!EncounteredME) {
7491 EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7492 // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7493 // as MEMBER_OF the parent struct.
7494 if (EncounteredME)
7495 ShouldBeMemberOf = true;
7496 }
7497
7498 auto Next = std::next(I);
7499
7500 // We need to generate the addresses and sizes if this is the last
7501 // component, if the component is a pointer or if it is an array section
7502 // whose length can't be proved to be one. If this is a pointer, it
7503 // becomes the base address for the following components.
7504
7505 // A final array section, is one whose length can't be proved to be one.
7506 bool IsFinalArraySection =
7507 isFinalArraySectionExpression(I->getAssociatedExpression());
7508
7509 // Get information on whether the element is a pointer. Have to do a
7510 // special treatment for array sections given that they are built-in
7511 // types.
7512 const auto *OASE =
7513 dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7514 bool IsPointer =
7515 (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7516 .getCanonicalType()
7517 ->isAnyPointerType()) ||
7518 I->getAssociatedExpression()->getType()->isAnyPointerType();
7519
7520 if (Next == CE || IsPointer || IsFinalArraySection) {
7521 // If this is not the last component, we expect the pointer to be
7522 // associated with an array expression or member expression.
7523 assert((Next == CE ||(((Next == CE || isa<MemberExpr>(Next->getAssociatedExpression
()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression
()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression
())) && "Unexpected expression") ? static_cast<void
> (0) : __assert_fail ("(Next == CE || isa<MemberExpr>(Next->getAssociatedExpression()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && \"Unexpected expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7527, __PRETTY_FUNCTION__))
7524 isa<MemberExpr>(Next->getAssociatedExpression()) ||(((Next == CE || isa<MemberExpr>(Next->getAssociatedExpression
()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression
()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression
())) && "Unexpected expression") ? static_cast<void
> (0) : __assert_fail ("(Next == CE || isa<MemberExpr>(Next->getAssociatedExpression()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && \"Unexpected expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7527, __PRETTY_FUNCTION__))
7525 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||(((Next == CE || isa<MemberExpr>(Next->getAssociatedExpression
()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression
()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression
())) && "Unexpected expression") ? static_cast<void
> (0) : __assert_fail ("(Next == CE || isa<MemberExpr>(Next->getAssociatedExpression()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && \"Unexpected expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7527, __PRETTY_FUNCTION__))
7526 isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&(((Next == CE || isa<MemberExpr>(Next->getAssociatedExpression
()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression
()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression
())) && "Unexpected expression") ? static_cast<void
> (0) : __assert_fail ("(Next == CE || isa<MemberExpr>(Next->getAssociatedExpression()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && \"Unexpected expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7527, __PRETTY_FUNCTION__))
7527 "Unexpected expression")(((Next == CE || isa<MemberExpr>(Next->getAssociatedExpression
()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression
()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression
())) && "Unexpected expression") ? static_cast<void
> (0) : __assert_fail ("(Next == CE || isa<MemberExpr>(Next->getAssociatedExpression()) || isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && \"Unexpected expression\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7527, __PRETTY_FUNCTION__))
;
7528
7529 Address LB =
7530 CGF.EmitOMPSharedLValue(I->getAssociatedExpression()).getAddress();
7531
7532 // If this component is a pointer inside the base struct then we don't
7533 // need to create any entry for it - it will be combined with the object
7534 // it is pointing to into a single PTR_AND_OBJ entry.
7535 bool IsMemberPointer =
7536 IsPointer && EncounteredME &&
7537 (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7538 EncounteredME);
7539 if (!OverlappedElements.empty()) {
7540 // Handle base element with the info for overlapped elements.
7541 assert(!PartialStruct.Base.isValid() && "The base element is set.")((!PartialStruct.Base.isValid() && "The base element is set."
) ? static_cast<void> (0) : __assert_fail ("!PartialStruct.Base.isValid() && \"The base element is set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7541, __PRETTY_FUNCTION__))
;
7542 assert(Next == CE &&((Next == CE && "Expected last element for the overlapped elements."
) ? static_cast<void> (0) : __assert_fail ("Next == CE && \"Expected last element for the overlapped elements.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7543, __PRETTY_FUNCTION__))
7543 "Expected last element for the overlapped elements.")((Next == CE && "Expected last element for the overlapped elements."
) ? static_cast<void> (0) : __assert_fail ("Next == CE && \"Expected last element for the overlapped elements.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7543, __PRETTY_FUNCTION__))
;
7544 assert(!IsPointer &&((!IsPointer && "Unexpected base element with the pointer type."
) ? static_cast<void> (0) : __assert_fail ("!IsPointer && \"Unexpected base element with the pointer type.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7545, __PRETTY_FUNCTION__))
7545 "Unexpected base element with the pointer type.")((!IsPointer && "Unexpected base element with the pointer type."
) ? static_cast<void> (0) : __assert_fail ("!IsPointer && \"Unexpected base element with the pointer type.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7545, __PRETTY_FUNCTION__))
;
7546 // Mark the whole struct as the struct that requires allocation on the
7547 // device.
7548 PartialStruct.LowestElem = {0, LB};
7549 CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7550 I->getAssociatedExpression()->getType());
7551 Address HB = CGF.Builder.CreateConstGEP(
7552 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7553 CGF.VoidPtrTy),
7554 TypeSize.getQuantity() - 1);
7555 PartialStruct.HighestElem = {
7556 std::numeric_limits<decltype(
7557 PartialStruct.HighestElem.first)>::max(),
7558 HB};
7559 PartialStruct.Base = BP;
7560 // Emit data for non-overlapped data.
7561 OpenMPOffloadMappingFlags Flags =
7562 OMP_MAP_MEMBER_OF |
7563 getMapTypeBits(MapType, MapModifiers, IsImplicit,
7564 /*AddPtrFlag=*/false,
7565 /*AddIsTargetParamFlag=*/false);
7566 LB = BP;
7567 llvm::Value *Size = nullptr;
7568 // Do bitcopy of all non-overlapped structure elements.
7569 for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7570 Component : OverlappedElements) {
7571 Address ComponentLB = Address::invalid();
7572 for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7573 Component) {
7574 if (MC.getAssociatedDeclaration()) {
7575 ComponentLB =
7576 CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7577 .getAddress();
7578 Size = CGF.Builder.CreatePtrDiff(
7579 CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7580 CGF.EmitCastToVoidPtr(LB.getPointer()));
7581 break;
7582 }
7583 }
7584 BasePointers.push_back(BP.getPointer());
7585 Pointers.push_back(LB.getPointer());
7586 Sizes.push_back(Size);
7587 Types.push_back(Flags);
7588 LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7589 }
7590 BasePointers.push_back(BP.getPointer());
7591 Pointers.push_back(LB.getPointer());
7592 Size = CGF.Builder.CreatePtrDiff(
7593 CGF.EmitCastToVoidPtr(
7594 CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
7595 CGF.EmitCastToVoidPtr(LB.getPointer()));
7596 Sizes.push_back(Size);
7597 Types.push_back(Flags);
7598 break;
7599 }
7600 llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7601 if (!IsMemberPointer) {
7602 BasePointers.push_back(BP.getPointer());
7603 Pointers.push_back(LB.getPointer());
7604 Sizes.push_back(Size);
7605
7606 // We need to add a pointer flag for each map that comes from the
7607 // same expression except for the first one. We also need to signal
7608 // this map is the first one that relates with the current capture
7609 // (there is a set of entries for each capture).
7610 OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7611 MapType, MapModifiers, IsImplicit,
7612 !IsExpressionFirstInfo || IsLink, IsCaptureFirstInfo && !IsLink);
7613
7614 if (!IsExpressionFirstInfo) {
7615 // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7616 // then we reset the TO/FROM/ALWAYS/DELETE flags.
7617 if (IsPointer)
7618 Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7619 OMP_MAP_DELETE);
7620
7621 if (ShouldBeMemberOf) {
7622 // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7623 // should be later updated with the correct value of MEMBER_OF.
7624 Flags |= OMP_MAP_MEMBER_OF;
7625 // From now on, all subsequent PTR_AND_OBJ entries should not be
7626 // marked as MEMBER_OF.
7627 ShouldBeMemberOf = false;
7628 }
7629 }
7630
7631 Types.push_back(Flags);
7632 }
7633
7634 // If we have encountered a member expression so far, keep track of the
7635 // mapped member. If the parent is "*this", then the value declaration
7636 // is nullptr.
7637 if (EncounteredME) {
7638 const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
7639 unsigned FieldIndex = FD->getFieldIndex();
7640
7641 // Update info about the lowest and highest elements for this struct
7642 if (!PartialStruct.Base.isValid()) {
7643 PartialStruct.LowestElem = {FieldIndex, LB};
7644 PartialStruct.HighestElem = {FieldIndex, LB};
7645 PartialStruct.Base = BP;
7646 } else if (FieldIndex < PartialStruct.LowestElem.first) {
7647 PartialStruct.LowestElem = {FieldIndex, LB};
7648 } else if (FieldIndex > PartialStruct.HighestElem.first) {
7649 PartialStruct.HighestElem = {FieldIndex, LB};
7650 }
7651 }
7652
7653 // If we have a final array section, we are done with this expression.
7654 if (IsFinalArraySection)
7655 break;
7656
7657 // The pointer becomes the base for the next element.
7658 if (Next != CE)
7659 BP = LB;
7660
7661 IsExpressionFirstInfo = false;
7662 IsCaptureFirstInfo = false;
7663 }
7664 }
7665 }
7666
7667 /// Return the adjusted map modifiers if the declaration a capture refers to
7668 /// appears in a first-private clause. This is expected to be used only with
7669 /// directives that start with 'target'.
7670 MappableExprsHandler::OpenMPOffloadMappingFlags
7671 getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
7672 assert(Cap.capturesVariable() && "Expected capture by reference only!")((Cap.capturesVariable() && "Expected capture by reference only!"
) ? static_cast<void> (0) : __assert_fail ("Cap.capturesVariable() && \"Expected capture by reference only!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7672, __PRETTY_FUNCTION__))
;
7673
7674 // A first private variable captured by reference will use only the
7675 // 'private ptr' and 'map to' flag. Return the right flags if the captured
7676 // declaration is known as first-private in this handler.
7677 if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
7678 if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
7679 Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
7680 return MappableExprsHandler::OMP_MAP_ALWAYS |
7681 MappableExprsHandler::OMP_MAP_TO;
7682 if (Cap.getCapturedVar()->getType()->isAnyPointerType())
7683 return MappableExprsHandler::OMP_MAP_TO |
7684 MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
7685 return MappableExprsHandler::OMP_MAP_PRIVATE |
7686 MappableExprsHandler::OMP_MAP_TO;
7687 }
7688 return MappableExprsHandler::OMP_MAP_TO |
7689 MappableExprsHandler::OMP_MAP_FROM;
7690 }
7691
7692 static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
7693 // Member of is given by the 16 MSB of the flag, so rotate by 48 bits.
7694 return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
7695 << 48);
7696 }
7697
7698 static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
7699 OpenMPOffloadMappingFlags MemberOfFlag) {
7700 // If the entry is PTR_AND_OBJ but has not been marked with the special
7701 // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
7702 // marked as MEMBER_OF.
7703 if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
7704 ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
7705 return;
7706
7707 // Reset the placeholder value to prepare the flag for the assignment of the
7708 // proper MEMBER_OF value.
7709 Flags &= ~OMP_MAP_MEMBER_OF;
7710 Flags |= MemberOfFlag;
7711 }
7712
7713 void getPlainLayout(const CXXRecordDecl *RD,
7714 llvm::SmallVectorImpl<const FieldDecl *> &Layout,
7715 bool AsBase) const {
7716 const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
7717
7718 llvm::StructType *St =
7719 AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
7720
7721 unsigned NumElements = St->getNumElements();
7722 llvm::SmallVector<
7723 llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
7724 RecordLayout(NumElements);
7725
7726 // Fill bases.
7727 for (const auto &I : RD->bases()) {
7728 if (I.isVirtual())
7729 continue;
7730 const auto *Base = I.getType()->getAsCXXRecordDecl();
7731 // Ignore empty bases.
7732 if (Base->isEmpty() || CGF.getContext()
7733 .getASTRecordLayout(Base)
7734 .getNonVirtualSize()
7735 .isZero())
7736 continue;
7737
7738 unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
7739 RecordLayout[FieldIndex] = Base;
7740 }
7741 // Fill in virtual bases.
7742 for (const auto &I : RD->vbases()) {
7743 const auto *Base = I.getType()->getAsCXXRecordDecl();
7744 // Ignore empty bases.
7745 if (Base->isEmpty())
7746 continue;
7747 unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
7748 if (RecordLayout[FieldIndex])
7749 continue;
7750 RecordLayout[FieldIndex] = Base;
7751 }
7752 // Fill in all the fields.
7753 assert(!RD->isUnion() && "Unexpected union.")((!RD->isUnion() && "Unexpected union.") ? static_cast
<void> (0) : __assert_fail ("!RD->isUnion() && \"Unexpected union.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7753, __PRETTY_FUNCTION__))
;
7754 for (const auto *Field : RD->fields()) {
7755 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
7756 // will fill in later.)
7757 if (!Field->isBitField()) {
7758 unsigned FieldIndex = RL.getLLVMFieldNo(Field);
7759 RecordLayout[FieldIndex] = Field;
7760 }
7761 }
7762 for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
7763 &Data : RecordLayout) {
7764 if (Data.isNull())
7765 continue;
7766 if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
7767 getPlainLayout(Base, Layout, /*AsBase=*/true);
7768 else
7769 Layout.push_back(Data.get<const FieldDecl *>());
7770 }
7771 }
7772
7773public:
7774 MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
7775 : CurDir(Dir), CGF(CGF) {
7776 // Extract firstprivate clause information.
7777 for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
7778 for (const auto *D : C->varlists())
7779 FirstPrivateDecls.insert(
7780 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
7781 // Extract device pointer clause information.
7782 for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
7783 for (auto L : C->component_lists())
7784 DevPointersMap[L.first].push_back(L.second);
7785 }
7786
7787 /// Generate code for the combined entry if we have a partially mapped struct
7788 /// and take care of the mapping flags of the arguments corresponding to
7789 /// individual struct members.
7790 void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
7791 MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7792 MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
7793 const StructRangeInfoTy &PartialStruct) const {
7794 // Base is the base of the struct
7795 BasePointers.push_back(PartialStruct.Base.getPointer());
7796 // Pointer is the address of the lowest element
7797 llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
7798 Pointers.push_back(LB);
7799 // Size is (addr of {highest+1} element) - (addr of lowest element)
7800 llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
7801 llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
7802 llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
7803 llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
7804 llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
7805 llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.SizeTy,
7806 /*isSinged=*/false);
7807 Sizes.push_back(Size);
7808 // Map type is always TARGET_PARAM
7809 Types.push_back(OMP_MAP_TARGET_PARAM);
7810 // Remove TARGET_PARAM flag from the first element
7811 (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
7812
7813 // All other current entries will be MEMBER_OF the combined entry
7814 // (except for PTR_AND_OBJ entries which do not have a placeholder value
7815 // 0xFFFF in the MEMBER_OF field).
7816 OpenMPOffloadMappingFlags MemberOfFlag =
7817 getMemberOfFlag(BasePointers.size() - 1);
7818 for (auto &M : CurTypes)
7819 setCorrectMemberOfFlag(M, MemberOfFlag);
7820 }
7821
7822 /// Generate all the base pointers, section pointers, sizes and map
7823 /// types for the extracted mappable expressions. Also, for each item that
7824 /// relates with a device pointer, a pair of the relevant declaration and
7825 /// index where it occurs is appended to the device pointers info array.
7826 void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
7827 MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7828 MapFlagsArrayTy &Types) const {
7829 // We have to process the component lists that relate with the same
7830 // declaration in a single chunk so that we can generate the map flags
7831 // correctly. Therefore, we organize all lists in a map.
7832 llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
7833
7834 // Helper function to fill the information map for the different supported
7835 // clauses.
7836 auto &&InfoGen = [&Info](
7837 const ValueDecl *D,
7838 OMPClauseMappableExprCommon::MappableExprComponentListRef L,
7839 OpenMPMapClauseKind MapType,
7840 ArrayRef<OpenMPMapModifierKind> MapModifiers,
7841 bool ReturnDevicePointer, bool IsImplicit) {
7842 const ValueDecl *VD =
7843 D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
7844 Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
7845 IsImplicit);
7846 };
7847
7848 // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
7849 for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
7850 for (const auto &L : C->component_lists()) {
7851 InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
7852 /*ReturnDevicePointer=*/false, C->isImplicit());
7853 }
7854 for (const auto *C : this->CurDir.getClausesOfKind<OMPToClause>())
7855 for (const auto &L : C->component_lists()) {
7856 InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
7857 /*ReturnDevicePointer=*/false, C->isImplicit());
7858 }
7859 for (const auto *C : this->CurDir.getClausesOfKind<OMPFromClause>())
7860 for (const auto &L : C->component_lists()) {
7861 InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
7862 /*ReturnDevicePointer=*/false, C->isImplicit());
7863 }
7864
7865 // Look at the use_device_ptr clause information and mark the existing map
7866 // entries as such. If there is no map information for an entry in the
7867 // use_device_ptr list, we create one with map type 'alloc' and zero size
7868 // section. It is the user fault if that was not mapped before. If there is
7869 // no map information and the pointer is a struct member, then we defer the
7870 // emission of that entry until the whole struct has been processed.
7871 llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
7872 DeferredInfo;
7873
7874 // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
7875 for (const auto *C :
7876 this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) {
7877 for (const auto &L : C->component_lists()) {
7878 assert(!L.second.empty() && "Not expecting empty list of components!")((!L.second.empty() && "Not expecting empty list of components!"
) ? static_cast<void> (0) : __assert_fail ("!L.second.empty() && \"Not expecting empty list of components!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7878, __PRETTY_FUNCTION__))
;
7879 const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
7880 VD = cast<ValueDecl>(VD->getCanonicalDecl());
7881 const Expr *IE = L.second.back().getAssociatedExpression();
7882 // If the first component is a member expression, we have to look into
7883 // 'this', which maps to null in the map of map information. Otherwise
7884 // look directly for the information.
7885 auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
7886
7887 // We potentially have map information for this declaration already.
7888 // Look for the first set of components that refer to it.
7889 if (It != Info.end()) {
7890 auto CI = std::find_if(
7891 It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
7892 return MI.Components.back().getAssociatedDeclaration() == VD;
7893 });
7894 // If we found a map entry, signal that the pointer has to be returned
7895 // and move on to the next declaration.
7896 if (CI != It->second.end()) {
7897 CI->ReturnDevicePointer = true;
7898 continue;
7899 }
7900 }
7901
7902 // We didn't find any match in our map information - generate a zero
7903 // size array section - if the pointer is a struct member we defer this
7904 // action until the whole struct has been processed.
7905 // FIXME: MSVC 2013 seems to require this-> to find member CGF.
7906 if (isa<MemberExpr>(IE)) {
7907 // Insert the pointer into Info to be processed by
7908 // generateInfoForComponentList. Because it is a member pointer
7909 // without a pointee, no entry will be generated for it, therefore
7910 // we need to generate one after the whole struct has been processed.
7911 // Nonetheless, generateInfoForComponentList must be called to take
7912 // the pointer into account for the calculation of the range of the
7913 // partial struct.
7914 InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
7915 /*ReturnDevicePointer=*/false, C->isImplicit());
7916 DeferredInfo[nullptr].emplace_back(IE, VD);
7917 } else {
7918 llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
7919 this->CGF.EmitLValue(IE), IE->getExprLoc());
7920 BasePointers.emplace_back(Ptr, VD);
7921 Pointers.push_back(Ptr);
7922 Sizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy));
7923 Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
7924 }
7925 }
7926 }
7927
7928 for (const auto &M : Info) {
7929 // We need to know when we generate information for the first component
7930 // associated with a capture, because the mapping flags depend on it.
7931 bool IsFirstComponentList = true;
7932
7933 // Temporary versions of arrays
7934 MapBaseValuesArrayTy CurBasePointers;
7935 MapValuesArrayTy CurPointers;
7936 MapValuesArrayTy CurSizes;
7937 MapFlagsArrayTy CurTypes;
7938 StructRangeInfoTy PartialStruct;
7939
7940 for (const MapInfo &L : M.second) {
7941 assert(!L.Components.empty() &&((!L.Components.empty() && "Not expecting declaration with no component lists."
) ? static_cast<void> (0) : __assert_fail ("!L.Components.empty() && \"Not expecting declaration with no component lists.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7942, __PRETTY_FUNCTION__))
7942 "Not expecting declaration with no component lists.")((!L.Components.empty() && "Not expecting declaration with no component lists."
) ? static_cast<void> (0) : __assert_fail ("!L.Components.empty() && \"Not expecting declaration with no component lists.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7942, __PRETTY_FUNCTION__))
;
7943
7944 // Remember the current base pointer index.
7945 unsigned CurrentBasePointersIdx = CurBasePointers.size();
7946 // FIXME: MSVC 2013 seems to require this-> to find the member method.
7947 this->generateInfoForComponentList(
7948 L.MapType, L.MapModifiers, L.Components, CurBasePointers,
7949 CurPointers, CurSizes, CurTypes, PartialStruct,
7950 IsFirstComponentList, L.IsImplicit);
7951
7952 // If this entry relates with a device pointer, set the relevant
7953 // declaration and add the 'return pointer' flag.
7954 if (L.ReturnDevicePointer) {
7955 assert(CurBasePointers.size() > CurrentBasePointersIdx &&((CurBasePointers.size() > CurrentBasePointersIdx &&
"Unexpected number of mapped base pointers.") ? static_cast<
void> (0) : __assert_fail ("CurBasePointers.size() > CurrentBasePointersIdx && \"Unexpected number of mapped base pointers.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7956, __PRETTY_FUNCTION__))
7956 "Unexpected number of mapped base pointers.")((CurBasePointers.size() > CurrentBasePointersIdx &&
"Unexpected number of mapped base pointers.") ? static_cast<
void> (0) : __assert_fail ("CurBasePointers.size() > CurrentBasePointersIdx && \"Unexpected number of mapped base pointers.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7956, __PRETTY_FUNCTION__))
;
7957
7958 const ValueDecl *RelevantVD =
7959 L.Components.back().getAssociatedDeclaration();
7960 assert(RelevantVD &&((RelevantVD && "No relevant declaration related with device pointer??"
) ? static_cast<void> (0) : __assert_fail ("RelevantVD && \"No relevant declaration related with device pointer??\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7961, __PRETTY_FUNCTION__))
7961 "No relevant declaration related with device pointer??")((RelevantVD && "No relevant declaration related with device pointer??"
) ? static_cast<void> (0) : __assert_fail ("RelevantVD && \"No relevant declaration related with device pointer??\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 7961, __PRETTY_FUNCTION__))
;
7962
7963 CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
7964 CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
7965 }
7966 IsFirstComponentList = false;
7967 }
7968
7969 // Append any pending zero-length pointers which are struct members and
7970 // used with use_device_ptr.
7971 auto CI = DeferredInfo.find(M.first);
7972 if (CI != DeferredInfo.end()) {
7973 for (const DeferredDevicePtrEntryTy &L : CI->second) {
7974 llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer();
7975 llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
7976 this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
7977 CurBasePointers.emplace_back(BasePtr, L.VD);
7978 CurPointers.push_back(Ptr);
7979 CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy));
7980 // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
7981 // value MEMBER_OF=FFFF so that the entry is later updated with the
7982 // correct value of MEMBER_OF.
7983 CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
7984 OMP_MAP_MEMBER_OF);
7985 }
7986 }
7987
7988 // If there is an entry in PartialStruct it means we have a struct with
7989 // individual members mapped. Emit an extra combined entry.
7990 if (PartialStruct.Base.isValid())
7991 emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
7992 PartialStruct);
7993
7994 // We need to append the results of this capture to what we already have.
7995 BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
7996 Pointers.append(CurPointers.begin(), CurPointers.end());
7997 Sizes.append(CurSizes.begin(), CurSizes.end());
7998 Types.append(CurTypes.begin(), CurTypes.end());
7999 }
8000 }
8001
8002 /// Emit capture info for lambdas for variables captured by reference.
8003 void generateInfoForLambdaCaptures(
8004 const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
8005 MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
8006 MapFlagsArrayTy &Types,
8007 llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8008 const auto *RD = VD->getType()
8009 .getCanonicalType()
8010 .getNonReferenceType()
8011 ->getAsCXXRecordDecl();
8012 if (!RD || !RD->isLambda())
8013 return;
8014 Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8015 LValue VDLVal = CGF.MakeAddrLValue(
8016 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8017 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8018 FieldDecl *ThisCapture = nullptr;
8019 RD->getCaptureFields(Captures, ThisCapture);
8020 if (ThisCapture) {
8021 LValue ThisLVal =
8022 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8023 LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8024 LambdaPointers.try_emplace(ThisLVal.getPointer(), VDLVal.getPointer());
8025 BasePointers.push_back(ThisLVal.getPointer());
8026 Pointers.push_back(ThisLValVal.getPointer());
8027 Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
8028 Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8029 OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8030 }
8031 for (const LambdaCapture &LC : RD->captures()) {
8032 if (LC.getCaptureKind() != LCK_ByRef)
8033 continue;
8034 const VarDecl *VD = LC.getCapturedVar();
8035 auto It = Captures.find(VD);
8036 assert(It != Captures.end() && "Found lambda capture without field.")((It != Captures.end() && "Found lambda capture without field."
) ? static_cast<void> (0) : __assert_fail ("It != Captures.end() && \"Found lambda capture without field.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8036, __PRETTY_FUNCTION__))
;
8037 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8038 LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8039 LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
8040 BasePointers.push_back(VarLVal.getPointer());
8041 Pointers.push_back(VarLValVal.getPointer());
8042 Sizes.push_back(CGF.getTypeSize(
8043 VD->getType().getCanonicalType().getNonReferenceType()));
8044 Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8045 OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8046 }
8047 }
8048
8049 /// Set correct indices for lambdas captures.
8050 void adjustMemberOfForLambdaCaptures(
8051 const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8052 MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8053 MapFlagsArrayTy &Types) const {
8054 for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8055 // Set correct member_of idx for all implicit lambda captures.
8056 if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8057 OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8058 continue;
8059 llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8060 assert(BasePtr && "Unable to find base lambda address.")((BasePtr && "Unable to find base lambda address.") ?
static_cast<void> (0) : __assert_fail ("BasePtr && \"Unable to find base lambda address.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8060, __PRETTY_FUNCTION__))
;
8061 int TgtIdx = -1;
8062 for (unsigned J = I; J > 0; --J) {
8063 unsigned Idx = J - 1;
8064 if (Pointers[Idx] != BasePtr)
8065 continue;
8066 TgtIdx = Idx;
8067 break;
8068 }
8069 assert(TgtIdx != -1 && "Unable to find parent lambda.")((TgtIdx != -1 && "Unable to find parent lambda.") ? static_cast
<void> (0) : __assert_fail ("TgtIdx != -1 && \"Unable to find parent lambda.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8069, __PRETTY_FUNCTION__))
;
8070 // All other current entries will be MEMBER_OF the combined entry
8071 // (except for PTR_AND_OBJ entries which do not have a placeholder value
8072 // 0xFFFF in the MEMBER_OF field).
8073 OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8074 setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8075 }
8076 }
8077
8078 /// Generate the base pointers, section pointers, sizes and map types
8079 /// associated to a given capture.
8080 void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8081 llvm::Value *Arg,
8082 MapBaseValuesArrayTy &BasePointers,
8083 MapValuesArrayTy &Pointers,
8084 MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
8085 StructRangeInfoTy &PartialStruct) const {
8086 assert(!Cap->capturesVariableArrayType() &&((!Cap->capturesVariableArrayType() && "Not expecting to generate map info for a variable array type!"
) ? static_cast<void> (0) : __assert_fail ("!Cap->capturesVariableArrayType() && \"Not expecting to generate map info for a variable array type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8087, __PRETTY_FUNCTION__))
8087 "Not expecting to generate map info for a variable array type!")((!Cap->capturesVariableArrayType() && "Not expecting to generate map info for a variable array type!"
) ? static_cast<void> (0) : __assert_fail ("!Cap->capturesVariableArrayType() && \"Not expecting to generate map info for a variable array type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8087, __PRETTY_FUNCTION__))
;
8088
8089 // We need to know when we generating information for the first component
8090 const ValueDecl *VD = Cap->capturesThis()
8091 ? nullptr
8092 : Cap->getCapturedVar()->getCanonicalDecl();
8093
8094 // If this declaration appears in a is_device_ptr clause we just have to
8095 // pass the pointer by value. If it is a reference to a declaration, we just
8096 // pass its value.
8097 if (DevPointersMap.count(VD)) {
8098 BasePointers.emplace_back(Arg, VD);
8099 Pointers.push_back(Arg);
8100 Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
8101 Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
8102 return;
8103 }
8104
8105 using MapData =
8106 std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8107 OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
8108 SmallVector<MapData, 4> DeclComponentLists;
8109 // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
8110 for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
8111 for (const auto &L : C->decl_component_lists(VD)) {
8112 assert(L.first == VD &&((L.first == VD && "We got information for the wrong declaration??"
) ? static_cast<void> (0) : __assert_fail ("L.first == VD && \"We got information for the wrong declaration??\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8113, __PRETTY_FUNCTION__))
8113 "We got information for the wrong declaration??")((L.first == VD && "We got information for the wrong declaration??"
) ? static_cast<void> (0) : __assert_fail ("L.first == VD && \"We got information for the wrong declaration??\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8113, __PRETTY_FUNCTION__))
;
8114 assert(!L.second.empty() &&((!L.second.empty() && "Not expecting declaration with no component lists."
) ? static_cast<void> (0) : __assert_fail ("!L.second.empty() && \"Not expecting declaration with no component lists.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8115, __PRETTY_FUNCTION__))
8115 "Not expecting declaration with no component lists.")((!L.second.empty() && "Not expecting declaration with no component lists."
) ? static_cast<void> (0) : __assert_fail ("!L.second.empty() && \"Not expecting declaration with no component lists.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8115, __PRETTY_FUNCTION__))
;
8116 DeclComponentLists.emplace_back(L.second, C->getMapType(),
8117 C->getMapTypeModifiers(),
8118 C->isImplicit());
8119 }
8120 }
8121
8122 // Find overlapping elements (including the offset from the base element).
8123 llvm::SmallDenseMap<
8124 const MapData *,
8125 llvm::SmallVector<
8126 OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8127 4>
8128 OverlappedData;
8129 size_t Count = 0;
8130 for (const MapData &L : DeclComponentLists) {
8131 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8132 OpenMPMapClauseKind MapType;
8133 ArrayRef<OpenMPMapModifierKind> MapModifiers;
8134 bool IsImplicit;
8135 std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8136 ++Count;
8137 for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8138 OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8139 std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
8140 auto CI = Components.rbegin();
8141 auto CE = Components.rend();
8142 auto SI = Components1.rbegin();
8143 auto SE = Components1.rend();
8144 for (; CI != CE && SI != SE; ++CI, ++SI) {
8145 if (CI->getAssociatedExpression()->getStmtClass() !=
8146 SI->getAssociatedExpression()->getStmtClass())
8147 break;
8148 // Are we dealing with different variables/fields?
8149 if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8150 break;
8151 }
8152 // Found overlapping if, at least for one component, reached the head of
8153 // the components list.
8154 if (CI == CE || SI == SE) {
8155 assert((CI != CE || SI != SE) &&(((CI != CE || SI != SE) && "Unexpected full match of the mapping components."
) ? static_cast<void> (0) : __assert_fail ("(CI != CE || SI != SE) && \"Unexpected full match of the mapping components.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8156, __PRETTY_FUNCTION__))
8156 "Unexpected full match of the mapping components.")(((CI != CE || SI != SE) && "Unexpected full match of the mapping components."
) ? static_cast<void> (0) : __assert_fail ("(CI != CE || SI != SE) && \"Unexpected full match of the mapping components.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8156, __PRETTY_FUNCTION__))
;
8157 const MapData &BaseData = CI == CE ? L : L1;
8158 OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8159 SI == SE ? Components : Components1;
8160 auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8161 OverlappedElements.getSecond().push_back(SubData);
8162 }
8163 }
8164 }
8165 // Sort the overlapped elements for each item.
8166 llvm::SmallVector<const FieldDecl *, 4> Layout;
8167 if (!OverlappedData.empty()) {
8168 if (const auto *CRD =
8169 VD->getType().getCanonicalType()->getAsCXXRecordDecl())
8170 getPlainLayout(CRD, Layout, /*AsBase=*/false);
8171 else {
8172 const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
8173 Layout.append(RD->field_begin(), RD->field_end());
8174 }
8175 }
8176 for (auto &Pair : OverlappedData) {
8177 llvm::sort(
8178 Pair.getSecond(),
8179 [&Layout](
8180 OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8181 OMPClauseMappableExprCommon::MappableExprComponentListRef
8182 Second) {
8183 auto CI = First.rbegin();
8184 auto CE = First.rend();
8185 auto SI = Second.rbegin();
8186 auto SE = Second.rend();
8187 for (; CI != CE && SI != SE; ++CI, ++SI) {
8188 if (CI->getAssociatedExpression()->getStmtClass() !=
8189 SI->getAssociatedExpression()->getStmtClass())
8190 break;
8191 // Are we dealing with different variables/fields?
8192 if (CI->getAssociatedDeclaration() !=
8193 SI->getAssociatedDeclaration())
8194 break;
8195 }
8196
8197 // Lists contain the same elements.
8198 if (CI == CE && SI == SE)
8199 return false;
8200
8201 // List with less elements is less than list with more elements.
8202 if (CI == CE || SI == SE)
8203 return CI == CE;
8204
8205 const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8206 const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8207 if (FD1->getParent() == FD2->getParent())
8208 return FD1->getFieldIndex() < FD2->getFieldIndex();
8209 const auto It =
8210 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8211 return FD == FD1 || FD == FD2;
8212 });
8213 return *It == FD1;
8214 });
8215 }
8216
8217 // Associated with a capture, because the mapping flags depend on it.
8218 // Go through all of the elements with the overlapped elements.
8219 for (const auto &Pair : OverlappedData) {
8220 const MapData &L = *Pair.getFirst();
8221 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8222 OpenMPMapClauseKind MapType;
8223 ArrayRef<OpenMPMapModifierKind> MapModifiers;
8224 bool IsImplicit;
8225 std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8226 ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8227 OverlappedComponents = Pair.getSecond();
8228 bool IsFirstComponentList = true;
8229 generateInfoForComponentList(MapType, MapModifiers, Components,
8230 BasePointers, Pointers, Sizes, Types,
8231 PartialStruct, IsFirstComponentList,
8232 IsImplicit, OverlappedComponents);
8233 }
8234 // Go through other elements without overlapped elements.
8235 bool IsFirstComponentList = OverlappedData.empty();
8236 for (const MapData &L : DeclComponentLists) {
8237 OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8238 OpenMPMapClauseKind MapType;
8239 ArrayRef<OpenMPMapModifierKind> MapModifiers;
8240 bool IsImplicit;
8241 std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8242 auto It = OverlappedData.find(&L);
8243 if (It == OverlappedData.end())
8244 generateInfoForComponentList(MapType, MapModifiers, Components,
8245 BasePointers, Pointers, Sizes, Types,
8246 PartialStruct, IsFirstComponentList,
8247 IsImplicit);
8248 IsFirstComponentList = false;
8249 }
8250 }
8251
8252 /// Generate the base pointers, section pointers, sizes and map types
8253 /// associated with the declare target link variables.
8254 void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
8255 MapValuesArrayTy &Pointers,
8256 MapValuesArrayTy &Sizes,
8257 MapFlagsArrayTy &Types) const {
8258 // Map other list items in the map clause which are not captured variables
8259 // but "declare target link" global variables.
8260 for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
8261 for (const auto &L : C->component_lists()) {
8262 if (!L.first)
8263 continue;
8264 const auto *VD = dyn_cast<VarDecl>(L.first);
8265 if (!VD)
8266 continue;
8267 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
8268 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
8269 if (!Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
8270 continue;
8271 StructRangeInfoTy PartialStruct;
8272 generateInfoForComponentList(
8273 C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
8274 Pointers, Sizes, Types, PartialStruct,
8275 /*IsFirstComponentList=*/true, C->isImplicit());
8276 assert(!PartialStruct.Base.isValid() &&((!PartialStruct.Base.isValid() && "No partial structs for declare target link expected."
) ? static_cast<void> (0) : __assert_fail ("!PartialStruct.Base.isValid() && \"No partial structs for declare target link expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8277, __PRETTY_FUNCTION__))
8277 "No partial structs for declare target link expected.")((!PartialStruct.Base.isValid() && "No partial structs for declare target link expected."
) ? static_cast<void> (0) : __assert_fail ("!PartialStruct.Base.isValid() && \"No partial structs for declare target link expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8277, __PRETTY_FUNCTION__))
;
8278 }
8279 }
8280 }
8281
8282 /// Generate the default map information for a given capture \a CI,
8283 /// record field declaration \a RI and captured value \a CV.
8284 void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8285 const FieldDecl &RI, llvm::Value *CV,
8286 MapBaseValuesArrayTy &CurBasePointers,
8287 MapValuesArrayTy &CurPointers,
8288 MapValuesArrayTy &CurSizes,
8289 MapFlagsArrayTy &CurMapTypes) const {
8290 // Do the default mapping.
8291 if (CI.capturesThis()) {
8292 CurBasePointers.push_back(CV);
8293 CurPointers.push_back(CV);
8294 const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8295 CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType()));
8296 // Default map type.
8297 CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
8298 } else if (CI.capturesVariableByCopy()) {
8299 CurBasePointers.push_back(CV);
8300 CurPointers.push_back(CV);
8301 if (!RI.getType()->isAnyPointerType()) {
8302 // We have to signal to the runtime captures passed by value that are
8303 // not pointers.
8304 CurMapTypes.push_back(OMP_MAP_LITERAL);
8305 CurSizes.push_back(CGF.getTypeSize(RI.getType()));
8306 } else {
8307 // Pointers are implicitly mapped with a zero size and no flags
8308 // (other than first map that is added for all implicit maps).
8309 CurMapTypes.push_back(OMP_MAP_NONE);
8310 CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy));
8311 }
8312 } else {
8313 assert(CI.capturesVariable() && "Expected captured reference.")((CI.capturesVariable() && "Expected captured reference."
) ? static_cast<void> (0) : __assert_fail ("CI.capturesVariable() && \"Expected captured reference.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8313, __PRETTY_FUNCTION__))
;
8314 const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8315 QualType ElementType = PtrTy->getPointeeType();
8316 CurSizes.push_back(CGF.getTypeSize(ElementType));
8317 // The default map type for a scalar/complex type is 'to' because by
8318 // default the value doesn't have to be retrieved. For an aggregate
8319 // type, the default is 'tofrom'.
8320 CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
8321 const VarDecl *VD = CI.getCapturedVar();
8322 if (FirstPrivateDecls.count(VD) &&
8323 VD->getType().isConstant(CGF.getContext())) {
8324 llvm::Constant *Addr =
8325 CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
8326 // Copy the value of the original variable to the new global copy.
8327 CGF.Builder.CreateMemCpy(
8328 CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(),
8329 Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
8330 CurSizes.back(), /*isVolatile=*/false);
8331 // Use new global variable as the base pointers.
8332 CurBasePointers.push_back(Addr);
8333 CurPointers.push_back(Addr);
8334 } else {
8335 CurBasePointers.push_back(CV);
8336 if (FirstPrivateDecls.count(VD) && ElementType->isAnyPointerType()) {
8337 Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
8338 CV, ElementType, CGF.getContext().getDeclAlign(VD),
8339 AlignmentSource::Decl));
8340 CurPointers.push_back(PtrAddr.getPointer());
8341 } else {
8342 CurPointers.push_back(CV);
8343 }
8344 }
8345 }
8346 // Every default map produces a single argument which is a target parameter.
8347 CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
8348
8349 // Add flag stating this is an implicit map.
8350 CurMapTypes.back() |= OMP_MAP_IMPLICIT;
8351 }
8352};
8353
8354enum OpenMPOffloadingReservedDeviceIDs {
8355 /// Device ID if the device was not defined, runtime should get it
8356 /// from environment variables in the spec.
8357 OMP_DEVICEID_UNDEF = -1,
8358};
8359} // anonymous namespace
8360
8361/// Emit the arrays used to pass the captures and map information to the
8362/// offloading runtime library. If there is no map or capture information,
8363/// return nullptr by reference.
8364static void
8365emitOffloadingArrays(CodeGenFunction &CGF,
8366 MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
8367 MappableExprsHandler::MapValuesArrayTy &Pointers,
8368 MappableExprsHandler::MapValuesArrayTy &Sizes,
8369 MappableExprsHandler::MapFlagsArrayTy &MapTypes,
8370 CGOpenMPRuntime::TargetDataInfo &Info) {
8371 CodeGenModule &CGM = CGF.CGM;
8372 ASTContext &Ctx = CGF.getContext();
8373
8374 // Reset the array information.
8375 Info.clearArrayInfo();
8376 Info.NumberOfPtrs = BasePointers.size();
8377
8378 if (Info.NumberOfPtrs) {
8379 // Detect if we have any capture size requiring runtime evaluation of the
8380 // size so that a constant array could be eventually used.
8381 bool hasRuntimeEvaluationCaptureSize = false;
8382 for (llvm::Value *S : Sizes)
8383 if (!isa<llvm::Constant>(S)) {
8384 hasRuntimeEvaluationCaptureSize = true;
8385 break;
8386 }
8387
8388 llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
8389 QualType PointerArrayType =
8390 Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
8391 /*IndexTypeQuals=*/0);
8392
8393 Info.BasePointersArray =
8394 CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
8395 Info.PointersArray =
8396 CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
8397
8398 // If we don't have any VLA types or other types that require runtime
8399 // evaluation, we can use a constant array for the map sizes, otherwise we
8400 // need to fill up the arrays as we do for the pointers.
8401 if (hasRuntimeEvaluationCaptureSize) {
8402 QualType SizeArrayType = Ctx.getConstantArrayType(
8403 Ctx.getSizeType(), PointerNumAP, ArrayType::Normal,
8404 /*IndexTypeQuals=*/0);
8405 Info.SizesArray =
8406 CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
8407 } else {
8408 // We expect all the sizes to be constant, so we collect them to create
8409 // a constant array.
8410 SmallVector<llvm::Constant *, 16> ConstSizes;
8411 for (llvm::Value *S : Sizes)
8412 ConstSizes.push_back(cast<llvm::Constant>(S));
8413
8414 auto *SizesArrayInit = llvm::ConstantArray::get(
8415 llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes);
8416 std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
8417 auto *SizesArrayGbl = new llvm::GlobalVariable(
8418 CGM.getModule(), SizesArrayInit->getType(),
8419 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8420 SizesArrayInit, Name);
8421 SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8422 Info.SizesArray = SizesArrayGbl;
8423 }
8424
8425 // The map types are always constant so we don't need to generate code to
8426 // fill arrays. Instead, we create an array constant.
8427 SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
8428 llvm::copy(MapTypes, Mapping.begin());
8429 llvm::Constant *MapTypesArrayInit =
8430 llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
8431 std::string MaptypesName =
8432 CGM.getOpenMPRuntime().getName({"offload_maptypes"});
8433 auto *MapTypesArrayGbl = new llvm::GlobalVariable(
8434 CGM.getModule(), MapTypesArrayInit->getType(),
8435 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8436 MapTypesArrayInit, MaptypesName);
8437 MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8438 Info.MapTypesArray = MapTypesArrayGbl;
8439
8440 for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
8441 llvm::Value *BPVal = *BasePointers[I];
8442 llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
8443 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8444 Info.BasePointersArray, 0, I);
8445 BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8446 BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
8447 Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8448 CGF.Builder.CreateStore(BPVal, BPAddr);
8449
8450 if (Info.requiresDevicePointerInfo())
8451 if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
8452 Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
8453
8454 llvm::Value *PVal = Pointers[I];
8455 llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
8456 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8457 Info.PointersArray, 0, I);
8458 P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8459 P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
8460 Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8461 CGF.Builder.CreateStore(PVal, PAddr);
8462
8463 if (hasRuntimeEvaluationCaptureSize) {
8464 llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
8465 llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs),
8466 Info.SizesArray,
8467 /*Idx0=*/0,
8468 /*Idx1=*/I);
8469 Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType()));
8470 CGF.Builder.CreateStore(
8471 CGF.Builder.CreateIntCast(Sizes[I], CGM.SizeTy, /*isSigned=*/true),
8472 SAddr);
8473 }
8474 }
8475 }
8476}
8477/// Emit the arguments to be passed to the runtime library based on the
8478/// arrays of pointers, sizes and map types.
8479static void emitOffloadingArraysArgument(
8480 CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
8481 llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
8482 llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
8483 CodeGenModule &CGM = CGF.CGM;
8484 if (Info.NumberOfPtrs) {
8485 BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8486 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8487 Info.BasePointersArray,
8488 /*Idx0=*/0, /*Idx1=*/0);
8489 PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8490 llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8491 Info.PointersArray,
8492 /*Idx0=*/0,
8493 /*Idx1=*/0);
8494 SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8495 llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), Info.SizesArray,
8496 /*Idx0=*/0, /*Idx1=*/0);
8497 MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8498 llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8499 Info.MapTypesArray,
8500 /*Idx0=*/0,
8501 /*Idx1=*/0);
8502 } else {
8503 BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8504 PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8505 SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo());
8506 MapTypesArrayArg =
8507 llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8508 }
8509}
8510
8511/// Check for inner distribute directive.
8512static const OMPExecutableDirective *
8513getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
8514 const auto *CS = D.getInnermostCapturedStmt();
8515 const auto *Body =
8516 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
8517 const Stmt *ChildStmt =
8518 CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8519
8520 if (const auto *NestedDir =
8521 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8522 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
8523 switch (D.getDirectiveKind()) {
8524 case OMPD_target:
8525 if (isOpenMPDistributeDirective(DKind))
8526 return NestedDir;
8527 if (DKind == OMPD_teams) {
8528 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
8529 /*IgnoreCaptured=*/true);
8530 if (!Body)
8531 return nullptr;
8532 ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8533 if (const auto *NND =
8534 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8535 DKind = NND->getDirectiveKind();
8536 if (isOpenMPDistributeDirective(DKind))
8537 return NND;
8538 }
8539 }
8540 return nullptr;
8541 case OMPD_target_teams:
8542 if (isOpenMPDistributeDirective(DKind))
8543 return NestedDir;
8544 return nullptr;
8545 case OMPD_target_parallel:
8546 case OMPD_target_simd:
8547 case OMPD_target_parallel_for:
8548 case OMPD_target_parallel_for_simd:
8549 return nullptr;
8550 case OMPD_target_teams_distribute:
8551 case OMPD_target_teams_distribute_simd:
8552 case OMPD_target_teams_distribute_parallel_for:
8553 case OMPD_target_teams_distribute_parallel_for_simd:
8554 case OMPD_parallel:
8555 case OMPD_for:
8556 case OMPD_parallel_for:
8557 case OMPD_parallel_sections:
8558 case OMPD_for_simd:
8559 case OMPD_parallel_for_simd:
8560 case OMPD_cancel:
8561 case OMPD_cancellation_point:
8562 case OMPD_ordered:
8563 case OMPD_threadprivate:
8564 case OMPD_allocate:
8565 case OMPD_task:
8566 case OMPD_simd:
8567 case OMPD_sections:
8568 case OMPD_section:
8569 case OMPD_single:
8570 case OMPD_master:
8571 case OMPD_critical:
8572 case OMPD_taskyield:
8573 case OMPD_barrier:
8574 case OMPD_taskwait:
8575 case OMPD_taskgroup:
8576 case OMPD_atomic:
8577 case OMPD_flush:
8578 case OMPD_teams:
8579 case OMPD_target_data:
8580 case OMPD_target_exit_data:
8581 case OMPD_target_enter_data:
8582 case OMPD_distribute:
8583 case OMPD_distribute_simd:
8584 case OMPD_distribute_parallel_for:
8585 case OMPD_distribute_parallel_for_simd:
8586 case OMPD_teams_distribute:
8587 case OMPD_teams_distribute_simd:
8588 case OMPD_teams_distribute_parallel_for:
8589 case OMPD_teams_distribute_parallel_for_simd:
8590 case OMPD_target_update:
8591 case OMPD_declare_simd:
8592 case OMPD_declare_target:
8593 case OMPD_end_declare_target:
8594 case OMPD_declare_reduction:
8595 case OMPD_declare_mapper:
8596 case OMPD_taskloop:
8597 case OMPD_taskloop_simd:
8598 case OMPD_requires:
8599 case OMPD_unknown:
8600 llvm_unreachable("Unexpected directive.")::llvm::llvm_unreachable_internal("Unexpected directive.", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8600)
;
8601 }
8602 }
8603
8604 return nullptr;
8605}
8606
8607void CGOpenMPRuntime::emitTargetNumIterationsCall(
8608 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *Device,
8609 const llvm::function_ref<llvm::Value *(
8610 CodeGenFunction &CGF, const OMPLoopDirective &D)> &SizeEmitter) {
8611 OpenMPDirectiveKind Kind = D.getDirectiveKind();
8612 const OMPExecutableDirective *TD = &D;
8613 // Get nested teams distribute kind directive, if any.
8614 if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
8615 TD = getNestedDistributeDirective(CGM.getContext(), D);
8616 if (!TD)
8617 return;
8618 const auto *LD = cast<OMPLoopDirective>(TD);
8619 auto &&CodeGen = [LD, &Device, &SizeEmitter, this](CodeGenFunction &CGF,
8620 PrePostActionTy &) {
8621 llvm::Value *NumIterations = SizeEmitter(CGF, *LD);
8622
8623 // Emit device ID if any.
8624 llvm::Value *DeviceID;
8625 if (Device)
8626 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8627 CGF.Int64Ty, /*isSigned=*/true);
8628 else
8629 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8630
8631 llvm::Value *Args[] = {DeviceID, NumIterations};
8632 CGF.EmitRuntimeCall(
8633 createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
8634 };
8635 emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
8636}
8637
8638void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
8639 const OMPExecutableDirective &D,
8640 llvm::Function *OutlinedFn,
8641 llvm::Value *OutlinedFnID,
8642 const Expr *IfCond, const Expr *Device) {
8643 if (!CGF.HaveInsertPoint())
8644 return;
8645
8646 assert(OutlinedFn && "Invalid outlined function!")((OutlinedFn && "Invalid outlined function!") ? static_cast
<void> (0) : __assert_fail ("OutlinedFn && \"Invalid outlined function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8646, __PRETTY_FUNCTION__))
;
8647
8648 const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
8649 llvm::SmallVector<llvm::Value *, 16> CapturedVars;
8650 const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
8651 auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
8652 PrePostActionTy &) {
8653 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8654 };
8655 emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
8656
8657 CodeGenFunction::OMPTargetDataInfo InputInfo;
8658 llvm::Value *MapTypesArray = nullptr;
8659 // Fill up the pointer arrays and transfer execution to the device.
8660 auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
8661 &MapTypesArray, &CS, RequiresOuterTask,
8662 &CapturedVars](CodeGenFunction &CGF, PrePostActionTy &) {
8663 // On top of the arrays that were filled up, the target offloading call
8664 // takes as arguments the device id as well as the host pointer. The host
8665 // pointer is used by the runtime library to identify the current target
8666 // region, so it only has to be unique and not necessarily point to
8667 // anything. It could be the pointer to the outlined function that
8668 // implements the target region, but we aren't using that so that the
8669 // compiler doesn't need to keep that, and could therefore inline the host
8670 // function if proven worthwhile during optimization.
8671
8672 // From this point on, we need to have an ID of the target region defined.
8673 assert(OutlinedFnID && "Invalid outlined function ID!")((OutlinedFnID && "Invalid outlined function ID!") ? static_cast
<void> (0) : __assert_fail ("OutlinedFnID && \"Invalid outlined function ID!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8673, __PRETTY_FUNCTION__))
;
8674
8675 // Emit device ID if any.
8676 llvm::Value *DeviceID;
8677 if (Device) {
8678 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
8679 CGF.Int64Ty, /*isSigned=*/true);
8680 } else {
8681 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
8682 }
8683
8684 // Emit the number of elements in the offloading arrays.
8685 llvm::Value *PointerNum =
8686 CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
8687
8688 // Return value of the runtime offloading call.
8689 llvm::Value *Return;
8690
8691 llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
8692 llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
8693
8694 bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
8695 // The target region is an outlined function launched by the runtime
8696 // via calls __tgt_target() or __tgt_target_teams().
8697 //
8698 // __tgt_target() launches a target region with one team and one thread,
8699 // executing a serial region. This master thread may in turn launch
8700 // more threads within its team upon encountering a parallel region,
8701 // however, no additional teams can be launched on the device.
8702 //
8703 // __tgt_target_teams() launches a target region with one or more teams,
8704 // each with one or more threads. This call is required for target
8705 // constructs such as:
8706 // 'target teams'
8707 // 'target' / 'teams'
8708 // 'target teams distribute parallel for'
8709 // 'target parallel'
8710 // and so on.
8711 //
8712 // Note that on the host and CPU targets, the runtime implementation of
8713 // these calls simply call the outlined function without forking threads.
8714 // The outlined functions themselves have runtime calls to
8715 // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
8716 // the compiler in emitTeamsCall() and emitParallelCall().
8717 //
8718 // In contrast, on the NVPTX target, the implementation of
8719 // __tgt_target_teams() launches a GPU kernel with the requested number
8720 // of teams and threads so no additional calls to the runtime are required.
8721 if (NumTeams) {
8722 // If we have NumTeams defined this means that we have an enclosed teams
8723 // region. Therefore we also expect to have NumThreads defined. These two
8724 // values should be defined in the presence of a teams directive,
8725 // regardless of having any clauses associated. If the user is using teams
8726 // but no clauses, these two values will be the default that should be
8727 // passed to the runtime library - a 32-bit integer with the value zero.
8728 assert(NumThreads && "Thread limit expression should be available along "((NumThreads && "Thread limit expression should be available along "
"with number of teams.") ? static_cast<void> (0) : __assert_fail
("NumThreads && \"Thread limit expression should be available along \" \"with number of teams.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8729, __PRETTY_FUNCTION__))
8729 "with number of teams.")((NumThreads && "Thread limit expression should be available along "
"with number of teams.") ? static_cast<void> (0) : __assert_fail
("NumThreads && \"Thread limit expression should be available along \" \"with number of teams.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8729, __PRETTY_FUNCTION__))
;
8730 llvm::Value *OffloadingArgs[] = {DeviceID,
8731 OutlinedFnID,
8732 PointerNum,
8733 InputInfo.BasePointersArray.getPointer(),
8734 InputInfo.PointersArray.getPointer(),
8735 InputInfo.SizesArray.getPointer(),
8736 MapTypesArray,
8737 NumTeams,
8738 NumThreads};
8739 Return = CGF.EmitRuntimeCall(
8740 createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
8741 : OMPRTL__tgt_target_teams),
8742 OffloadingArgs);
8743 } else {
8744 llvm::Value *OffloadingArgs[] = {DeviceID,
8745 OutlinedFnID,
8746 PointerNum,
8747 InputInfo.BasePointersArray.getPointer(),
8748 InputInfo.PointersArray.getPointer(),
8749 InputInfo.SizesArray.getPointer(),
8750 MapTypesArray};
8751 Return = CGF.EmitRuntimeCall(
8752 createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
8753 : OMPRTL__tgt_target),
8754 OffloadingArgs);
8755 }
8756
8757 // Check the error code and execute the host version if required.
8758 llvm::BasicBlock *OffloadFailedBlock =
8759 CGF.createBasicBlock("omp_offload.failed");
8760 llvm::BasicBlock *OffloadContBlock =
8761 CGF.createBasicBlock("omp_offload.cont");
8762 llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
8763 CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
8764
8765 CGF.EmitBlock(OffloadFailedBlock);
8766 if (RequiresOuterTask) {
8767 CapturedVars.clear();
8768 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8769 }
8770 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
8771 CGF.EmitBranch(OffloadContBlock);
8772
8773 CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
8774 };
8775
8776 // Notify that the host version must be executed.
8777 auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
8778 RequiresOuterTask](CodeGenFunction &CGF,
8779 PrePostActionTy &) {
8780 if (RequiresOuterTask) {
8781 CapturedVars.clear();
8782 CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
8783 }
8784 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
8785 };
8786
8787 auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
8788 &CapturedVars, RequiresOuterTask,
8789 &CS](CodeGenFunction &CGF, PrePostActionTy &) {
8790 // Fill up the arrays with all the captured variables.
8791 MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
8792 MappableExprsHandler::MapValuesArrayTy Pointers;
8793 MappableExprsHandler::MapValuesArrayTy Sizes;
8794 MappableExprsHandler::MapFlagsArrayTy MapTypes;
8795
8796 // Get mappable expression information.
8797 MappableExprsHandler MEHandler(D, CGF);
8798 llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
8799
8800 auto RI = CS.getCapturedRecordDecl()->field_begin();
8801 auto CV = CapturedVars.begin();
8802 for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
8803 CE = CS.capture_end();
8804 CI != CE; ++CI, ++RI, ++CV) {
8805 MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
8806 MappableExprsHandler::MapValuesArrayTy CurPointers;
8807 MappableExprsHandler::MapValuesArrayTy CurSizes;
8808 MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
8809 MappableExprsHandler::StructRangeInfoTy PartialStruct;
8810
8811 // VLA sizes are passed to the outlined region by copy and do not have map
8812 // information associated.
8813 if (CI->capturesVariableArrayType()) {
8814 CurBasePointers.push_back(*CV);
8815 CurPointers.push_back(*CV);
8816 CurSizes.push_back(CGF.getTypeSize(RI->getType()));
8817 // Copy to the device as an argument. No need to retrieve it.
8818 CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
8819 MappableExprsHandler::OMP_MAP_TARGET_PARAM);
8820 } else {
8821 // If we have any information in the map clause, we use it, otherwise we
8822 // just do a default mapping.
8823 MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
8824 CurSizes, CurMapTypes, PartialStruct);
8825 if (CurBasePointers.empty())
8826 MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
8827 CurPointers, CurSizes, CurMapTypes);
8828 // Generate correct mapping for variables captured by reference in
8829 // lambdas.
8830 if (CI->capturesVariable())
8831 MEHandler.generateInfoForLambdaCaptures(
8832 CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
8833 CurMapTypes, LambdaPointers);
8834 }
8835 // We expect to have at least an element of information for this capture.
8836 assert(!CurBasePointers.empty() &&((!CurBasePointers.empty() && "Non-existing map pointer for capture!"
) ? static_cast<void> (0) : __assert_fail ("!CurBasePointers.empty() && \"Non-existing map pointer for capture!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8837, __PRETTY_FUNCTION__))
8837 "Non-existing map pointer for capture!")((!CurBasePointers.empty() && "Non-existing map pointer for capture!"
) ? static_cast<void> (0) : __assert_fail ("!CurBasePointers.empty() && \"Non-existing map pointer for capture!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8837, __PRETTY_FUNCTION__))
;
8838 assert(CurBasePointers.size() == CurPointers.size() &&((CurBasePointers.size() == CurPointers.size() && CurBasePointers
.size() == CurSizes.size() && CurBasePointers.size() ==
CurMapTypes.size() && "Inconsistent map information sizes!"
) ? static_cast<void> (0) : __assert_fail ("CurBasePointers.size() == CurPointers.size() && CurBasePointers.size() == CurSizes.size() && CurBasePointers.size() == CurMapTypes.size() && \"Inconsistent map information sizes!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8841, __PRETTY_FUNCTION__))
8839 CurBasePointers.size() == CurSizes.size() &&((CurBasePointers.size() == CurPointers.size() && CurBasePointers
.size() == CurSizes.size() && CurBasePointers.size() ==
CurMapTypes.size() && "Inconsistent map information sizes!"
) ? static_cast<void> (0) : __assert_fail ("CurBasePointers.size() == CurPointers.size() && CurBasePointers.size() == CurSizes.size() && CurBasePointers.size() == CurMapTypes.size() && \"Inconsistent map information sizes!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8841, __PRETTY_FUNCTION__))
8840 CurBasePointers.size() == CurMapTypes.size() &&((CurBasePointers.size() == CurPointers.size() && CurBasePointers
.size() == CurSizes.size() && CurBasePointers.size() ==
CurMapTypes.size() && "Inconsistent map information sizes!"
) ? static_cast<void> (0) : __assert_fail ("CurBasePointers.size() == CurPointers.size() && CurBasePointers.size() == CurSizes.size() && CurBasePointers.size() == CurMapTypes.size() && \"Inconsistent map information sizes!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8841, __PRETTY_FUNCTION__))
8841 "Inconsistent map information sizes!")((CurBasePointers.size() == CurPointers.size() && CurBasePointers
.size() == CurSizes.size() && CurBasePointers.size() ==
CurMapTypes.size() && "Inconsistent map information sizes!"
) ? static_cast<void> (0) : __assert_fail ("CurBasePointers.size() == CurPointers.size() && CurBasePointers.size() == CurSizes.size() && CurBasePointers.size() == CurMapTypes.size() && \"Inconsistent map information sizes!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 8841, __PRETTY_FUNCTION__))
;
8842
8843 // If there is an entry in PartialStruct it means we have a struct with
8844 // individual members mapped. Emit an extra combined entry.
8845 if (PartialStruct.Base.isValid())
8846 MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
8847 CurMapTypes, PartialStruct);
8848
8849 // We need to append the results of this capture to what we already have.
8850 BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8851 Pointers.append(CurPointers.begin(), CurPointers.end());
8852 Sizes.append(CurSizes.begin(), CurSizes.end());
8853 MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
8854 }
8855 // Adjust MEMBER_OF flags for the lambdas captures.
8856 MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
8857 Pointers, MapTypes);
8858 // Map other list items in the map clause which are not captured variables
8859 // but "declare target link" global variables.
8860 MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
8861 MapTypes);
8862
8863 TargetDataInfo Info;
8864 // Fill up the arrays and create the arguments.
8865 emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
8866 emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
8867 Info.PointersArray, Info.SizesArray,
8868 Info.MapTypesArray, Info);
8869 InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
8870 InputInfo.BasePointersArray =
8871 Address(Info.BasePointersArray, CGM.getPointerAlign());
8872 InputInfo.PointersArray =
8873 Address(Info.PointersArray, CGM.getPointerAlign());
8874 InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
8875 MapTypesArray = Info.MapTypesArray;
8876 if (RequiresOuterTask)
8877 CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
8878 else
8879 emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
8880 };
8881
8882 auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
8883 CodeGenFunction &CGF, PrePostActionTy &) {
8884 if (RequiresOuterTask) {
8885 CodeGenFunction::OMPTargetDataInfo InputInfo;
8886 CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
8887 } else {
8888 emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
8889 }
8890 };
8891
8892 // If we have a target function ID it means that we need to support
8893 // offloading, otherwise, just execute on the host. We need to execute on host
8894 // regardless of the conditional in the if clause if, e.g., the user do not
8895 // specify target triples.
8896 if (OutlinedFnID) {
8897 if (IfCond) {
8898 emitOMPIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
8899 } else {
8900 RegionCodeGenTy ThenRCG(TargetThenGen);
8901 ThenRCG(CGF);
8902 }
8903 } else {
8904 RegionCodeGenTy ElseRCG(TargetElseGen);
8905 ElseRCG(CGF);
8906 }
8907}
8908
8909void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
8910 StringRef ParentName) {
8911 if (!S)
8912 return;
8913
8914 // Codegen OMP target directives that offload compute to the device.
8915 bool RequiresDeviceCodegen =
8916 isa<OMPExecutableDirective>(S) &&
8917 isOpenMPTargetExecutionDirective(
8918 cast<OMPExecutableDirective>(S)->getDirectiveKind());
8919
8920 if (RequiresDeviceCodegen) {
8921 const auto &E = *cast<OMPExecutableDirective>(S);
8922 unsigned DeviceID;
8923 unsigned FileID;
8924 unsigned Line;
8925 getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
8926 FileID, Line);
8927
8928 // Is this a target region that should not be emitted as an entry point? If
8929 // so just signal we are done with this target region.
8930 if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
8931 ParentName, Line))
8932 return;
8933
8934 switch (E.getDirectiveKind()) {
8935 case OMPD_target:
8936 CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
8937 cast<OMPTargetDirective>(E));
8938 break;
8939 case OMPD_target_parallel:
8940 CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
8941 CGM, ParentName, cast<OMPTargetParallelDirective>(E));
8942 break;
8943 case OMPD_target_teams:
8944 CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
8945 CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
8946 break;
8947 case OMPD_target_teams_distribute:
8948 CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
8949 CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
8950 break;
8951 case OMPD_target_teams_distribute_simd:
8952 CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
8953 CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
8954 break;
8955 case OMPD_target_parallel_for:
8956 CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
8957 CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
8958 break;
8959 case OMPD_target_parallel_for_simd:
8960 CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
8961 CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
8962 break;
8963 case OMPD_target_simd:
8964 CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
8965 CGM, ParentName, cast<OMPTargetSimdDirective>(E));
8966 break;
8967 case OMPD_target_teams_distribute_parallel_for:
8968 CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
8969 CGM, ParentName,
8970 cast<OMPTargetTeamsDistributeParallelForDirective>(E));
8971 break;
8972 case OMPD_target_teams_distribute_parallel_for_simd:
8973 CodeGenFunction::
8974 EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
8975 CGM, ParentName,
8976 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
8977 break;
8978 case OMPD_parallel:
8979 case OMPD_for:
8980 case OMPD_parallel_for:
8981 case OMPD_parallel_sections:
8982 case OMPD_for_simd:
8983 case OMPD_parallel_for_simd:
8984 case OMPD_cancel:
8985 case OMPD_cancellation_point:
8986 case OMPD_ordered:
8987 case OMPD_threadprivate:
8988 case OMPD_allocate:
8989 case OMPD_task:
8990 case OMPD_simd:
8991 case OMPD_sections:
8992 case OMPD_section:
8993 case OMPD_single:
8994 case OMPD_master:
8995 case OMPD_critical:
8996 case OMPD_taskyield:
8997 case OMPD_barrier:
8998 case OMPD_taskwait:
8999 case OMPD_taskgroup:
9000 case OMPD_atomic:
9001 case OMPD_flush:
9002 case OMPD_teams:
9003 case OMPD_target_data:
9004 case OMPD_target_exit_data:
9005 case OMPD_target_enter_data:
9006 case OMPD_distribute:
9007 case OMPD_distribute_simd:
9008 case OMPD_distribute_parallel_for:
9009 case OMPD_distribute_parallel_for_simd:
9010 case OMPD_teams_distribute:
9011 case OMPD_teams_distribute_simd:
9012 case OMPD_teams_distribute_parallel_for:
9013 case OMPD_teams_distribute_parallel_for_simd:
9014 case OMPD_target_update:
9015 case OMPD_declare_simd:
9016 case OMPD_declare_target:
9017 case OMPD_end_declare_target:
9018 case OMPD_declare_reduction:
9019 case OMPD_declare_mapper:
9020 case OMPD_taskloop:
9021 case OMPD_taskloop_simd:
9022 case OMPD_requires:
9023 case OMPD_unknown:
9024 llvm_unreachable("Unknown target directive for OpenMP device codegen.")::llvm::llvm_unreachable_internal("Unknown target directive for OpenMP device codegen."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9024)
;
9025 }
9026 return;
9027 }
9028
9029 if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
9030 if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
9031 return;
9032
9033 scanForTargetRegionsFunctions(
9034 E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
9035 return;
9036 }
9037
9038 // If this is a lambda function, look into its body.
9039 if (const auto *L = dyn_cast<LambdaExpr>(S))
9040 S = L->getBody();
9041
9042 // Keep looking for target regions recursively.
9043 for (const Stmt *II : S->children())
9044 scanForTargetRegionsFunctions(II, ParentName);
9045}
9046
9047bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
9048 // If emitting code for the host, we do not process FD here. Instead we do
9049 // the normal code generation.
9050 if (!CGM.getLangOpts().OpenMPIsDevice)
9051 return false;
9052
9053 const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
9054 StringRef Name = CGM.getMangledName(GD);
9055 // Try to detect target regions in the function.
9056 if (const auto *FD = dyn_cast<FunctionDecl>(VD))
9057 scanForTargetRegionsFunctions(FD->getBody(), Name);
9058
9059 // Do not to emit function if it is not marked as declare target.
9060 return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
9061 AlreadyEmittedTargetFunctions.count(Name) == 0;
9062}
9063
9064bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
9065 if (!CGM.getLangOpts().OpenMPIsDevice)
9066 return false;
9067
9068 // Check if there are Ctors/Dtors in this declaration and look for target
9069 // regions in it. We use the complete variant to produce the kernel name
9070 // mangling.
9071 QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
9072 if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
9073 for (const CXXConstructorDecl *Ctor : RD->ctors()) {
9074 StringRef ParentName =
9075 CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
9076 scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
9077 }
9078 if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
9079 StringRef ParentName =
9080 CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
9081 scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
9082 }
9083 }
9084
9085 // Do not to emit variable if it is not marked as declare target.
9086 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9087 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
9088 cast<VarDecl>(GD.getDecl()));
9089 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link) {
9090 DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
9091 return true;
9092 }
9093 return false;
9094}
9095
9096llvm::Constant *
9097CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
9098 const VarDecl *VD) {
9099 assert(VD->getType().isConstant(CGM.getContext()) &&((VD->getType().isConstant(CGM.getContext()) && "Expected constant variable."
) ? static_cast<void> (0) : __assert_fail ("VD->getType().isConstant(CGM.getContext()) && \"Expected constant variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9100, __PRETTY_FUNCTION__))
9100 "Expected constant variable.")((VD->getType().isConstant(CGM.getContext()) && "Expected constant variable."
) ? static_cast<void> (0) : __assert_fail ("VD->getType().isConstant(CGM.getContext()) && \"Expected constant variable.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9100, __PRETTY_FUNCTION__))
;
9101 StringRef VarName;
9102 llvm::Constant *Addr;
9103 llvm::GlobalValue::LinkageTypes Linkage;
9104 QualType Ty = VD->getType();
9105 SmallString<128> Buffer;
9106 {
9107 unsigned DeviceID;
9108 unsigned FileID;
9109 unsigned Line;
9110 getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
9111 FileID, Line);
9112 llvm::raw_svector_ostream OS(Buffer);
9113 OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
9114 << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
9115 VarName = OS.str();
9116 }
9117 Linkage = llvm::GlobalValue::InternalLinkage;
9118 Addr =
9119 getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
9120 getDefaultFirstprivateAddressSpace());
9121 cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
9122 CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
9123 CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
9124 OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9125 VarName, Addr, VarSize,
9126 OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
9127 return Addr;
9128}
9129
9130void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
9131 llvm::Constant *Addr) {
9132 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9133 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9134 if (!Res) {
9135 if (CGM.getLangOpts().OpenMPIsDevice) {
9136 // Register non-target variables being emitted in device code (debug info
9137 // may cause this).
9138 StringRef VarName = CGM.getMangledName(VD);
9139 EmittedNonTargetVariables.try_emplace(VarName, Addr);
9140 }
9141 return;
9142 }
9143 // Register declare target variables.
9144 OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
9145 StringRef VarName;
9146 CharUnits VarSize;
9147 llvm::GlobalValue::LinkageTypes Linkage;
9148 switch (*Res) {
9149 case OMPDeclareTargetDeclAttr::MT_To:
9150 Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
9151 VarName = CGM.getMangledName(VD);
9152 if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
9153 VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
9154 assert(!VarSize.isZero() && "Expected non-zero size of the variable")((!VarSize.isZero() && "Expected non-zero size of the variable"
) ? static_cast<void> (0) : __assert_fail ("!VarSize.isZero() && \"Expected non-zero size of the variable\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9154, __PRETTY_FUNCTION__))
;
9155 } else {
9156 VarSize = CharUnits::Zero();
9157 }
9158 Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
9159 // Temp solution to prevent optimizations of the internal variables.
9160 if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
9161 std::string RefName = getName({VarName, "ref"});
9162 if (!CGM.GetGlobalValue(RefName)) {
9163 llvm::Constant *AddrRef =
9164 getOrCreateInternalVariable(Addr->getType(), RefName);
9165 auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
9166 GVAddrRef->setConstant(/*Val=*/true);
9167 GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
9168 GVAddrRef->setInitializer(Addr);
9169 CGM.addCompilerUsedGlobal(GVAddrRef);
9170 }
9171 }
9172 break;
9173 case OMPDeclareTargetDeclAttr::MT_Link:
9174 Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
9175 if (CGM.getLangOpts().OpenMPIsDevice) {
9176 VarName = Addr->getName();
9177 Addr = nullptr;
9178 } else {
9179 VarName = getAddrOfDeclareTargetLink(VD).getName();
9180 Addr = cast<llvm::Constant>(getAddrOfDeclareTargetLink(VD).getPointer());
9181 }
9182 VarSize = CGM.getPointerSize();
9183 Linkage = llvm::GlobalValue::WeakAnyLinkage;
9184 break;
9185 }
9186 OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9187 VarName, Addr, VarSize, Flags, Linkage);
9188}
9189
9190bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
9191 if (isa<FunctionDecl>(GD.getDecl()) ||
9192 isa<OMPDeclareReductionDecl>(GD.getDecl()))
9193 return emitTargetFunctions(GD);
9194
9195 return emitTargetGlobalVariable(GD);
9196}
9197
9198void CGOpenMPRuntime::emitDeferredTargetDecls() const {
9199 for (const VarDecl *VD : DeferredGlobalVariables) {
9200 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9201 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9202 if (!Res)
9203 continue;
9204 if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
9205 CGM.EmitGlobal(VD);
9206 } else {
9207 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&((*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected to or link clauses."
) ? static_cast<void> (0) : __assert_fail ("*Res == OMPDeclareTargetDeclAttr::MT_Link && \"Expected to or link clauses.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9208, __PRETTY_FUNCTION__))
9208 "Expected to or link clauses.")((*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected to or link clauses."
) ? static_cast<void> (0) : __assert_fail ("*Res == OMPDeclareTargetDeclAttr::MT_Link && \"Expected to or link clauses.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9208, __PRETTY_FUNCTION__))
;
9209 (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
9210 }
9211 }
9212}
9213
9214void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
9215 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
9216 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&((isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
" Expected target-based directive.") ? static_cast<void>
(0) : __assert_fail ("isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && \" Expected target-based directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9217, __PRETTY_FUNCTION__))
9217 " Expected target-based directive.")((isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
" Expected target-based directive.") ? static_cast<void>
(0) : __assert_fail ("isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && \" Expected target-based directive.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9217, __PRETTY_FUNCTION__))
;
9218}
9219
9220void CGOpenMPRuntime::checkArchForUnifiedAddressing(
9221 const OMPRequiresDecl *D) {
9222 for (const OMPClause *Clause : D->clauselists()) {
9223 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
9224 HasRequiresUnifiedSharedMemory = true;
9225 break;
9226 }
9227 }
9228}
9229
9230bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
9231 LangAS &AS) {
9232 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
9233 return false;
9234 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
9235 switch(A->getAllocatorType()) {
9236 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
9237 // Not supported, fallback to the default mem space.
9238 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
9239 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
9240 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
9241 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
9242 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
9243 case OMPAllocateDeclAttr::OMPConstMemAlloc:
9244 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
9245 AS = LangAS::Default;
9246 return true;
9247 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
9248 llvm_unreachable("Expected predefined allocator for the variables with the "::llvm::llvm_unreachable_internal("Expected predefined allocator for the variables with the "
"static storage.", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9249)
9249 "static storage.")::llvm::llvm_unreachable_internal("Expected predefined allocator for the variables with the "
"static storage.", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9249)
;
9250 }
9251 return false;
9252}
9253
9254CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
9255 CodeGenModule &CGM)
9256 : CGM(CGM) {
9257 if (CGM.getLangOpts().OpenMPIsDevice) {
9258 SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
9259 CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
9260 }
9261}
9262
9263CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
9264 if (CGM.getLangOpts().OpenMPIsDevice)
9265 CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
9266}
9267
9268bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
9269 if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
9270 return true;
9271
9272 StringRef Name = CGM.getMangledName(GD);
9273 const auto *D = cast<FunctionDecl>(GD.getDecl());
9274 // Do not to emit function if it is marked as declare target as it was already
9275 // emitted.
9276 if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
9277 if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) {
9278 if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name)))
9279 return !F->isDeclaration();
9280 return false;
9281 }
9282 return true;
9283 }
9284
9285 return !AlreadyEmittedTargetFunctions.insert(Name).second;
9286}
9287
9288llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
9289 // If we don't have entries or if we are emitting code for the device, we
9290 // don't need to do anything.
9291 if (CGM.getLangOpts().OMPTargetTriples.empty() ||
9292 CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
9293 (OffloadEntriesInfoManager.empty() &&
9294 !HasEmittedDeclareTargetRegion &&
9295 !HasEmittedTargetRegion))
9296 return nullptr;
9297
9298 // Create and register the function that handles the requires directives.
9299 ASTContext &C = CGM.getContext();
9300
9301 llvm::Function *RequiresRegFn;
9302 {
9303 CodeGenFunction CGF(CGM);
9304 const auto &FI = CGM.getTypes().arrangeNullaryFunction();
9305 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
9306 std::string ReqName = getName({"omp_offloading", "requires_reg"});
9307 RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI);
9308 CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
9309 OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
9310 // TODO: check for other requires clauses.
9311 // The requires directive takes effect only when a target region is
9312 // present in the compilation unit. Otherwise it is ignored and not
9313 // passed to the runtime. This avoids the runtime from throwing an error
9314 // for mismatching requires clauses across compilation units that don't
9315 // contain at least 1 target region.
9316 assert((HasEmittedTargetRegion ||(((HasEmittedTargetRegion || HasEmittedDeclareTargetRegion ||
!OffloadEntriesInfoManager.empty()) && "Target or declare target region expected."
) ? static_cast<void> (0) : __assert_fail ("(HasEmittedTargetRegion || HasEmittedDeclareTargetRegion || !OffloadEntriesInfoManager.empty()) && \"Target or declare target region expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9319, __PRETTY_FUNCTION__))
9317 HasEmittedDeclareTargetRegion ||(((HasEmittedTargetRegion || HasEmittedDeclareTargetRegion ||
!OffloadEntriesInfoManager.empty()) && "Target or declare target region expected."
) ? static_cast<void> (0) : __assert_fail ("(HasEmittedTargetRegion || HasEmittedDeclareTargetRegion || !OffloadEntriesInfoManager.empty()) && \"Target or declare target region expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9319, __PRETTY_FUNCTION__))
9318 !OffloadEntriesInfoManager.empty()) &&(((HasEmittedTargetRegion || HasEmittedDeclareTargetRegion ||
!OffloadEntriesInfoManager.empty()) && "Target or declare target region expected."
) ? static_cast<void> (0) : __assert_fail ("(HasEmittedTargetRegion || HasEmittedDeclareTargetRegion || !OffloadEntriesInfoManager.empty()) && \"Target or declare target region expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9319, __PRETTY_FUNCTION__))
9319 "Target or declare target region expected.")(((HasEmittedTargetRegion || HasEmittedDeclareTargetRegion ||
!OffloadEntriesInfoManager.empty()) && "Target or declare target region expected."
) ? static_cast<void> (0) : __assert_fail ("(HasEmittedTargetRegion || HasEmittedDeclareTargetRegion || !OffloadEntriesInfoManager.empty()) && \"Target or declare target region expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9319, __PRETTY_FUNCTION__))
;
9320 if (HasRequiresUnifiedSharedMemory)
9321 Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
9322 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires),
9323 llvm::ConstantInt::get(CGM.Int64Ty, Flags));
9324 CGF.FinishFunction();
9325 }
9326 return RequiresRegFn;
9327}
9328
9329llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
9330 // If we have offloading in the current module, we need to emit the entries
9331 // now and register the offloading descriptor.
9332 createOffloadEntriesAndInfoMetadata();
9333
9334 // Create and register the offloading binary descriptors. This is the main
9335 // entity that captures all the information about offloading in the current
9336 // compilation unit.
9337 return createOffloadingBinaryDescriptorRegistration();
9338}
9339
9340void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
9341 const OMPExecutableDirective &D,
9342 SourceLocation Loc,
9343 llvm::Function *OutlinedFn,
9344 ArrayRef<llvm::Value *> CapturedVars) {
9345 if (!CGF.HaveInsertPoint())
9346 return;
9347
9348 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
9349 CodeGenFunction::RunCleanupsScope Scope(CGF);
9350
9351 // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
9352 llvm::Value *Args[] = {
9353 RTLoc,
9354 CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
9355 CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
9356 llvm::SmallVector<llvm::Value *, 16> RealArgs;
9357 RealArgs.append(std::begin(Args), std::end(Args));
9358 RealArgs.append(CapturedVars.begin(), CapturedVars.end());
9359
9360 llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
9361 CGF.EmitRuntimeCall(RTLFn, RealArgs);
9362}
9363
9364void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
9365 const Expr *NumTeams,
9366 const Expr *ThreadLimit,
9367 SourceLocation Loc) {
9368 if (!CGF.HaveInsertPoint())
9369 return;
9370
9371 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
9372
9373 llvm::Value *NumTeamsVal =
9374 NumTeams
9375 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
9376 CGF.CGM.Int32Ty, /* isSigned = */ true)
9377 : CGF.Builder.getInt32(0);
9378
9379 llvm::Value *ThreadLimitVal =
9380 ThreadLimit
9381 ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
9382 CGF.CGM.Int32Ty, /* isSigned = */ true)
9383 : CGF.Builder.getInt32(0);
9384
9385 // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
9386 llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
9387 ThreadLimitVal};
9388 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
9389 PushNumTeamsArgs);
9390}
9391
9392void CGOpenMPRuntime::emitTargetDataCalls(
9393 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9394 const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
9395 if (!CGF.HaveInsertPoint())
9396 return;
9397
9398 // Action used to replace the default codegen action and turn privatization
9399 // off.
9400 PrePostActionTy NoPrivAction;
9401
9402 // Generate the code for the opening of the data environment. Capture all the
9403 // arguments of the runtime call by reference because they are used in the
9404 // closing of the region.
9405 auto &&BeginThenGen = [this, &D, Device, &Info,
9406 &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
9407 // Fill up the arrays with all the mapped variables.
9408 MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9409 MappableExprsHandler::MapValuesArrayTy Pointers;
9410 MappableExprsHandler::MapValuesArrayTy Sizes;
9411 MappableExprsHandler::MapFlagsArrayTy MapTypes;
9412
9413 // Get map clause information.
9414 MappableExprsHandler MCHandler(D, CGF);
9415 MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
9416
9417 // Fill up the arrays and create the arguments.
9418 emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9419
9420 llvm::Value *BasePointersArrayArg = nullptr;
9421 llvm::Value *PointersArrayArg = nullptr;
9422 llvm::Value *SizesArrayArg = nullptr;
9423 llvm::Value *MapTypesArrayArg = nullptr;
9424 emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
9425 SizesArrayArg, MapTypesArrayArg, Info);
9426
9427 // Emit device ID if any.
9428 llvm::Value *DeviceID = nullptr;
9429 if (Device) {
9430 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9431 CGF.Int64Ty, /*isSigned=*/true);
9432 } else {
9433 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9434 }
9435
9436 // Emit the number of elements in the offloading arrays.
9437 llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
9438
9439 llvm::Value *OffloadingArgs[] = {
9440 DeviceID, PointerNum, BasePointersArrayArg,
9441 PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
9442 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
9443 OffloadingArgs);
9444
9445 // If device pointer privatization is required, emit the body of the region
9446 // here. It will have to be duplicated: with and without privatization.
9447 if (!Info.CaptureDeviceAddrMap.empty())
9448 CodeGen(CGF);
9449 };
9450
9451 // Generate code for the closing of the data region.
9452 auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
9453 PrePostActionTy &) {
9454 assert(Info.isValid() && "Invalid data environment closing arguments.")((Info.isValid() && "Invalid data environment closing arguments."
) ? static_cast<void> (0) : __assert_fail ("Info.isValid() && \"Invalid data environment closing arguments.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9454, __PRETTY_FUNCTION__))
;
9455
9456 llvm::Value *BasePointersArrayArg = nullptr;
9457 llvm::Value *PointersArrayArg = nullptr;
9458 llvm::Value *SizesArrayArg = nullptr;
9459 llvm::Value *MapTypesArrayArg = nullptr;
9460 emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
9461 SizesArrayArg, MapTypesArrayArg, Info);
9462
9463 // Emit device ID if any.
9464 llvm::Value *DeviceID = nullptr;
9465 if (Device) {
9466 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9467 CGF.Int64Ty, /*isSigned=*/true);
9468 } else {
9469 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9470 }
9471
9472 // Emit the number of elements in the offloading arrays.
9473 llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
9474
9475 llvm::Value *OffloadingArgs[] = {
9476 DeviceID, PointerNum, BasePointersArrayArg,
9477 PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
9478 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
9479 OffloadingArgs);
9480 };
9481
9482 // If we need device pointer privatization, we need to emit the body of the
9483 // region with no privatization in the 'else' branch of the conditional.
9484 // Otherwise, we don't have to do anything.
9485 auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
9486 PrePostActionTy &) {
9487 if (!Info.CaptureDeviceAddrMap.empty()) {
9488 CodeGen.setAction(NoPrivAction);
9489 CodeGen(CGF);
9490 }
9491 };
9492
9493 // We don't have to do anything to close the region if the if clause evaluates
9494 // to false.
9495 auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
9496
9497 if (IfCond) {
9498 emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
9499 } else {
9500 RegionCodeGenTy RCG(BeginThenGen);
9501 RCG(CGF);
9502 }
9503
9504 // If we don't require privatization of device pointers, we emit the body in
9505 // between the runtime calls. This avoids duplicating the body code.
9506 if (Info.CaptureDeviceAddrMap.empty()) {
9507 CodeGen.setAction(NoPrivAction);
9508 CodeGen(CGF);
9509 }
9510
9511 if (IfCond) {
9512 emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen);
9513 } else {
9514 RegionCodeGenTy RCG(EndThenGen);
9515 RCG(CGF);
9516 }
9517}
9518
9519void CGOpenMPRuntime::emitTargetDataStandAloneCall(
9520 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9521 const Expr *Device) {
9522 if (!CGF.HaveInsertPoint())
9523 return;
9524
9525 assert((isa<OMPTargetEnterDataDirective>(D) ||(((isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective
>(D) || isa<OMPTargetUpdateDirective>(D)) &&
"Expecting either target enter, exit data, or update directives."
) ? static_cast<void> (0) : __assert_fail ("(isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective>(D) || isa<OMPTargetUpdateDirective>(D)) && \"Expecting either target enter, exit data, or update directives.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9528, __PRETTY_FUNCTION__))
9526 isa<OMPTargetExitDataDirective>(D) ||(((isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective
>(D) || isa<OMPTargetUpdateDirective>(D)) &&
"Expecting either target enter, exit data, or update directives."
) ? static_cast<void> (0) : __assert_fail ("(isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective>(D) || isa<OMPTargetUpdateDirective>(D)) && \"Expecting either target enter, exit data, or update directives.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9528, __PRETTY_FUNCTION__))
9527 isa<OMPTargetUpdateDirective>(D)) &&(((isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective
>(D) || isa<OMPTargetUpdateDirective>(D)) &&
"Expecting either target enter, exit data, or update directives."
) ? static_cast<void> (0) : __assert_fail ("(isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective>(D) || isa<OMPTargetUpdateDirective>(D)) && \"Expecting either target enter, exit data, or update directives.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9528, __PRETTY_FUNCTION__))
9528 "Expecting either target enter, exit data, or update directives.")(((isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective
>(D) || isa<OMPTargetUpdateDirective>(D)) &&
"Expecting either target enter, exit data, or update directives."
) ? static_cast<void> (0) : __assert_fail ("(isa<OMPTargetEnterDataDirective>(D) || isa<OMPTargetExitDataDirective>(D) || isa<OMPTargetUpdateDirective>(D)) && \"Expecting either target enter, exit data, or update directives.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9528, __PRETTY_FUNCTION__))
;
9529
9530 CodeGenFunction::OMPTargetDataInfo InputInfo;
9531 llvm::Value *MapTypesArray = nullptr;
9532 // Generate the code for the opening of the data environment.
9533 auto &&ThenGen = [this, &D, Device, &InputInfo,
9534 &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
9535 // Emit device ID if any.
9536 llvm::Value *DeviceID = nullptr;
9537 if (Device) {
9538 DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9539 CGF.Int64Ty, /*isSigned=*/true);
9540 } else {
9541 DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9542 }
9543
9544 // Emit the number of elements in the offloading arrays.
9545 llvm::Constant *PointerNum =
9546 CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9547
9548 llvm::Value *OffloadingArgs[] = {DeviceID,
9549 PointerNum,
9550 InputInfo.BasePointersArray.getPointer(),
9551 InputInfo.PointersArray.getPointer(),
9552 InputInfo.SizesArray.getPointer(),
9553 MapTypesArray};
9554
9555 // Select the right runtime function call for each expected standalone
9556 // directive.
9557 const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9558 OpenMPRTLFunction RTLFn;
9559 switch (D.getDirectiveKind()) {
9560 case OMPD_target_enter_data:
9561 RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
9562 : OMPRTL__tgt_target_data_begin;
9563 break;
9564 case OMPD_target_exit_data:
9565 RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
9566 : OMPRTL__tgt_target_data_end;
9567 break;
9568 case OMPD_target_update:
9569 RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
9570 : OMPRTL__tgt_target_data_update;
9571 break;
9572 case OMPD_parallel:
9573 case OMPD_for:
9574 case OMPD_parallel_for:
9575 case OMPD_parallel_sections:
9576 case OMPD_for_simd:
9577 case OMPD_parallel_for_simd:
9578 case OMPD_cancel:
9579 case OMPD_cancellation_point:
9580 case OMPD_ordered:
9581 case OMPD_threadprivate:
9582 case OMPD_allocate:
9583 case OMPD_task:
9584 case OMPD_simd:
9585 case OMPD_sections:
9586 case OMPD_section:
9587 case OMPD_single:
9588 case OMPD_master:
9589 case OMPD_critical:
9590 case OMPD_taskyield:
9591 case OMPD_barrier:
9592 case OMPD_taskwait:
9593 case OMPD_taskgroup:
9594 case OMPD_atomic:
9595 case OMPD_flush:
9596 case OMPD_teams:
9597 case OMPD_target_data:
9598 case OMPD_distribute:
9599 case OMPD_distribute_simd:
9600 case OMPD_distribute_parallel_for:
9601 case OMPD_distribute_parallel_for_simd:
9602 case OMPD_teams_distribute:
9603 case OMPD_teams_distribute_simd:
9604 case OMPD_teams_distribute_parallel_for:
9605 case OMPD_teams_distribute_parallel_for_simd:
9606 case OMPD_declare_simd:
9607 case OMPD_declare_target:
9608 case OMPD_end_declare_target:
9609 case OMPD_declare_reduction:
9610 case OMPD_declare_mapper:
9611 case OMPD_taskloop:
9612 case OMPD_taskloop_simd:
9613 case OMPD_target:
9614 case OMPD_target_simd:
9615 case OMPD_target_teams_distribute:
9616 case OMPD_target_teams_distribute_simd:
9617 case OMPD_target_teams_distribute_parallel_for:
9618 case OMPD_target_teams_distribute_parallel_for_simd:
9619 case OMPD_target_teams:
9620 case OMPD_target_parallel:
9621 case OMPD_target_parallel_for:
9622 case OMPD_target_parallel_for_simd:
9623 case OMPD_requires:
9624 case OMPD_unknown:
9625 llvm_unreachable("Unexpected standalone target data directive.")::llvm::llvm_unreachable_internal("Unexpected standalone target data directive."
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9625)
;
9626 break;
9627 }
9628 CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
9629 };
9630
9631 auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
9632 CodeGenFunction &CGF, PrePostActionTy &) {
9633 // Fill up the arrays with all the mapped variables.
9634 MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9635 MappableExprsHandler::MapValuesArrayTy Pointers;
9636 MappableExprsHandler::MapValuesArrayTy Sizes;
9637 MappableExprsHandler::MapFlagsArrayTy MapTypes;
9638
9639 // Get map clause information.
9640 MappableExprsHandler MEHandler(D, CGF);
9641 MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
9642
9643 TargetDataInfo Info;
9644 // Fill up the arrays and create the arguments.
9645 emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9646 emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
9647 Info.PointersArray, Info.SizesArray,
9648 Info.MapTypesArray, Info);
9649 InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
9650 InputInfo.BasePointersArray =
9651 Address(Info.BasePointersArray, CGM.getPointerAlign());
9652 InputInfo.PointersArray =
9653 Address(Info.PointersArray, CGM.getPointerAlign());
9654 InputInfo.SizesArray =
9655 Address(Info.SizesArray, CGM.getPointerAlign());
9656 MapTypesArray = Info.MapTypesArray;
9657 if (D.hasClausesOfKind<OMPDependClause>())
9658 CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
9659 else
9660 emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
9661 };
9662
9663 if (IfCond) {
9664 emitOMPIfClause(CGF, IfCond, TargetThenGen,
9665 [](CodeGenFunction &CGF, PrePostActionTy &) {});
9666 } else {
9667 RegionCodeGenTy ThenRCG(TargetThenGen);
9668 ThenRCG(CGF);
9669 }
9670}
9671
9672namespace {
9673 /// Kind of parameter in a function with 'declare simd' directive.
9674 enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
9675 /// Attribute set of the parameter.
9676 struct ParamAttrTy {
9677 ParamKindTy Kind = Vector;
9678 llvm::APSInt StrideOrArg;
9679 llvm::APSInt Alignment;
9680 };
9681} // namespace
9682
9683static unsigned evaluateCDTSize(const FunctionDecl *FD,
9684 ArrayRef<ParamAttrTy> ParamAttrs) {
9685 // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
9686 // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
9687 // of that clause. The VLEN value must be power of 2.
9688 // In other case the notion of the function`s "characteristic data type" (CDT)
9689 // is used to compute the vector length.
9690 // CDT is defined in the following order:
9691 // a) For non-void function, the CDT is the return type.
9692 // b) If the function has any non-uniform, non-linear parameters, then the
9693 // CDT is the type of the first such parameter.
9694 // c) If the CDT determined by a) or b) above is struct, union, or class
9695 // type which is pass-by-value (except for the type that maps to the
9696 // built-in complex data type), the characteristic data type is int.
9697 // d) If none of the above three cases is applicable, the CDT is int.
9698 // The VLEN is then determined based on the CDT and the size of vector
9699 // register of that ISA for which current vector version is generated. The
9700 // VLEN is computed using the formula below:
9701 // VLEN = sizeof(vector_register) / sizeof(CDT),
9702 // where vector register size specified in section 3.2.1 Registers and the
9703 // Stack Frame of original AMD64 ABI document.
9704 QualType RetType = FD->getReturnType();
9705 if (RetType.isNull())
9706 return 0;
9707 ASTContext &C = FD->getASTContext();
9708 QualType CDT;
9709 if (!RetType.isNull() && !RetType->isVoidType()) {
9710 CDT = RetType;
9711 } else {
9712 unsigned Offset = 0;
9713 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
9714 if (ParamAttrs[Offset].Kind == Vector)
9715 CDT = C.getPointerType(C.getRecordType(MD->getParent()));
9716 ++Offset;
9717 }
9718 if (CDT.isNull()) {
9719 for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
9720 if (ParamAttrs[I + Offset].Kind == Vector) {
9721 CDT = FD->getParamDecl(I)->getType();
9722 break;
9723 }
9724 }
9725 }
9726 }
9727 if (CDT.isNull())
9728 CDT = C.IntTy;
9729 CDT = CDT->getCanonicalTypeUnqualified();
9730 if (CDT->isRecordType() || CDT->isUnionType())
9731 CDT = C.IntTy;
9732 return C.getTypeSize(CDT);
9733}
9734
9735static void
9736emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
9737 const llvm::APSInt &VLENVal,
9738 ArrayRef<ParamAttrTy> ParamAttrs,
9739 OMPDeclareSimdDeclAttr::BranchStateTy State) {
9740 struct ISADataTy {
9741 char ISA;
9742 unsigned VecRegSize;
9743 };
9744 ISADataTy ISAData[] = {
9745 {
9746 'b', 128
9747 }, // SSE
9748 {
9749 'c', 256
9750 }, // AVX
9751 {
9752 'd', 256
9753 }, // AVX2
9754 {
9755 'e', 512
9756 }, // AVX512
9757 };
9758 llvm::SmallVector<char, 2> Masked;
9759 switch (State) {
9760 case OMPDeclareSimdDeclAttr::BS_Undefined:
9761 Masked.push_back('N');
9762 Masked.push_back('M');
9763 break;
9764 case OMPDeclareSimdDeclAttr::BS_Notinbranch:
9765 Masked.push_back('N');
9766 break;
9767 case OMPDeclareSimdDeclAttr::BS_Inbranch:
9768 Masked.push_back('M');
9769 break;
9770 }
9771 for (char Mask : Masked) {
9772 for (const ISADataTy &Data : ISAData) {
9773 SmallString<256> Buffer;
9774 llvm::raw_svector_ostream Out(Buffer);
9775 Out << "_ZGV" << Data.ISA << Mask;
9776 if (!VLENVal) {
9777 unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
9778 assert(NumElts && "Non-zero simdlen/cdtsize expected")((NumElts && "Non-zero simdlen/cdtsize expected") ? static_cast
<void> (0) : __assert_fail ("NumElts && \"Non-zero simdlen/cdtsize expected\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9778, __PRETTY_FUNCTION__))
;
9779 Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
9780 } else {
9781 Out << VLENVal;
9782 }
9783 for (const ParamAttrTy &ParamAttr : ParamAttrs) {
9784 switch (ParamAttr.Kind){
9785 case LinearWithVarStride:
9786 Out << 's' << ParamAttr.StrideOrArg;
9787 break;
9788 case Linear:
9789 Out << 'l';
9790 if (!!ParamAttr.StrideOrArg)
9791 Out << ParamAttr.StrideOrArg;
9792 break;
9793 case Uniform:
9794 Out << 'u';
9795 break;
9796 case Vector:
9797 Out << 'v';
9798 break;
9799 }
9800 if (!!ParamAttr.Alignment)
9801 Out << 'a' << ParamAttr.Alignment;
9802 }
9803 Out << '_' << Fn->getName();
9804 Fn->addFnAttr(Out.str());
9805 }
9806 }
9807}
9808
9809// This are the Functions that are needed to mangle the name of the
9810// vector functions generated by the compiler, according to the rules
9811// defined in the "Vector Function ABI specifications for AArch64",
9812// available at
9813// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
9814
9815/// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
9816///
9817/// TODO: Need to implement the behavior for reference marked with a
9818/// var or no linear modifiers (1.b in the section). For this, we
9819/// need to extend ParamKindTy to support the linear modifiers.
9820static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
9821 QT = QT.getCanonicalType();
9822
9823 if (QT->isVoidType())
9824 return false;
9825
9826 if (Kind == ParamKindTy::Uniform)
9827 return false;
9828
9829 if (Kind == ParamKindTy::Linear)
9830 return false;
9831
9832 // TODO: Handle linear references with modifiers
9833
9834 if (Kind == ParamKindTy::LinearWithVarStride)
9835 return false;
9836
9837 return true;
9838}
9839
9840/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
9841static bool getAArch64PBV(QualType QT, ASTContext &C) {
9842 QT = QT.getCanonicalType();
9843 unsigned Size = C.getTypeSize(QT);
9844
9845 // Only scalars and complex within 16 bytes wide set PVB to true.
9846 if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
9847 return false;
9848
9849 if (QT->isFloatingType())
9850 return true;
9851
9852 if (QT->isIntegerType())
9853 return true;
9854
9855 if (QT->isPointerType())
9856 return true;
9857
9858 // TODO: Add support for complex types (section 3.1.2, item 2).
9859
9860 return false;
9861}
9862
9863/// Computes the lane size (LS) of a return type or of an input parameter,
9864/// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
9865/// TODO: Add support for references, section 3.2.1, item 1.
9866static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
9867 if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
9868 QualType PTy = QT.getCanonicalType()->getPointeeType();
9869 if (getAArch64PBV(PTy, C))
9870 return C.getTypeSize(PTy);
9871 }
9872 if (getAArch64PBV(QT, C))
9873 return C.getTypeSize(QT);
9874
9875 return C.getTypeSize(C.getUIntPtrType());
9876}
9877
9878// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
9879// signature of the scalar function, as defined in 3.2.2 of the
9880// AAVFABI.
9881static std::tuple<unsigned, unsigned, bool>
9882getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
9883 QualType RetType = FD->getReturnType().getCanonicalType();
9884
9885 ASTContext &C = FD->getASTContext();
9886
9887 bool OutputBecomesInput = false;
9888
9889 llvm::SmallVector<unsigned, 8> Sizes;
9890 if (!RetType->isVoidType()) {
9891 Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
9892 if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
9893 OutputBecomesInput = true;
9894 }
9895 for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
9896 QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
9897 Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
9898 }
9899
9900 assert(!Sizes.empty() && "Unable to determine NDS and WDS.")((!Sizes.empty() && "Unable to determine NDS and WDS."
) ? static_cast<void> (0) : __assert_fail ("!Sizes.empty() && \"Unable to determine NDS and WDS.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9900, __PRETTY_FUNCTION__))
;
9901 // The LS of a function parameter / return value can only be a power
9902 // of 2, starting from 8 bits, up to 128.
9903 assert(std::all_of(Sizes.begin(), Sizes.end(),((std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 || Size == 64 ||
Size == 128; }) && "Invalid size") ? static_cast<
void> (0) : __assert_fail ("std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) { return Size == 8 || Size == 16 || Size == 32 || Size == 64 || Size == 128; }) && \"Invalid size\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9908, __PRETTY_FUNCTION__))
9904 [](unsigned Size) {((std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 || Size == 64 ||
Size == 128; }) && "Invalid size") ? static_cast<
void> (0) : __assert_fail ("std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) { return Size == 8 || Size == 16 || Size == 32 || Size == 64 || Size == 128; }) && \"Invalid size\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9908, __PRETTY_FUNCTION__))
9905 return Size == 8 || Size == 16 || Size == 32 ||((std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 || Size == 64 ||
Size == 128; }) && "Invalid size") ? static_cast<
void> (0) : __assert_fail ("std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) { return Size == 8 || Size == 16 || Size == 32 || Size == 64 || Size == 128; }) && \"Invalid size\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9908, __PRETTY_FUNCTION__))
9906 Size == 64 || Size == 128;((std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 || Size == 64 ||
Size == 128; }) && "Invalid size") ? static_cast<
void> (0) : __assert_fail ("std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) { return Size == 8 || Size == 16 || Size == 32 || Size == 64 || Size == 128; }) && \"Invalid size\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9908, __PRETTY_FUNCTION__))
9907 }) &&((std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 || Size == 64 ||
Size == 128; }) && "Invalid size") ? static_cast<
void> (0) : __assert_fail ("std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) { return Size == 8 || Size == 16 || Size == 32 || Size == 64 || Size == 128; }) && \"Invalid size\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9908, __PRETTY_FUNCTION__))
9908 "Invalid size")((std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 || Size == 64 ||
Size == 128; }) && "Invalid size") ? static_cast<
void> (0) : __assert_fail ("std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) { return Size == 8 || Size == 16 || Size == 32 || Size == 64 || Size == 128; }) && \"Invalid size\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9908, __PRETTY_FUNCTION__))
;
9909
9910 return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
9911 *std::max_element(std::begin(Sizes), std::end(Sizes)),
9912 OutputBecomesInput);
9913}
9914
9915/// Mangle the parameter part of the vector function name according to
9916/// their OpenMP classification. The mangling function is defined in
9917/// section 3.5 of the AAVFABI.
9918static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
9919 SmallString<256> Buffer;
9920 llvm::raw_svector_ostream Out(Buffer);
9921 for (const auto &ParamAttr : ParamAttrs) {
9922 switch (ParamAttr.Kind) {
9923 case LinearWithVarStride:
9924 Out << "ls" << ParamAttr.StrideOrArg;
9925 break;
9926 case Linear:
9927 Out << 'l';
9928 // Don't print the step value if it is not present or if it is
9929 // equal to 1.
9930 if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
9931 Out << ParamAttr.StrideOrArg;
9932 break;
9933 case Uniform:
9934 Out << 'u';
9935 break;
9936 case Vector:
9937 Out << 'v';
9938 break;
9939 }
9940
9941 if (!!ParamAttr.Alignment)
9942 Out << 'a' << ParamAttr.Alignment;
9943 }
9944
9945 return Out.str();
9946}
9947
9948// Function used to add the attribute. The parameter `VLEN` is
9949// templated to allow the use of "x" when targeting scalable functions
9950// for SVE.
9951template <typename T>
9952static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
9953 char ISA, StringRef ParSeq,
9954 StringRef MangledName, bool OutputBecomesInput,
9955 llvm::Function *Fn) {
9956 SmallString<256> Buffer;
9957 llvm::raw_svector_ostream Out(Buffer);
9958 Out << Prefix << ISA << LMask << VLEN;
9959 if (OutputBecomesInput)
9960 Out << "v";
9961 Out << ParSeq << "_" << MangledName;
9962 Fn->addFnAttr(Out.str());
9963}
9964
9965// Helper function to generate the Advanced SIMD names depending on
9966// the value of the NDS when simdlen is not present.
9967static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
9968 StringRef Prefix, char ISA,
9969 StringRef ParSeq, StringRef MangledName,
9970 bool OutputBecomesInput,
9971 llvm::Function *Fn) {
9972 switch (NDS) {
9973 case 8:
9974 addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
9975 OutputBecomesInput, Fn);
9976 addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
9977 OutputBecomesInput, Fn);
9978 break;
9979 case 16:
9980 addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
9981 OutputBecomesInput, Fn);
9982 addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
9983 OutputBecomesInput, Fn);
9984 break;
9985 case 32:
9986 addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
9987 OutputBecomesInput, Fn);
9988 addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
9989 OutputBecomesInput, Fn);
9990 break;
9991 case 64:
9992 case 128:
9993 addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
9994 OutputBecomesInput, Fn);
9995 break;
9996 default:
9997 llvm_unreachable("Scalar type is too wide.")::llvm::llvm_unreachable_internal("Scalar type is too wide.",
"/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 9997)
;
9998 }
9999}
10000
10001/// Emit vector function attributes for AArch64, as defined in the AAVFABI.
10002static void emitAArch64DeclareSimdFunction(
10003 CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
10004 ArrayRef<ParamAttrTy> ParamAttrs,
10005 OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
10006 char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
10007
10008 // Get basic data for building the vector signature.
10009 const auto Data = getNDSWDS(FD, ParamAttrs);
10010 const unsigned NDS = std::get<0>(Data);
10011 const unsigned WDS = std::get<1>(Data);
10012 const bool OutputBecomesInput = std::get<2>(Data);
10013
10014 // Check the values provided via `simdlen` by the user.
10015 // 1. A `simdlen(1)` doesn't produce vector signatures,
10016 if (UserVLEN == 1) {
10017 unsigned DiagID = CGM.getDiags().getCustomDiagID(
10018 DiagnosticsEngine::Warning,
10019 "The clause simdlen(1) has no effect when targeting aarch64.");
10020 CGM.getDiags().Report(SLoc, DiagID);
10021 return;
10022 }
10023
10024 // 2. Section 3.3.1, item 1: user input must be a power of 2 for
10025 // Advanced SIMD output.
10026 if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
10027 unsigned DiagID = CGM.getDiags().getCustomDiagID(
10028 DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
10029 "power of 2 when targeting Advanced SIMD.");
10030 CGM.getDiags().Report(SLoc, DiagID);
10031 return;
10032 }
10033
10034 // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
10035 // limits.
10036 if (ISA == 's' && UserVLEN != 0) {
10037 if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
10038 unsigned DiagID = CGM.getDiags().getCustomDiagID(
10039 DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
10040 "lanes in the architectural constraints "
10041 "for SVE (min is 128-bit, max is "
10042 "2048-bit, by steps of 128-bit)");
10043 CGM.getDiags().Report(SLoc, DiagID) << WDS;
10044 return;
10045 }
10046 }
10047
10048 // Sort out parameter sequence.
10049 const std::string ParSeq = mangleVectorParameters(ParamAttrs);
10050 StringRef Prefix = "_ZGV";
10051 // Generate simdlen from user input (if any).
10052 if (UserVLEN) {
10053 if (ISA == 's') {
10054 // SVE generates only a masked function.
10055 addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10056 OutputBecomesInput, Fn);
10057 } else {
10058 assert(ISA == 'n' && "Expected ISA either 's' or 'n'.")((ISA == 'n' && "Expected ISA either 's' or 'n'.") ? static_cast
<void> (0) : __assert_fail ("ISA == 'n' && \"Expected ISA either 's' or 'n'.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10058, __PRETTY_FUNCTION__))
;
10059 // Advanced SIMD generates one or two functions, depending on
10060 // the `[not]inbranch` clause.
10061 switch (State) {
10062 case OMPDeclareSimdDeclAttr::BS_Undefined:
10063 addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10064 OutputBecomesInput, Fn);
10065 addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10066 OutputBecomesInput, Fn);
10067 break;
10068 case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10069 addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10070 OutputBecomesInput, Fn);
10071 break;
10072 case OMPDeclareSimdDeclAttr::BS_Inbranch:
10073 addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10074 OutputBecomesInput, Fn);
10075 break;
10076 }
10077 }
10078 } else {
10079 // If no user simdlen is provided, follow the AAVFABI rules for
10080 // generating the vector length.
10081 if (ISA == 's') {
10082 // SVE, section 3.4.1, item 1.
10083 addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
10084 OutputBecomesInput, Fn);
10085 } else {
10086 assert(ISA == 'n' && "Expected ISA either 's' or 'n'.")((ISA == 'n' && "Expected ISA either 's' or 'n'.") ? static_cast
<void> (0) : __assert_fail ("ISA == 'n' && \"Expected ISA either 's' or 'n'.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10086, __PRETTY_FUNCTION__))
;
10087 // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
10088 // two vector names depending on the use of the clause
10089 // `[not]inbranch`.
10090 switch (State) {
10091 case OMPDeclareSimdDeclAttr::BS_Undefined:
10092 addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10093 OutputBecomesInput, Fn);
10094 addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10095 OutputBecomesInput, Fn);
10096 break;
10097 case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10098 addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10099 OutputBecomesInput, Fn);
10100 break;
10101 case OMPDeclareSimdDeclAttr::BS_Inbranch:
10102 addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10103 OutputBecomesInput, Fn);
10104 break;
10105 }
10106 }
10107 }
10108}
10109
10110void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
10111 llvm::Function *Fn) {
10112 ASTContext &C = CGM.getContext();
10113 FD = FD->getMostRecentDecl();
10114 // Map params to their positions in function decl.
10115 llvm::DenseMap<const Decl *, unsigned> ParamPositions;
10116 if (isa<CXXMethodDecl>(FD))
10117 ParamPositions.try_emplace(FD, 0);
10118 unsigned ParamPos = ParamPositions.size();
10119 for (const ParmVarDecl *P : FD->parameters()) {
10120 ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
10121 ++ParamPos;
10122 }
10123 while (FD) {
10124 for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
10125 llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
10126 // Mark uniform parameters.
10127 for (const Expr *E : Attr->uniforms()) {
10128 E = E->IgnoreParenImpCasts();
10129 unsigned Pos;
10130 if (isa<CXXThisExpr>(E)) {
10131 Pos = ParamPositions[FD];
10132 } else {
10133 const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10134 ->getCanonicalDecl();
10135 Pos = ParamPositions[PVD];
10136 }
10137 ParamAttrs[Pos].Kind = Uniform;
10138 }
10139 // Get alignment info.
10140 auto NI = Attr->alignments_begin();
10141 for (const Expr *E : Attr->aligneds()) {
10142 E = E->IgnoreParenImpCasts();
10143 unsigned Pos;
10144 QualType ParmTy;
10145 if (isa<CXXThisExpr>(E)) {
10146 Pos = ParamPositions[FD];
10147 ParmTy = E->getType();
10148 } else {
10149 const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10150 ->getCanonicalDecl();
10151 Pos = ParamPositions[PVD];
10152 ParmTy = PVD->getType();
10153 }
10154 ParamAttrs[Pos].Alignment =
10155 (*NI)
10156 ? (*NI)->EvaluateKnownConstInt(C)
10157 : llvm::APSInt::getUnsigned(
10158 C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
10159 .getQuantity());
10160 ++NI;
10161 }
10162 // Mark linear parameters.
10163 auto SI = Attr->steps_begin();
10164 auto MI = Attr->modifiers_begin();
10165 for (const Expr *E : Attr->linears()) {
10166 E = E->IgnoreParenImpCasts();
10167 unsigned Pos;
10168 if (isa<CXXThisExpr>(E)) {
10169 Pos = ParamPositions[FD];
10170 } else {
10171 const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10172 ->getCanonicalDecl();
10173 Pos = ParamPositions[PVD];
10174 }
10175 ParamAttrTy &ParamAttr = ParamAttrs[Pos];
10176 ParamAttr.Kind = Linear;
10177 if (*SI) {
10178 Expr::EvalResult Result;
10179 if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
10180 if (const auto *DRE =
10181 cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
10182 if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
10183 ParamAttr.Kind = LinearWithVarStride;
10184 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
10185 ParamPositions[StridePVD->getCanonicalDecl()]);
10186 }
10187 }
10188 } else {
10189 ParamAttr.StrideOrArg = Result.Val.getInt();
10190 }
10191 }
10192 ++SI;
10193 ++MI;
10194 }
10195 llvm::APSInt VLENVal;
10196 SourceLocation ExprLoc;
10197 const Expr *VLENExpr = Attr->getSimdlen();
10198 if (VLENExpr) {
10199 VLENVal = VLENExpr->EvaluateKnownConstInt(C);
10200 ExprLoc = VLENExpr->getExprLoc();
10201 }
10202 OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
10203 if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
10204 CGM.getTriple().getArch() == llvm::Triple::x86_64) {
10205 emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
10206 } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
10207 unsigned VLEN = VLENVal.getExtValue();
10208 StringRef MangledName = Fn->getName();
10209 if (CGM.getTarget().hasFeature("sve"))
10210 emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10211 MangledName, 's', 128, Fn, ExprLoc);
10212 if (CGM.getTarget().hasFeature("neon"))
10213 emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10214 MangledName, 'n', 128, Fn, ExprLoc);
10215 }
10216 }
10217 FD = FD->getPreviousDecl();
10218 }
10219}
10220
10221namespace {
10222/// Cleanup action for doacross support.
10223class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
10224public:
10225 static const int DoacrossFinArgs = 2;
10226
10227private:
10228 llvm::FunctionCallee RTLFn;
10229 llvm::Value *Args[DoacrossFinArgs];
10230
10231public:
10232 DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
10233 ArrayRef<llvm::Value *> CallArgs)
10234 : RTLFn(RTLFn) {
10235 assert(CallArgs.size() == DoacrossFinArgs)((CallArgs.size() == DoacrossFinArgs) ? static_cast<void>
(0) : __assert_fail ("CallArgs.size() == DoacrossFinArgs", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10235, __PRETTY_FUNCTION__))
;
10236 std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
10237 }
10238 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
10239 if (!CGF.HaveInsertPoint())
10240 return;
10241 CGF.EmitRuntimeCall(RTLFn, Args);
10242 }
10243};
10244} // namespace
10245
10246void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
10247 const OMPLoopDirective &D,
10248 ArrayRef<Expr *> NumIterations) {
10249 if (!CGF.HaveInsertPoint())
10250 return;
10251
10252 ASTContext &C = CGM.getContext();
10253 QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
10254 RecordDecl *RD;
10255 if (KmpDimTy.isNull()) {
10256 // Build struct kmp_dim { // loop bounds info casted to kmp_int64
10257 // kmp_int64 lo; // lower
10258 // kmp_int64 up; // upper
10259 // kmp_int64 st; // stride
10260 // };
10261 RD = C.buildImplicitRecord("kmp_dim");
10262 RD->startDefinition();
10263 addFieldToRecordDecl(C, RD, Int64Ty);
10264 addFieldToRecordDecl(C, RD, Int64Ty);
10265 addFieldToRecordDecl(C, RD, Int64Ty);
10266 RD->completeDefinition();
10267 KmpDimTy = C.getRecordType(RD);
10268 } else {
10269 RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
10270 }
10271 llvm::APInt Size(/*numBits=*/32, NumIterations.size());
10272 QualType ArrayTy =
10273 C.getConstantArrayType(KmpDimTy, Size, ArrayType::Normal, 0);
10274
10275 Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
10276 CGF.EmitNullInitialization(DimsAddr, ArrayTy);
10277 enum { LowerFD = 0, UpperFD, StrideFD };
10278 // Fill dims with data.
10279 for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
10280 LValue DimsLVal = CGF.MakeAddrLValue(
10281 CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
10282 // dims.upper = num_iterations;
10283 LValue UpperLVal = CGF.EmitLValueForField(
10284 DimsLVal, *std::next(RD->field_begin(), UpperFD));
10285 llvm::Value *NumIterVal =
10286 CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
10287 D.getNumIterations()->getType(), Int64Ty,
10288 D.getNumIterations()->getExprLoc());
10289 CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
10290 // dims.stride = 1;
10291 LValue StrideLVal = CGF.EmitLValueForField(
10292 DimsLVal, *std::next(RD->field_begin(), StrideFD));
10293 CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
10294 StrideLVal);
10295 }
10296
10297 // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
10298 // kmp_int32 num_dims, struct kmp_dim * dims);
10299 llvm::Value *Args[] = {
10300 emitUpdateLocation(CGF, D.getBeginLoc()),
10301 getThreadID(CGF, D.getBeginLoc()),
10302 llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
10303 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
10304 CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
10305 CGM.VoidPtrTy)};
10306
10307 llvm::FunctionCallee RTLFn =
10308 createRuntimeFunction(OMPRTL__kmpc_doacross_init);
10309 CGF.EmitRuntimeCall(RTLFn, Args);
10310 llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
10311 emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
10312 llvm::FunctionCallee FiniRTLFn =
10313 createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
10314 CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
10315 llvm::makeArrayRef(FiniArgs));
10316}
10317
10318void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
10319 const OMPDependClause *C) {
10320 QualType Int64Ty =
10321 CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
10322 llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
10323 QualType ArrayTy = CGM.getContext().getConstantArrayType(
10324 Int64Ty, Size, ArrayType::Normal, 0);
10325 Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
10326 for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
10327 const Expr *CounterVal = C->getLoopData(I);
10328 assert(CounterVal)((CounterVal) ? static_cast<void> (0) : __assert_fail (
"CounterVal", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10328, __PRETTY_FUNCTION__))
;
10329 llvm::Value *CntVal = CGF.EmitScalarConversion(
10330 CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
10331 CounterVal->getExprLoc());
10332 CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
10333 /*Volatile=*/false, Int64Ty);
10334 }
10335 llvm::Value *Args[] = {
10336 emitUpdateLocation(CGF, C->getBeginLoc()),
10337 getThreadID(CGF, C->getBeginLoc()),
10338 CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
10339 llvm::FunctionCallee RTLFn;
10340 if (C->getDependencyKind() == OMPC_DEPEND_source) {
10341 RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
10342 } else {
10343 assert(C->getDependencyKind() == OMPC_DEPEND_sink)((C->getDependencyKind() == OMPC_DEPEND_sink) ? static_cast
<void> (0) : __assert_fail ("C->getDependencyKind() == OMPC_DEPEND_sink"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10343, __PRETTY_FUNCTION__))
;
10344 RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
10345 }
10346 CGF.EmitRuntimeCall(RTLFn, Args);
10347}
10348
10349void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
10350 llvm::FunctionCallee Callee,
10351 ArrayRef<llvm::Value *> Args) const {
10352 assert(Loc.isValid() && "Outlined function call location must be valid.")((Loc.isValid() && "Outlined function call location must be valid."
) ? static_cast<void> (0) : __assert_fail ("Loc.isValid() && \"Outlined function call location must be valid.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10352, __PRETTY_FUNCTION__))
;
10353 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
10354
10355 if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
10356 if (Fn->doesNotThrow()) {
10357 CGF.EmitNounwindRuntimeCall(Fn, Args);
10358 return;
10359 }
10360 }
10361 CGF.EmitRuntimeCall(Callee, Args);
10362}
10363
10364void CGOpenMPRuntime::emitOutlinedFunctionCall(
10365 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
10366 ArrayRef<llvm::Value *> Args) const {
10367 emitCall(CGF, Loc, OutlinedFn, Args);
10368}
10369
10370void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
10371 if (const auto *FD = dyn_cast<FunctionDecl>(D))
10372 if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
10373 HasEmittedDeclareTargetRegion = true;
10374}
10375
10376Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
10377 const VarDecl *NativeParam,
10378 const VarDecl *TargetParam) const {
10379 return CGF.GetAddrOfLocalVar(NativeParam);
10380}
10381
10382namespace {
10383/// Cleanup action for allocate support.
10384class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
10385public:
10386 static const int CleanupArgs = 3;
10387
10388private:
10389 llvm::FunctionCallee RTLFn;
10390 llvm::Value *Args[CleanupArgs];
10391
10392public:
10393 OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
10394 ArrayRef<llvm::Value *> CallArgs)
10395 : RTLFn(RTLFn) {
10396 assert(CallArgs.size() == CleanupArgs &&((CallArgs.size() == CleanupArgs && "Size of arguments does not match."
) ? static_cast<void> (0) : __assert_fail ("CallArgs.size() == CleanupArgs && \"Size of arguments does not match.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10397, __PRETTY_FUNCTION__))
10397 "Size of arguments does not match.")((CallArgs.size() == CleanupArgs && "Size of arguments does not match."
) ? static_cast<void> (0) : __assert_fail ("CallArgs.size() == CleanupArgs && \"Size of arguments does not match.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10397, __PRETTY_FUNCTION__))
;
10398 std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
10399 }
10400 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
10401 if (!CGF.HaveInsertPoint())
10402 return;
10403 CGF.EmitRuntimeCall(RTLFn, Args);
10404 }
10405};
10406} // namespace
10407
10408Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
10409 const VarDecl *VD) {
10410 if (!VD)
10411 return Address::invalid();
10412 const VarDecl *CVD = VD->getCanonicalDecl();
10413 if (!CVD->hasAttr<OMPAllocateDeclAttr>())
10414 return Address::invalid();
10415 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
10416 // Use the default allocation.
10417 if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
10418 !AA->getAllocator())
10419 return Address::invalid();
10420 llvm::Value *Size;
10421 CharUnits Align = CGM.getContext().getDeclAlign(CVD);
10422 if (CVD->getType()->isVariablyModifiedType()) {
10423 Size = CGF.getTypeSize(CVD->getType());
10424 // Align the size: ((size + align - 1) / align) * align
10425 Size = CGF.Builder.CreateNUWAdd(
10426 Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
10427 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
10428 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
10429 } else {
10430 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
10431 Size = CGM.getSize(Sz.alignTo(Align));
10432 }
10433 llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
10434 assert(AA->getAllocator() &&((AA->getAllocator() && "Expected allocator expression for non-default allocator."
) ? static_cast<void> (0) : __assert_fail ("AA->getAllocator() && \"Expected allocator expression for non-default allocator.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10435, __PRETTY_FUNCTION__))
10435 "Expected allocator expression for non-default allocator.")((AA->getAllocator() && "Expected allocator expression for non-default allocator."
) ? static_cast<void> (0) : __assert_fail ("AA->getAllocator() && \"Expected allocator expression for non-default allocator.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10435, __PRETTY_FUNCTION__))
;
10436 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
10437 // According to the standard, the original allocator type is a enum (integer).
10438 // Convert to pointer type, if required.
10439 if (Allocator->getType()->isIntegerTy())
10440 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
10441 else if (Allocator->getType()->isPointerTy())
10442 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
10443 CGM.VoidPtrTy);
10444 llvm::Value *Args[] = {ThreadID, Size, Allocator};
10445
10446 llvm::Value *Addr =
10447 CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args,
10448 CVD->getName() + ".void.addr");
10449 llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
10450 Allocator};
10451 llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free);
10452
10453 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
10454 llvm::makeArrayRef(FiniArgs));
10455 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
10456 Addr,
10457 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
10458 CVD->getName() + ".addr");
10459 return Address(Addr, Align);
10460}
10461
10462llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
10463 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
10464 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
10465 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10465)
;
10466}
10467
10468llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
10469 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
10470 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
10471 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10471)
;
10472}
10473
10474llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
10475 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
10476 const VarDecl *PartIDVar, const VarDecl *TaskTVar,
10477 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
10478 bool Tied, unsigned &NumberOfParts) {
10479 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10479)
;
10480}
10481
10482void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
10483 SourceLocation Loc,
10484 llvm::Function *OutlinedFn,
10485 ArrayRef<llvm::Value *> CapturedVars,
10486 const Expr *IfCond) {
10487 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10487)
;
10488}
10489
10490void CGOpenMPSIMDRuntime::emitCriticalRegion(
10491 CodeGenFunction &CGF, StringRef CriticalName,
10492 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
10493 const Expr *Hint) {
10494 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10494)
;
10495}
10496
10497void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
10498 const RegionCodeGenTy &MasterOpGen,
10499 SourceLocation Loc) {
10500 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10500)
;
10501}
10502
10503void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
10504 SourceLocation Loc) {
10505 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10505)
;
10506}
10507
10508void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
10509 CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
10510 SourceLocation Loc) {
10511 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10511)
;
10512}
10513
10514void CGOpenMPSIMDRuntime::emitSingleRegion(
10515 CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
10516 SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
10517 ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
10518 ArrayRef<const Expr *> AssignmentOps) {
10519 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10519)
;
10520}
10521
10522void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
10523 const RegionCodeGenTy &OrderedOpGen,
10524 SourceLocation Loc,
10525 bool IsThreads) {
10526 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10526)
;
10527}
10528
10529void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
10530 SourceLocation Loc,
10531 OpenMPDirectiveKind Kind,
10532 bool EmitChecks,
10533 bool ForceSimpleCall) {
10534 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10534)
;
10535}
10536
10537void CGOpenMPSIMDRuntime::emitForDispatchInit(
10538 CodeGenFunction &CGF, SourceLocation Loc,
10539 const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
10540 bool Ordered, const DispatchRTInput &DispatchValues) {
10541 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10541)
;
10542}
10543
10544void CGOpenMPSIMDRuntime::emitForStaticInit(
10545 CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
10546 const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
10547 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10547)
;
10548}
10549
10550void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
10551 CodeGenFunction &CGF, SourceLocation Loc,
10552 OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
10553 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10553)
;
10554}
10555
10556void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
10557 SourceLocation Loc,
10558 unsigned IVSize,
10559 bool IVSigned) {
10560 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10560)
;
10561}
10562
10563void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
10564 SourceLocation Loc,
10565 OpenMPDirectiveKind DKind) {
10566 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10566)
;
10567}
10568
10569llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
10570 SourceLocation Loc,
10571 unsigned IVSize, bool IVSigned,
10572 Address IL, Address LB,
10573 Address UB, Address ST) {
10574 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10574)
;
10575}
10576
10577void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
10578 llvm::Value *NumThreads,
10579 SourceLocation Loc) {
10580 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10580)
;
10581}
10582
10583void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
10584 OpenMPProcBindClauseKind ProcBind,
10585 SourceLocation Loc) {
10586 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10586)
;
10587}
10588
10589Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
10590 const VarDecl *VD,
10591 Address VDAddr,
10592 SourceLocation Loc) {
10593 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10593)
;
10594}
10595
10596llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
10597 const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
10598 CodeGenFunction *CGF) {
10599 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10599)
;
10600}
10601
10602Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
10603 CodeGenFunction &CGF, QualType VarType, StringRef Name) {
10604 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10604)
;
10605}
10606
10607void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
10608 ArrayRef<const Expr *> Vars,
10609 SourceLocation Loc) {
10610 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10610)
;
10611}
10612
10613void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
10614 const OMPExecutableDirective &D,
10615 llvm::Function *TaskFunction,
10616 QualType SharedsTy, Address Shareds,
10617 const Expr *IfCond,
10618 const OMPTaskDataTy &Data) {
10619 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10619)
;
10620}
10621
10622void CGOpenMPSIMDRuntime::emitTaskLoopCall(
10623 CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
10624 llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
10625 const Expr *IfCond, const OMPTaskDataTy &Data) {
10626 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10626)
;
10627}
10628
10629void CGOpenMPSIMDRuntime::emitReduction(
10630 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
10631 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
10632 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
10633 assert(Options.SimpleReduction && "Only simple reduction is expected.")((Options.SimpleReduction && "Only simple reduction is expected."
) ? static_cast<void> (0) : __assert_fail ("Options.SimpleReduction && \"Only simple reduction is expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10633, __PRETTY_FUNCTION__))
;
10634 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
10635 ReductionOps, Options);
10636}
10637
10638llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
10639 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
10640 ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
10641 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10641)
;
10642}
10643
10644void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
10645 SourceLocation Loc,
10646 ReductionCodeGen &RCG,
10647 unsigned N) {
10648 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10648)
;
10649}
10650
10651Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
10652 SourceLocation Loc,
10653 llvm::Value *ReductionsPtr,
10654 LValue SharedLVal) {
10655 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10655)
;
10656}
10657
10658void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
10659 SourceLocation Loc) {
10660 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10660)
;
10661}
10662
10663void CGOpenMPSIMDRuntime::emitCancellationPointCall(
10664 CodeGenFunction &CGF, SourceLocation Loc,
10665 OpenMPDirectiveKind CancelRegion) {
10666 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10666)
;
10667}
10668
10669void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
10670 SourceLocation Loc, const Expr *IfCond,
10671 OpenMPDirectiveKind CancelRegion) {
10672 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10672)
;
10673}
10674
10675void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
10676 const OMPExecutableDirective &D, StringRef ParentName,
10677 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
10678 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
10679 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10679)
;
10680}
10681
10682void CGOpenMPSIMDRuntime::emitTargetCall(CodeGenFunction &CGF,
10683 const OMPExecutableDirective &D,
10684 llvm::Function *OutlinedFn,
10685 llvm::Value *OutlinedFnID,
10686 const Expr *IfCond,
10687 const Expr *Device) {
10688 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10688)
;
10689}
10690
10691bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
10692 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10692)
;
10693}
10694
10695bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
10696 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10696)
;
10697}
10698
10699bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
10700 return false;
10701}
10702
10703llvm::Function *CGOpenMPSIMDRuntime::emitRegistrationFunction() {
10704 return nullptr;
10705}
10706
10707void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
10708 const OMPExecutableDirective &D,
10709 SourceLocation Loc,
10710 llvm::Function *OutlinedFn,
10711 ArrayRef<llvm::Value *> CapturedVars) {
10712 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10712)
;
10713}
10714
10715void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10716 const Expr *NumTeams,
10717 const Expr *ThreadLimit,
10718 SourceLocation Loc) {
10719 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10719)
;
10720}
10721
10722void CGOpenMPSIMDRuntime::emitTargetDataCalls(
10723 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10724 const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
10725 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10725)
;
10726}
10727
10728void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
10729 CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10730 const Expr *Device) {
10731 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10731)
;
10732}
10733
10734void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
10735 const OMPLoopDirective &D,
10736 ArrayRef<Expr *> NumIterations) {
10737 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10737)
;
10738}
10739
10740void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
10741 const OMPDependClause *C) {
10742 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10742)
;
10743}
10744
10745const VarDecl *
10746CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
10747 const VarDecl *NativeParam) const {
10748 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10748)
;
10749}
10750
10751Address
10752CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
10753 const VarDecl *NativeParam,
10754 const VarDecl *TargetParam) const {
10755 llvm_unreachable("Not supported in SIMD-only mode")::llvm::llvm_unreachable_internal("Not supported in SIMD-only mode"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp"
, 10755)
;
10756}

/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECL_H
14#define LLVM_CLANG_AST_DECL_H
15
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/Redeclarable.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/AddressSpaces.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/IdentifierTable.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/PragmaKinds.h"
32#include "clang/Basic/SourceLocation.h"
33#include "clang/Basic/Specifiers.h"
34#include "clang/Basic/Visibility.h"
35#include "llvm/ADT/APSInt.h"
36#include "llvm/ADT/ArrayRef.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/iterator_range.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/TrailingObjects.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <string>
49#include <utility>
50
51namespace clang {
52
53class ASTContext;
54struct ASTTemplateArgumentListInfo;
55class Attr;
56class CompoundStmt;
57class DependentFunctionTemplateSpecializationInfo;
58class EnumDecl;
59class Expr;
60class FunctionTemplateDecl;
61class FunctionTemplateSpecializationInfo;
62class LabelStmt;
63class MemberSpecializationInfo;
64class Module;
65class NamespaceDecl;
66class ParmVarDecl;
67class RecordDecl;
68class Stmt;
69class StringLiteral;
70class TagDecl;
71class TemplateArgumentList;
72class TemplateArgumentListInfo;
73class TemplateParameterList;
74class TypeAliasTemplateDecl;
75class TypeLoc;
76class UnresolvedSetImpl;
77class VarTemplateDecl;
78
79/// A container of type source information.
80///
81/// A client can read the relevant info using TypeLoc wrappers, e.g:
82/// @code
83/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
84/// TL.getBeginLoc().print(OS, SrcMgr);
85/// @endcode
86class alignas(8) TypeSourceInfo {
87 // Contains a memory block after the class, used for type source information,
88 // allocated by ASTContext.
89 friend class ASTContext;
90
91 QualType Ty;
92
93 TypeSourceInfo(QualType ty) : Ty(ty) {}
94
95public:
96 /// Return the type wrapped by this type source info.
97 QualType getType() const { return Ty; }
98
99 /// Return the TypeLoc wrapper for the type source info.
100 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
101
102 /// Override the type stored in this TypeSourceInfo. Use with caution!
103 void overrideType(QualType T) { Ty = T; }
104};
105
106/// The top declaration context.
107class TranslationUnitDecl : public Decl, public DeclContext {
108 ASTContext &Ctx;
109
110 /// The (most recently entered) anonymous namespace for this
111 /// translation unit, if one has been created.
112 NamespaceDecl *AnonymousNamespace = nullptr;
113
114 explicit TranslationUnitDecl(ASTContext &ctx);
115
116 virtual void anchor();
117
118public:
119 ASTContext &getASTContext() const { return Ctx; }
120
121 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
122 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
123
124 static TranslationUnitDecl *Create(ASTContext &C);
125
126 // Implement isa/cast/dyncast/etc.
127 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
128 static bool classofKind(Kind K) { return K == TranslationUnit; }
129 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
130 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
131 }
132 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
133 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
134 }
135};
136
137/// Represents a `#pragma comment` line. Always a child of
138/// TranslationUnitDecl.
139class PragmaCommentDecl final
140 : public Decl,
141 private llvm::TrailingObjects<PragmaCommentDecl, char> {
142 friend class ASTDeclReader;
143 friend class ASTDeclWriter;
144 friend TrailingObjects;
145
146 PragmaMSCommentKind CommentKind;
147
148 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
149 PragmaMSCommentKind CommentKind)
150 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
151
152 virtual void anchor();
153
154public:
155 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
156 SourceLocation CommentLoc,
157 PragmaMSCommentKind CommentKind,
158 StringRef Arg);
159 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
160 unsigned ArgSize);
161
162 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
163
164 StringRef getArg() const { return getTrailingObjects<char>(); }
165
166 // Implement isa/cast/dyncast/etc.
167 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
168 static bool classofKind(Kind K) { return K == PragmaComment; }
169};
170
171/// Represents a `#pragma detect_mismatch` line. Always a child of
172/// TranslationUnitDecl.
173class PragmaDetectMismatchDecl final
174 : public Decl,
175 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
176 friend class ASTDeclReader;
177 friend class ASTDeclWriter;
178 friend TrailingObjects;
179
180 size_t ValueStart;
181
182 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
183 size_t ValueStart)
184 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
185
186 virtual void anchor();
187
188public:
189 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
190 TranslationUnitDecl *DC,
191 SourceLocation Loc, StringRef Name,
192 StringRef Value);
193 static PragmaDetectMismatchDecl *
194 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
195
196 StringRef getName() const { return getTrailingObjects<char>(); }
197 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
198
199 // Implement isa/cast/dyncast/etc.
200 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
201 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
202};
203
204/// Declaration context for names declared as extern "C" in C++. This
205/// is neither the semantic nor lexical context for such declarations, but is
206/// used to check for conflicts with other extern "C" declarations. Example:
207///
208/// \code
209/// namespace N { extern "C" void f(); } // #1
210/// void N::f() {} // #2
211/// namespace M { extern "C" void f(); } // #3
212/// \endcode
213///
214/// The semantic context of #1 is namespace N and its lexical context is the
215/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
216/// context is the TU. However, both declarations are also visible in the
217/// extern "C" context.
218///
219/// The declaration at #3 finds it is a redeclaration of \c N::f through
220/// lookup in the extern "C" context.
221class ExternCContextDecl : public Decl, public DeclContext {
222 explicit ExternCContextDecl(TranslationUnitDecl *TU)
223 : Decl(ExternCContext, TU, SourceLocation()),
224 DeclContext(ExternCContext) {}
225
226 virtual void anchor();
227
228public:
229 static ExternCContextDecl *Create(const ASTContext &C,
230 TranslationUnitDecl *TU);
231
232 // Implement isa/cast/dyncast/etc.
233 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
234 static bool classofKind(Kind K) { return K == ExternCContext; }
235 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
236 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
237 }
238 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
239 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
240 }
241};
242
243/// This represents a decl that may have a name. Many decls have names such
244/// as ObjCMethodDecl, but not \@class, etc.
245///
246/// Note that not every NamedDecl is actually named (e.g., a struct might
247/// be anonymous), and not every name is an identifier.
248class NamedDecl : public Decl {
249 /// The name of this declaration, which is typically a normal
250 /// identifier but may also be a special kind of name (C++
251 /// constructor, Objective-C selector, etc.)
252 DeclarationName Name;
253
254 virtual void anchor();
255
256private:
257 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
258
259protected:
260 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
261 : Decl(DK, DC, L), Name(N) {}
262
263public:
264 /// Get the identifier that names this declaration, if there is one.
265 ///
266 /// This will return NULL if this declaration has no name (e.g., for
267 /// an unnamed class) or if the name is a special name (C++ constructor,
268 /// Objective-C selector, etc.).
269 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
270
271 /// Get the name of identifier for this declaration as a StringRef.
272 ///
273 /// This requires that the declaration have a name and that it be a simple
274 /// identifier.
275 StringRef getName() const {
276 assert(Name.isIdentifier() && "Name is not a simple identifier")((Name.isIdentifier() && "Name is not a simple identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.isIdentifier() && \"Name is not a simple identifier\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 276, __PRETTY_FUNCTION__))
;
277 return getIdentifier() ? getIdentifier()->getName() : "";
278 }
279
280 /// Get a human-readable name for the declaration, even if it is one of the
281 /// special kinds of names (C++ constructor, Objective-C selector, etc).
282 ///
283 /// Creating this name requires expensive string manipulation, so it should
284 /// be called only when performance doesn't matter. For simple declarations,
285 /// getNameAsCString() should suffice.
286 //
287 // FIXME: This function should be renamed to indicate that it is not just an
288 // alternate form of getName(), and clients should move as appropriate.
289 //
290 // FIXME: Deprecated, move clients to getName().
291 std::string getNameAsString() const { return Name.getAsString(); }
292
293 virtual void printName(raw_ostream &os) const;
294
295 /// Get the actual, stored name of the declaration, which may be a special
296 /// name.
297 DeclarationName getDeclName() const { return Name; }
298
299 /// Set the name of this declaration.
300 void setDeclName(DeclarationName N) { Name = N; }
301
302 /// Returns a human-readable qualified name for this declaration, like
303 /// A::B::i, for i being member of namespace A::B.
304 ///
305 /// If the declaration is not a member of context which can be named (record,
306 /// namespace), it will return the same result as printName().
307 ///
308 /// Creating this name is expensive, so it should be called only when
309 /// performance doesn't matter.
310 void printQualifiedName(raw_ostream &OS) const;
311 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
312
313 // FIXME: Remove string version.
314 std::string getQualifiedNameAsString() const;
315
316 /// Appends a human-readable name for this declaration into the given stream.
317 ///
318 /// This is the method invoked by Sema when displaying a NamedDecl
319 /// in a diagnostic. It does not necessarily produce the same
320 /// result as printName(); for example, class template
321 /// specializations are printed with their template arguments.
322 virtual void getNameForDiagnostic(raw_ostream &OS,
323 const PrintingPolicy &Policy,
324 bool Qualified) const;
325
326 /// Determine whether this declaration, if known to be well-formed within
327 /// its context, will replace the declaration OldD if introduced into scope.
328 ///
329 /// A declaration will replace another declaration if, for example, it is
330 /// a redeclaration of the same variable or function, but not if it is a
331 /// declaration of a different kind (function vs. class) or an overloaded
332 /// function.
333 ///
334 /// \param IsKnownNewer \c true if this declaration is known to be newer
335 /// than \p OldD (for instance, if this declaration is newly-created).
336 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
337
338 /// Determine whether this declaration has linkage.
339 bool hasLinkage() const;
340
341 using Decl::isModulePrivate;
342 using Decl::setModulePrivate;
343
344 /// Determine whether this declaration is a C++ class member.
345 bool isCXXClassMember() const {
346 const DeclContext *DC = getDeclContext();
347
348 // C++0x [class.mem]p1:
349 // The enumerators of an unscoped enumeration defined in
350 // the class are members of the class.
351 if (isa<EnumDecl>(DC))
352 DC = DC->getRedeclContext();
353
354 return DC->isRecord();
355 }
356
357 /// Determine whether the given declaration is an instance member of
358 /// a C++ class.
359 bool isCXXInstanceMember() const;
360
361 /// Determine what kind of linkage this entity has.
362 ///
363 /// This is not the linkage as defined by the standard or the codegen notion
364 /// of linkage. It is just an implementation detail that is used to compute
365 /// those.
366 Linkage getLinkageInternal() const;
367
368 /// Get the linkage from a semantic point of view. Entities in
369 /// anonymous namespaces are external (in c++98).
370 Linkage getFormalLinkage() const {
371 return clang::getFormalLinkage(getLinkageInternal());
372 }
373
374 /// True if this decl has external linkage.
375 bool hasExternalFormalLinkage() const {
376 return isExternalFormalLinkage(getLinkageInternal());
377 }
378
379 bool isExternallyVisible() const {
380 return clang::isExternallyVisible(getLinkageInternal());
381 }
382
383 /// Determine whether this declaration can be redeclared in a
384 /// different translation unit.
385 bool isExternallyDeclarable() const {
386 return isExternallyVisible() && !getOwningModuleForLinkage();
387 }
388
389 /// Determines the visibility of this entity.
390 Visibility getVisibility() const {
391 return getLinkageAndVisibility().getVisibility();
392 }
393
394 /// Determines the linkage and visibility of this entity.
395 LinkageInfo getLinkageAndVisibility() const;
396
397 /// Kinds of explicit visibility.
398 enum ExplicitVisibilityKind {
399 /// Do an LV computation for, ultimately, a type.
400 /// Visibility may be restricted by type visibility settings and
401 /// the visibility of template arguments.
402 VisibilityForType,
403
404 /// Do an LV computation for, ultimately, a non-type declaration.
405 /// Visibility may be restricted by value visibility settings and
406 /// the visibility of template arguments.
407 VisibilityForValue
408 };
409
410 /// If visibility was explicitly specified for this
411 /// declaration, return that visibility.
412 Optional<Visibility>
413 getExplicitVisibility(ExplicitVisibilityKind kind) const;
414
415 /// True if the computed linkage is valid. Used for consistency
416 /// checking. Should always return true.
417 bool isLinkageValid() const;
418
419 /// True if something has required us to compute the linkage
420 /// of this declaration.
421 ///
422 /// Language features which can retroactively change linkage (like a
423 /// typedef name for linkage purposes) may need to consider this,
424 /// but hopefully only in transitory ways during parsing.
425 bool hasLinkageBeenComputed() const {
426 return hasCachedLinkage();
427 }
428
429 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
430 /// the underlying named decl.
431 NamedDecl *getUnderlyingDecl() {
432 // Fast-path the common case.
433 if (this->getKind() != UsingShadow &&
434 this->getKind() != ConstructorUsingShadow &&
435 this->getKind() != ObjCCompatibleAlias &&
436 this->getKind() != NamespaceAlias)
437 return this;
438
439 return getUnderlyingDeclImpl();
440 }
441 const NamedDecl *getUnderlyingDecl() const {
442 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
443 }
444
445 NamedDecl *getMostRecentDecl() {
446 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
447 }
448 const NamedDecl *getMostRecentDecl() const {
449 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
450 }
451
452 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
453
454 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
455 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
456};
457
458inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
459 ND.printName(OS);
460 return OS;
461}
462
463/// Represents the declaration of a label. Labels also have a
464/// corresponding LabelStmt, which indicates the position that the label was
465/// defined at. For normal labels, the location of the decl is the same as the
466/// location of the statement. For GNU local labels (__label__), the decl
467/// location is where the __label__ is.
468class LabelDecl : public NamedDecl {
469 LabelStmt *TheStmt;
470 StringRef MSAsmName;
471 bool MSAsmNameResolved = false;
472
473 /// For normal labels, this is the same as the main declaration
474 /// label, i.e., the location of the identifier; for GNU local labels,
475 /// this is the location of the __label__ keyword.
476 SourceLocation LocStart;
477
478 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
479 LabelStmt *S, SourceLocation StartL)
480 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
481
482 void anchor() override;
483
484public:
485 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
486 SourceLocation IdentL, IdentifierInfo *II);
487 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
488 SourceLocation IdentL, IdentifierInfo *II,
489 SourceLocation GnuLabelL);
490 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
491
492 LabelStmt *getStmt() const { return TheStmt; }
493 void setStmt(LabelStmt *T) { TheStmt = T; }
494
495 bool isGnuLocal() const { return LocStart != getLocation(); }
496 void setLocStart(SourceLocation L) { LocStart = L; }
497
498 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
499 return SourceRange(LocStart, getLocation());
500 }
501
502 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
503 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
504 void setMSAsmLabel(StringRef Name);
505 StringRef getMSAsmLabel() const { return MSAsmName; }
506 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
507
508 // Implement isa/cast/dyncast/etc.
509 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
510 static bool classofKind(Kind K) { return K == Label; }
511};
512
513/// Represent a C++ namespace.
514class NamespaceDecl : public NamedDecl, public DeclContext,
515 public Redeclarable<NamespaceDecl>
516{
517 /// The starting location of the source range, pointing
518 /// to either the namespace or the inline keyword.
519 SourceLocation LocStart;
520
521 /// The ending location of the source range.
522 SourceLocation RBraceLoc;
523
524 /// A pointer to either the anonymous namespace that lives just inside
525 /// this namespace or to the first namespace in the chain (the latter case
526 /// only when this is not the first in the chain), along with a
527 /// boolean value indicating whether this is an inline namespace.
528 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
529
530 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
531 SourceLocation StartLoc, SourceLocation IdLoc,
532 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
533
534 using redeclarable_base = Redeclarable<NamespaceDecl>;
535
536 NamespaceDecl *getNextRedeclarationImpl() override;
537 NamespaceDecl *getPreviousDeclImpl() override;
538 NamespaceDecl *getMostRecentDeclImpl() override;
539
540public:
541 friend class ASTDeclReader;
542 friend class ASTDeclWriter;
543
544 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
545 bool Inline, SourceLocation StartLoc,
546 SourceLocation IdLoc, IdentifierInfo *Id,
547 NamespaceDecl *PrevDecl);
548
549 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
550
551 using redecl_range = redeclarable_base::redecl_range;
552 using redecl_iterator = redeclarable_base::redecl_iterator;
553
554 using redeclarable_base::redecls_begin;
555 using redeclarable_base::redecls_end;
556 using redeclarable_base::redecls;
557 using redeclarable_base::getPreviousDecl;
558 using redeclarable_base::getMostRecentDecl;
559 using redeclarable_base::isFirstDecl;
560
561 /// Returns true if this is an anonymous namespace declaration.
562 ///
563 /// For example:
564 /// \code
565 /// namespace {
566 /// ...
567 /// };
568 /// \endcode
569 /// q.v. C++ [namespace.unnamed]
570 bool isAnonymousNamespace() const {
571 return !getIdentifier();
572 }
573
574 /// Returns true if this is an inline namespace declaration.
575 bool isInline() const {
576 return AnonOrFirstNamespaceAndInline.getInt();
577 }
578
579 /// Set whether this is an inline namespace declaration.
580 void setInline(bool Inline) {
581 AnonOrFirstNamespaceAndInline.setInt(Inline);
582 }
583
584 /// Get the original (first) namespace declaration.
585 NamespaceDecl *getOriginalNamespace();
586
587 /// Get the original (first) namespace declaration.
588 const NamespaceDecl *getOriginalNamespace() const;
589
590 /// Return true if this declaration is an original (first) declaration
591 /// of the namespace. This is false for non-original (subsequent) namespace
592 /// declarations and anonymous namespaces.
593 bool isOriginalNamespace() const;
594
595 /// Retrieve the anonymous namespace nested inside this namespace,
596 /// if any.
597 NamespaceDecl *getAnonymousNamespace() const {
598 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
599 }
600
601 void setAnonymousNamespace(NamespaceDecl *D) {
602 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
603 }
604
605 /// Retrieves the canonical declaration of this namespace.
606 NamespaceDecl *getCanonicalDecl() override {
607 return getOriginalNamespace();
608 }
609 const NamespaceDecl *getCanonicalDecl() const {
610 return getOriginalNamespace();
611 }
612
613 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
614 return SourceRange(LocStart, RBraceLoc);
615 }
616
617 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
618 SourceLocation getRBraceLoc() const { return RBraceLoc; }
619 void setLocStart(SourceLocation L) { LocStart = L; }
620 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
621
622 // Implement isa/cast/dyncast/etc.
623 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
624 static bool classofKind(Kind K) { return K == Namespace; }
625 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
626 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
627 }
628 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
629 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
630 }
631};
632
633/// Represent the declaration of a variable (in which case it is
634/// an lvalue) a function (in which case it is a function designator) or
635/// an enum constant.
636class ValueDecl : public NamedDecl {
637 QualType DeclType;
638
639 void anchor() override;
640
641protected:
642 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
643 DeclarationName N, QualType T)
644 : NamedDecl(DK, DC, L, N), DeclType(T) {}
645
646public:
647 QualType getType() const { return DeclType; }
648 void setType(QualType newType) { DeclType = newType; }
649
650 /// Determine whether this symbol is weakly-imported,
651 /// or declared with the weak or weak-ref attr.
652 bool isWeak() const;
653
654 // Implement isa/cast/dyncast/etc.
655 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
656 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
657};
658
659/// A struct with extended info about a syntactic
660/// name qualifier, to be used for the case of out-of-line declarations.
661struct QualifierInfo {
662 NestedNameSpecifierLoc QualifierLoc;
663
664 /// The number of "outer" template parameter lists.
665 /// The count includes all of the template parameter lists that were matched
666 /// against the template-ids occurring into the NNS and possibly (in the
667 /// case of an explicit specialization) a final "template <>".
668 unsigned NumTemplParamLists = 0;
669
670 /// A new-allocated array of size NumTemplParamLists,
671 /// containing pointers to the "outer" template parameter lists.
672 /// It includes all of the template parameter lists that were matched
673 /// against the template-ids occurring into the NNS and possibly (in the
674 /// case of an explicit specialization) a final "template <>".
675 TemplateParameterList** TemplParamLists = nullptr;
676
677 QualifierInfo() = default;
678 QualifierInfo(const QualifierInfo &) = delete;
679 QualifierInfo& operator=(const QualifierInfo &) = delete;
680
681 /// Sets info about "outer" template parameter lists.
682 void setTemplateParameterListsInfo(ASTContext &Context,
683 ArrayRef<TemplateParameterList *> TPLists);
684};
685
686/// Represents a ValueDecl that came out of a declarator.
687/// Contains type source information through TypeSourceInfo.
688class DeclaratorDecl : public ValueDecl {
689 // A struct representing both a TInfo and a syntactic qualifier,
690 // to be used for the (uncommon) case of out-of-line declarations.
691 struct ExtInfo : public QualifierInfo {
692 TypeSourceInfo *TInfo;
693 };
694
695 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
696
697 /// The start of the source range for this declaration,
698 /// ignoring outer template declarations.
699 SourceLocation InnerLocStart;
700
701 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
702 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
703 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
704
705protected:
706 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
707 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
708 SourceLocation StartL)
709 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
710
711public:
712 friend class ASTDeclReader;
713 friend class ASTDeclWriter;
714
715 TypeSourceInfo *getTypeSourceInfo() const {
716 return hasExtInfo()
717 ? getExtInfo()->TInfo
718 : DeclInfo.get<TypeSourceInfo*>();
719 }
720
721 void setTypeSourceInfo(TypeSourceInfo *TI) {
722 if (hasExtInfo())
723 getExtInfo()->TInfo = TI;
724 else
725 DeclInfo = TI;
726 }
727
728 /// Return start of source range ignoring outer template declarations.
729 SourceLocation getInnerLocStart() const { return InnerLocStart; }
730 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
731
732 /// Return start of source range taking into account any outer template
733 /// declarations.
734 SourceLocation getOuterLocStart() const;
735
736 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
737
738 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
739 return getOuterLocStart();
740 }
741
742 /// Retrieve the nested-name-specifier that qualifies the name of this
743 /// declaration, if it was present in the source.
744 NestedNameSpecifier *getQualifier() const {
745 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
746 : nullptr;
747 }
748
749 /// Retrieve the nested-name-specifier (with source-location
750 /// information) that qualifies the name of this declaration, if it was
751 /// present in the source.
752 NestedNameSpecifierLoc getQualifierLoc() const {
753 return hasExtInfo() ? getExtInfo()->QualifierLoc
754 : NestedNameSpecifierLoc();
755 }
756
757 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
758
759 unsigned getNumTemplateParameterLists() const {
760 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
761 }
762
763 TemplateParameterList *getTemplateParameterList(unsigned index) const {
764 assert(index < getNumTemplateParameterLists())((index < getNumTemplateParameterLists()) ? static_cast<
void> (0) : __assert_fail ("index < getNumTemplateParameterLists()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 764, __PRETTY_FUNCTION__))
;
765 return getExtInfo()->TemplParamLists[index];
766 }
767
768 void setTemplateParameterListsInfo(ASTContext &Context,
769 ArrayRef<TemplateParameterList *> TPLists);
770
771 SourceLocation getTypeSpecStartLoc() const;
772
773 // Implement isa/cast/dyncast/etc.
774 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
775 static bool classofKind(Kind K) {
776 return K >= firstDeclarator && K <= lastDeclarator;
777 }
778};
779
780/// Structure used to store a statement, the constant value to
781/// which it was evaluated (if any), and whether or not the statement
782/// is an integral constant expression (if known).
783struct EvaluatedStmt {
784 /// Whether this statement was already evaluated.
785 bool WasEvaluated : 1;
786
787 /// Whether this statement is being evaluated.
788 bool IsEvaluating : 1;
789
790 /// Whether we already checked whether this statement was an
791 /// integral constant expression.
792 bool CheckedICE : 1;
793
794 /// Whether we are checking whether this statement is an
795 /// integral constant expression.
796 bool CheckingICE : 1;
797
798 /// Whether this statement is an integral constant expression,
799 /// or in C++11, whether the statement is a constant expression. Only
800 /// valid if CheckedICE is true.
801 bool IsICE : 1;
802
803 Stmt *Value;
804 APValue Evaluated;
805
806 EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
807 CheckingICE(false), IsICE(false) {}
808
809};
810
811/// Represents a variable declaration or definition.
812class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
813public:
814 /// Initialization styles.
815 enum InitializationStyle {
816 /// C-style initialization with assignment
817 CInit,
818
819 /// Call-style initialization (C++98)
820 CallInit,
821
822 /// Direct list-initialization (C++11)
823 ListInit
824 };
825
826 /// Kinds of thread-local storage.
827 enum TLSKind {
828 /// Not a TLS variable.
829 TLS_None,
830
831 /// TLS with a known-constant initializer.
832 TLS_Static,
833
834 /// TLS with a dynamic initializer.
835 TLS_Dynamic
836 };
837
838 /// Return the string used to specify the storage class \p SC.
839 ///
840 /// It is illegal to call this function with SC == None.
841 static const char *getStorageClassSpecifierString(StorageClass SC);
842
843protected:
844 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
845 // have allocated the auxiliary struct of information there.
846 //
847 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
848 // this as *many* VarDecls are ParmVarDecls that don't have default
849 // arguments. We could save some space by moving this pointer union to be
850 // allocated in trailing space when necessary.
851 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
852
853 /// The initializer for this variable or, for a ParmVarDecl, the
854 /// C++ default argument.
855 mutable InitType Init;
856
857private:
858 friend class ASTDeclReader;
859 friend class ASTNodeImporter;
860 friend class StmtIteratorBase;
861
862 class VarDeclBitfields {
863 friend class ASTDeclReader;
864 friend class VarDecl;
865
866 unsigned SClass : 3;
867 unsigned TSCSpec : 2;
868 unsigned InitStyle : 2;
869
870 /// Whether this variable is an ARC pseudo-__strong variable; see
871 /// isARCPseudoStrong() for details.
872 unsigned ARCPseudoStrong : 1;
873 };
874 enum { NumVarDeclBits = 8 };
875
876protected:
877 enum { NumParameterIndexBits = 8 };
878
879 enum DefaultArgKind {
880 DAK_None,
881 DAK_Unparsed,
882 DAK_Uninstantiated,
883 DAK_Normal
884 };
885
886 class ParmVarDeclBitfields {
887 friend class ASTDeclReader;
888 friend class ParmVarDecl;
889
890 unsigned : NumVarDeclBits;
891
892 /// Whether this parameter inherits a default argument from a
893 /// prior declaration.
894 unsigned HasInheritedDefaultArg : 1;
895
896 /// Describes the kind of default argument for this parameter. By default
897 /// this is none. If this is normal, then the default argument is stored in
898 /// the \c VarDecl initializer expression unless we were unable to parse
899 /// (even an invalid) expression for the default argument.
900 unsigned DefaultArgKind : 2;
901
902 /// Whether this parameter undergoes K&R argument promotion.
903 unsigned IsKNRPromoted : 1;
904
905 /// Whether this parameter is an ObjC method parameter or not.
906 unsigned IsObjCMethodParam : 1;
907
908 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
909 /// Otherwise, the number of function parameter scopes enclosing
910 /// the function parameter scope in which this parameter was
911 /// declared.
912 unsigned ScopeDepthOrObjCQuals : 7;
913
914 /// The number of parameters preceding this parameter in the
915 /// function parameter scope in which it was declared.
916 unsigned ParameterIndex : NumParameterIndexBits;
917 };
918
919 class NonParmVarDeclBitfields {
920 friend class ASTDeclReader;
921 friend class ImplicitParamDecl;
922 friend class VarDecl;
923
924 unsigned : NumVarDeclBits;
925
926 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
927 /// Whether this variable is a definition which was demoted due to
928 /// module merge.
929 unsigned IsThisDeclarationADemotedDefinition : 1;
930
931 /// Whether this variable is the exception variable in a C++ catch
932 /// or an Objective-C @catch statement.
933 unsigned ExceptionVar : 1;
934
935 /// Whether this local variable could be allocated in the return
936 /// slot of its function, enabling the named return value optimization
937 /// (NRVO).
938 unsigned NRVOVariable : 1;
939
940 /// Whether this variable is the for-range-declaration in a C++0x
941 /// for-range statement.
942 unsigned CXXForRangeDecl : 1;
943
944 /// Whether this variable is the for-in loop declaration in Objective-C.
945 unsigned ObjCForDecl : 1;
946
947 /// Whether this variable is (C++1z) inline.
948 unsigned IsInline : 1;
949
950 /// Whether this variable has (C++1z) inline explicitly specified.
951 unsigned IsInlineSpecified : 1;
952
953 /// Whether this variable is (C++0x) constexpr.
954 unsigned IsConstexpr : 1;
955
956 /// Whether this variable is the implicit variable for a lambda
957 /// init-capture.
958 unsigned IsInitCapture : 1;
959
960 /// Whether this local extern variable's previous declaration was
961 /// declared in the same block scope. This controls whether we should merge
962 /// the type of this declaration with its previous declaration.
963 unsigned PreviousDeclInSameBlockScope : 1;
964
965 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
966 /// something else.
967 unsigned ImplicitParamKind : 3;
968
969 unsigned EscapingByref : 1;
970 };
971
972 union {
973 unsigned AllBits;
974 VarDeclBitfields VarDeclBits;
975 ParmVarDeclBitfields ParmVarDeclBits;
976 NonParmVarDeclBitfields NonParmVarDeclBits;
977 };
978
979 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
980 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
981 TypeSourceInfo *TInfo, StorageClass SC);
982
983 using redeclarable_base = Redeclarable<VarDecl>;
984
985 VarDecl *getNextRedeclarationImpl() override {
986 return getNextRedeclaration();
987 }
988
989 VarDecl *getPreviousDeclImpl() override {
990 return getPreviousDecl();
991 }
992
993 VarDecl *getMostRecentDeclImpl() override {
994 return getMostRecentDecl();
995 }
996
997public:
998 using redecl_range = redeclarable_base::redecl_range;
999 using redecl_iterator = redeclarable_base::redecl_iterator;
1000
1001 using redeclarable_base::redecls_begin;
1002 using redeclarable_base::redecls_end;
1003 using redeclarable_base::redecls;
1004 using redeclarable_base::getPreviousDecl;
1005 using redeclarable_base::getMostRecentDecl;
1006 using redeclarable_base::isFirstDecl;
1007
1008 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1009 SourceLocation StartLoc, SourceLocation IdLoc,
1010 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1011 StorageClass S);
1012
1013 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1014
1015 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1016
1017 /// Returns the storage class as written in the source. For the
1018 /// computed linkage of symbol, see getLinkage.
1019 StorageClass getStorageClass() const {
1020 return (StorageClass) VarDeclBits.SClass;
1021 }
1022 void setStorageClass(StorageClass SC);
1023
1024 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1025 VarDeclBits.TSCSpec = TSC;
1026 assert(VarDeclBits.TSCSpec == TSC && "truncation")((VarDeclBits.TSCSpec == TSC && "truncation") ? static_cast
<void> (0) : __assert_fail ("VarDeclBits.TSCSpec == TSC && \"truncation\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1026, __PRETTY_FUNCTION__))
;
1027 }
1028 ThreadStorageClassSpecifier getTSCSpec() const {
1029 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1030 }
1031 TLSKind getTLSKind() const;
1032
1033 /// Returns true if a variable with function scope is a non-static local
1034 /// variable.
1035 bool hasLocalStorage() const {
1036 if (getStorageClass() == SC_None) {
1037 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1038 // used to describe variables allocated in global memory and which are
1039 // accessed inside a kernel(s) as read-only variables. As such, variables
1040 // in constant address space cannot have local storage.
1041 if (getType().getAddressSpace() == LangAS::opencl_constant)
1042 return false;
1043 // Second check is for C++11 [dcl.stc]p4.
1044 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1045 }
1046
1047 // Global Named Register (GNU extension)
1048 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1049 return false;
1050
1051 // Return true for: Auto, Register.
1052 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1053
1054 return getStorageClass() >= SC_Auto;
1055 }
1056
1057 /// Returns true if a variable with function scope is a static local
1058 /// variable.
1059 bool isStaticLocal() const {
1060 return (getStorageClass() == SC_Static ||
1061 // C++11 [dcl.stc]p4
1062 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1063 && !isFileVarDecl();
1064 }
1065
1066 /// Returns true if a variable has extern or __private_extern__
1067 /// storage.
1068 bool hasExternalStorage() const {
1069 return getStorageClass() == SC_Extern ||
1070 getStorageClass() == SC_PrivateExtern;
1071 }
1072
1073 /// Returns true for all variables that do not have local storage.
1074 ///
1075 /// This includes all global variables as well as static variables declared
1076 /// within a function.
1077 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1078
1079 /// Get the storage duration of this variable, per C++ [basic.stc].
1080 StorageDuration getStorageDuration() const {
1081 return hasLocalStorage() ? SD_Automatic :
1082 getTSCSpec() ? SD_Thread : SD_Static;
1083 }
1084
1085 /// Compute the language linkage.
1086 LanguageLinkage getLanguageLinkage() const;
1087
1088 /// Determines whether this variable is a variable with external, C linkage.
1089 bool isExternC() const;
1090
1091 /// Determines whether this variable's context is, or is nested within,
1092 /// a C++ extern "C" linkage spec.
1093 bool isInExternCContext() const;
1094
1095 /// Determines whether this variable's context is, or is nested within,
1096 /// a C++ extern "C++" linkage spec.
1097 bool isInExternCXXContext() const;
1098
1099 /// Returns true for local variable declarations other than parameters.
1100 /// Note that this includes static variables inside of functions. It also
1101 /// includes variables inside blocks.
1102 ///
1103 /// void foo() { int x; static int y; extern int z; }
1104 bool isLocalVarDecl() const {
1105 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1106 return false;
1107 if (const DeclContext *DC = getLexicalDeclContext())
1108 return DC->getRedeclContext()->isFunctionOrMethod();
1109 return false;
1110 }
1111
1112 /// Similar to isLocalVarDecl but also includes parameters.
1113 bool isLocalVarDeclOrParm() const {
1114 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1115 }
1116
1117 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1118 bool isFunctionOrMethodVarDecl() const {
1119 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1120 return false;
1121 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1122 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1123 }
1124
1125 /// Determines whether this is a static data member.
1126 ///
1127 /// This will only be true in C++, and applies to, e.g., the
1128 /// variable 'x' in:
1129 /// \code
1130 /// struct S {
1131 /// static int x;
1132 /// };
1133 /// \endcode
1134 bool isStaticDataMember() const {
1135 // If it wasn't static, it would be a FieldDecl.
1136 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1137 }
1138
1139 VarDecl *getCanonicalDecl() override;
1140 const VarDecl *getCanonicalDecl() const {
1141 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1142 }
1143
1144 enum DefinitionKind {
1145 /// This declaration is only a declaration.
1146 DeclarationOnly,
1147
1148 /// This declaration is a tentative definition.
1149 TentativeDefinition,
1150
1151 /// This declaration is definitely a definition.
1152 Definition
1153 };
1154
1155 /// Check whether this declaration is a definition. If this could be
1156 /// a tentative definition (in C), don't check whether there's an overriding
1157 /// definition.
1158 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1159 DefinitionKind isThisDeclarationADefinition() const {
1160 return isThisDeclarationADefinition(getASTContext());
1161 }
1162
1163 /// Check whether this variable is defined in this translation unit.
1164 DefinitionKind hasDefinition(ASTContext &) const;
1165 DefinitionKind hasDefinition() const {
1166 return hasDefinition(getASTContext());
1167 }
1168
1169 /// Get the tentative definition that acts as the real definition in a TU.
1170 /// Returns null if there is a proper definition available.
1171 VarDecl *getActingDefinition();
1172 const VarDecl *getActingDefinition() const {
1173 return const_cast<VarDecl*>(this)->getActingDefinition();
1174 }
1175
1176 /// Get the real (not just tentative) definition for this declaration.
1177 VarDecl *getDefinition(ASTContext &);
1178 const VarDecl *getDefinition(ASTContext &C) const {
1179 return const_cast<VarDecl*>(this)->getDefinition(C);
4
Returning pointer
1180 }
1181 VarDecl *getDefinition() {
1182 return getDefinition(getASTContext());
1183 }
1184 const VarDecl *getDefinition() const {
1185 return const_cast<VarDecl*>(this)->getDefinition();
1186 }
1187
1188 /// Determine whether this is or was instantiated from an out-of-line
1189 /// definition of a static data member.
1190 bool isOutOfLine() const override;
1191
1192 /// Returns true for file scoped variable declaration.
1193 bool isFileVarDecl() const {
1194 Kind K = getKind();
1195 if (K == ParmVar || K == ImplicitParam)
1196 return false;
1197
1198 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1199 return true;
1200
1201 if (isStaticDataMember())
1202 return true;
1203
1204 return false;
1205 }
1206
1207 /// Get the initializer for this variable, no matter which
1208 /// declaration it is attached to.
1209 const Expr *getAnyInitializer() const {
1210 const VarDecl *D;
1211 return getAnyInitializer(D);
1212 }
1213
1214 /// Get the initializer for this variable, no matter which
1215 /// declaration it is attached to. Also get that declaration.
1216 const Expr *getAnyInitializer(const VarDecl *&D) const;
1217
1218 bool hasInit() const;
1219 const Expr *getInit() const {
1220 return const_cast<VarDecl *>(this)->getInit();
1221 }
1222 Expr *getInit();
1223
1224 /// Retrieve the address of the initializer expression.
1225 Stmt **getInitAddress();
1226
1227 void setInit(Expr *I);
1228
1229 /// Determine whether this variable's value can be used in a
1230 /// constant expression, according to the relevant language standard.
1231 /// This only checks properties of the declaration, and does not check
1232 /// whether the initializer is in fact a constant expression.
1233 bool isUsableInConstantExpressions(ASTContext &C) const;
1234
1235 EvaluatedStmt *ensureEvaluatedStmt() const;
1236
1237 /// Attempt to evaluate the value of the initializer attached to this
1238 /// declaration, and produce notes explaining why it cannot be evaluated or is
1239 /// not a constant expression. Returns a pointer to the value if evaluation
1240 /// succeeded, 0 otherwise.
1241 APValue *evaluateValue() const;
1242 APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1243
1244 /// Return the already-evaluated value of this variable's
1245 /// initializer, or NULL if the value is not yet known. Returns pointer
1246 /// to untyped APValue if the value could not be evaluated.
1247 APValue *getEvaluatedValue() const;
1248
1249 /// Determines whether it is already known whether the
1250 /// initializer is an integral constant expression or not.
1251 bool isInitKnownICE() const;
1252
1253 /// Determines whether the initializer is an integral constant
1254 /// expression, or in C++11, whether the initializer is a constant
1255 /// expression.
1256 ///
1257 /// \pre isInitKnownICE()
1258 bool isInitICE() const;
1259
1260 /// Determine whether the value of the initializer attached to this
1261 /// declaration is an integral constant expression.
1262 bool checkInitIsICE() const;
1263
1264 void setInitStyle(InitializationStyle Style) {
1265 VarDeclBits.InitStyle = Style;
1266 }
1267
1268 /// The style of initialization for this declaration.
1269 ///
1270 /// C-style initialization is "int x = 1;". Call-style initialization is
1271 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1272 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1273 /// expression for class types. List-style initialization is C++11 syntax,
1274 /// e.g. "int x{1};". Clients can distinguish between different forms of
1275 /// initialization by checking this value. In particular, "int x = {1};" is
1276 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1277 /// Init expression in all three cases is an InitListExpr.
1278 InitializationStyle getInitStyle() const {
1279 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1280 }
1281
1282 /// Whether the initializer is a direct-initializer (list or call).
1283 bool isDirectInit() const {
1284 return getInitStyle() != CInit;
1285 }
1286
1287 /// If this definition should pretend to be a declaration.
1288 bool isThisDeclarationADemotedDefinition() const {
1289 return isa<ParmVarDecl>(this) ? false :
1290 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1291 }
1292
1293 /// This is a definition which should be demoted to a declaration.
1294 ///
1295 /// In some cases (mostly module merging) we can end up with two visible
1296 /// definitions one of which needs to be demoted to a declaration to keep
1297 /// the AST invariants.
1298 void demoteThisDefinitionToDeclaration() {
1299 assert(isThisDeclarationADefinition() && "Not a definition!")((isThisDeclarationADefinition() && "Not a definition!"
) ? static_cast<void> (0) : __assert_fail ("isThisDeclarationADefinition() && \"Not a definition!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1299, __PRETTY_FUNCTION__))
;
1300 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!")((!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(this) && \"Cannot demote ParmVarDecls!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1300, __PRETTY_FUNCTION__))
;
1301 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1302 }
1303
1304 /// Determine whether this variable is the exception variable in a
1305 /// C++ catch statememt or an Objective-C \@catch statement.
1306 bool isExceptionVariable() const {
1307 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1308 }
1309 void setExceptionVariable(bool EV) {
1310 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1310, __PRETTY_FUNCTION__))
;
1311 NonParmVarDeclBits.ExceptionVar = EV;
1312 }
1313
1314 /// Determine whether this local variable can be used with the named
1315 /// return value optimization (NRVO).
1316 ///
1317 /// The named return value optimization (NRVO) works by marking certain
1318 /// non-volatile local variables of class type as NRVO objects. These
1319 /// locals can be allocated within the return slot of their containing
1320 /// function, in which case there is no need to copy the object to the
1321 /// return slot when returning from the function. Within the function body,
1322 /// each return that returns the NRVO object will have this variable as its
1323 /// NRVO candidate.
1324 bool isNRVOVariable() const {
1325 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1326 }
1327 void setNRVOVariable(bool NRVO) {
1328 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1328, __PRETTY_FUNCTION__))
;
1329 NonParmVarDeclBits.NRVOVariable = NRVO;
1330 }
1331
1332 /// Determine whether this variable is the for-range-declaration in
1333 /// a C++0x for-range statement.
1334 bool isCXXForRangeDecl() const {
1335 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1336 }
1337 void setCXXForRangeDecl(bool FRD) {
1338 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1338, __PRETTY_FUNCTION__))
;
1339 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1340 }
1341
1342 /// Determine whether this variable is a for-loop declaration for a
1343 /// for-in statement in Objective-C.
1344 bool isObjCForDecl() const {
1345 return NonParmVarDeclBits.ObjCForDecl;
1346 }
1347
1348 void setObjCForDecl(bool FRD) {
1349 NonParmVarDeclBits.ObjCForDecl = FRD;
1350 }
1351
1352 /// Determine whether this variable is an ARC pseudo-__strong variable. A
1353 /// pseudo-__strong variable has a __strong-qualified type but does not
1354 /// actually retain the object written into it. Generally such variables are
1355 /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1356 /// the variable is annotated with the objc_externally_retained attribute, 2)
1357 /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1358 /// loop.
1359 bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1360 void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1361
1362 /// Whether this variable is (C++1z) inline.
1363 bool isInline() const {
1364 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1365 }
1366 bool isInlineSpecified() const {
1367 return isa<ParmVarDecl>(this) ? false
1368 : NonParmVarDeclBits.IsInlineSpecified;
1369 }
1370 void setInlineSpecified() {
1371 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1371, __PRETTY_FUNCTION__))
;
1372 NonParmVarDeclBits.IsInline = true;
1373 NonParmVarDeclBits.IsInlineSpecified = true;
1374 }
1375 void setImplicitlyInline() {
1376 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1376, __PRETTY_FUNCTION__))
;
1377 NonParmVarDeclBits.IsInline = true;
1378 }
1379
1380 /// Whether this variable is (C++11) constexpr.
1381 bool isConstexpr() const {
1382 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1383 }
1384 void setConstexpr(bool IC) {
1385 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1385, __PRETTY_FUNCTION__))
;
1386 NonParmVarDeclBits.IsConstexpr = IC;
1387 }
1388
1389 /// Whether this variable is the implicit variable for a lambda init-capture.
1390 bool isInitCapture() const {
1391 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1392 }
1393 void setInitCapture(bool IC) {
1394 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1394, __PRETTY_FUNCTION__))
;
1395 NonParmVarDeclBits.IsInitCapture = IC;
1396 }
1397
1398 /// Determine whether this variable is actually a function parameter pack or
1399 /// init-capture pack.
1400 bool isParameterPack() const;
1401
1402 /// Whether this local extern variable declaration's previous declaration
1403 /// was declared in the same block scope. Only correct in C++.
1404 bool isPreviousDeclInSameBlockScope() const {
1405 return isa<ParmVarDecl>(this)
1406 ? false
1407 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1408 }
1409 void setPreviousDeclInSameBlockScope(bool Same) {
1410 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1410, __PRETTY_FUNCTION__))
;
1411 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1412 }
1413
1414 /// Indicates the capture is a __block variable that is captured by a block
1415 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1416 /// returns false).
1417 bool isEscapingByref() const;
1418
1419 /// Indicates the capture is a __block variable that is never captured by an
1420 /// escaping block.
1421 bool isNonEscapingByref() const;
1422
1423 void setEscapingByref() {
1424 NonParmVarDeclBits.EscapingByref = true;
1425 }
1426
1427 /// Retrieve the variable declaration from which this variable could
1428 /// be instantiated, if it is an instantiation (rather than a non-template).
1429 VarDecl *getTemplateInstantiationPattern() const;
1430
1431 /// If this variable is an instantiated static data member of a
1432 /// class template specialization, returns the templated static data member
1433 /// from which it was instantiated.
1434 VarDecl *getInstantiatedFromStaticDataMember() const;
1435
1436 /// If this variable is an instantiation of a variable template or a
1437 /// static data member of a class template, determine what kind of
1438 /// template specialization or instantiation this is.
1439 TemplateSpecializationKind getTemplateSpecializationKind() const;
1440
1441 /// Get the template specialization kind of this variable for the purposes of
1442 /// template instantiation. This differs from getTemplateSpecializationKind()
1443 /// for an instantiation of a class-scope explicit specialization.
1444 TemplateSpecializationKind
1445 getTemplateSpecializationKindForInstantiation() const;
1446
1447 /// If this variable is an instantiation of a variable template or a
1448 /// static data member of a class template, determine its point of
1449 /// instantiation.
1450 SourceLocation getPointOfInstantiation() const;
1451
1452 /// If this variable is an instantiation of a static data member of a
1453 /// class template specialization, retrieves the member specialization
1454 /// information.
1455 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1456
1457 /// For a static data member that was instantiated from a static
1458 /// data member of a class template, set the template specialiation kind.
1459 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1460 SourceLocation PointOfInstantiation = SourceLocation());
1461
1462 /// Specify that this variable is an instantiation of the
1463 /// static data member VD.
1464 void setInstantiationOfStaticDataMember(VarDecl *VD,
1465 TemplateSpecializationKind TSK);
1466
1467 /// Retrieves the variable template that is described by this
1468 /// variable declaration.
1469 ///
1470 /// Every variable template is represented as a VarTemplateDecl and a
1471 /// VarDecl. The former contains template properties (such as
1472 /// the template parameter lists) while the latter contains the
1473 /// actual description of the template's
1474 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1475 /// VarDecl that from a VarTemplateDecl, while
1476 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1477 /// a VarDecl.
1478 VarTemplateDecl *getDescribedVarTemplate() const;
1479
1480 void setDescribedVarTemplate(VarTemplateDecl *Template);
1481
1482 // Is this variable known to have a definition somewhere in the complete
1483 // program? This may be true even if the declaration has internal linkage and
1484 // has no definition within this source file.
1485 bool isKnownToBeDefined() const;
1486
1487 /// Do we need to emit an exit-time destructor for this variable?
1488 bool isNoDestroy(const ASTContext &) const;
1489
1490 // Implement isa/cast/dyncast/etc.
1491 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1492 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1493};
1494
1495class ImplicitParamDecl : public VarDecl {
1496 void anchor() override;
1497
1498public:
1499 /// Defines the kind of the implicit parameter: is this an implicit parameter
1500 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1501 /// context or something else.
1502 enum ImplicitParamKind : unsigned {
1503 /// Parameter for Objective-C 'self' argument
1504 ObjCSelf,
1505
1506 /// Parameter for Objective-C '_cmd' argument
1507 ObjCCmd,
1508
1509 /// Parameter for C++ 'this' argument
1510 CXXThis,
1511
1512 /// Parameter for C++ virtual table pointers
1513 CXXVTT,
1514
1515 /// Parameter for captured context
1516 CapturedContext,
1517
1518 /// Other implicit parameter
1519 Other,
1520 };
1521
1522 /// Create implicit parameter.
1523 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1524 SourceLocation IdLoc, IdentifierInfo *Id,
1525 QualType T, ImplicitParamKind ParamKind);
1526 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1527 ImplicitParamKind ParamKind);
1528
1529 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1530
1531 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1532 IdentifierInfo *Id, QualType Type,
1533 ImplicitParamKind ParamKind)
1534 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1535 /*TInfo=*/nullptr, SC_None) {
1536 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1537 setImplicit();
1538 }
1539
1540 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1541 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1542 SourceLocation(), /*Id=*/nullptr, Type,
1543 /*TInfo=*/nullptr, SC_None) {
1544 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1545 setImplicit();
1546 }
1547
1548 /// Returns the implicit parameter kind.
1549 ImplicitParamKind getParameterKind() const {
1550 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1551 }
1552
1553 // Implement isa/cast/dyncast/etc.
1554 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1555 static bool classofKind(Kind K) { return K == ImplicitParam; }
1556};
1557
1558/// Represents a parameter to a function.
1559class ParmVarDecl : public VarDecl {
1560public:
1561 enum { MaxFunctionScopeDepth = 255 };
1562 enum { MaxFunctionScopeIndex = 255 };
1563
1564protected:
1565 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1566 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1567 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1568 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1569 assert(ParmVarDeclBits.HasInheritedDefaultArg == false)((ParmVarDeclBits.HasInheritedDefaultArg == false) ? static_cast
<void> (0) : __assert_fail ("ParmVarDeclBits.HasInheritedDefaultArg == false"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1569, __PRETTY_FUNCTION__))
;
1570 assert(ParmVarDeclBits.DefaultArgKind == DAK_None)((ParmVarDeclBits.DefaultArgKind == DAK_None) ? static_cast<
void> (0) : __assert_fail ("ParmVarDeclBits.DefaultArgKind == DAK_None"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1570, __PRETTY_FUNCTION__))
;
1571 assert(ParmVarDeclBits.IsKNRPromoted == false)((ParmVarDeclBits.IsKNRPromoted == false) ? static_cast<void
> (0) : __assert_fail ("ParmVarDeclBits.IsKNRPromoted == false"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1571, __PRETTY_FUNCTION__))
;
1572 assert(ParmVarDeclBits.IsObjCMethodParam == false)((ParmVarDeclBits.IsObjCMethodParam == false) ? static_cast<
void> (0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam == false"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1572, __PRETTY_FUNCTION__))
;
1573 setDefaultArg(DefArg);
1574 }
1575
1576public:
1577 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1578 SourceLocation StartLoc,
1579 SourceLocation IdLoc, IdentifierInfo *Id,
1580 QualType T, TypeSourceInfo *TInfo,
1581 StorageClass S, Expr *DefArg);
1582
1583 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1584
1585 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1586
1587 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1588 ParmVarDeclBits.IsObjCMethodParam = true;
1589 setParameterIndex(parameterIndex);
1590 }
1591
1592 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1593 assert(!ParmVarDeclBits.IsObjCMethodParam)((!ParmVarDeclBits.IsObjCMethodParam) ? static_cast<void>
(0) : __assert_fail ("!ParmVarDeclBits.IsObjCMethodParam", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1593, __PRETTY_FUNCTION__))
;
1594
1595 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1596 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth((ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1597, __PRETTY_FUNCTION__))
1597 && "truncation!")((ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1597, __PRETTY_FUNCTION__))
;
1598
1599 setParameterIndex(parameterIndex);
1600 }
1601
1602 bool isObjCMethodParameter() const {
1603 return ParmVarDeclBits.IsObjCMethodParam;
1604 }
1605
1606 unsigned getFunctionScopeDepth() const {
1607 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1608 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1609 }
1610
1611 /// Returns the index of this parameter in its prototype or method scope.
1612 unsigned getFunctionScopeIndex() const {
1613 return getParameterIndex();
1614 }
1615
1616 ObjCDeclQualifier getObjCDeclQualifier() const {
1617 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1618 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1619 }
1620 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1621 assert(ParmVarDeclBits.IsObjCMethodParam)((ParmVarDeclBits.IsObjCMethodParam) ? static_cast<void>
(0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1621, __PRETTY_FUNCTION__))
;
1622 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1623 }
1624
1625 /// True if the value passed to this parameter must undergo
1626 /// K&R-style default argument promotion:
1627 ///
1628 /// C99 6.5.2.2.
1629 /// If the expression that denotes the called function has a type
1630 /// that does not include a prototype, the integer promotions are
1631 /// performed on each argument, and arguments that have type float
1632 /// are promoted to double.
1633 bool isKNRPromoted() const {
1634 return ParmVarDeclBits.IsKNRPromoted;
1635 }
1636 void setKNRPromoted(bool promoted) {
1637 ParmVarDeclBits.IsKNRPromoted = promoted;
1638 }
1639
1640 Expr *getDefaultArg();
1641 const Expr *getDefaultArg() const {
1642 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1643 }
1644
1645 void setDefaultArg(Expr *defarg);
1646
1647 /// Retrieve the source range that covers the entire default
1648 /// argument.
1649 SourceRange getDefaultArgRange() const;
1650 void setUninstantiatedDefaultArg(Expr *arg);
1651 Expr *getUninstantiatedDefaultArg();
1652 const Expr *getUninstantiatedDefaultArg() const {
1653 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1654 }
1655
1656 /// Determines whether this parameter has a default argument,
1657 /// either parsed or not.
1658 bool hasDefaultArg() const;
1659
1660 /// Determines whether this parameter has a default argument that has not
1661 /// yet been parsed. This will occur during the processing of a C++ class
1662 /// whose member functions have default arguments, e.g.,
1663 /// @code
1664 /// class X {
1665 /// public:
1666 /// void f(int x = 17); // x has an unparsed default argument now
1667 /// }; // x has a regular default argument now
1668 /// @endcode
1669 bool hasUnparsedDefaultArg() const {
1670 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1671 }
1672
1673 bool hasUninstantiatedDefaultArg() const {
1674 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1675 }
1676
1677 /// Specify that this parameter has an unparsed default argument.
1678 /// The argument will be replaced with a real default argument via
1679 /// setDefaultArg when the class definition enclosing the function
1680 /// declaration that owns this default argument is completed.
1681 void setUnparsedDefaultArg() {
1682 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1683 }
1684
1685 bool hasInheritedDefaultArg() const {
1686 return ParmVarDeclBits.HasInheritedDefaultArg;
1687 }
1688
1689 void setHasInheritedDefaultArg(bool I = true) {
1690 ParmVarDeclBits.HasInheritedDefaultArg = I;
1691 }
1692
1693 QualType getOriginalType() const;
1694
1695 /// Sets the function declaration that owns this
1696 /// ParmVarDecl. Since ParmVarDecls are often created before the
1697 /// FunctionDecls that own them, this routine is required to update
1698 /// the DeclContext appropriately.
1699 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1700
1701 // Implement isa/cast/dyncast/etc.
1702 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1703 static bool classofKind(Kind K) { return K == ParmVar; }
1704
1705private:
1706 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1707
1708 void setParameterIndex(unsigned parameterIndex) {
1709 if (parameterIndex >= ParameterIndexSentinel) {
1710 setParameterIndexLarge(parameterIndex);
1711 return;
1712 }
1713
1714 ParmVarDeclBits.ParameterIndex = parameterIndex;
1715 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!")((ParmVarDeclBits.ParameterIndex == parameterIndex &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ParameterIndex == parameterIndex && \"truncation!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 1715, __PRETTY_FUNCTION__))
;
1716 }
1717 unsigned getParameterIndex() const {
1718 unsigned d = ParmVarDeclBits.ParameterIndex;
1719 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1720 }
1721
1722 void setParameterIndexLarge(unsigned parameterIndex);
1723 unsigned getParameterIndexLarge() const;
1724};
1725
1726enum class MultiVersionKind {
1727 None,
1728 Target,
1729 CPUSpecific,
1730 CPUDispatch
1731};
1732
1733/// Represents a function declaration or definition.
1734///
1735/// Since a given function can be declared several times in a program,
1736/// there may be several FunctionDecls that correspond to that
1737/// function. Only one of those FunctionDecls will be found when
1738/// traversing the list of declarations in the context of the
1739/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1740/// contains all of the information known about the function. Other,
1741/// previous declarations of the function are available via the
1742/// getPreviousDecl() chain.
1743class FunctionDecl : public DeclaratorDecl,
1744 public DeclContext,
1745 public Redeclarable<FunctionDecl> {
1746 // This class stores some data in DeclContext::FunctionDeclBits
1747 // to save some space. Use the provided accessors to access it.
1748public:
1749 /// The kind of templated function a FunctionDecl can be.
1750 enum TemplatedKind {
1751 // Not templated.
1752 TK_NonTemplate,
1753 // The pattern in a function template declaration.
1754 TK_FunctionTemplate,
1755 // A non-template function that is an instantiation or explicit
1756 // specialization of a member of a templated class.
1757 TK_MemberSpecialization,
1758 // An instantiation or explicit specialization of a function template.
1759 // Note: this might have been instantiated from a templated class if it
1760 // is a class-scope explicit specialization.
1761 TK_FunctionTemplateSpecialization,
1762 // A function template specialization that hasn't yet been resolved to a
1763 // particular specialized function template.
1764 TK_DependentFunctionTemplateSpecialization
1765 };
1766
1767private:
1768 /// A new[]'d array of pointers to VarDecls for the formal
1769 /// parameters of this function. This is null if a prototype or if there are
1770 /// no formals.
1771 ParmVarDecl **ParamInfo = nullptr;
1772
1773 LazyDeclStmtPtr Body;
1774
1775 unsigned ODRHash;
1776
1777 /// End part of this FunctionDecl's source range.
1778 ///
1779 /// We could compute the full range in getSourceRange(). However, when we're
1780 /// dealing with a function definition deserialized from a PCH/AST file,
1781 /// we can only compute the full range once the function body has been
1782 /// de-serialized, so it's far better to have the (sometimes-redundant)
1783 /// EndRangeLoc.
1784 SourceLocation EndRangeLoc;
1785
1786 /// The template or declaration that this declaration
1787 /// describes or was instantiated from, respectively.
1788 ///
1789 /// For non-templates, this value will be NULL. For function
1790 /// declarations that describe a function template, this will be a
1791 /// pointer to a FunctionTemplateDecl. For member functions
1792 /// of class template specializations, this will be a MemberSpecializationInfo
1793 /// pointer containing information about the specialization.
1794 /// For function template specializations, this will be a
1795 /// FunctionTemplateSpecializationInfo, which contains information about
1796 /// the template being specialized and the template arguments involved in
1797 /// that specialization.
1798 llvm::PointerUnion4<FunctionTemplateDecl *,
1799 MemberSpecializationInfo *,
1800 FunctionTemplateSpecializationInfo *,
1801 DependentFunctionTemplateSpecializationInfo *>
1802 TemplateOrSpecialization;
1803
1804 /// Provides source/type location info for the declaration name embedded in
1805 /// the DeclaratorDecl base class.
1806 DeclarationNameLoc DNLoc;
1807
1808 /// Specify that this function declaration is actually a function
1809 /// template specialization.
1810 ///
1811 /// \param C the ASTContext.
1812 ///
1813 /// \param Template the function template that this function template
1814 /// specialization specializes.
1815 ///
1816 /// \param TemplateArgs the template arguments that produced this
1817 /// function template specialization from the template.
1818 ///
1819 /// \param InsertPos If non-NULL, the position in the function template
1820 /// specialization set where the function template specialization data will
1821 /// be inserted.
1822 ///
1823 /// \param TSK the kind of template specialization this is.
1824 ///
1825 /// \param TemplateArgsAsWritten location info of template arguments.
1826 ///
1827 /// \param PointOfInstantiation point at which the function template
1828 /// specialization was first instantiated.
1829 void setFunctionTemplateSpecialization(ASTContext &C,
1830 FunctionTemplateDecl *Template,
1831 const TemplateArgumentList *TemplateArgs,
1832 void *InsertPos,
1833 TemplateSpecializationKind TSK,
1834 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1835 SourceLocation PointOfInstantiation);
1836
1837 /// Specify that this record is an instantiation of the
1838 /// member function FD.
1839 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1840 TemplateSpecializationKind TSK);
1841
1842 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1843
1844 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1845 // need to access this bit but we want to avoid making ASTDeclWriter
1846 // a friend of FunctionDeclBitfields just for this.
1847 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1848
1849 /// Whether an ODRHash has been stored.
1850 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1851
1852 /// State that an ODRHash has been stored.
1853 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1854
1855protected:
1856 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1857 const DeclarationNameInfo &NameInfo, QualType T,
1858 TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1859 bool isConstexprSpecified);
1860
1861 using redeclarable_base = Redeclarable<FunctionDecl>;
1862
1863 FunctionDecl *getNextRedeclarationImpl() override {
1864 return getNextRedeclaration();
1865 }
1866
1867 FunctionDecl *getPreviousDeclImpl() override {
1868 return getPreviousDecl();
1869 }
1870
1871 FunctionDecl *getMostRecentDeclImpl() override {
1872 return getMostRecentDecl();
1873 }
1874
1875public:
1876 friend class ASTDeclReader;
1877 friend class ASTDeclWriter;
1878
1879 using redecl_range = redeclarable_base::redecl_range;
1880 using redecl_iterator = redeclarable_base::redecl_iterator;
1881
1882 using redeclarable_base::redecls_begin;
1883 using redeclarable_base::redecls_end;
1884 using redeclarable_base::redecls;
1885 using redeclarable_base::getPreviousDecl;
1886 using redeclarable_base::getMostRecentDecl;
1887 using redeclarable_base::isFirstDecl;
1888
1889 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1890 SourceLocation StartLoc, SourceLocation NLoc,
1891 DeclarationName N, QualType T,
1892 TypeSourceInfo *TInfo,
1893 StorageClass SC,
1894 bool isInlineSpecified = false,
1895 bool hasWrittenPrototype = true,
1896 bool isConstexprSpecified = false) {
1897 DeclarationNameInfo NameInfo(N, NLoc);
1898 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo,
1899 SC,
1900 isInlineSpecified, hasWrittenPrototype,
1901 isConstexprSpecified);
1902 }
1903
1904 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1905 SourceLocation StartLoc,
1906 const DeclarationNameInfo &NameInfo,
1907 QualType T, TypeSourceInfo *TInfo,
1908 StorageClass SC,
1909 bool isInlineSpecified,
1910 bool hasWrittenPrototype,
1911 bool isConstexprSpecified = false);
1912
1913 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1914
1915 DeclarationNameInfo getNameInfo() const {
1916 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1917 }
1918
1919 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
1920 bool Qualified) const override;
1921
1922 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
1923
1924 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1925
1926 // Function definitions.
1927 //
1928 // A function declaration may be:
1929 // - a non defining declaration,
1930 // - a definition. A function may be defined because:
1931 // - it has a body, or will have it in the case of late parsing.
1932 // - it has an uninstantiated body. The body does not exist because the
1933 // function is not used yet, but the declaration is considered a
1934 // definition and does not allow other definition of this function.
1935 // - it does not have a user specified body, but it does not allow
1936 // redefinition, because it is deleted/defaulted or is defined through
1937 // some other mechanism (alias, ifunc).
1938
1939 /// Returns true if the function has a body.
1940 ///
1941 /// The function body might be in any of the (re-)declarations of this
1942 /// function. The variant that accepts a FunctionDecl pointer will set that
1943 /// function declaration to the actual declaration containing the body (if
1944 /// there is one).
1945 bool hasBody(const FunctionDecl *&Definition) const;
1946
1947 bool hasBody() const override {
1948 const FunctionDecl* Definition;
1949 return hasBody(Definition);
1950 }
1951
1952 /// Returns whether the function has a trivial body that does not require any
1953 /// specific codegen.
1954 bool hasTrivialBody() const;
1955
1956 /// Returns true if the function has a definition that does not need to be
1957 /// instantiated.
1958 ///
1959 /// The variant that accepts a FunctionDecl pointer will set that function
1960 /// declaration to the declaration that is a definition (if there is one).
1961 bool isDefined(const FunctionDecl *&Definition) const;
1962
1963 virtual bool isDefined() const {
1964 const FunctionDecl* Definition;
1965 return isDefined(Definition);
1966 }
1967
1968 /// Get the definition for this declaration.
1969 FunctionDecl *getDefinition() {
1970 const FunctionDecl *Definition;
1971 if (isDefined(Definition))
1972 return const_cast<FunctionDecl *>(Definition);
1973 return nullptr;
1974 }
1975 const FunctionDecl *getDefinition() const {
1976 return const_cast<FunctionDecl *>(this)->getDefinition();
1977 }
1978
1979 /// Retrieve the body (definition) of the function. The function body might be
1980 /// in any of the (re-)declarations of this function. The variant that accepts
1981 /// a FunctionDecl pointer will set that function declaration to the actual
1982 /// declaration containing the body (if there is one).
1983 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
1984 /// unnecessary AST de-serialization of the body.
1985 Stmt *getBody(const FunctionDecl *&Definition) const;
1986
1987 Stmt *getBody() const override {
1988 const FunctionDecl* Definition;
1989 return getBody(Definition);
1990 }
1991
1992 /// Returns whether this specific declaration of the function is also a
1993 /// definition that does not contain uninstantiated body.
1994 ///
1995 /// This does not determine whether the function has been defined (e.g., in a
1996 /// previous definition); for that information, use isDefined.
1997 bool isThisDeclarationADefinition() const {
1998 return isDeletedAsWritten() || isDefaulted() || Body || hasSkippedBody() ||
1999 isLateTemplateParsed() || willHaveBody() || hasDefiningAttr();
2000 }
2001
2002 /// Returns whether this specific declaration of the function has a body.
2003 bool doesThisDeclarationHaveABody() const {
2004 return Body || isLateTemplateParsed();
2005 }
2006
2007 void setBody(Stmt *B);
2008 void setLazyBody(uint64_t Offset) { Body = Offset; }
2009
2010 /// Whether this function is variadic.
2011 bool isVariadic() const;
2012
2013 /// Whether this function is marked as virtual explicitly.
2014 bool isVirtualAsWritten() const {
2015 return FunctionDeclBits.IsVirtualAsWritten;
2016 }
2017
2018 /// State that this function is marked as virtual explicitly.
2019 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2020
2021 /// Whether this virtual function is pure, i.e. makes the containing class
2022 /// abstract.
2023 bool isPure() const { return FunctionDeclBits.IsPure; }
2024 void setPure(bool P = true);
2025
2026 /// Whether this templated function will be late parsed.
2027 bool isLateTemplateParsed() const {
2028 return FunctionDeclBits.IsLateTemplateParsed;
2029 }
2030
2031 /// State that this templated function will be late parsed.
2032 void setLateTemplateParsed(bool ILT = true) {
2033 FunctionDeclBits.IsLateTemplateParsed = ILT;
2034 }
2035
2036 /// Whether this function is "trivial" in some specialized C++ senses.
2037 /// Can only be true for default constructors, copy constructors,
2038 /// copy assignment operators, and destructors. Not meaningful until
2039 /// the class has been fully built by Sema.
2040 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2041 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2042
2043 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2044 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2045
2046 /// Whether this function is defaulted per C++0x. Only valid for
2047 /// special member functions.
2048 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2049 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2050
2051 /// Whether this function is explicitly defaulted per C++0x. Only valid
2052 /// for special member functions.
2053 bool isExplicitlyDefaulted() const {
2054 return FunctionDeclBits.IsExplicitlyDefaulted;
2055 }
2056
2057 /// State that this function is explicitly defaulted per C++0x. Only valid
2058 /// for special member functions.
2059 void setExplicitlyDefaulted(bool ED = true) {
2060 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2061 }
2062
2063 /// Whether falling off this function implicitly returns null/zero.
2064 /// If a more specific implicit return value is required, front-ends
2065 /// should synthesize the appropriate return statements.
2066 bool hasImplicitReturnZero() const {
2067 return FunctionDeclBits.HasImplicitReturnZero;
2068 }
2069
2070 /// State that falling off this function implicitly returns null/zero.
2071 /// If a more specific implicit return value is required, front-ends
2072 /// should synthesize the appropriate return statements.
2073 void setHasImplicitReturnZero(bool IRZ) {
2074 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2075 }
2076
2077 /// Whether this function has a prototype, either because one
2078 /// was explicitly written or because it was "inherited" by merging
2079 /// a declaration without a prototype with a declaration that has a
2080 /// prototype.
2081 bool hasPrototype() const {
2082 return hasWrittenPrototype() || hasInheritedPrototype();
2083 }
2084
2085 /// Whether this function has a written prototype.
2086 bool hasWrittenPrototype() const {
2087 return FunctionDeclBits.HasWrittenPrototype;
2088 }
2089
2090 /// State that this function has a written prototype.
2091 void setHasWrittenPrototype(bool P = true) {
2092 FunctionDeclBits.HasWrittenPrototype = P;
2093 }
2094
2095 /// Whether this function inherited its prototype from a
2096 /// previous declaration.
2097 bool hasInheritedPrototype() const {
2098 return FunctionDeclBits.HasInheritedPrototype;
2099 }
2100
2101 /// State that this function inherited its prototype from a
2102 /// previous declaration.
2103 void setHasInheritedPrototype(bool P = true) {
2104 FunctionDeclBits.HasInheritedPrototype = P;
2105 }
2106
2107 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2108 bool isConstexpr() const { return FunctionDeclBits.IsConstexpr; }
2109 void setConstexpr(bool IC) { FunctionDeclBits.IsConstexpr = IC; }
2110
2111 /// Whether the instantiation of this function is pending.
2112 /// This bit is set when the decision to instantiate this function is made
2113 /// and unset if and when the function body is created. That leaves out
2114 /// cases where instantiation did not happen because the template definition
2115 /// was not seen in this TU. This bit remains set in those cases, under the
2116 /// assumption that the instantiation will happen in some other TU.
2117 bool instantiationIsPending() const {
2118 return FunctionDeclBits.InstantiationIsPending;
2119 }
2120
2121 /// State that the instantiation of this function is pending.
2122 /// (see instantiationIsPending)
2123 void setInstantiationIsPending(bool IC) {
2124 FunctionDeclBits.InstantiationIsPending = IC;
2125 }
2126
2127 /// Indicates the function uses __try.
2128 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2129 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2130
2131 /// Whether this function has been deleted.
2132 ///
2133 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2134 /// acts like a normal function, except that it cannot actually be
2135 /// called or have its address taken. Deleted functions are
2136 /// typically used in C++ overload resolution to attract arguments
2137 /// whose type or lvalue/rvalue-ness would permit the use of a
2138 /// different overload that would behave incorrectly. For example,
2139 /// one might use deleted functions to ban implicit conversion from
2140 /// a floating-point number to an Integer type:
2141 ///
2142 /// @code
2143 /// struct Integer {
2144 /// Integer(long); // construct from a long
2145 /// Integer(double) = delete; // no construction from float or double
2146 /// Integer(long double) = delete; // no construction from long double
2147 /// };
2148 /// @endcode
2149 // If a function is deleted, its first declaration must be.
2150 bool isDeleted() const {
2151 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2152 }
2153
2154 bool isDeletedAsWritten() const {
2155 return FunctionDeclBits.IsDeleted && !isDefaulted();
2156 }
2157
2158 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2159
2160 /// Determines whether this function is "main", which is the
2161 /// entry point into an executable program.
2162 bool isMain() const;
2163
2164 /// Determines whether this function is a MSVCRT user defined entry
2165 /// point.
2166 bool isMSVCRTEntryPoint() const;
2167
2168 /// Determines whether this operator new or delete is one
2169 /// of the reserved global placement operators:
2170 /// void *operator new(size_t, void *);
2171 /// void *operator new[](size_t, void *);
2172 /// void operator delete(void *, void *);
2173 /// void operator delete[](void *, void *);
2174 /// These functions have special behavior under [new.delete.placement]:
2175 /// These functions are reserved, a C++ program may not define
2176 /// functions that displace the versions in the Standard C++ library.
2177 /// The provisions of [basic.stc.dynamic] do not apply to these
2178 /// reserved placement forms of operator new and operator delete.
2179 ///
2180 /// This function must be an allocation or deallocation function.
2181 bool isReservedGlobalPlacementOperator() const;
2182
2183 /// Determines whether this function is one of the replaceable
2184 /// global allocation functions:
2185 /// void *operator new(size_t);
2186 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2187 /// void *operator new[](size_t);
2188 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2189 /// void operator delete(void *) noexcept;
2190 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2191 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2192 /// void operator delete[](void *) noexcept;
2193 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2194 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2195 /// These functions have special behavior under C++1y [expr.new]:
2196 /// An implementation is allowed to omit a call to a replaceable global
2197 /// allocation function. [...]
2198 ///
2199 /// If this function is an aligned allocation/deallocation function, return
2200 /// true through IsAligned.
2201 bool isReplaceableGlobalAllocationFunction(bool *IsAligned = nullptr) const;
2202
2203 /// Determine whether this is a destroying operator delete.
2204 bool isDestroyingOperatorDelete() const;
2205
2206 /// Compute the language linkage.
2207 LanguageLinkage getLanguageLinkage() const;
2208
2209 /// Determines whether this function is a function with
2210 /// external, C linkage.
2211 bool isExternC() const;
2212
2213 /// Determines whether this function's context is, or is nested within,
2214 /// a C++ extern "C" linkage spec.
2215 bool isInExternCContext() const;
2216
2217 /// Determines whether this function's context is, or is nested within,
2218 /// a C++ extern "C++" linkage spec.
2219 bool isInExternCXXContext() const;
2220
2221 /// Determines whether this is a global function.
2222 bool isGlobal() const;
2223
2224 /// Determines whether this function is known to be 'noreturn', through
2225 /// an attribute on its declaration or its type.
2226 bool isNoReturn() const;
2227
2228 /// True if the function was a definition but its body was skipped.
2229 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2230 void setHasSkippedBody(bool Skipped = true) {
2231 FunctionDeclBits.HasSkippedBody = Skipped;
2232 }
2233
2234 /// True if this function will eventually have a body, once it's fully parsed.
2235 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2236 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2237
2238 /// True if this function is considered a multiversioned function.
2239 bool isMultiVersion() const {
2240 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2241 }
2242
2243 /// Sets the multiversion state for this declaration and all of its
2244 /// redeclarations.
2245 void setIsMultiVersion(bool V = true) {
2246 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2247 }
2248
2249 /// Gets the kind of multiversioning attribute this declaration has. Note that
2250 /// this can return a value even if the function is not multiversion, such as
2251 /// the case of 'target'.
2252 MultiVersionKind getMultiVersionKind() const;
2253
2254
2255 /// True if this function is a multiversioned dispatch function as a part of
2256 /// the cpu_specific/cpu_dispatch functionality.
2257 bool isCPUDispatchMultiVersion() const;
2258 /// True if this function is a multiversioned processor specific function as a
2259 /// part of the cpu_specific/cpu_dispatch functionality.
2260 bool isCPUSpecificMultiVersion() const;
2261
2262 /// True if this function is a multiversioned dispatch function as a part of
2263 /// the target functionality.
2264 bool isTargetMultiVersion() const;
2265
2266 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2267
2268 FunctionDecl *getCanonicalDecl() override;
2269 const FunctionDecl *getCanonicalDecl() const {
2270 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2271 }
2272
2273 unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2274
2275 // ArrayRef interface to parameters.
2276 ArrayRef<ParmVarDecl *> parameters() const {
2277 return {ParamInfo, getNumParams()};
2278 }
2279 MutableArrayRef<ParmVarDecl *> parameters() {
2280 return {ParamInfo, getNumParams()};
2281 }
2282
2283 // Iterator access to formal parameters.
2284 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2285 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2286
2287 bool param_empty() const { return parameters().empty(); }
2288 param_iterator param_begin() { return parameters().begin(); }
2289 param_iterator param_end() { return parameters().end(); }
2290 param_const_iterator param_begin() const { return parameters().begin(); }
2291 param_const_iterator param_end() const { return parameters().end(); }
2292 size_t param_size() const { return parameters().size(); }
2293
2294 /// Return the number of parameters this function must have based on its
2295 /// FunctionType. This is the length of the ParamInfo array after it has been
2296 /// created.
2297 unsigned getNumParams() const;
2298
2299 const ParmVarDecl *getParamDecl(unsigned i) const {
2300 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2300, __PRETTY_FUNCTION__))
;
2301 return ParamInfo[i];
2302 }
2303 ParmVarDecl *getParamDecl(unsigned i) {
2304 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2304, __PRETTY_FUNCTION__))
;
2305 return ParamInfo[i];
2306 }
2307 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2308 setParams(getASTContext(), NewParamInfo);
2309 }
2310
2311 /// Returns the minimum number of arguments needed to call this function. This
2312 /// may be fewer than the number of function parameters, if some of the
2313 /// parameters have default arguments (in C++).
2314 unsigned getMinRequiredArguments() const;
2315
2316 QualType getReturnType() const {
2317 return getType()->castAs<FunctionType>()->getReturnType();
2318 }
2319
2320 /// Attempt to compute an informative source range covering the
2321 /// function return type. This may omit qualifiers and other information with
2322 /// limited representation in the AST.
2323 SourceRange getReturnTypeSourceRange() const;
2324
2325 /// Get the declared return type, which may differ from the actual return
2326 /// type if the return type is deduced.
2327 QualType getDeclaredReturnType() const {
2328 auto *TSI = getTypeSourceInfo();
2329 QualType T = TSI ? TSI->getType() : getType();
2330 return T->castAs<FunctionType>()->getReturnType();
2331 }
2332
2333 /// Gets the ExceptionSpecificationType as declared.
2334 ExceptionSpecificationType getExceptionSpecType() const {
2335 auto *TSI = getTypeSourceInfo();
2336 QualType T = TSI ? TSI->getType() : getType();
2337 const auto *FPT = T->getAs<FunctionProtoType>();
2338 return FPT ? FPT->getExceptionSpecType() : EST_None;
2339 }
2340
2341 /// Attempt to compute an informative source range covering the
2342 /// function exception specification, if any.
2343 SourceRange getExceptionSpecSourceRange() const;
2344
2345 /// Determine the type of an expression that calls this function.
2346 QualType getCallResultType() const {
2347 return getType()->castAs<FunctionType>()->getCallResultType(
2348 getASTContext());
2349 }
2350
2351 /// Returns the storage class as written in the source. For the
2352 /// computed linkage of symbol, see getLinkage.
2353 StorageClass getStorageClass() const {
2354 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2355 }
2356
2357 /// Sets the storage class as written in the source.
2358 void setStorageClass(StorageClass SClass) {
2359 FunctionDeclBits.SClass = SClass;
2360 }
2361
2362 /// Determine whether the "inline" keyword was specified for this
2363 /// function.
2364 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2365
2366 /// Set whether the "inline" keyword was specified for this function.
2367 void setInlineSpecified(bool I) {
2368 FunctionDeclBits.IsInlineSpecified = I;
2369 FunctionDeclBits.IsInline = I;
2370 }
2371
2372 /// Flag that this function is implicitly inline.
2373 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2374
2375 /// Determine whether this function should be inlined, because it is
2376 /// either marked "inline" or "constexpr" or is a member function of a class
2377 /// that was defined in the class body.
2378 bool isInlined() const { return FunctionDeclBits.IsInline; }
2379
2380 bool isInlineDefinitionExternallyVisible() const;
2381
2382 bool isMSExternInline() const;
2383
2384 bool doesDeclarationForceExternallyVisibleDefinition() const;
2385
2386 /// Whether this function declaration represents an C++ overloaded
2387 /// operator, e.g., "operator+".
2388 bool isOverloadedOperator() const {
2389 return getOverloadedOperator() != OO_None;
2390 }
2391
2392 OverloadedOperatorKind getOverloadedOperator() const;
2393
2394 const IdentifierInfo *getLiteralIdentifier() const;
2395
2396 /// If this function is an instantiation of a member function
2397 /// of a class template specialization, retrieves the function from
2398 /// which it was instantiated.
2399 ///
2400 /// This routine will return non-NULL for (non-templated) member
2401 /// functions of class templates and for instantiations of function
2402 /// templates. For example, given:
2403 ///
2404 /// \code
2405 /// template<typename T>
2406 /// struct X {
2407 /// void f(T);
2408 /// };
2409 /// \endcode
2410 ///
2411 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2412 /// whose parent is the class template specialization X<int>. For
2413 /// this declaration, getInstantiatedFromFunction() will return
2414 /// the FunctionDecl X<T>::A. When a complete definition of
2415 /// X<int>::A is required, it will be instantiated from the
2416 /// declaration returned by getInstantiatedFromMemberFunction().
2417 FunctionDecl *getInstantiatedFromMemberFunction() const;
2418
2419 /// What kind of templated function this is.
2420 TemplatedKind getTemplatedKind() const;
2421
2422 /// If this function is an instantiation of a member function of a
2423 /// class template specialization, retrieves the member specialization
2424 /// information.
2425 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2426
2427 /// Specify that this record is an instantiation of the
2428 /// member function FD.
2429 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2430 TemplateSpecializationKind TSK) {
2431 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2432 }
2433
2434 /// Retrieves the function template that is described by this
2435 /// function declaration.
2436 ///
2437 /// Every function template is represented as a FunctionTemplateDecl
2438 /// and a FunctionDecl (or something derived from FunctionDecl). The
2439 /// former contains template properties (such as the template
2440 /// parameter lists) while the latter contains the actual
2441 /// description of the template's
2442 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2443 /// FunctionDecl that describes the function template,
2444 /// getDescribedFunctionTemplate() retrieves the
2445 /// FunctionTemplateDecl from a FunctionDecl.
2446 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2447
2448 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2449
2450 /// Determine whether this function is a function template
2451 /// specialization.
2452 bool isFunctionTemplateSpecialization() const {
2453 return getPrimaryTemplate() != nullptr;
2454 }
2455
2456 /// If this function is actually a function template specialization,
2457 /// retrieve information about this function template specialization.
2458 /// Otherwise, returns NULL.
2459 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2460
2461 /// Determines whether this function is a function template
2462 /// specialization or a member of a class template specialization that can
2463 /// be implicitly instantiated.
2464 bool isImplicitlyInstantiable() const;
2465
2466 /// Determines if the given function was instantiated from a
2467 /// function template.
2468 bool isTemplateInstantiation() const;
2469
2470 /// Retrieve the function declaration from which this function could
2471 /// be instantiated, if it is an instantiation (rather than a non-template
2472 /// or a specialization, for example).
2473 FunctionDecl *getTemplateInstantiationPattern() const;
2474
2475 /// Retrieve the primary template that this function template
2476 /// specialization either specializes or was instantiated from.
2477 ///
2478 /// If this function declaration is not a function template specialization,
2479 /// returns NULL.
2480 FunctionTemplateDecl *getPrimaryTemplate() const;
2481
2482 /// Retrieve the template arguments used to produce this function
2483 /// template specialization from the primary template.
2484 ///
2485 /// If this function declaration is not a function template specialization,
2486 /// returns NULL.
2487 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2488
2489 /// Retrieve the template argument list as written in the sources,
2490 /// if any.
2491 ///
2492 /// If this function declaration is not a function template specialization
2493 /// or if it had no explicit template argument list, returns NULL.
2494 /// Note that it an explicit template argument list may be written empty,
2495 /// e.g., template<> void foo<>(char* s);
2496 const ASTTemplateArgumentListInfo*
2497 getTemplateSpecializationArgsAsWritten() const;
2498
2499 /// Specify that this function declaration is actually a function
2500 /// template specialization.
2501 ///
2502 /// \param Template the function template that this function template
2503 /// specialization specializes.
2504 ///
2505 /// \param TemplateArgs the template arguments that produced this
2506 /// function template specialization from the template.
2507 ///
2508 /// \param InsertPos If non-NULL, the position in the function template
2509 /// specialization set where the function template specialization data will
2510 /// be inserted.
2511 ///
2512 /// \param TSK the kind of template specialization this is.
2513 ///
2514 /// \param TemplateArgsAsWritten location info of template arguments.
2515 ///
2516 /// \param PointOfInstantiation point at which the function template
2517 /// specialization was first instantiated.
2518 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2519 const TemplateArgumentList *TemplateArgs,
2520 void *InsertPos,
2521 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2522 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2523 SourceLocation PointOfInstantiation = SourceLocation()) {
2524 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2525 InsertPos, TSK, TemplateArgsAsWritten,
2526 PointOfInstantiation);
2527 }
2528
2529 /// Specifies that this function declaration is actually a
2530 /// dependent function template specialization.
2531 void setDependentTemplateSpecialization(ASTContext &Context,
2532 const UnresolvedSetImpl &Templates,
2533 const TemplateArgumentListInfo &TemplateArgs);
2534
2535 DependentFunctionTemplateSpecializationInfo *
2536 getDependentSpecializationInfo() const;
2537
2538 /// Determine what kind of template instantiation this function
2539 /// represents.
2540 TemplateSpecializationKind getTemplateSpecializationKind() const;
2541
2542 /// Determine the kind of template specialization this function represents
2543 /// for the purpose of template instantiation.
2544 TemplateSpecializationKind
2545 getTemplateSpecializationKindForInstantiation() const;
2546
2547 /// Determine what kind of template instantiation this function
2548 /// represents.
2549 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2550 SourceLocation PointOfInstantiation = SourceLocation());
2551
2552 /// Retrieve the (first) point of instantiation of a function template
2553 /// specialization or a member of a class template specialization.
2554 ///
2555 /// \returns the first point of instantiation, if this function was
2556 /// instantiated from a template; otherwise, returns an invalid source
2557 /// location.
2558 SourceLocation getPointOfInstantiation() const;
2559
2560 /// Determine whether this is or was instantiated from an out-of-line
2561 /// definition of a member function.
2562 bool isOutOfLine() const override;
2563
2564 /// Identify a memory copying or setting function.
2565 /// If the given function is a memory copy or setting function, returns
2566 /// the corresponding Builtin ID. If the function is not a memory function,
2567 /// returns 0.
2568 unsigned getMemoryFunctionKind() const;
2569
2570 /// Returns ODRHash of the function. This value is calculated and
2571 /// stored on first call, then the stored value returned on the other calls.
2572 unsigned getODRHash();
2573
2574 /// Returns cached ODRHash of the function. This must have been previously
2575 /// computed and stored.
2576 unsigned getODRHash() const;
2577
2578 // Implement isa/cast/dyncast/etc.
2579 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2580 static bool classofKind(Kind K) {
2581 return K >= firstFunction && K <= lastFunction;
2582 }
2583 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2584 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2585 }
2586 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2587 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2588 }
2589};
2590
2591/// Represents a member of a struct/union/class.
2592class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2593 unsigned BitField : 1;
2594 unsigned Mutable : 1;
2595 mutable unsigned CachedFieldIndex : 30;
2596
2597 /// The kinds of value we can store in InitializerOrBitWidth.
2598 ///
2599 /// Note that this is compatible with InClassInitStyle except for
2600 /// ISK_CapturedVLAType.
2601 enum InitStorageKind {
2602 /// If the pointer is null, there's nothing special. Otherwise,
2603 /// this is a bitfield and the pointer is the Expr* storing the
2604 /// bit-width.
2605 ISK_NoInit = (unsigned) ICIS_NoInit,
2606
2607 /// The pointer is an (optional due to delayed parsing) Expr*
2608 /// holding the copy-initializer.
2609 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2610
2611 /// The pointer is an (optional due to delayed parsing) Expr*
2612 /// holding the list-initializer.
2613 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2614
2615 /// The pointer is a VariableArrayType* that's been captured;
2616 /// the enclosing context is a lambda or captured statement.
2617 ISK_CapturedVLAType,
2618 };
2619
2620 /// If this is a bitfield with a default member initializer, this
2621 /// structure is used to represent the two expressions.
2622 struct InitAndBitWidth {
2623 Expr *Init;
2624 Expr *BitWidth;
2625 };
2626
2627 /// Storage for either the bit-width, the in-class initializer, or
2628 /// both (via InitAndBitWidth), or the captured variable length array bound.
2629 ///
2630 /// If the storage kind is ISK_InClassCopyInit or
2631 /// ISK_InClassListInit, but the initializer is null, then this
2632 /// field has an in-class initializer that has not yet been parsed
2633 /// and attached.
2634 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2635 // overwhelmingly common case that we have none of these things.
2636 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2637
2638protected:
2639 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2640 SourceLocation IdLoc, IdentifierInfo *Id,
2641 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2642 InClassInitStyle InitStyle)
2643 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2644 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2645 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2646 if (BW)
2647 setBitWidth(BW);
2648 }
2649
2650public:
2651 friend class ASTDeclReader;
2652 friend class ASTDeclWriter;
2653
2654 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2655 SourceLocation StartLoc, SourceLocation IdLoc,
2656 IdentifierInfo *Id, QualType T,
2657 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2658 InClassInitStyle InitStyle);
2659
2660 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2661
2662 /// Returns the index of this field within its record,
2663 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2664 unsigned getFieldIndex() const;
2665
2666 /// Determines whether this field is mutable (C++ only).
2667 bool isMutable() const { return Mutable; }
2668
2669 /// Determines whether this field is a bitfield.
2670 bool isBitField() const { return BitField; }
2671
2672 /// Determines whether this is an unnamed bitfield.
2673 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2674
2675 /// Determines whether this field is a
2676 /// representative for an anonymous struct or union. Such fields are
2677 /// unnamed and are implicitly generated by the implementation to
2678 /// store the data for the anonymous union or struct.
2679 bool isAnonymousStructOrUnion() const;
2680
2681 Expr *getBitWidth() const {
2682 if (!BitField)
2683 return nullptr;
2684 void *Ptr = InitStorage.getPointer();
2685 if (getInClassInitStyle())
2686 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2687 return static_cast<Expr*>(Ptr);
2688 }
2689
2690 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2691
2692 /// Set the bit-field width for this member.
2693 // Note: used by some clients (i.e., do not remove it).
2694 void setBitWidth(Expr *Width) {
2695 assert(!hasCapturedVLAType() && !BitField &&((!hasCapturedVLAType() && !BitField && "bit width or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2696, __PRETTY_FUNCTION__))
2696 "bit width or captured type already set")((!hasCapturedVLAType() && !BitField && "bit width or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2696, __PRETTY_FUNCTION__))
;
2697 assert(Width && "no bit width specified")((Width && "no bit width specified") ? static_cast<
void> (0) : __assert_fail ("Width && \"no bit width specified\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2697, __PRETTY_FUNCTION__))
;
2698 InitStorage.setPointer(
2699 InitStorage.getInt()
2700 ? new (getASTContext())
2701 InitAndBitWidth{getInClassInitializer(), Width}
2702 : static_cast<void*>(Width));
2703 BitField = true;
2704 }
2705
2706 /// Remove the bit-field width from this member.
2707 // Note: used by some clients (i.e., do not remove it).
2708 void removeBitWidth() {
2709 assert(isBitField() && "no bitfield width to remove")((isBitField() && "no bitfield width to remove") ? static_cast
<void> (0) : __assert_fail ("isBitField() && \"no bitfield width to remove\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2709, __PRETTY_FUNCTION__))
;
2710 InitStorage.setPointer(getInClassInitializer());
2711 BitField = false;
2712 }
2713
2714 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2715 /// at all and instead act as a separator between contiguous runs of other
2716 /// bit-fields.
2717 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2718
2719 /// Get the kind of (C++11) default member initializer that this field has.
2720 InClassInitStyle getInClassInitStyle() const {
2721 InitStorageKind storageKind = InitStorage.getInt();
2722 return (storageKind == ISK_CapturedVLAType
2723 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2724 }
2725
2726 /// Determine whether this member has a C++11 default member initializer.
2727 bool hasInClassInitializer() const {
2728 return getInClassInitStyle() != ICIS_NoInit;
2729 }
2730
2731 /// Get the C++11 default member initializer for this member, or null if one
2732 /// has not been set. If a valid declaration has a default member initializer,
2733 /// but this returns null, then we have not parsed and attached it yet.
2734 Expr *getInClassInitializer() const {
2735 if (!hasInClassInitializer())
2736 return nullptr;
2737 void *Ptr = InitStorage.getPointer();
2738 if (BitField)
2739 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2740 return static_cast<Expr*>(Ptr);
2741 }
2742
2743 /// Set the C++11 in-class initializer for this member.
2744 void setInClassInitializer(Expr *Init) {
2745 assert(hasInClassInitializer() && !getInClassInitializer())((hasInClassInitializer() && !getInClassInitializer()
) ? static_cast<void> (0) : __assert_fail ("hasInClassInitializer() && !getInClassInitializer()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2745, __PRETTY_FUNCTION__))
;
2746 if (BitField)
2747 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2748 else
2749 InitStorage.setPointer(Init);
2750 }
2751
2752 /// Remove the C++11 in-class initializer from this member.
2753 void removeInClassInitializer() {
2754 assert(hasInClassInitializer() && "no initializer to remove")((hasInClassInitializer() && "no initializer to remove"
) ? static_cast<void> (0) : __assert_fail ("hasInClassInitializer() && \"no initializer to remove\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2754, __PRETTY_FUNCTION__))
;
2755 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2756 }
2757
2758 /// Determine whether this member captures the variable length array
2759 /// type.
2760 bool hasCapturedVLAType() const {
2761 return InitStorage.getInt() == ISK_CapturedVLAType;
2762 }
2763
2764 /// Get the captured variable length array type.
2765 const VariableArrayType *getCapturedVLAType() const {
2766 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
2767 InitStorage.getPointer())
2768 : nullptr;
2769 }
2770
2771 /// Set the captured variable length array type for this field.
2772 void setCapturedVLAType(const VariableArrayType *VLAType);
2773
2774 /// Returns the parent of this field declaration, which
2775 /// is the struct in which this field is defined.
2776 const RecordDecl *getParent() const {
2777 return cast<RecordDecl>(getDeclContext());
2778 }
2779
2780 RecordDecl *getParent() {
2781 return cast<RecordDecl>(getDeclContext());
2782 }
2783
2784 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2785
2786 /// Retrieves the canonical declaration of this field.
2787 FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
2788 const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2789
2790 // Implement isa/cast/dyncast/etc.
2791 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2792 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
2793};
2794
2795/// An instance of this object exists for each enum constant
2796/// that is defined. For example, in "enum X {a,b}", each of a/b are
2797/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
2798/// TagType for the X EnumDecl.
2799class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
2800 Stmt *Init; // an integer constant expression
2801 llvm::APSInt Val; // The value.
2802
2803protected:
2804 EnumConstantDecl(DeclContext *DC, SourceLocation L,
2805 IdentifierInfo *Id, QualType T, Expr *E,
2806 const llvm::APSInt &V)
2807 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
2808
2809public:
2810 friend class StmtIteratorBase;
2811
2812 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
2813 SourceLocation L, IdentifierInfo *Id,
2814 QualType T, Expr *E,
2815 const llvm::APSInt &V);
2816 static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2817
2818 const Expr *getInitExpr() const { return (const Expr*) Init; }
2819 Expr *getInitExpr() { return (Expr*) Init; }
2820 const llvm::APSInt &getInitVal() const { return Val; }
2821
2822 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
2823 void setInitVal(const llvm::APSInt &V) { Val = V; }
2824
2825 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2826
2827 /// Retrieves the canonical declaration of this enumerator.
2828 EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
2829 const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
2830
2831 // Implement isa/cast/dyncast/etc.
2832 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2833 static bool classofKind(Kind K) { return K == EnumConstant; }
2834};
2835
2836/// Represents a field injected from an anonymous union/struct into the parent
2837/// scope. These are always implicit.
2838class IndirectFieldDecl : public ValueDecl,
2839 public Mergeable<IndirectFieldDecl> {
2840 NamedDecl **Chaining;
2841 unsigned ChainingSize;
2842
2843 IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
2844 DeclarationName N, QualType T,
2845 MutableArrayRef<NamedDecl *> CH);
2846
2847 void anchor() override;
2848
2849public:
2850 friend class ASTDeclReader;
2851
2852 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
2853 SourceLocation L, IdentifierInfo *Id,
2854 QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
2855
2856 static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2857
2858 using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
2859
2860 ArrayRef<NamedDecl *> chain() const {
2861 return llvm::makeArrayRef(Chaining, ChainingSize);
2862 }
2863 chain_iterator chain_begin() const { return chain().begin(); }
2864 chain_iterator chain_end() const { return chain().end(); }
2865
2866 unsigned getChainingSize() const { return ChainingSize; }
2867
2868 FieldDecl *getAnonField() const {
2869 assert(chain().size() >= 2)((chain().size() >= 2) ? static_cast<void> (0) : __assert_fail
("chain().size() >= 2", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2869, __PRETTY_FUNCTION__))
;
2870 return cast<FieldDecl>(chain().back());
2871 }
2872
2873 VarDecl *getVarDecl() const {
2874 assert(chain().size() >= 2)((chain().size() >= 2) ? static_cast<void> (0) : __assert_fail
("chain().size() >= 2", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 2874, __PRETTY_FUNCTION__))
;
2875 return dyn_cast<VarDecl>(chain().front());
2876 }
2877
2878 IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
2879 const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2880
2881 // Implement isa/cast/dyncast/etc.
2882 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2883 static bool classofKind(Kind K) { return K == IndirectField; }
2884};
2885
2886/// Represents a declaration of a type.
2887class TypeDecl : public NamedDecl {
2888 friend class ASTContext;
2889
2890 /// This indicates the Type object that represents
2891 /// this TypeDecl. It is a cache maintained by
2892 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
2893 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
2894 mutable const Type *TypeForDecl = nullptr;
2895
2896 /// The start of the source range for this declaration.
2897 SourceLocation LocStart;
2898
2899 void anchor() override;
2900
2901protected:
2902 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
2903 SourceLocation StartL = SourceLocation())
2904 : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
2905
2906public:
2907 // Low-level accessor. If you just want the type defined by this node,
2908 // check out ASTContext::getTypeDeclType or one of
2909 // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
2910 // already know the specific kind of node this is.
2911 const Type *getTypeForDecl() const { return TypeForDecl; }
2912 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
2913
2914 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
2915 void setLocStart(SourceLocation L) { LocStart = L; }
2916 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
2917 if (LocStart.isValid())
2918 return SourceRange(LocStart, getLocation());
2919 else
2920 return SourceRange(getLocation());
2921 }
2922
2923 // Implement isa/cast/dyncast/etc.
2924 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2925 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
2926};
2927
2928/// Base class for declarations which introduce a typedef-name.
2929class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
2930 struct alignas(8) ModedTInfo {
2931 TypeSourceInfo *first;
2932 QualType second;
2933 };
2934
2935 /// If int part is 0, we have not computed IsTransparentTag.
2936 /// Otherwise, IsTransparentTag is (getInt() >> 1).
2937 mutable llvm::PointerIntPair<
2938 llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
2939 MaybeModedTInfo;
2940
2941 void anchor() override;
2942
2943protected:
2944 TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
2945 SourceLocation StartLoc, SourceLocation IdLoc,
2946 IdentifierInfo *Id, TypeSourceInfo *TInfo)
2947 : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
2948 MaybeModedTInfo(TInfo, 0) {}
2949
2950 using redeclarable_base = Redeclarable<TypedefNameDecl>;
2951
2952 TypedefNameDecl *getNextRedeclarationImpl() override {
2953 return getNextRedeclaration();
2954 }
2955
2956 TypedefNameDecl *getPreviousDeclImpl() override {
2957 return getPreviousDecl();
2958 }
2959
2960 TypedefNameDecl *getMostRecentDeclImpl() override {
2961 return getMostRecentDecl();
2962 }
2963
2964public:
2965 using redecl_range = redeclarable_base::redecl_range;
2966 using redecl_iterator = redeclarable_base::redecl_iterator;
2967
2968 using redeclarable_base::redecls_begin;
2969 using redeclarable_base::redecls_end;
2970 using redeclarable_base::redecls;
2971 using redeclarable_base::getPreviousDecl;
2972 using redeclarable_base::getMostRecentDecl;
2973 using redeclarable_base::isFirstDecl;
2974
2975 bool isModed() const {
2976 return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
2977 }
2978
2979 TypeSourceInfo *getTypeSourceInfo() const {
2980 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
2981 : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
2982 }
2983
2984 QualType getUnderlyingType() const {
2985 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
2986 : MaybeModedTInfo.getPointer()
2987 .get<TypeSourceInfo *>()
2988 ->getType();
2989 }
2990
2991 void setTypeSourceInfo(TypeSourceInfo *newType) {
2992 MaybeModedTInfo.setPointer(newType);
2993 }
2994
2995 void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
2996 MaybeModedTInfo.setPointer(new (getASTContext(), 8)
2997 ModedTInfo({unmodedTSI, modedTy}));
2998 }
2999
3000 /// Retrieves the canonical declaration of this typedef-name.
3001 TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
3002 const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3003
3004 /// Retrieves the tag declaration for which this is the typedef name for
3005 /// linkage purposes, if any.
3006 ///
3007 /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3008 /// this typedef declaration.
3009 TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3010
3011 /// Determines if this typedef shares a name and spelling location with its
3012 /// underlying tag type, as is the case with the NS_ENUM macro.
3013 bool isTransparentTag() const {
3014 if (MaybeModedTInfo.getInt())
3015 return MaybeModedTInfo.getInt() & 0x2;
3016 return isTransparentTagSlow();
3017 }
3018
3019 // Implement isa/cast/dyncast/etc.
3020 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3021 static bool classofKind(Kind K) {
3022 return K >= firstTypedefName && K <= lastTypedefName;
3023 }
3024
3025private:
3026 bool isTransparentTagSlow() const;
3027};
3028
3029/// Represents the declaration of a typedef-name via the 'typedef'
3030/// type specifier.
3031class TypedefDecl : public TypedefNameDecl {
3032 TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3033 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3034 : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3035
3036public:
3037 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3038 SourceLocation StartLoc, SourceLocation IdLoc,
3039 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3040 static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3041
3042 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3043
3044 // Implement isa/cast/dyncast/etc.
3045 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3046 static bool classofKind(Kind K) { return K == Typedef; }
3047};
3048
3049/// Represents the declaration of a typedef-name via a C++11
3050/// alias-declaration.
3051class TypeAliasDecl : public TypedefNameDecl {
3052 /// The template for which this is the pattern, if any.
3053 TypeAliasTemplateDecl *Template;
3054
3055 TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3056 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3057 : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3058 Template(nullptr) {}
3059
3060public:
3061 static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3062 SourceLocation StartLoc, SourceLocation IdLoc,
3063 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3064 static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3065
3066 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3067
3068 TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3069 void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3070
3071 // Implement isa/cast/dyncast/etc.
3072 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3073 static bool classofKind(Kind K) { return K == TypeAlias; }
3074};
3075
3076/// Represents the declaration of a struct/union/class/enum.
3077class TagDecl : public TypeDecl,
3078 public DeclContext,
3079 public Redeclarable<TagDecl> {
3080 // This class stores some data in DeclContext::TagDeclBits
3081 // to save some space. Use the provided accessors to access it.
3082public:
3083 // This is really ugly.
3084 using TagKind = TagTypeKind;
3085
3086private:
3087 SourceRange BraceRange;
3088
3089 // A struct representing syntactic qualifier info,
3090 // to be used for the (uncommon) case of out-of-line declarations.
3091 using ExtInfo = QualifierInfo;
3092
3093 /// If the (out-of-line) tag declaration name
3094 /// is qualified, it points to the qualifier info (nns and range);
3095 /// otherwise, if the tag declaration is anonymous and it is part of
3096 /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3097 /// otherwise, if the tag declaration is anonymous and it is used as a
3098 /// declaration specifier for variables, it points to the first VarDecl (used
3099 /// for mangling);
3100 /// otherwise, it is a null (TypedefNameDecl) pointer.
3101 llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3102
3103 bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3104 ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3105 const ExtInfo *getExtInfo() const {
3106 return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3107 }
3108
3109protected:
3110 TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3111 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3112 SourceLocation StartL);
3113
3114 using redeclarable_base = Redeclarable<TagDecl>;
3115
3116 TagDecl *getNextRedeclarationImpl() override {
3117 return getNextRedeclaration();
3118 }
3119
3120 TagDecl *getPreviousDeclImpl() override {
3121 return getPreviousDecl();
3122 }
3123
3124 TagDecl *getMostRecentDeclImpl() override {
3125 return getMostRecentDecl();
3126 }
3127
3128 /// Completes the definition of this tag declaration.
3129 ///
3130 /// This is a helper function for derived classes.
3131 void completeDefinition();
3132
3133 /// True if this decl is currently being defined.
3134 void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3135
3136 /// Indicates whether it is possible for declarations of this kind
3137 /// to have an out-of-date definition.
3138 ///
3139 /// This option is only enabled when modules are enabled.
3140 void setMayHaveOutOfDateDef(bool V = true) {
3141 TagDeclBits.MayHaveOutOfDateDef = V;
3142 }
3143
3144public:
3145 friend class ASTDeclReader;
3146 friend class ASTDeclWriter;
3147
3148 using redecl_range = redeclarable_base::redecl_range;
3149 using redecl_iterator = redeclarable_base::redecl_iterator;
3150
3151 using redeclarable_base::redecls_begin;
3152 using redeclarable_base::redecls_end;
3153 using redeclarable_base::redecls;
3154 using redeclarable_base::getPreviousDecl;
3155 using redeclarable_base::getMostRecentDecl;
3156 using redeclarable_base::isFirstDecl;
3157
3158 SourceRange getBraceRange() const { return BraceRange; }
3159 void setBraceRange(SourceRange R) { BraceRange = R; }
3160
3161 /// Return SourceLocation representing start of source
3162 /// range ignoring outer template declarations.
3163 SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3164
3165 /// Return SourceLocation representing start of source
3166 /// range taking into account any outer template declarations.
3167 SourceLocation getOuterLocStart() const;
3168 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3169
3170 TagDecl *getCanonicalDecl() override;
3171 const TagDecl *getCanonicalDecl() const {
3172 return const_cast<TagDecl*>(this)->getCanonicalDecl();
3173 }
3174
3175 /// Return true if this declaration is a completion definition of the type.
3176 /// Provided for consistency.
3177 bool isThisDeclarationADefinition() const {
3178 return isCompleteDefinition();
3179 }
3180
3181 /// Return true if this decl has its body fully specified.
3182 bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3183
3184 /// True if this decl has its body fully specified.
3185 void setCompleteDefinition(bool V = true) {
3186 TagDeclBits.IsCompleteDefinition = V;
3187 }
3188
3189 /// Return true if this complete decl is
3190 /// required to be complete for some existing use.
3191 bool isCompleteDefinitionRequired() const {
3192 return TagDeclBits.IsCompleteDefinitionRequired;
3193 }
3194
3195 /// True if this complete decl is
3196 /// required to be complete for some existing use.
3197 void setCompleteDefinitionRequired(bool V = true) {
3198 TagDeclBits.IsCompleteDefinitionRequired = V;
3199 }
3200
3201 /// Return true if this decl is currently being defined.
3202 bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3203
3204 /// True if this tag declaration is "embedded" (i.e., defined or declared
3205 /// for the very first time) in the syntax of a declarator.
3206 bool isEmbeddedInDeclarator() const {
3207 return TagDeclBits.IsEmbeddedInDeclarator;
3208 }
3209
3210 /// True if this tag declaration is "embedded" (i.e., defined or declared
3211 /// for the very first time) in the syntax of a declarator.
3212 void setEmbeddedInDeclarator(bool isInDeclarator) {
3213 TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3214 }
3215
3216 /// True if this tag is free standing, e.g. "struct foo;".
3217 bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3218
3219 /// True if this tag is free standing, e.g. "struct foo;".
3220 void setFreeStanding(bool isFreeStanding = true) {
3221 TagDeclBits.IsFreeStanding = isFreeStanding;
3222 }
3223
3224 /// Indicates whether it is possible for declarations of this kind
3225 /// to have an out-of-date definition.
3226 ///
3227 /// This option is only enabled when modules are enabled.
3228 bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3229
3230 /// Whether this declaration declares a type that is
3231 /// dependent, i.e., a type that somehow depends on template
3232 /// parameters.
3233 bool isDependentType() const { return isDependentContext(); }
3234
3235 /// Starts the definition of this tag declaration.
3236 ///
3237 /// This method should be invoked at the beginning of the definition
3238 /// of this tag declaration. It will set the tag type into a state
3239 /// where it is in the process of being defined.
3240 void startDefinition();
3241
3242 /// Returns the TagDecl that actually defines this
3243 /// struct/union/class/enum. When determining whether or not a
3244 /// struct/union/class/enum has a definition, one should use this
3245 /// method as opposed to 'isDefinition'. 'isDefinition' indicates
3246 /// whether or not a specific TagDecl is defining declaration, not
3247 /// whether or not the struct/union/class/enum type is defined.
3248 /// This method returns NULL if there is no TagDecl that defines
3249 /// the struct/union/class/enum.
3250 TagDecl *getDefinition() const;
3251
3252 StringRef getKindName() const {
3253 return TypeWithKeyword::getTagTypeKindName(getTagKind());
3254 }
3255
3256 TagKind getTagKind() const {
3257 return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3258 }
3259
3260 void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3261
3262 bool isStruct() const { return getTagKind() == TTK_Struct; }
3263 bool isInterface() const { return getTagKind() == TTK_Interface; }
3264 bool isClass() const { return getTagKind() == TTK_Class; }
3265 bool isUnion() const { return getTagKind() == TTK_Union; }
3266 bool isEnum() const { return getTagKind() == TTK_Enum; }
3267
3268 /// Is this tag type named, either directly or via being defined in
3269 /// a typedef of this type?
3270 ///
3271 /// C++11 [basic.link]p8:
3272 /// A type is said to have linkage if and only if:
3273 /// - it is a class or enumeration type that is named (or has a
3274 /// name for linkage purposes) and the name has linkage; ...
3275 /// C++11 [dcl.typedef]p9:
3276 /// If the typedef declaration defines an unnamed class (or enum),
3277 /// the first typedef-name declared by the declaration to be that
3278 /// class type (or enum type) is used to denote the class type (or
3279 /// enum type) for linkage purposes only.
3280 ///
3281 /// C does not have an analogous rule, but the same concept is
3282 /// nonetheless useful in some places.
3283 bool hasNameForLinkage() const {
3284 return (getDeclName() || getTypedefNameForAnonDecl());
3285 }
3286
3287 TypedefNameDecl *getTypedefNameForAnonDecl() const {
3288 return hasExtInfo() ? nullptr
3289 : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3290 }
3291
3292 void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3293
3294 /// Retrieve the nested-name-specifier that qualifies the name of this
3295 /// declaration, if it was present in the source.
3296 NestedNameSpecifier *getQualifier() const {
3297 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3298 : nullptr;
3299 }
3300
3301 /// Retrieve the nested-name-specifier (with source-location
3302 /// information) that qualifies the name of this declaration, if it was
3303 /// present in the source.
3304 NestedNameSpecifierLoc getQualifierLoc() const {
3305 return hasExtInfo() ? getExtInfo()->QualifierLoc
3306 : NestedNameSpecifierLoc();
3307 }
3308
3309 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3310
3311 unsigned getNumTemplateParameterLists() const {
3312 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3313 }
3314
3315 TemplateParameterList *getTemplateParameterList(unsigned i) const {
3316 assert(i < getNumTemplateParameterLists())((i < getNumTemplateParameterLists()) ? static_cast<void
> (0) : __assert_fail ("i < getNumTemplateParameterLists()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 3316, __PRETTY_FUNCTION__))
;
3317 return getExtInfo()->TemplParamLists[i];
3318 }
3319
3320 void setTemplateParameterListsInfo(ASTContext &Context,
3321 ArrayRef<TemplateParameterList *> TPLists);
3322
3323 // Implement isa/cast/dyncast/etc.
3324 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3325 static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3326
3327 static DeclContext *castToDeclContext(const TagDecl *D) {
3328 return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3329 }
3330
3331 static TagDecl *castFromDeclContext(const DeclContext *DC) {
3332 return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3333 }
3334};
3335
3336/// Represents an enum. In C++11, enums can be forward-declared
3337/// with a fixed underlying type, and in C we allow them to be forward-declared
3338/// with no underlying type as an extension.
3339class EnumDecl : public TagDecl {
3340 // This class stores some data in DeclContext::EnumDeclBits
3341 // to save some space. Use the provided accessors to access it.
3342
3343 /// This represent the integer type that the enum corresponds
3344 /// to for code generation purposes. Note that the enumerator constants may
3345 /// have a different type than this does.
3346 ///
3347 /// If the underlying integer type was explicitly stated in the source
3348 /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3349 /// was automatically deduced somehow, and this is a Type*.
3350 ///
3351 /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3352 /// some cases it won't.
3353 ///
3354 /// The underlying type of an enumeration never has any qualifiers, so
3355 /// we can get away with just storing a raw Type*, and thus save an
3356 /// extra pointer when TypeSourceInfo is needed.
3357 llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3358
3359 /// The integer type that values of this type should
3360 /// promote to. In C, enumerators are generally of an integer type
3361 /// directly, but gcc-style large enumerators (and all enumerators
3362 /// in C++) are of the enum type instead.
3363 QualType PromotionType;
3364
3365 /// If this enumeration is an instantiation of a member enumeration
3366 /// of a class template specialization, this is the member specialization
3367 /// information.
3368 MemberSpecializationInfo *SpecializationInfo = nullptr;
3369
3370 /// Store the ODRHash after first calculation.
3371 /// The corresponding flag HasODRHash is in EnumDeclBits
3372 /// and can be accessed with the provided accessors.
3373 unsigned ODRHash;
3374
3375 EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3376 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3377 bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3378
3379 void anchor() override;
3380
3381 void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3382 TemplateSpecializationKind TSK);
3383
3384 /// Sets the width in bits required to store all the
3385 /// non-negative enumerators of this enum.
3386 void setNumPositiveBits(unsigned Num) {
3387 EnumDeclBits.NumPositiveBits = Num;
3388 assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount")((EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount"
) ? static_cast<void> (0) : __assert_fail ("EnumDeclBits.NumPositiveBits == Num && \"can't store this bitcount\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 3388, __PRETTY_FUNCTION__))
;
3389 }
3390
3391 /// Returns the width in bits required to store all the
3392 /// negative enumerators of this enum. (see getNumNegativeBits)
3393 void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3394
3395 /// True if this tag declaration is a scoped enumeration. Only
3396 /// possible in C++11 mode.
3397 void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3398
3399 /// If this tag declaration is a scoped enum,
3400 /// then this is true if the scoped enum was declared using the class
3401 /// tag, false if it was declared with the struct tag. No meaning is
3402 /// associated if this tag declaration is not a scoped enum.
3403 void setScopedUsingClassTag(bool ScopedUCT = true) {
3404 EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3405 }
3406
3407 /// True if this is an Objective-C, C++11, or
3408 /// Microsoft-style enumeration with a fixed underlying type.
3409 void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3410
3411 /// True if a valid hash is stored in ODRHash.
3412 bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3413 void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3414
3415public:
3416 friend class ASTDeclReader;
3417
3418 EnumDecl *getCanonicalDecl() override {
3419 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3420 }
3421 const EnumDecl *getCanonicalDecl() const {
3422 return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3423 }
3424
3425 EnumDecl *getPreviousDecl() {
3426 return cast_or_null<EnumDecl>(
3427 static_cast<TagDecl *>(this)->getPreviousDecl());
3428 }
3429 const EnumDecl *getPreviousDecl() const {
3430 return const_cast<EnumDecl*>(this)->getPreviousDecl();
3431 }
3432
3433 EnumDecl *getMostRecentDecl() {
3434 return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3435 }
3436 const EnumDecl *getMostRecentDecl() const {
3437 return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3438 }
3439
3440 EnumDecl *getDefinition() const {
3441 return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3442 }
3443
3444 static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3445 SourceLocation StartLoc, SourceLocation IdLoc,
3446 IdentifierInfo *Id, EnumDecl *PrevDecl,
3447 bool IsScoped, bool IsScopedUsingClassTag,
3448 bool IsFixed);
3449 static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3450
3451 /// When created, the EnumDecl corresponds to a
3452 /// forward-declared enum. This method is used to mark the
3453 /// declaration as being defined; its enumerators have already been
3454 /// added (via DeclContext::addDecl). NewType is the new underlying
3455 /// type of the enumeration type.
3456 void completeDefinition(QualType NewType,
3457 QualType PromotionType,
3458 unsigned NumPositiveBits,
3459 unsigned NumNegativeBits);
3460
3461 // Iterates through the enumerators of this enumeration.
3462 using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3463 using enumerator_range =
3464 llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3465
3466 enumerator_range enumerators() const {
3467 return enumerator_range(enumerator_begin(), enumerator_end());
3468 }
3469
3470 enumerator_iterator enumerator_begin() const {
3471 const EnumDecl *E = getDefinition();
3472 if (!E)
3473 E = this;
3474 return enumerator_iterator(E->decls_begin());
3475 }
3476
3477 enumerator_iterator enumerator_end() const {
3478 const EnumDecl *E = getDefinition();
3479 if (!E)
3480 E = this;
3481 return enumerator_iterator(E->decls_end());
3482 }
3483
3484 /// Return the integer type that enumerators should promote to.
3485 QualType getPromotionType() const { return PromotionType; }
3486
3487 /// Set the promotion type.
3488 void setPromotionType(QualType T) { PromotionType = T; }
3489
3490 /// Return the integer type this enum decl corresponds to.
3491 /// This returns a null QualType for an enum forward definition with no fixed
3492 /// underlying type.
3493 QualType getIntegerType() const {
3494 if (!IntegerType)
3495 return QualType();
3496 if (const Type *T = IntegerType.dyn_cast<const Type*>())
3497 return QualType(T, 0);
3498 return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3499 }
3500
3501 /// Set the underlying integer type.
3502 void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3503
3504 /// Set the underlying integer type source info.
3505 void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3506
3507 /// Return the type source info for the underlying integer type,
3508 /// if no type source info exists, return 0.
3509 TypeSourceInfo *getIntegerTypeSourceInfo() const {
3510 return IntegerType.dyn_cast<TypeSourceInfo*>();
3511 }
3512
3513 /// Retrieve the source range that covers the underlying type if
3514 /// specified.
3515 SourceRange getIntegerTypeRange() const LLVM_READONLY__attribute__((__pure__));
3516
3517 /// Returns the width in bits required to store all the
3518 /// non-negative enumerators of this enum.
3519 unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3520
3521 /// Returns the width in bits required to store all the
3522 /// negative enumerators of this enum. These widths include
3523 /// the rightmost leading 1; that is:
3524 ///
3525 /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
3526 /// ------------------------ ------- -----------------
3527 /// -1 1111111 1
3528 /// -10 1110110 5
3529 /// -101 1001011 8
3530 unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3531
3532 /// Returns true if this is a C++11 scoped enumeration.
3533 bool isScoped() const { return EnumDeclBits.IsScoped; }
3534
3535 /// Returns true if this is a C++11 scoped enumeration.
3536 bool isScopedUsingClassTag() const {
3537 return EnumDeclBits.IsScopedUsingClassTag;
3538 }
3539
3540 /// Returns true if this is an Objective-C, C++11, or
3541 /// Microsoft-style enumeration with a fixed underlying type.
3542 bool isFixed() const { return EnumDeclBits.IsFixed; }
3543
3544 unsigned getODRHash();
3545
3546 /// Returns true if this can be considered a complete type.
3547 bool isComplete() const {
3548 // IntegerType is set for fixed type enums and non-fixed but implicitly
3549 // int-sized Microsoft enums.
3550 return isCompleteDefinition() || IntegerType;
3551 }
3552
3553 /// Returns true if this enum is either annotated with
3554 /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3555 bool isClosed() const;
3556
3557 /// Returns true if this enum is annotated with flag_enum and isn't annotated
3558 /// with enum_extensibility(open).
3559 bool isClosedFlag() const;
3560
3561 /// Returns true if this enum is annotated with neither flag_enum nor
3562 /// enum_extensibility(open).
3563 bool isClosedNonFlag() const;
3564
3565 /// Retrieve the enum definition from which this enumeration could
3566 /// be instantiated, if it is an instantiation (rather than a non-template).
3567 EnumDecl *getTemplateInstantiationPattern() const;
3568
3569 /// Returns the enumeration (declared within the template)
3570 /// from which this enumeration type was instantiated, or NULL if
3571 /// this enumeration was not instantiated from any template.
3572 EnumDecl *getInstantiatedFromMemberEnum() const;
3573
3574 /// If this enumeration is a member of a specialization of a
3575 /// templated class, determine what kind of template specialization
3576 /// or instantiation this is.
3577 TemplateSpecializationKind getTemplateSpecializationKind() const;
3578
3579 /// For an enumeration member that was instantiated from a member
3580 /// enumeration of a templated class, set the template specialiation kind.
3581 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3582 SourceLocation PointOfInstantiation = SourceLocation());
3583
3584 /// If this enumeration is an instantiation of a member enumeration of
3585 /// a class template specialization, retrieves the member specialization
3586 /// information.
3587 MemberSpecializationInfo *getMemberSpecializationInfo() const {
3588 return SpecializationInfo;
3589 }
3590
3591 /// Specify that this enumeration is an instantiation of the
3592 /// member enumeration ED.
3593 void setInstantiationOfMemberEnum(EnumDecl *ED,
3594 TemplateSpecializationKind TSK) {
3595 setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3596 }
3597
3598 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3599 static bool classofKind(Kind K) { return K == Enum; }
3600};
3601
3602/// Represents a struct/union/class. For example:
3603/// struct X; // Forward declaration, no "body".
3604/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
3605/// This decl will be marked invalid if *any* members are invalid.
3606class RecordDecl : public TagDecl {
3607 // This class stores some data in DeclContext::RecordDeclBits
3608 // to save some space. Use the provided accessors to access it.
3609public:
3610 friend class DeclContext;
3611 /// Enum that represents the different ways arguments are passed to and
3612 /// returned from function calls. This takes into account the target-specific
3613 /// and version-specific rules along with the rules determined by the
3614 /// language.
3615 enum ArgPassingKind : unsigned {
3616 /// The argument of this type can be passed directly in registers.
3617 APK_CanPassInRegs,
3618
3619 /// The argument of this type cannot be passed directly in registers.
3620 /// Records containing this type as a subobject are not forced to be passed
3621 /// indirectly. This value is used only in C++. This value is required by
3622 /// C++ because, in uncommon situations, it is possible for a class to have
3623 /// only trivial copy/move constructors even when one of its subobjects has
3624 /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3625 /// constructor in the derived class is deleted).
3626 APK_CannotPassInRegs,
3627
3628 /// The argument of this type cannot be passed directly in registers.
3629 /// Records containing this type as a subobject are forced to be passed
3630 /// indirectly.
3631 APK_CanNeverPassInRegs
3632 };
3633
3634protected:
3635 RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3636 SourceLocation StartLoc, SourceLocation IdLoc,
3637 IdentifierInfo *Id, RecordDecl *PrevDecl);
3638
3639public:
3640 static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3641 SourceLocation StartLoc, SourceLocation IdLoc,
3642 IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3643 static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3644
3645 RecordDecl *getPreviousDecl() {
3646 return cast_or_null<RecordDecl>(
3647 static_cast<TagDecl *>(this)->getPreviousDecl());
3648 }
3649 const RecordDecl *getPreviousDecl() const {
3650 return const_cast<RecordDecl*>(this)->getPreviousDecl();
3651 }
3652
3653 RecordDecl *getMostRecentDecl() {
3654 return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3655 }
3656 const RecordDecl *getMostRecentDecl() const {
3657 return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3658 }
3659
3660 bool hasFlexibleArrayMember() const {
3661 return RecordDeclBits.HasFlexibleArrayMember;
3662 }
3663
3664 void setHasFlexibleArrayMember(bool V) {
3665 RecordDeclBits.HasFlexibleArrayMember = V;
3666 }
3667
3668 /// Whether this is an anonymous struct or union. To be an anonymous
3669 /// struct or union, it must have been declared without a name and
3670 /// there must be no objects of this type declared, e.g.,
3671 /// @code
3672 /// union { int i; float f; };
3673 /// @endcode
3674 /// is an anonymous union but neither of the following are:
3675 /// @code
3676 /// union X { int i; float f; };
3677 /// union { int i; float f; } obj;
3678 /// @endcode
3679 bool isAnonymousStructOrUnion() const {
3680 return RecordDeclBits.AnonymousStructOrUnion;
3681 }
3682
3683 void setAnonymousStructOrUnion(bool Anon) {
3684 RecordDeclBits.AnonymousStructOrUnion = Anon;
3685 }
3686
3687 bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
3688 void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
3689
3690 bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
3691
3692 void setHasVolatileMember(bool val) {
3693 RecordDeclBits.HasVolatileMember = val;
3694 }
3695
3696 bool hasLoadedFieldsFromExternalStorage() const {
3697 return RecordDeclBits.LoadedFieldsFromExternalStorage;
3698 }
3699
3700 void setHasLoadedFieldsFromExternalStorage(bool val) const {
3701 RecordDeclBits.LoadedFieldsFromExternalStorage = val;
3702 }
3703
3704 /// Functions to query basic properties of non-trivial C structs.
3705 bool isNonTrivialToPrimitiveDefaultInitialize() const {
3706 return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
3707 }
3708
3709 void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
3710 RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
3711 }
3712
3713 bool isNonTrivialToPrimitiveCopy() const {
3714 return RecordDeclBits.NonTrivialToPrimitiveCopy;
3715 }
3716
3717 void setNonTrivialToPrimitiveCopy(bool V) {
3718 RecordDeclBits.NonTrivialToPrimitiveCopy = V;
3719 }
3720
3721 bool isNonTrivialToPrimitiveDestroy() const {
3722 return RecordDeclBits.NonTrivialToPrimitiveDestroy;
3723 }
3724
3725 void setNonTrivialToPrimitiveDestroy(bool V) {
3726 RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
3727 }
3728
3729 /// Determine whether this class can be passed in registers. In C++ mode,
3730 /// it must have at least one trivial, non-deleted copy or move constructor.
3731 /// FIXME: This should be set as part of completeDefinition.
3732 bool canPassInRegisters() const {
3733 return getArgPassingRestrictions() == APK_CanPassInRegs;
3734 }
3735
3736 ArgPassingKind getArgPassingRestrictions() const {
3737 return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
3738 }
3739
3740 void setArgPassingRestrictions(ArgPassingKind Kind) {
3741 RecordDeclBits.ArgPassingRestrictions = Kind;
3742 }
3743
3744 bool isParamDestroyedInCallee() const {
3745 return RecordDeclBits.ParamDestroyedInCallee;
3746 }
3747
3748 void setParamDestroyedInCallee(bool V) {
3749 RecordDeclBits.ParamDestroyedInCallee = V;
3750 }
3751
3752 /// Determines whether this declaration represents the
3753 /// injected class name.
3754 ///
3755 /// The injected class name in C++ is the name of the class that
3756 /// appears inside the class itself. For example:
3757 ///
3758 /// \code
3759 /// struct C {
3760 /// // C is implicitly declared here as a synonym for the class name.
3761 /// };
3762 ///
3763 /// C::C c; // same as "C c;"
3764 /// \endcode
3765 bool isInjectedClassName() const;
3766
3767 /// Determine whether this record is a class describing a lambda
3768 /// function object.
3769 bool isLambda() const;
3770
3771 /// Determine whether this record is a record for captured variables in
3772 /// CapturedStmt construct.
3773 bool isCapturedRecord() const;
3774
3775 /// Mark the record as a record for captured variables in CapturedStmt
3776 /// construct.
3777 void setCapturedRecord();
3778
3779 /// Returns the RecordDecl that actually defines
3780 /// this struct/union/class. When determining whether or not a
3781 /// struct/union/class is completely defined, one should use this
3782 /// method as opposed to 'isCompleteDefinition'.
3783 /// 'isCompleteDefinition' indicates whether or not a specific
3784 /// RecordDecl is a completed definition, not whether or not the
3785 /// record type is defined. This method returns NULL if there is
3786 /// no RecordDecl that defines the struct/union/tag.
3787 RecordDecl *getDefinition() const {
3788 return cast_or_null<RecordDecl>(TagDecl::getDefinition());
3789 }
3790
3791 // Iterator access to field members. The field iterator only visits
3792 // the non-static data members of this class, ignoring any static
3793 // data members, functions, constructors, destructors, etc.
3794 using field_iterator = specific_decl_iterator<FieldDecl>;
3795 using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
3796
3797 field_range fields() const { return field_range(field_begin(), field_end()); }
3798 field_iterator field_begin() const;
3799
3800 field_iterator field_end() const {
3801 return field_iterator(decl_iterator());
3802 }
3803
3804 // Whether there are any fields (non-static data members) in this record.
3805 bool field_empty() const {
3806 return field_begin() == field_end();
3807 }
3808
3809 /// Note that the definition of this type is now complete.
3810 virtual void completeDefinition();
3811
3812 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3813 static bool classofKind(Kind K) {
3814 return K >= firstRecord && K <= lastRecord;
3815 }
3816
3817 /// Get whether or not this is an ms_struct which can
3818 /// be turned on with an attribute, pragma, or -mms-bitfields
3819 /// commandline option.
3820 bool isMsStruct(const ASTContext &C) const;
3821
3822 /// Whether we are allowed to insert extra padding between fields.
3823 /// These padding are added to help AddressSanitizer detect
3824 /// intra-object-overflow bugs.
3825 bool mayInsertExtraPadding(bool EmitRemark = false) const;
3826
3827 /// Finds the first data member which has a name.
3828 /// nullptr is returned if no named data member exists.
3829 const FieldDecl *findFirstNamedDataMember() const;
3830
3831private:
3832 /// Deserialize just the fields.
3833 void LoadFieldsFromExternalStorage() const;
3834};
3835
3836class FileScopeAsmDecl : public Decl {
3837 StringLiteral *AsmString;
3838 SourceLocation RParenLoc;
3839
3840 FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
3841 SourceLocation StartL, SourceLocation EndL)
3842 : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
3843
3844 virtual void anchor();
3845
3846public:
3847 static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
3848 StringLiteral *Str, SourceLocation AsmLoc,
3849 SourceLocation RParenLoc);
3850
3851 static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3852
3853 SourceLocation getAsmLoc() const { return getLocation(); }
3854 SourceLocation getRParenLoc() const { return RParenLoc; }
3855 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3856 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3857 return SourceRange(getAsmLoc(), getRParenLoc());
3858 }
3859
3860 const StringLiteral *getAsmString() const { return AsmString; }
3861 StringLiteral *getAsmString() { return AsmString; }
3862 void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
3863
3864 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3865 static bool classofKind(Kind K) { return K == FileScopeAsm; }
3866};
3867
3868/// Represents a block literal declaration, which is like an
3869/// unnamed FunctionDecl. For example:
3870/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
3871class BlockDecl : public Decl, public DeclContext {
3872 // This class stores some data in DeclContext::BlockDeclBits
3873 // to save some space. Use the provided accessors to access it.
3874public:
3875 /// A class which contains all the information about a particular
3876 /// captured value.
3877 class Capture {
3878 enum {
3879 flag_isByRef = 0x1,
3880 flag_isNested = 0x2
3881 };
3882
3883 /// The variable being captured.
3884 llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
3885
3886 /// The copy expression, expressed in terms of a DeclRef (or
3887 /// BlockDeclRef) to the captured variable. Only required if the
3888 /// variable has a C++ class type.
3889 Expr *CopyExpr;
3890
3891 public:
3892 Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
3893 : VariableAndFlags(variable,
3894 (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
3895 CopyExpr(copy) {}
3896
3897 /// The variable being captured.
3898 VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
3899
3900 /// Whether this is a "by ref" capture, i.e. a capture of a __block
3901 /// variable.
3902 bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
3903
3904 bool isEscapingByref() const {
3905 return getVariable()->isEscapingByref();
3906 }
3907
3908 bool isNonEscapingByref() const {
3909 return getVariable()->isNonEscapingByref();
3910 }
3911
3912 /// Whether this is a nested capture, i.e. the variable captured
3913 /// is not from outside the immediately enclosing function/block.
3914 bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
3915
3916 bool hasCopyExpr() const { return CopyExpr != nullptr; }
3917 Expr *getCopyExpr() const { return CopyExpr; }
3918 void setCopyExpr(Expr *e) { CopyExpr = e; }
3919 };
3920
3921private:
3922 /// A new[]'d array of pointers to ParmVarDecls for the formal
3923 /// parameters of this function. This is null if a prototype or if there are
3924 /// no formals.
3925 ParmVarDecl **ParamInfo = nullptr;
3926 unsigned NumParams = 0;
3927
3928 Stmt *Body = nullptr;
3929 TypeSourceInfo *SignatureAsWritten = nullptr;
3930
3931 const Capture *Captures = nullptr;
3932 unsigned NumCaptures = 0;
3933
3934 unsigned ManglingNumber = 0;
3935 Decl *ManglingContextDecl = nullptr;
3936
3937protected:
3938 BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
3939
3940public:
3941 static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
3942 static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3943
3944 SourceLocation getCaretLocation() const { return getLocation(); }
3945
3946 bool isVariadic() const { return BlockDeclBits.IsVariadic; }
3947 void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
3948
3949 CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
3950 Stmt *getBody() const override { return (Stmt*) Body; }
3951 void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
3952
3953 void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
3954 TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
3955
3956 // ArrayRef access to formal parameters.
3957 ArrayRef<ParmVarDecl *> parameters() const {
3958 return {ParamInfo, getNumParams()};
3959 }
3960 MutableArrayRef<ParmVarDecl *> parameters() {
3961 return {ParamInfo, getNumParams()};
3962 }
3963
3964 // Iterator access to formal parameters.
3965 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
3966 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
3967
3968 bool param_empty() const { return parameters().empty(); }
3969 param_iterator param_begin() { return parameters().begin(); }
3970 param_iterator param_end() { return parameters().end(); }
3971 param_const_iterator param_begin() const { return parameters().begin(); }
3972 param_const_iterator param_end() const { return parameters().end(); }
3973 size_t param_size() const { return parameters().size(); }
3974
3975 unsigned getNumParams() const { return NumParams; }
3976
3977 const ParmVarDecl *getParamDecl(unsigned i) const {
3978 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 3978, __PRETTY_FUNCTION__))
;
3979 return ParamInfo[i];
3980 }
3981 ParmVarDecl *getParamDecl(unsigned i) {
3982 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 3982, __PRETTY_FUNCTION__))
;
3983 return ParamInfo[i];
3984 }
3985
3986 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
3987
3988 /// True if this block (or its nested blocks) captures
3989 /// anything of local storage from its enclosing scopes.
3990 bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
3991
3992 /// Returns the number of captured variables.
3993 /// Does not include an entry for 'this'.
3994 unsigned getNumCaptures() const { return NumCaptures; }
3995
3996 using capture_const_iterator = ArrayRef<Capture>::const_iterator;
3997
3998 ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
3999
4000 capture_const_iterator capture_begin() const { return captures().begin(); }
4001 capture_const_iterator capture_end() const { return captures().end(); }
4002
4003 bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4004 void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4005
4006 bool blockMissingReturnType() const {
4007 return BlockDeclBits.BlockMissingReturnType;
4008 }
4009
4010 void setBlockMissingReturnType(bool val = true) {
4011 BlockDeclBits.BlockMissingReturnType = val;
4012 }
4013
4014 bool isConversionFromLambda() const {
4015 return BlockDeclBits.IsConversionFromLambda;
4016 }
4017
4018 void setIsConversionFromLambda(bool val = true) {
4019 BlockDeclBits.IsConversionFromLambda = val;
4020 }
4021
4022 bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4023 void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4024
4025 bool canAvoidCopyToHeap() const {
4026 return BlockDeclBits.CanAvoidCopyToHeap;
4027 }
4028 void setCanAvoidCopyToHeap(bool B = true) {
4029 BlockDeclBits.CanAvoidCopyToHeap = B;
4030 }
4031
4032 bool capturesVariable(const VarDecl *var) const;
4033
4034 void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4035 bool CapturesCXXThis);
4036
4037 unsigned getBlockManglingNumber() const {
4038 return ManglingNumber;
4039 }
4040
4041 Decl *getBlockManglingContextDecl() const {
4042 return ManglingContextDecl;
4043 }
4044
4045 void setBlockMangling(unsigned Number, Decl *Ctx) {
4046 ManglingNumber = Number;
4047 ManglingContextDecl = Ctx;
4048 }
4049
4050 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4051
4052 // Implement isa/cast/dyncast/etc.
4053 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4054 static bool classofKind(Kind K) { return K == Block; }
4055 static DeclContext *castToDeclContext(const BlockDecl *D) {
4056 return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4057 }
4058 static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4059 return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4060 }
4061};
4062
4063/// Represents the body of a CapturedStmt, and serves as its DeclContext.
4064class CapturedDecl final
4065 : public Decl,
4066 public DeclContext,
4067 private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4068protected:
4069 size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4070 return NumParams;
4071 }
4072
4073private:
4074 /// The number of parameters to the outlined function.
4075 unsigned NumParams;
4076
4077 /// The position of context parameter in list of parameters.
4078 unsigned ContextParam;
4079
4080 /// The body of the outlined function.
4081 llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4082
4083 explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4084
4085 ImplicitParamDecl *const *getParams() const {
4086 return getTrailingObjects<ImplicitParamDecl *>();
4087 }
4088
4089 ImplicitParamDecl **getParams() {
4090 return getTrailingObjects<ImplicitParamDecl *>();
4091 }
4092
4093public:
4094 friend class ASTDeclReader;
4095 friend class ASTDeclWriter;
4096 friend TrailingObjects;
4097
4098 static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4099 unsigned NumParams);
4100 static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4101 unsigned NumParams);
4102
4103 Stmt *getBody() const override;
4104 void setBody(Stmt *B);
4105
4106 bool isNothrow() const;
4107 void setNothrow(bool Nothrow = true);
4108
4109 unsigned getNumParams() const { return NumParams; }
4110
4111 ImplicitParamDecl *getParam(unsigned i) const {
4112 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4112, __PRETTY_FUNCTION__))
;
4113 return getParams()[i];
4114 }
4115 void setParam(unsigned i, ImplicitParamDecl *P) {
4116 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4116, __PRETTY_FUNCTION__))
;
4117 getParams()[i] = P;
4118 }
4119
4120 // ArrayRef interface to parameters.
4121 ArrayRef<ImplicitParamDecl *> parameters() const {
4122 return {getParams(), getNumParams()};
4123 }
4124 MutableArrayRef<ImplicitParamDecl *> parameters() {
4125 return {getParams(), getNumParams()};
4126 }
4127
4128 /// Retrieve the parameter containing captured variables.
4129 ImplicitParamDecl *getContextParam() const {
4130 assert(ContextParam < NumParams)((ContextParam < NumParams) ? static_cast<void> (0) :
__assert_fail ("ContextParam < NumParams", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4130, __PRETTY_FUNCTION__))
;
4131 return getParam(ContextParam);
4132 }
4133 void setContextParam(unsigned i, ImplicitParamDecl *P) {
4134 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4134, __PRETTY_FUNCTION__))
;
4135 ContextParam = i;
4136 setParam(i, P);
4137 }
4138 unsigned getContextParamPosition() const { return ContextParam; }
4139
4140 using param_iterator = ImplicitParamDecl *const *;
4141 using param_range = llvm::iterator_range<param_iterator>;
4142
4143 /// Retrieve an iterator pointing to the first parameter decl.
4144 param_iterator param_begin() const { return getParams(); }
4145 /// Retrieve an iterator one past the last parameter decl.
4146 param_iterator param_end() const { return getParams() + NumParams; }
4147
4148 // Implement isa/cast/dyncast/etc.
4149 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4150 static bool classofKind(Kind K) { return K == Captured; }
4151 static DeclContext *castToDeclContext(const CapturedDecl *D) {
4152 return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4153 }
4154 static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4155 return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4156 }
4157};
4158
4159/// Describes a module import declaration, which makes the contents
4160/// of the named module visible in the current translation unit.
4161///
4162/// An import declaration imports the named module (or submodule). For example:
4163/// \code
4164/// @import std.vector;
4165/// \endcode
4166///
4167/// Import declarations can also be implicitly generated from
4168/// \#include/\#import directives.
4169class ImportDecl final : public Decl,
4170 llvm::TrailingObjects<ImportDecl, SourceLocation> {
4171 friend class ASTContext;
4172 friend class ASTDeclReader;
4173 friend class ASTReader;
4174 friend TrailingObjects;
4175
4176 /// The imported module, along with a bit that indicates whether
4177 /// we have source-location information for each identifier in the module
4178 /// name.
4179 ///
4180 /// When the bit is false, we only have a single source location for the
4181 /// end of the import declaration.
4182 llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
4183
4184 /// The next import in the list of imports local to the translation
4185 /// unit being parsed (not loaded from an AST file).
4186 ImportDecl *NextLocalImport = nullptr;
4187
4188 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4189 ArrayRef<SourceLocation> IdentifierLocs);
4190
4191 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4192 SourceLocation EndLoc);
4193
4194 ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4195
4196public:
4197 /// Create a new module import declaration.
4198 static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4199 SourceLocation StartLoc, Module *Imported,
4200 ArrayRef<SourceLocation> IdentifierLocs);
4201
4202 /// Create a new module import declaration for an implicitly-generated
4203 /// import.
4204 static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4205 SourceLocation StartLoc, Module *Imported,
4206 SourceLocation EndLoc);
4207
4208 /// Create a new, deserialized module import declaration.
4209 static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4210 unsigned NumLocations);
4211
4212 /// Retrieve the module that was imported by the import declaration.
4213 Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
4214
4215 /// Retrieves the locations of each of the identifiers that make up
4216 /// the complete module name in the import declaration.
4217 ///
4218 /// This will return an empty array if the locations of the individual
4219 /// identifiers aren't available.
4220 ArrayRef<SourceLocation> getIdentifierLocs() const;
4221
4222 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4223
4224 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4225 static bool classofKind(Kind K) { return K == Import; }
4226};
4227
4228/// Represents a C++ Modules TS module export declaration.
4229///
4230/// For example:
4231/// \code
4232/// export void foo();
4233/// \endcode
4234class ExportDecl final : public Decl, public DeclContext {
4235 virtual void anchor();
4236
4237private:
4238 friend class ASTDeclReader;
4239
4240 /// The source location for the right brace (if valid).
4241 SourceLocation RBraceLoc;
4242
4243 ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4244 : Decl(Export, DC, ExportLoc), DeclContext(Export),
4245 RBraceLoc(SourceLocation()) {}
4246
4247public:
4248 static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4249 SourceLocation ExportLoc);
4250 static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4251
4252 SourceLocation getExportLoc() const { return getLocation(); }
4253 SourceLocation getRBraceLoc() const { return RBraceLoc; }
4254 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4255
4256 bool hasBraces() const { return RBraceLoc.isValid(); }
4257
4258 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4259 if (hasBraces())
4260 return RBraceLoc;
4261 // No braces: get the end location of the (only) declaration in context
4262 // (if present).
4263 return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4264 }
4265
4266 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4267 return SourceRange(getLocation(), getEndLoc());
4268 }
4269
4270 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4271 static bool classofKind(Kind K) { return K == Export; }
4272 static DeclContext *castToDeclContext(const ExportDecl *D) {
4273 return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4274 }
4275 static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4276 return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4277 }
4278};
4279
4280/// Represents an empty-declaration.
4281class EmptyDecl : public Decl {
4282 EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4283
4284 virtual void anchor();
4285
4286public:
4287 static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4288 SourceLocation L);
4289 static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4290
4291 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4292 static bool classofKind(Kind K) { return K == Empty; }
4293};
4294
4295/// Insertion operator for diagnostics. This allows sending NamedDecl's
4296/// into a diagnostic with <<.
4297inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4298 const NamedDecl* ND) {
4299 DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4300 DiagnosticsEngine::ak_nameddecl);
4301 return DB;
4302}
4303inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4304 const NamedDecl* ND) {
4305 PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4306 DiagnosticsEngine::ak_nameddecl);
4307 return PD;
4308}
4309
4310template<typename decl_type>
4311void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4312 // Note: This routine is implemented here because we need both NamedDecl
4313 // and Redeclarable to be defined.
4314 assert(RedeclLink.isFirst() &&((RedeclLink.isFirst() && "setPreviousDecl on a decl already in a redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("RedeclLink.isFirst() && \"setPreviousDecl on a decl already in a redeclaration chain\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4315, __PRETTY_FUNCTION__))
4315 "setPreviousDecl on a decl already in a redeclaration chain")((RedeclLink.isFirst() && "setPreviousDecl on a decl already in a redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("RedeclLink.isFirst() && \"setPreviousDecl on a decl already in a redeclaration chain\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4315, __PRETTY_FUNCTION__))
;
4316
4317 if (PrevDecl) {
4318 // Point to previous. Make sure that this is actually the most recent
4319 // redeclaration, or we can build invalid chains. If the most recent
4320 // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4321 First = PrevDecl->getFirstDecl();
4322 assert(First->RedeclLink.isFirst() && "Expected first")((First->RedeclLink.isFirst() && "Expected first")
? static_cast<void> (0) : __assert_fail ("First->RedeclLink.isFirst() && \"Expected first\""
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4322, __PRETTY_FUNCTION__))
;
4323 decl_type *MostRecent = First->getNextRedeclaration();
4324 RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4325
4326 // If the declaration was previously visible, a redeclaration of it remains
4327 // visible even if it wouldn't be visible by itself.
4328 static_cast<decl_type*>(this)->IdentifierNamespace |=
4329 MostRecent->getIdentifierNamespace() &
4330 (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4331 } else {
4332 // Make this first.
4333 First = static_cast<decl_type*>(this);
4334 }
4335
4336 // First one will point to this one as latest.
4337 First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4338
4339 assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||((!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->
isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("!isa<NamedDecl>(static_cast<decl_type*>(this)) || cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4340, __PRETTY_FUNCTION__))
4340 cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid())((!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->
isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("!isa<NamedDecl>(static_cast<decl_type*>(this)) || cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid()"
, "/build/llvm-toolchain-snapshot-9~svn362543/tools/clang/include/clang/AST/Decl.h"
, 4340, __PRETTY_FUNCTION__))
;
4341}
4342
4343// Inline function definitions.
4344
4345/// Check if the given decl is complete.
4346///
4347/// We use this function to break a cycle between the inline definitions in
4348/// Type.h and Decl.h.
4349inline bool IsEnumDeclComplete(EnumDecl *ED) {
4350 return ED->isComplete();
4351}
4352
4353/// Check if the given decl is scoped.
4354///
4355/// We use this function to break a cycle between the inline definitions in
4356/// Type.h and Decl.h.
4357inline bool IsEnumDeclScoped(EnumDecl *ED) {
4358 return ED->isScoped();
4359}
4360
4361} // namespace clang
4362
4363#endif // LLVM_CLANG_AST_DECL_H