Bug Summary

File:tools/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 3588, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGObjCRuntime.h"
21#include "CGOpenCLRuntime.h"
22#include "CGOpenMPRuntime.h"
23#include "CGOpenMPRuntimeNVPTX.h"
24#include "CodeGenFunction.h"
25#include "CodeGenPGO.h"
26#include "ConstantEmitter.h"
27#include "CoverageMappingGen.h"
28#include "TargetInfo.h"
29#include "clang/AST/ASTContext.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/AST/DeclCXX.h"
32#include "clang/AST/DeclObjC.h"
33#include "clang/AST/DeclTemplate.h"
34#include "clang/AST/Mangle.h"
35#include "clang/AST/RecordLayout.h"
36#include "clang/AST/RecursiveASTVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/Diagnostic.h"
40#include "clang/Basic/Module.h"
41#include "clang/Basic/SourceManager.h"
42#include "clang/Basic/TargetInfo.h"
43#include "clang/Basic/Version.h"
44#include "clang/CodeGen/ConstantInitBuilder.h"
45#include "clang/Frontend/CodeGenOptions.h"
46#include "clang/Sema/SemaDiagnostic.h"
47#include "llvm/ADT/Triple.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/IR/CallSite.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Module.h"
55#include "llvm/ProfileData/InstrProfReader.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MD5.h"
59
60using namespace clang;
61using namespace CodeGen;
62
63static llvm::cl::opt<bool> LimitedCoverage(
64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66 llvm::cl::init(false));
67
68static const char AnnotationSection[] = "llvm.metadata";
69
70static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71 switch (CGM.getTarget().getCXXABI().getKind()) {
72 case TargetCXXABI::GenericAArch64:
73 case TargetCXXABI::GenericARM:
74 case TargetCXXABI::iOS:
75 case TargetCXXABI::iOS64:
76 case TargetCXXABI::WatchOS:
77 case TargetCXXABI::GenericMIPS:
78 case TargetCXXABI::GenericItanium:
79 case TargetCXXABI::WebAssembly:
80 return CreateItaniumCXXABI(CGM);
81 case TargetCXXABI::Microsoft:
82 return CreateMicrosoftCXXABI(CGM);
83 }
84
85 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 85)
;
86}
87
88CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89 const PreprocessorOptions &PPO,
90 const CodeGenOptions &CGO, llvm::Module &M,
91 DiagnosticsEngine &diags,
92 CoverageSourceInfo *CoverageInfo)
93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96 VMContext(M.getContext()), Types(*this), VTables(*this),
97 SanitizerMD(new SanitizerMetadata(*this)) {
98
99 // Initialize the type cache.
100 llvm::LLVMContext &LLVMContext = M.getContext();
101 VoidTy = llvm::Type::getVoidTy(LLVMContext);
102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106 HalfTy = llvm::Type::getHalfTy(LLVMContext);
107 FloatTy = llvm::Type::getFloatTy(LLVMContext);
108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110 PointerAlignInBytes =
111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112 SizeSizeInBytes =
113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114 IntAlignInBytes =
115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117 IntPtrTy = llvm::IntegerType::get(LLVMContext,
118 C.getTargetInfo().getMaxPointerWidth());
119 Int8PtrTy = Int8Ty->getPointerTo(0);
120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121 AllocaInt8PtrTy = Int8Ty->getPointerTo(
122 M.getDataLayout().getAllocaAddrSpace());
123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124
125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126
127 if (LangOpts.ObjC1)
128 createObjCRuntime();
129 if (LangOpts.OpenCL)
130 createOpenCLRuntime();
131 if (LangOpts.OpenMP)
132 createOpenMPRuntime();
133 if (LangOpts.CUDA)
134 createCUDARuntime();
135
136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140 getCXXABI().getMangleContext()));
141
142 // If debug info or coverage generation is enabled, create the CGDebugInfo
143 // object.
144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146 DebugInfo.reset(new CGDebugInfo(*this));
147
148 Block.GlobalUniqueCount = 0;
149
150 if (C.getLangOpts().ObjC1)
151 ObjCData.reset(new ObjCEntrypoints());
152
153 if (CodeGenOpts.hasProfileClangUse()) {
154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155 CodeGenOpts.ProfileInstrumentUsePath);
156 if (auto E = ReaderOrErr.takeError()) {
157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158 "Could not read profile %0: %1");
159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161 << EI.message();
162 });
163 } else
164 PGOReader = std::move(ReaderOrErr.get());
165 }
166
167 // If coverage mapping generation is enabled, create the
168 // CoverageMappingModuleGen object.
169 if (CodeGenOpts.CoverageMapping)
170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171}
172
173CodeGenModule::~CodeGenModule() {}
174
175void CodeGenModule::createObjCRuntime() {
176 // This is just isGNUFamily(), but we want to force implementors of
177 // new ABIs to decide how best to do this.
178 switch (LangOpts.ObjCRuntime.getKind()) {
179 case ObjCRuntime::GNUstep:
180 case ObjCRuntime::GCC:
181 case ObjCRuntime::ObjFW:
182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183 return;
184
185 case ObjCRuntime::FragileMacOSX:
186 case ObjCRuntime::MacOSX:
187 case ObjCRuntime::iOS:
188 case ObjCRuntime::WatchOS:
189 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190 return;
191 }
192 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 192)
;
193}
194
195void CodeGenModule::createOpenCLRuntime() {
196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197}
198
199void CodeGenModule::createOpenMPRuntime() {
200 // Select a specialized code generation class based on the target, if any.
201 // If it does not exist use the default implementation.
202 switch (getTriple().getArch()) {
203 case llvm::Triple::nvptx:
204 case llvm::Triple::nvptx64:
205 assert(getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
206 "OpenMP NVPTX is only prepared to deal with device code.")(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
;
207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208 break;
209 default:
210 if (LangOpts.OpenMPSimd)
211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212 else
213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214 break;
215 }
216}
217
218void CodeGenModule::createCUDARuntime() {
219 CUDARuntime.reset(CreateNVCUDARuntime(*this));
220}
221
222void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223 Replacements[Name] = C;
224}
225
226void CodeGenModule::applyReplacements() {
227 for (auto &I : Replacements) {
228 StringRef MangledName = I.first();
229 llvm::Constant *Replacement = I.second;
230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231 if (!Entry)
232 continue;
233 auto *OldF = cast<llvm::Function>(Entry);
234 auto *NewF = dyn_cast<llvm::Function>(Replacement);
235 if (!NewF) {
236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238 } else {
239 auto *CE = cast<llvm::ConstantExpr>(Replacement);
240 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 241, __extension__ __PRETTY_FUNCTION__))
241 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243 }
244 }
245
246 // Replace old with new, but keep the old order.
247 OldF->replaceAllUsesWith(Replacement);
248 if (NewF) {
249 NewF->removeFromParent();
250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251 NewF);
252 }
253 OldF->eraseFromParent();
254 }
255}
256
257void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258 GlobalValReplacements.push_back(std::make_pair(GV, C));
259}
260
261void CodeGenModule::applyGlobalValReplacements() {
262 for (auto &I : GlobalValReplacements) {
263 llvm::GlobalValue *GV = I.first;
264 llvm::Constant *C = I.second;
265
266 GV->replaceAllUsesWith(C);
267 GV->eraseFromParent();
268 }
269}
270
271// This is only used in aliases that we created and we know they have a
272// linear structure.
273static const llvm::GlobalObject *getAliasedGlobal(
274 const llvm::GlobalIndirectSymbol &GIS) {
275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276 const llvm::Constant *C = &GIS;
277 for (;;) {
278 C = C->stripPointerCasts();
279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280 return GO;
281 // stripPointerCasts will not walk over weak aliases.
282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283 if (!GIS2)
284 return nullptr;
285 if (!Visited.insert(GIS2).second)
286 return nullptr;
287 C = GIS2->getIndirectSymbol();
288 }
289}
290
291void CodeGenModule::checkAliases() {
292 // Check if the constructed aliases are well formed. It is really unfortunate
293 // that we have to do this in CodeGen, but we only construct mangled names
294 // and aliases during codegen.
295 bool Error = false;
296 DiagnosticsEngine &Diags = getDiags();
297 for (const GlobalDecl &GD : Aliases) {
298 const auto *D = cast<ValueDecl>(GD.getDecl());
299 SourceLocation Location;
300 bool IsIFunc = D->hasAttr<IFuncAttr>();
301 if (const Attr *A = D->getDefiningAttr())
302 Location = A->getLocation();
303 else
304 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 304)
;
305 StringRef MangledName = getMangledName(GD);
306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309 if (!GV) {
310 Error = true;
311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312 } else if (GV->isDeclaration()) {
313 Error = true;
314 Diags.Report(Location, diag::err_alias_to_undefined)
315 << IsIFunc << IsIFunc;
316 } else if (IsIFunc) {
317 // Check resolver function type.
318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319 GV->getType()->getPointerElementType());
320 assert(FTy)(static_cast <bool> (FTy) ? void (0) : __assert_fail ("FTy"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 320, __extension__ __PRETTY_FUNCTION__))
;
321 if (!FTy->getReturnType()->isPointerTy())
322 Diags.Report(Location, diag::err_ifunc_resolver_return);
323 if (FTy->getNumParams())
324 Diags.Report(Location, diag::err_ifunc_resolver_params);
325 }
326
327 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328 llvm::GlobalValue *AliaseeGV;
329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331 else
332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333
334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335 StringRef AliasSection = SA->getName();
336 if (AliasSection != AliaseeGV->getSection())
337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338 << AliasSection << IsIFunc << IsIFunc;
339 }
340
341 // We have to handle alias to weak aliases in here. LLVM itself disallows
342 // this since the object semantics would not match the IL one. For
343 // compatibility with gcc we implement it by just pointing the alias
344 // to its aliasee's aliasee. We also warn, since the user is probably
345 // expecting the link to be weak.
346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347 if (GA->isInterposable()) {
348 Diags.Report(Location, diag::warn_alias_to_weak_alias)
349 << GV->getName() << GA->getName() << IsIFunc;
350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351 GA->getIndirectSymbol(), Alias->getType());
352 Alias->setIndirectSymbol(Aliasee);
353 }
354 }
355 }
356 if (!Error)
357 return;
358
359 for (const GlobalDecl &GD : Aliases) {
360 StringRef MangledName = getMangledName(GD);
361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364 Alias->eraseFromParent();
365 }
366}
367
368void CodeGenModule::clear() {
369 DeferredDeclsToEmit.clear();
370 if (OpenMPRuntime)
371 OpenMPRuntime->clear();
372}
373
374void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375 StringRef MainFile) {
376 if (!hasDiagnostics())
377 return;
378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379 if (MainFile.empty())
380 MainFile = "<stdin>";
381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382 } else {
383 if (Mismatched > 0)
384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385
386 if (Missing > 0)
387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388 }
389}
390
391void CodeGenModule::Release() {
392 EmitDeferred();
393 EmitVTablesOpportunistically();
394 applyGlobalValReplacements();
395 applyReplacements();
396 checkAliases();
397 emitMultiVersionFunctions();
398 EmitCXXGlobalInitFunc();
399 EmitCXXGlobalDtorFunc();
400 registerGlobalDtorsWithAtExit();
401 EmitCXXThreadLocalInitFunc();
402 if (ObjCRuntime)
403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404 AddGlobalCtor(ObjCInitFunction);
405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406 CUDARuntime) {
407 if (llvm::Function *CudaCtorFunction =
408 CUDARuntime->makeModuleCtorFunction())
409 AddGlobalCtor(CudaCtorFunction);
410 }
411 if (OpenMPRuntime) {
412 if (llvm::Function *OpenMPRegistrationFunction =
413 OpenMPRuntime->emitRegistrationFunction()) {
414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415 OpenMPRegistrationFunction : nullptr;
416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417 }
418 OpenMPRuntime->clear();
419 }
420 if (PGOReader) {
421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422 if (PGOStats.hasDiagnostics())
423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424 }
425 EmitCtorList(GlobalCtors, "llvm.global_ctors");
426 EmitCtorList(GlobalDtors, "llvm.global_dtors");
427 EmitGlobalAnnotations();
428 EmitStaticExternCAliases();
429 EmitDeferredUnusedCoverageMappings();
430 if (CoverageMapping)
431 CoverageMapping->emit();
432 if (CodeGenOpts.SanitizeCfiCrossDso) {
433 CodeGenFunction(*this).EmitCfiCheckFail();
434 CodeGenFunction(*this).EmitCfiCheckStub();
435 }
436 emitAtAvailableLinkGuard();
437 emitLLVMUsed();
438 if (SanStats)
439 SanStats->finish();
440
441 if (CodeGenOpts.Autolink &&
442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443 EmitModuleLinkOptions();
444 }
445
446 // Record mregparm value now so it is visible through rest of codegen.
447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449 CodeGenOpts.NumRegisterParameters);
450
451 if (CodeGenOpts.DwarfVersion) {
452 // We actually want the latest version when there are conflicts.
453 // We can change from Warning to Latest if such mode is supported.
454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455 CodeGenOpts.DwarfVersion);
456 }
457 if (CodeGenOpts.EmitCodeView) {
458 // Indicate that we want CodeView in the metadata.
459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460 }
461 if (CodeGenOpts.ControlFlowGuard) {
462 // We want function ID tables for Control Flow Guard.
463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464 }
465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466 // We don't support LTO with 2 with different StrictVTablePointers
467 // FIXME: we could support it by stripping all the information introduced
468 // by StrictVTablePointers.
469
470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471
472 llvm::Metadata *Ops[2] = {
473 llvm::MDString::get(VMContext, "StrictVTablePointers"),
474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475 llvm::Type::getInt32Ty(VMContext), 1))};
476
477 getModule().addModuleFlag(llvm::Module::Require,
478 "StrictVTablePointersRequirement",
479 llvm::MDNode::get(VMContext, Ops));
480 }
481 if (DebugInfo)
482 // We support a single version in the linked module. The LLVM
483 // parser will drop debug info with a different version number
484 // (and warn about it, too).
485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486 llvm::DEBUG_METADATA_VERSION);
487
488 // We need to record the widths of enums and wchar_t, so that we can generate
489 // the correct build attributes in the ARM backend. wchar_size is also used by
490 // TargetLibraryInfo.
491 uint64_t WCharWidth =
492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494
495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496 if ( Arch == llvm::Triple::arm
497 || Arch == llvm::Triple::armeb
498 || Arch == llvm::Triple::thumb
499 || Arch == llvm::Triple::thumbeb) {
500 // The minimum width of an enum in bytes
501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503 }
504
505 if (CodeGenOpts.SanitizeCfiCrossDso) {
506 // Indicate that we want cross-DSO control flow integrity checks.
507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508 }
509
510 if (CodeGenOpts.CFProtectionReturn &&
511 Target.checkCFProtectionReturnSupported(getDiags())) {
512 // Indicate that we want to instrument return control flow protection.
513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514 1);
515 }
516
517 if (CodeGenOpts.CFProtectionBranch &&
518 Target.checkCFProtectionBranchSupported(getDiags())) {
519 // Indicate that we want to instrument branch control flow protection.
520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521 1);
522 }
523
524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525 // Indicate whether __nvvm_reflect should be configured to flush denormal
526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
527 // property.)
528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529 CodeGenOpts.FlushDenorm ? 1 : 0);
530 }
531
532 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533 if (LangOpts.OpenCL) {
534 EmitOpenCLMetadata();
535 // Emit SPIR version.
536 if (getTriple().getArch() == llvm::Triple::spir ||
537 getTriple().getArch() == llvm::Triple::spir64) {
538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539 // opencl.spir.version named metadata.
540 llvm::Metadata *SPIRVerElts[] = {
541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542 Int32Ty, LangOpts.OpenCLVersion / 100)),
543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545 llvm::NamedMDNode *SPIRVerMD =
546 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547 llvm::LLVMContext &Ctx = TheModule.getContext();
548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549 }
550 }
551
552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553 assert(PLevel < 3 && "Invalid PIC Level")(static_cast <bool> (PLevel < 3 && "Invalid PIC Level"
) ? void (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 553, __extension__ __PRETTY_FUNCTION__))
;
554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555 if (Context.getLangOpts().PIE)
556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557 }
558
559 if (CodeGenOpts.NoPLT)
560 getModule().setRtLibUseGOT();
561
562 SimplifyPersonality();
563
564 if (getCodeGenOpts().EmitDeclMetadata)
565 EmitDeclMetadata();
566
567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568 EmitCoverageFile();
569
570 if (DebugInfo)
571 DebugInfo->finalize();
572
573 if (getCodeGenOpts().EmitVersionIdentMetadata)
574 EmitVersionIdentMetadata();
575
576 EmitTargetMetadata();
577}
578
579void CodeGenModule::EmitOpenCLMetadata() {
580 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
581 // opencl.ocl.version named metadata node.
582 llvm::Metadata *OCLVerElts[] = {
583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584 Int32Ty, LangOpts.OpenCLVersion / 100)),
585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
587 llvm::NamedMDNode *OCLVerMD =
588 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
589 llvm::LLVMContext &Ctx = TheModule.getContext();
590 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
591}
592
593void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
594 // Make sure that this type is translated.
595 Types.UpdateCompletedType(TD);
596}
597
598void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
599 // Make sure that this type is translated.
600 Types.RefreshTypeCacheForClass(RD);
601}
602
603llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
604 if (!TBAA)
605 return nullptr;
606 return TBAA->getTypeInfo(QTy);
607}
608
609TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
610 if (!TBAA)
611 return TBAAAccessInfo();
612 return TBAA->getAccessInfo(AccessType);
613}
614
615TBAAAccessInfo
616CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
617 if (!TBAA)
618 return TBAAAccessInfo();
619 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
620}
621
622llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
623 if (!TBAA)
624 return nullptr;
625 return TBAA->getTBAAStructInfo(QTy);
626}
627
628llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
629 if (!TBAA)
630 return nullptr;
631 return TBAA->getBaseTypeInfo(QTy);
632}
633
634llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
635 if (!TBAA)
636 return nullptr;
637 return TBAA->getAccessTagInfo(Info);
638}
639
640TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
641 TBAAAccessInfo TargetInfo) {
642 if (!TBAA)
643 return TBAAAccessInfo();
644 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
645}
646
647TBAAAccessInfo
648CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
649 TBAAAccessInfo InfoB) {
650 if (!TBAA)
651 return TBAAAccessInfo();
652 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
653}
654
655TBAAAccessInfo
656CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
657 TBAAAccessInfo SrcInfo) {
658 if (!TBAA)
659 return TBAAAccessInfo();
660 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
661}
662
663void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
664 TBAAAccessInfo TBAAInfo) {
665 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
666 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
667}
668
669void CodeGenModule::DecorateInstructionWithInvariantGroup(
670 llvm::Instruction *I, const CXXRecordDecl *RD) {
671 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
672 llvm::MDNode::get(getLLVMContext(), {}));
673}
674
675void CodeGenModule::Error(SourceLocation loc, StringRef message) {
676 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
677 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
678}
679
680/// ErrorUnsupported - Print out an error that codegen doesn't support the
681/// specified stmt yet.
682void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
683 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
684 "cannot compile this %0 yet");
685 std::string Msg = Type;
686 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
687 << Msg << S->getSourceRange();
688}
689
690/// ErrorUnsupported - Print out an error that codegen doesn't support the
691/// specified decl yet.
692void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
693 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
694 "cannot compile this %0 yet");
695 std::string Msg = Type;
696 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
697}
698
699llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
700 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
701}
702
703void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
704 const NamedDecl *D) const {
705 if (GV->hasDLLImportStorageClass())
706 return;
707 // Internal definitions always have default visibility.
708 if (GV->hasLocalLinkage()) {
709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
710 return;
711 }
712 if (!D)
713 return;
714 // Set visibility for definitions.
715 LinkageInfo LV = D->getLinkageAndVisibility();
716 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
717 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
718}
719
720static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
721 llvm::GlobalValue *GV) {
722 if (GV->hasLocalLinkage())
723 return true;
724
725 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
726 return true;
727
728 // DLLImport explicitly marks the GV as external.
729 if (GV->hasDLLImportStorageClass())
730 return false;
731
732 const llvm::Triple &TT = CGM.getTriple();
733 // Every other GV is local on COFF.
734 // Make an exception for windows OS in the triple: Some firmware builds use
735 // *-win32-macho triples. This (accidentally?) produced windows relocations
736 // without GOT tables in older clang versions; Keep this behaviour.
737 // FIXME: even thread local variables?
738 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
739 return true;
740
741 // Only handle COFF and ELF for now.
742 if (!TT.isOSBinFormatELF())
743 return false;
744
745 // If this is not an executable, don't assume anything is local.
746 const auto &CGOpts = CGM.getCodeGenOpts();
747 llvm::Reloc::Model RM = CGOpts.RelocationModel;
748 const auto &LOpts = CGM.getLangOpts();
749 if (RM != llvm::Reloc::Static && !LOpts.PIE)
750 return false;
751
752 // A definition cannot be preempted from an executable.
753 if (!GV->isDeclarationForLinker())
754 return true;
755
756 // Most PIC code sequences that assume that a symbol is local cannot produce a
757 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
758 // depended, it seems worth it to handle it here.
759 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
760 return false;
761
762 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
763 llvm::Triple::ArchType Arch = TT.getArch();
764 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
765 Arch == llvm::Triple::ppc64le)
766 return false;
767
768 // If we can use copy relocations we can assume it is local.
769 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
770 if (!Var->isThreadLocal() &&
771 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
772 return true;
773
774 // If we can use a plt entry as the symbol address we can assume it
775 // is local.
776 // FIXME: This should work for PIE, but the gold linker doesn't support it.
777 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
778 return true;
779
780 // Otherwise don't assue it is local.
781 return false;
782}
783
784void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
785 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
786}
787
788void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
789 GlobalDecl GD) const {
790 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
791 // C++ destructors have a few C++ ABI specific special cases.
792 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
793 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
794 return;
795 }
796 setDLLImportDLLExport(GV, D);
797}
798
799void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
800 const NamedDecl *D) const {
801 if (D && D->isExternallyVisible()) {
802 if (D->hasAttr<DLLImportAttr>())
803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
805 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806 }
807}
808
809void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810 GlobalDecl GD) const {
811 setDLLImportDLLExport(GV, GD);
812 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
813}
814
815void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
816 const NamedDecl *D) const {
817 setDLLImportDLLExport(GV, D);
818 setGlobalVisibilityAndLocal(GV, D);
819}
820
821void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
822 const NamedDecl *D) const {
823 setGlobalVisibility(GV, D);
824 setDSOLocal(GV);
825}
826
827static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
828 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
829 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
830 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
831 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
832 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
833}
834
835static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
836 CodeGenOptions::TLSModel M) {
837 switch (M) {
838 case CodeGenOptions::GeneralDynamicTLSModel:
839 return llvm::GlobalVariable::GeneralDynamicTLSModel;
840 case CodeGenOptions::LocalDynamicTLSModel:
841 return llvm::GlobalVariable::LocalDynamicTLSModel;
842 case CodeGenOptions::InitialExecTLSModel:
843 return llvm::GlobalVariable::InitialExecTLSModel;
844 case CodeGenOptions::LocalExecTLSModel:
845 return llvm::GlobalVariable::LocalExecTLSModel;
846 }
847 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 847)
;
848}
849
850void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
851 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")(static_cast <bool> (D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? void (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 851, __extension__ __PRETTY_FUNCTION__))
;
852
853 llvm::GlobalValue::ThreadLocalMode TLM;
854 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
855
856 // Override the TLS model if it is explicitly specified.
857 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
858 TLM = GetLLVMTLSModel(Attr->getModel());
859 }
860
861 GV->setThreadLocalMode(TLM);
862}
863
864static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
865 StringRef Name) {
866 const TargetInfo &Target = CGM.getTarget();
867 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
868}
869
870static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
871 const CPUSpecificAttr *Attr,
872 raw_ostream &Out) {
873 // cpu_specific gets the current name, dispatch gets the resolver.
874 if (Attr)
875 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName());
876 else
877 Out << ".resolver";
878}
879
880static void AppendTargetMangling(const CodeGenModule &CGM,
881 const TargetAttr *Attr, raw_ostream &Out) {
882 if (Attr->isDefaultVersion())
883 return;
884
885 Out << '.';
886 const TargetInfo &Target = CGM.getTarget();
887 TargetAttr::ParsedTargetAttr Info =
888 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
889 // Multiversioning doesn't allow "no-${feature}", so we can
890 // only have "+" prefixes here.
891 assert(LHS.startswith("+") && RHS.startswith("+") &&(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 892, __extension__ __PRETTY_FUNCTION__))
892 "Features should always have a prefix.")(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 892, __extension__ __PRETTY_FUNCTION__))
;
893 return Target.multiVersionSortPriority(LHS.substr(1)) >
894 Target.multiVersionSortPriority(RHS.substr(1));
895 });
896
897 bool IsFirst = true;
898
899 if (!Info.Architecture.empty()) {
900 IsFirst = false;
901 Out << "arch_" << Info.Architecture;
902 }
903
904 for (StringRef Feat : Info.Features) {
905 if (!IsFirst)
906 Out << '_';
907 IsFirst = false;
908 Out << Feat.substr(1);
909 }
910}
911
912static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
913 const NamedDecl *ND,
914 bool OmitMultiVersionMangling = false) {
915 SmallString<256> Buffer;
916 llvm::raw_svector_ostream Out(Buffer);
917 MangleContext &MC = CGM.getCXXABI().getMangleContext();
918 if (MC.shouldMangleDeclName(ND)) {
919 llvm::raw_svector_ostream Out(Buffer);
920 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
921 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
922 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
923 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
924 else
925 MC.mangleName(ND, Out);
926 } else {
927 IdentifierInfo *II = ND->getIdentifier();
928 assert(II && "Attempt to mangle unnamed decl.")(static_cast <bool> (II && "Attempt to mangle unnamed decl."
) ? void (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 928, __extension__ __PRETTY_FUNCTION__))
;
929 const auto *FD = dyn_cast<FunctionDecl>(ND);
930
931 if (FD &&
932 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
933 llvm::raw_svector_ostream Out(Buffer);
934 Out << "__regcall3__" << II->getName();
935 } else {
936 Out << II->getName();
937 }
938 }
939
940 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
941 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
942 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())
943 AppendCPUSpecificCPUDispatchMangling(
944 CGM, FD->getAttr<CPUSpecificAttr>(), Out);
945 else
946 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
947 }
948
949 return Out.str();
950}
951
952void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
953 const FunctionDecl *FD) {
954 if (!FD->isMultiVersion())
955 return;
956
957 // Get the name of what this would be without the 'target' attribute. This
958 // allows us to lookup the version that was emitted when this wasn't a
959 // multiversion function.
960 std::string NonTargetName =
961 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
962 GlobalDecl OtherGD;
963 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
964 assert(OtherGD.getCanonicalDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 968, __extension__ __PRETTY_FUNCTION__))
965 .getDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 968, __extension__ __PRETTY_FUNCTION__))
966 ->getAsFunction()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 968, __extension__ __PRETTY_FUNCTION__))
967 ->isMultiVersion() &&(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 968, __extension__ __PRETTY_FUNCTION__))
968 "Other GD should now be a multiversioned function")(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 968, __extension__ __PRETTY_FUNCTION__))
;
969 // OtherFD is the version of this function that was mangled BEFORE
970 // becoming a MultiVersion function. It potentially needs to be updated.
971 const FunctionDecl *OtherFD =
972 OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
973 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
974 // This is so that if the initial version was already the 'default'
975 // version, we don't try to update it.
976 if (OtherName != NonTargetName) {
977 // Remove instead of erase, since others may have stored the StringRef
978 // to this.
979 const auto ExistingRecord = Manglings.find(NonTargetName);
980 if (ExistingRecord != std::end(Manglings))
981 Manglings.remove(&(*ExistingRecord));
982 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
983 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
984 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
985 Entry->setName(OtherName);
986 }
987 }
988}
989
990StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
991 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
992
993 // Some ABIs don't have constructor variants. Make sure that base and
994 // complete constructors get mangled the same.
995 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
996 if (!getTarget().getCXXABI().hasConstructorVariants()) {
997 CXXCtorType OrigCtorType = GD.getCtorType();
998 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)(static_cast <bool> (OrigCtorType == Ctor_Base || OrigCtorType
== Ctor_Complete) ? void (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 998, __extension__ __PRETTY_FUNCTION__))
;
999 if (OrigCtorType == Ctor_Base)
1000 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1001 }
1002 }
1003
1004 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl());
1005 // Since CPUSpecific can require multiple emits per decl, store the manglings
1006 // separately.
1007 if (FD &&
1008 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) {
1009 const auto *SD = FD->getAttr<CPUSpecificAttr>();
1010
1011 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{
1012 CanonicalGD,
1013 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()};
1014
1015 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD);
1016 if (FoundName != CPUSpecificMangledDeclNames.end())
1017 return FoundName->second;
1018
1019 auto Result = CPUSpecificManglings.insert(
1020 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD));
1021 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first();
1022 }
1023
1024 auto FoundName = MangledDeclNames.find(CanonicalGD);
1025 if (FoundName != MangledDeclNames.end())
1026 return FoundName->second;
1027
1028 // Keep the first result in the case of a mangling collision.
1029 const auto *ND = cast<NamedDecl>(GD.getDecl());
1030 auto Result =
1031 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1032 return MangledDeclNames[CanonicalGD] = Result.first->first();
1033}
1034
1035StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1036 const BlockDecl *BD) {
1037 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1038 const Decl *D = GD.getDecl();
1039
1040 SmallString<256> Buffer;
1041 llvm::raw_svector_ostream Out(Buffer);
1042 if (!D)
1043 MangleCtx.mangleGlobalBlock(BD,
1044 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1045 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1046 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1047 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1048 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1049 else
1050 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1051
1052 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1053 return Result.first->first();
1054}
1055
1056llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1057 return getModule().getNamedValue(Name);
1058}
1059
1060/// AddGlobalCtor - Add a function to the list that will be called before
1061/// main() runs.
1062void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1063 llvm::Constant *AssociatedData) {
1064 // FIXME: Type coercion of void()* types.
1065 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1066}
1067
1068/// AddGlobalDtor - Add a function to the list that will be called
1069/// when the module is unloaded.
1070void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1071 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1072 DtorsUsingAtExit[Priority].push_back(Dtor);
1073 return;
1074 }
1075
1076 // FIXME: Type coercion of void()* types.
1077 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1078}
1079
1080void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1081 if (Fns.empty()) return;
1082
1083 // Ctor function type is void()*.
1084 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1085 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1086
1087 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1088 llvm::StructType *CtorStructTy = llvm::StructType::get(
1089 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1090
1091 // Construct the constructor and destructor arrays.
1092 ConstantInitBuilder builder(*this);
1093 auto ctors = builder.beginArray(CtorStructTy);
1094 for (const auto &I : Fns) {
1095 auto ctor = ctors.beginStruct(CtorStructTy);
1096 ctor.addInt(Int32Ty, I.Priority);
1097 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1098 if (I.AssociatedData)
1099 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1100 else
1101 ctor.addNullPointer(VoidPtrTy);
1102 ctor.finishAndAddTo(ctors);
1103 }
1104
1105 auto list =
1106 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1107 /*constant*/ false,
1108 llvm::GlobalValue::AppendingLinkage);
1109
1110 // The LTO linker doesn't seem to like it when we set an alignment
1111 // on appending variables. Take it off as a workaround.
1112 list->setAlignment(0);
1113
1114 Fns.clear();
1115}
1116
1117llvm::GlobalValue::LinkageTypes
1118CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1119 const auto *D = cast<FunctionDecl>(GD.getDecl());
1120
1121 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1122
1123 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1124 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1125
1126 if (isa<CXXConstructorDecl>(D) &&
1127 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1128 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1129 // Our approach to inheriting constructors is fundamentally different from
1130 // that used by the MS ABI, so keep our inheriting constructor thunks
1131 // internal rather than trying to pick an unambiguous mangling for them.
1132 return llvm::GlobalValue::InternalLinkage;
1133 }
1134
1135 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1136}
1137
1138llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1139 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1140 if (!MDS) return nullptr;
1141
1142 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1143}
1144
1145void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1146 const CGFunctionInfo &Info,
1147 llvm::Function *F) {
1148 unsigned CallingConv;
1149 llvm::AttributeList PAL;
1150 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1151 F->setAttributes(PAL);
1152 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1153}
1154
1155/// Determines whether the language options require us to model
1156/// unwind exceptions. We treat -fexceptions as mandating this
1157/// except under the fragile ObjC ABI with only ObjC exceptions
1158/// enabled. This means, for example, that C with -fexceptions
1159/// enables this.
1160static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1161 // If exceptions are completely disabled, obviously this is false.
1162 if (!LangOpts.Exceptions) return false;
1163
1164 // If C++ exceptions are enabled, this is true.
1165 if (LangOpts.CXXExceptions) return true;
1166
1167 // If ObjC exceptions are enabled, this depends on the ABI.
1168 if (LangOpts.ObjCExceptions) {
1169 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1170 }
1171
1172 return true;
1173}
1174
1175static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1176 const CXXMethodDecl *MD) {
1177 // Check that the type metadata can ever actually be used by a call.
1178 if (!CGM.getCodeGenOpts().LTOUnit ||
1179 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1180 return false;
1181
1182 // Only functions whose address can be taken with a member function pointer
1183 // need this sort of type metadata.
1184 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1185 !isa<CXXDestructorDecl>(MD);
1186}
1187
1188std::vector<const CXXRecordDecl *>
1189CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1190 llvm::SetVector<const CXXRecordDecl *> MostBases;
1191
1192 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1193 CollectMostBases = [&](const CXXRecordDecl *RD) {
1194 if (RD->getNumBases() == 0)
1195 MostBases.insert(RD);
1196 for (const CXXBaseSpecifier &B : RD->bases())
1197 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1198 };
1199 CollectMostBases(RD);
1200 return MostBases.takeVector();
1201}
1202
1203void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1204 llvm::Function *F) {
1205 llvm::AttrBuilder B;
1206
1207 if (CodeGenOpts.UnwindTables)
1208 B.addAttribute(llvm::Attribute::UWTable);
1209
1210 if (!hasUnwindExceptions(LangOpts))
1211 B.addAttribute(llvm::Attribute::NoUnwind);
1212
1213 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1214 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1215 B.addAttribute(llvm::Attribute::StackProtect);
1216 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1217 B.addAttribute(llvm::Attribute::StackProtectStrong);
1218 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1219 B.addAttribute(llvm::Attribute::StackProtectReq);
1220 }
1221
1222 if (!D) {
1223 // If we don't have a declaration to control inlining, the function isn't
1224 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1225 // disabled, mark the function as noinline.
1226 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1227 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1228 B.addAttribute(llvm::Attribute::NoInline);
1229
1230 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1231 return;
1232 }
1233
1234 // Track whether we need to add the optnone LLVM attribute,
1235 // starting with the default for this optimization level.
1236 bool ShouldAddOptNone =
1237 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1238 // We can't add optnone in the following cases, it won't pass the verifier.
1239 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1240 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1241 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1242
1243 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1244 B.addAttribute(llvm::Attribute::OptimizeNone);
1245
1246 // OptimizeNone implies noinline; we should not be inlining such functions.
1247 B.addAttribute(llvm::Attribute::NoInline);
1248 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1249, __extension__ __PRETTY_FUNCTION__))
1249 "OptimizeNone and AlwaysInline on same function!")(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1249, __extension__ __PRETTY_FUNCTION__))
;
1250
1251 // We still need to handle naked functions even though optnone subsumes
1252 // much of their semantics.
1253 if (D->hasAttr<NakedAttr>())
1254 B.addAttribute(llvm::Attribute::Naked);
1255
1256 // OptimizeNone wins over OptimizeForSize and MinSize.
1257 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1258 F->removeFnAttr(llvm::Attribute::MinSize);
1259 } else if (D->hasAttr<NakedAttr>()) {
1260 // Naked implies noinline: we should not be inlining such functions.
1261 B.addAttribute(llvm::Attribute::Naked);
1262 B.addAttribute(llvm::Attribute::NoInline);
1263 } else if (D->hasAttr<NoDuplicateAttr>()) {
1264 B.addAttribute(llvm::Attribute::NoDuplicate);
1265 } else if (D->hasAttr<NoInlineAttr>()) {
1266 B.addAttribute(llvm::Attribute::NoInline);
1267 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1268 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1269 // (noinline wins over always_inline, and we can't specify both in IR)
1270 B.addAttribute(llvm::Attribute::AlwaysInline);
1271 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1272 // If we're not inlining, then force everything that isn't always_inline to
1273 // carry an explicit noinline attribute.
1274 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1275 B.addAttribute(llvm::Attribute::NoInline);
1276 } else {
1277 // Otherwise, propagate the inline hint attribute and potentially use its
1278 // absence to mark things as noinline.
1279 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1280 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1281 return Redecl->isInlineSpecified();
1282 })) {
1283 B.addAttribute(llvm::Attribute::InlineHint);
1284 } else if (CodeGenOpts.getInlining() ==
1285 CodeGenOptions::OnlyHintInlining &&
1286 !FD->isInlined() &&
1287 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1288 B.addAttribute(llvm::Attribute::NoInline);
1289 }
1290 }
1291 }
1292
1293 // Add other optimization related attributes if we are optimizing this
1294 // function.
1295 if (!D->hasAttr<OptimizeNoneAttr>()) {
1296 if (D->hasAttr<ColdAttr>()) {
1297 if (!ShouldAddOptNone)
1298 B.addAttribute(llvm::Attribute::OptimizeForSize);
1299 B.addAttribute(llvm::Attribute::Cold);
1300 }
1301
1302 if (D->hasAttr<MinSizeAttr>())
1303 B.addAttribute(llvm::Attribute::MinSize);
1304 }
1305
1306 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1307
1308 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1309 if (alignment)
1310 F->setAlignment(alignment);
1311
1312 if (!D->hasAttr<AlignedAttr>())
1313 if (LangOpts.FunctionAlignment)
1314 F->setAlignment(1 << LangOpts.FunctionAlignment);
1315
1316 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1317 // reserve a bit for differentiating between virtual and non-virtual member
1318 // functions. If the current target's C++ ABI requires this and this is a
1319 // member function, set its alignment accordingly.
1320 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1321 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1322 F->setAlignment(2);
1323 }
1324
1325 // In the cross-dso CFI mode, we want !type attributes on definitions only.
1326 if (CodeGenOpts.SanitizeCfiCrossDso)
1327 if (auto *FD = dyn_cast<FunctionDecl>(D))
1328 CreateFunctionTypeMetadataForIcall(FD, F);
1329
1330 // Emit type metadata on member functions for member function pointer checks.
1331 // These are only ever necessary on definitions; we're guaranteed that the
1332 // definition will be present in the LTO unit as a result of LTO visibility.
1333 auto *MD = dyn_cast<CXXMethodDecl>(D);
1334 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1335 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1336 llvm::Metadata *Id =
1337 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1338 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1339 F->addTypeMetadata(0, Id);
1340 }
1341 }
1342}
1343
1344void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1345 const Decl *D = GD.getDecl();
1346 if (dyn_cast_or_null<NamedDecl>(D))
1347 setGVProperties(GV, GD);
1348 else
1349 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1350
1351 if (D && D->hasAttr<UsedAttr>())
1352 addUsedGlobal(GV);
1353}
1354
1355bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1356 llvm::AttrBuilder &Attrs) {
1357 // Add target-cpu and target-features attributes to functions. If
1358 // we have a decl for the function and it has a target attribute then
1359 // parse that and add it to the feature set.
1360 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1361 std::vector<std::string> Features;
1362 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1363 FD = FD ? FD->getMostRecentDecl() : FD;
1364 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1365 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1366 bool AddedAttr = false;
1367 if (TD || SD) {
1368 llvm::StringMap<bool> FeatureMap;
1369 getFunctionFeatureMap(FeatureMap, FD);
1370
1371 // Produce the canonical string for this set of features.
1372 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1373 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1374
1375 // Now add the target-cpu and target-features to the function.
1376 // While we populated the feature map above, we still need to
1377 // get and parse the target attribute so we can get the cpu for
1378 // the function.
1379 if (TD) {
1380 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1381 if (ParsedAttr.Architecture != "" &&
1382 getTarget().isValidCPUName(ParsedAttr.Architecture))
1383 TargetCPU = ParsedAttr.Architecture;
1384 }
1385 } else {
1386 // Otherwise just add the existing target cpu and target features to the
1387 // function.
1388 Features = getTarget().getTargetOpts().Features;
1389 }
1390
1391 if (TargetCPU != "") {
1392 Attrs.addAttribute("target-cpu", TargetCPU);
1393 AddedAttr = true;
1394 }
1395 if (!Features.empty()) {
1396 llvm::sort(Features.begin(), Features.end());
1397 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1398 AddedAttr = true;
1399 }
1400
1401 return AddedAttr;
1402}
1403
1404void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1405 llvm::GlobalObject *GO) {
1406 const Decl *D = GD.getDecl();
1407 SetCommonAttributes(GD, GO);
1408
1409 if (D) {
1410 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1411 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1412 GV->addAttribute("bss-section", SA->getName());
1413 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1414 GV->addAttribute("data-section", SA->getName());
1415 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1416 GV->addAttribute("rodata-section", SA->getName());
1417 }
1418
1419 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1420 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1421 if (!D->getAttr<SectionAttr>())
1422 F->addFnAttr("implicit-section-name", SA->getName());
1423
1424 llvm::AttrBuilder Attrs;
1425 if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1426 // We know that GetCPUAndFeaturesAttributes will always have the
1427 // newest set, since it has the newest possible FunctionDecl, so the
1428 // new ones should replace the old.
1429 F->removeFnAttr("target-cpu");
1430 F->removeFnAttr("target-features");
1431 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1432 }
1433 }
1434
1435 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1436 GO->setSection(CSA->getName());
1437 else if (const auto *SA = D->getAttr<SectionAttr>())
1438 GO->setSection(SA->getName());
1439 }
1440
1441 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1442}
1443
1444void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1445 llvm::Function *F,
1446 const CGFunctionInfo &FI) {
1447 const Decl *D = GD.getDecl();
1448 SetLLVMFunctionAttributes(D, FI, F);
1449 SetLLVMFunctionAttributesForDefinition(D, F);
1450
1451 F->setLinkage(llvm::Function::InternalLinkage);
1452
1453 setNonAliasAttributes(GD, F);
1454}
1455
1456static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1457 // Set linkage and visibility in case we never see a definition.
1458 LinkageInfo LV = ND->getLinkageAndVisibility();
1459 // Don't set internal linkage on declarations.
1460 // "extern_weak" is overloaded in LLVM; we probably should have
1461 // separate linkage types for this.
1462 if (isExternallyVisible(LV.getLinkage()) &&
1463 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1464 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1465}
1466
1467void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1468 llvm::Function *F) {
1469 // Only if we are checking indirect calls.
1470 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1471 return;
1472
1473 // Non-static class methods are handled via vtable or member function pointer
1474 // checks elsewhere.
1475 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1476 return;
1477
1478 // Additionally, if building with cross-DSO support...
1479 if (CodeGenOpts.SanitizeCfiCrossDso) {
1480 // Skip available_externally functions. They won't be codegen'ed in the
1481 // current module anyway.
1482 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1483 return;
1484 }
1485
1486 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1487 F->addTypeMetadata(0, MD);
1488 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1489
1490 // Emit a hash-based bit set entry for cross-DSO calls.
1491 if (CodeGenOpts.SanitizeCfiCrossDso)
1492 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1493 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1494}
1495
1496void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1497 bool IsIncompleteFunction,
1498 bool IsThunk) {
1499
1500 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1501 // If this is an intrinsic function, set the function's attributes
1502 // to the intrinsic's attributes.
1503 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1504 return;
1505 }
1506
1507 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1508
1509 if (!IsIncompleteFunction) {
1510 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1511 // Setup target-specific attributes.
1512 if (F->isDeclaration())
1513 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1514 }
1515
1516 // Add the Returned attribute for "this", except for iOS 5 and earlier
1517 // where substantial code, including the libstdc++ dylib, was compiled with
1518 // GCC and does not actually return "this".
1519 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1520 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1521 assert(!F->arg_empty() &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1524, __extension__ __PRETTY_FUNCTION__))
1522 F->arg_begin()->getType()(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1524, __extension__ __PRETTY_FUNCTION__))
1523 ->canLosslesslyBitCastTo(F->getReturnType()) &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1524, __extension__ __PRETTY_FUNCTION__))
1524 "unexpected this return")(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1524, __extension__ __PRETTY_FUNCTION__))
;
1525 F->addAttribute(1, llvm::Attribute::Returned);
1526 }
1527
1528 // Only a few attributes are set on declarations; these may later be
1529 // overridden by a definition.
1530
1531 setLinkageForGV(F, FD);
1532 setGVProperties(F, FD);
1533
1534 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1535 F->setSection(CSA->getName());
1536 else if (const auto *SA = FD->getAttr<SectionAttr>())
1537 F->setSection(SA->getName());
1538
1539 if (FD->isReplaceableGlobalAllocationFunction()) {
1540 // A replaceable global allocation function does not act like a builtin by
1541 // default, only if it is invoked by a new-expression or delete-expression.
1542 F->addAttribute(llvm::AttributeList::FunctionIndex,
1543 llvm::Attribute::NoBuiltin);
1544
1545 // A sane operator new returns a non-aliasing pointer.
1546 // FIXME: Also add NonNull attribute to the return value
1547 // for the non-nothrow forms?
1548 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1549 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1550 (Kind == OO_New || Kind == OO_Array_New))
1551 F->addAttribute(llvm::AttributeList::ReturnIndex,
1552 llvm::Attribute::NoAlias);
1553 }
1554
1555 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1556 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1557 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1558 if (MD->isVirtual())
1559 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1560
1561 // Don't emit entries for function declarations in the cross-DSO mode. This
1562 // is handled with better precision by the receiving DSO.
1563 if (!CodeGenOpts.SanitizeCfiCrossDso)
1564 CreateFunctionTypeMetadataForIcall(FD, F);
1565
1566 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1567 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1568}
1569
1570void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1571 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1572, __extension__ __PRETTY_FUNCTION__))
1572 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1572, __extension__ __PRETTY_FUNCTION__))
;
1573 LLVMUsed.emplace_back(GV);
1574}
1575
1576void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1577 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1578, __extension__ __PRETTY_FUNCTION__))
1578 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1578, __extension__ __PRETTY_FUNCTION__))
;
1579 LLVMCompilerUsed.emplace_back(GV);
1580}
1581
1582static void emitUsed(CodeGenModule &CGM, StringRef Name,
1583 std::vector<llvm::WeakTrackingVH> &List) {
1584 // Don't create llvm.used if there is no need.
1585 if (List.empty())
1586 return;
1587
1588 // Convert List to what ConstantArray needs.
1589 SmallVector<llvm::Constant*, 8> UsedArray;
1590 UsedArray.resize(List.size());
1591 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1592 UsedArray[i] =
1593 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1594 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1595 }
1596
1597 if (UsedArray.empty())
1598 return;
1599 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1600
1601 auto *GV = new llvm::GlobalVariable(
1602 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1603 llvm::ConstantArray::get(ATy, UsedArray), Name);
1604
1605 GV->setSection("llvm.metadata");
1606}
1607
1608void CodeGenModule::emitLLVMUsed() {
1609 emitUsed(*this, "llvm.used", LLVMUsed);
1610 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1611}
1612
1613void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1614 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1615 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1616}
1617
1618void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1619 llvm::SmallString<32> Opt;
1620 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1621 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1622 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1623}
1624
1625void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1626 auto &C = getLLVMContext();
1627 LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1628 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1629}
1630
1631void CodeGenModule::AddDependentLib(StringRef Lib) {
1632 llvm::SmallString<24> Opt;
1633 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1634 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1635 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1636}
1637
1638/// Add link options implied by the given module, including modules
1639/// it depends on, using a postorder walk.
1640static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1641 SmallVectorImpl<llvm::MDNode *> &Metadata,
1642 llvm::SmallPtrSet<Module *, 16> &Visited) {
1643 // Import this module's parent.
1644 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1645 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1646 }
1647
1648 // Import this module's dependencies.
1649 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1650 if (Visited.insert(Mod->Imports[I - 1]).second)
1651 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1652 }
1653
1654 // Add linker options to link against the libraries/frameworks
1655 // described by this module.
1656 llvm::LLVMContext &Context = CGM.getLLVMContext();
1657
1658 // For modules that use export_as for linking, use that module
1659 // name instead.
1660 if (Mod->UseExportAsModuleLinkName)
1661 return;
1662
1663 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1664 // Link against a framework. Frameworks are currently Darwin only, so we
1665 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1666 if (Mod->LinkLibraries[I-1].IsFramework) {
1667 llvm::Metadata *Args[2] = {
1668 llvm::MDString::get(Context, "-framework"),
1669 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1670
1671 Metadata.push_back(llvm::MDNode::get(Context, Args));
1672 continue;
1673 }
1674
1675 // Link against a library.
1676 llvm::SmallString<24> Opt;
1677 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1678 Mod->LinkLibraries[I-1].Library, Opt);
1679 auto *OptString = llvm::MDString::get(Context, Opt);
1680 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1681 }
1682}
1683
1684void CodeGenModule::EmitModuleLinkOptions() {
1685 // Collect the set of all of the modules we want to visit to emit link
1686 // options, which is essentially the imported modules and all of their
1687 // non-explicit child modules.
1688 llvm::SetVector<clang::Module *> LinkModules;
1689 llvm::SmallPtrSet<clang::Module *, 16> Visited;
1690 SmallVector<clang::Module *, 16> Stack;
1691
1692 // Seed the stack with imported modules.
1693 for (Module *M : ImportedModules) {
1694 // Do not add any link flags when an implementation TU of a module imports
1695 // a header of that same module.
1696 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1697 !getLangOpts().isCompilingModule())
1698 continue;
1699 if (Visited.insert(M).second)
1700 Stack.push_back(M);
1701 }
1702
1703 // Find all of the modules to import, making a little effort to prune
1704 // non-leaf modules.
1705 while (!Stack.empty()) {
1706 clang::Module *Mod = Stack.pop_back_val();
1707
1708 bool AnyChildren = false;
1709
1710 // Visit the submodules of this module.
1711 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1712 SubEnd = Mod->submodule_end();
1713 Sub != SubEnd; ++Sub) {
1714 // Skip explicit children; they need to be explicitly imported to be
1715 // linked against.
1716 if ((*Sub)->IsExplicit)
1717 continue;
1718
1719 if (Visited.insert(*Sub).second) {
1720 Stack.push_back(*Sub);
1721 AnyChildren = true;
1722 }
1723 }
1724
1725 // We didn't find any children, so add this module to the list of
1726 // modules to link against.
1727 if (!AnyChildren) {
1728 LinkModules.insert(Mod);
1729 }
1730 }
1731
1732 // Add link options for all of the imported modules in reverse topological
1733 // order. We don't do anything to try to order import link flags with respect
1734 // to linker options inserted by things like #pragma comment().
1735 SmallVector<llvm::MDNode *, 16> MetadataArgs;
1736 Visited.clear();
1737 for (Module *M : LinkModules)
1738 if (Visited.insert(M).second)
1739 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1740 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1741 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1742
1743 // Add the linker options metadata flag.
1744 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1745 for (auto *MD : LinkerOptionsMetadata)
1746 NMD->addOperand(MD);
1747}
1748
1749void CodeGenModule::EmitDeferred() {
1750 // Emit code for any potentially referenced deferred decls. Since a
1751 // previously unused static decl may become used during the generation of code
1752 // for a static function, iterate until no changes are made.
1753
1754 if (!DeferredVTables.empty()) {
1755 EmitDeferredVTables();
1756
1757 // Emitting a vtable doesn't directly cause more vtables to
1758 // become deferred, although it can cause functions to be
1759 // emitted that then need those vtables.
1760 assert(DeferredVTables.empty())(static_cast <bool> (DeferredVTables.empty()) ? void (0
) : __assert_fail ("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1760, __extension__ __PRETTY_FUNCTION__))
;
1761 }
1762
1763 // Stop if we're out of both deferred vtables and deferred declarations.
1764 if (DeferredDeclsToEmit.empty())
1765 return;
1766
1767 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1768 // work, it will not interfere with this.
1769 std::vector<GlobalDecl> CurDeclsToEmit;
1770 CurDeclsToEmit.swap(DeferredDeclsToEmit);
1771
1772 for (GlobalDecl &D : CurDeclsToEmit) {
1773 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1774 // to get GlobalValue with exactly the type we need, not something that
1775 // might had been created for another decl with the same mangled name but
1776 // different type.
1777 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1778 GetAddrOfGlobal(D, ForDefinition));
1779
1780 // In case of different address spaces, we may still get a cast, even with
1781 // IsForDefinition equal to true. Query mangled names table to get
1782 // GlobalValue.
1783 if (!GV)
1784 GV = GetGlobalValue(getMangledName(D));
1785
1786 // Make sure GetGlobalValue returned non-null.
1787 assert(GV)(static_cast <bool> (GV) ? void (0) : __assert_fail ("GV"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1787, __extension__ __PRETTY_FUNCTION__))
;
1788
1789 // Check to see if we've already emitted this. This is necessary
1790 // for a couple of reasons: first, decls can end up in the
1791 // deferred-decls queue multiple times, and second, decls can end
1792 // up with definitions in unusual ways (e.g. by an extern inline
1793 // function acquiring a strong function redefinition). Just
1794 // ignore these cases.
1795 if (!GV->isDeclaration())
1796 continue;
1797
1798 // Otherwise, emit the definition and move on to the next one.
1799 EmitGlobalDefinition(D, GV);
1800
1801 // If we found out that we need to emit more decls, do that recursively.
1802 // This has the advantage that the decls are emitted in a DFS and related
1803 // ones are close together, which is convenient for testing.
1804 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1805 EmitDeferred();
1806 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())(static_cast <bool> (DeferredVTables.empty() &&
DeferredDeclsToEmit.empty()) ? void (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1806, __extension__ __PRETTY_FUNCTION__))
;
1807 }
1808 }
1809}
1810
1811void CodeGenModule::EmitVTablesOpportunistically() {
1812 // Try to emit external vtables as available_externally if they have emitted
1813 // all inlined virtual functions. It runs after EmitDeferred() and therefore
1814 // is not allowed to create new references to things that need to be emitted
1815 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1816
1817 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1818, __extension__ __PRETTY_FUNCTION__))
1818 && "Only emit opportunistic vtables with optimizations")(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1818, __extension__ __PRETTY_FUNCTION__))
;
1819
1820 for (const CXXRecordDecl *RD : OpportunisticVTables) {
1821 assert(getVTables().isVTableExternal(RD) &&(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1822, __extension__ __PRETTY_FUNCTION__))
1822 "This queue should only contain external vtables")(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1822, __extension__ __PRETTY_FUNCTION__))
;
1823 if (getCXXABI().canSpeculativelyEmitVTable(RD))
1824 VTables.GenerateClassData(RD);
1825 }
1826 OpportunisticVTables.clear();
1827}
1828
1829void CodeGenModule::EmitGlobalAnnotations() {
1830 if (Annotations.empty())
1831 return;
1832
1833 // Create a new global variable for the ConstantStruct in the Module.
1834 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1835 Annotations[0]->getType(), Annotations.size()), Annotations);
1836 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1837 llvm::GlobalValue::AppendingLinkage,
1838 Array, "llvm.global.annotations");
1839 gv->setSection(AnnotationSection);
1840}
1841
1842llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1843 llvm::Constant *&AStr = AnnotationStrings[Str];
1844 if (AStr)
1845 return AStr;
1846
1847 // Not found yet, create a new global.
1848 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1849 auto *gv =
1850 new llvm::GlobalVariable(getModule(), s->getType(), true,
1851 llvm::GlobalValue::PrivateLinkage, s, ".str");
1852 gv->setSection(AnnotationSection);
1853 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1854 AStr = gv;
1855 return gv;
1856}
1857
1858llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1859 SourceManager &SM = getContext().getSourceManager();
1860 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1861 if (PLoc.isValid())
1862 return EmitAnnotationString(PLoc.getFilename());
1863 return EmitAnnotationString(SM.getBufferName(Loc));
1864}
1865
1866llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1867 SourceManager &SM = getContext().getSourceManager();
1868 PresumedLoc PLoc = SM.getPresumedLoc(L);
1869 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1870 SM.getExpansionLineNumber(L);
1871 return llvm::ConstantInt::get(Int32Ty, LineNo);
1872}
1873
1874llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1875 const AnnotateAttr *AA,
1876 SourceLocation L) {
1877 // Get the globals for file name, annotation, and the line number.
1878 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1879 *UnitGV = EmitAnnotationUnit(L),
1880 *LineNoCst = EmitAnnotationLineNo(L);
1881
1882 // Create the ConstantStruct for the global annotation.
1883 llvm::Constant *Fields[4] = {
1884 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1885 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1886 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1887 LineNoCst
1888 };
1889 return llvm::ConstantStruct::getAnon(Fields);
1890}
1891
1892void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1893 llvm::GlobalValue *GV) {
1894 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")(static_cast <bool> (D->hasAttr<AnnotateAttr>(
) && "no annotate attribute") ? void (0) : __assert_fail
("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1894, __extension__ __PRETTY_FUNCTION__))
;
1895 // Get the struct elements for these annotations.
1896 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1897 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1898}
1899
1900bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1901 llvm::Function *Fn,
1902 SourceLocation Loc) const {
1903 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1904 // Blacklist by function name.
1905 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1906 return true;
1907 // Blacklist by location.
1908 if (Loc.isValid())
1909 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1910 // If location is unknown, this may be a compiler-generated function. Assume
1911 // it's located in the main file.
1912 auto &SM = Context.getSourceManager();
1913 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1914 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1915 }
1916 return false;
1917}
1918
1919bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1920 SourceLocation Loc, QualType Ty,
1921 StringRef Category) const {
1922 // For now globals can be blacklisted only in ASan and KASan.
1923 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1924 (SanitizerKind::Address | SanitizerKind::KernelAddress |
1925 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1926 if (!EnabledAsanMask)
1927 return false;
1928 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1929 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1930 return true;
1931 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1932 return true;
1933 // Check global type.
1934 if (!Ty.isNull()) {
1935 // Drill down the array types: if global variable of a fixed type is
1936 // blacklisted, we also don't instrument arrays of them.
1937 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1938 Ty = AT->getElementType();
1939 Ty = Ty.getCanonicalType().getUnqualifiedType();
1940 // We allow to blacklist only record types (classes, structs etc.)
1941 if (Ty->isRecordType()) {
1942 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1943 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1944 return true;
1945 }
1946 }
1947 return false;
1948}
1949
1950bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1951 StringRef Category) const {
1952 if (!LangOpts.XRayInstrument)
1953 return false;
1954
1955 const auto &XRayFilter = getContext().getXRayFilter();
1956 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1957 auto Attr = ImbueAttr::NONE;
1958 if (Loc.isValid())
1959 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1960 if (Attr == ImbueAttr::NONE)
1961 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1962 switch (Attr) {
1963 case ImbueAttr::NONE:
1964 return false;
1965 case ImbueAttr::ALWAYS:
1966 Fn->addFnAttr("function-instrument", "xray-always");
1967 break;
1968 case ImbueAttr::ALWAYS_ARG1:
1969 Fn->addFnAttr("function-instrument", "xray-always");
1970 Fn->addFnAttr("xray-log-args", "1");
1971 break;
1972 case ImbueAttr::NEVER:
1973 Fn->addFnAttr("function-instrument", "xray-never");
1974 break;
1975 }
1976 return true;
1977}
1978
1979bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1980 // Never defer when EmitAllDecls is specified.
1981 if (LangOpts.EmitAllDecls)
1982 return true;
1983
1984 return getContext().DeclMustBeEmitted(Global);
1985}
1986
1987bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1988 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1989 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1990 // Implicit template instantiations may change linkage if they are later
1991 // explicitly instantiated, so they should not be emitted eagerly.
1992 return false;
1993 if (const auto *VD = dyn_cast<VarDecl>(Global))
1994 if (Context.getInlineVariableDefinitionKind(VD) ==
1995 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1996 // A definition of an inline constexpr static data member may change
1997 // linkage later if it's redeclared outside the class.
1998 return false;
1999 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2000 // codegen for global variables, because they may be marked as threadprivate.
2001 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2002 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2003 !isTypeConstant(Global->getType(), false))
2004 return false;
2005
2006 return true;
2007}
2008
2009ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2010 const CXXUuidofExpr* E) {
2011 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2012 // well-formed.
2013 StringRef Uuid = E->getUuidStr();
2014 std::string Name = "_GUID_" + Uuid.lower();
2015 std::replace(Name.begin(), Name.end(), '-', '_');
2016
2017 // The UUID descriptor should be pointer aligned.
2018 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2019
2020 // Look for an existing global.
2021 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2022 return ConstantAddress(GV, Alignment);
2023
2024 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2025 assert(Init && "failed to initialize as constant")(static_cast <bool> (Init && "failed to initialize as constant"
) ? void (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2025, __extension__ __PRETTY_FUNCTION__))
;
2026
2027 auto *GV = new llvm::GlobalVariable(
2028 getModule(), Init->getType(),
2029 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2030 if (supportsCOMDAT())
2031 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2032 setDSOLocal(GV);
2033 return ConstantAddress(GV, Alignment);
2034}
2035
2036ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2037 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2038 assert(AA && "No alias?")(static_cast <bool> (AA && "No alias?") ? void (
0) : __assert_fail ("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2038, __extension__ __PRETTY_FUNCTION__))
;
2039
2040 CharUnits Alignment = getContext().getDeclAlign(VD);
2041 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2042
2043 // See if there is already something with the target's name in the module.
2044 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2045 if (Entry) {
2046 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2047 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2048 return ConstantAddress(Ptr, Alignment);
2049 }
2050
2051 llvm::Constant *Aliasee;
2052 if (isa<llvm::FunctionType>(DeclTy))
2053 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2054 GlobalDecl(cast<FunctionDecl>(VD)),
2055 /*ForVTable=*/false);
2056 else
2057 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2058 llvm::PointerType::getUnqual(DeclTy),
2059 nullptr);
2060
2061 auto *F = cast<llvm::GlobalValue>(Aliasee);
2062 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2063 WeakRefReferences.insert(F);
2064
2065 return ConstantAddress(Aliasee, Alignment);
2066}
2067
2068void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2069 const auto *Global = cast<ValueDecl>(GD.getDecl());
2070
2071 // Weak references don't produce any output by themselves.
2072 if (Global->hasAttr<WeakRefAttr>())
2073 return;
2074
2075 // If this is an alias definition (which otherwise looks like a declaration)
2076 // emit it now.
2077 if (Global->hasAttr<AliasAttr>())
2078 return EmitAliasDefinition(GD);
2079
2080 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2081 if (Global->hasAttr<IFuncAttr>())
2082 return emitIFuncDefinition(GD);
2083
2084 // If this is a cpu_dispatch multiversion function, emit the resolver.
2085 if (Global->hasAttr<CPUDispatchAttr>())
2086 return emitCPUDispatchDefinition(GD);
2087
2088 // If this is CUDA, be selective about which declarations we emit.
2089 if (LangOpts.CUDA) {
2090 if (LangOpts.CUDAIsDevice) {
2091 if (!Global->hasAttr<CUDADeviceAttr>() &&
2092 !Global->hasAttr<CUDAGlobalAttr>() &&
2093 !Global->hasAttr<CUDAConstantAttr>() &&
2094 !Global->hasAttr<CUDASharedAttr>())
2095 return;
2096 } else {
2097 // We need to emit host-side 'shadows' for all global
2098 // device-side variables because the CUDA runtime needs their
2099 // size and host-side address in order to provide access to
2100 // their device-side incarnations.
2101
2102 // So device-only functions are the only things we skip.
2103 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2104 Global->hasAttr<CUDADeviceAttr>())
2105 return;
2106
2107 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2108, __extension__ __PRETTY_FUNCTION__))
2108 "Expected Variable or Function")(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2108, __extension__ __PRETTY_FUNCTION__))
;
2109 }
2110 }
2111
2112 if (LangOpts.OpenMP) {
2113 // If this is OpenMP device, check if it is legal to emit this global
2114 // normally.
2115 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2116 return;
2117 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2118 if (MustBeEmitted(Global))
2119 EmitOMPDeclareReduction(DRD);
2120 return;
2121 }
2122 }
2123
2124 // Ignore declarations, they will be emitted on their first use.
2125 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2126 // Forward declarations are emitted lazily on first use.
2127 if (!FD->doesThisDeclarationHaveABody()) {
2128 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2129 return;
2130
2131 StringRef MangledName = getMangledName(GD);
2132
2133 // Compute the function info and LLVM type.
2134 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2135 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2136
2137 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2138 /*DontDefer=*/false);
2139 return;
2140 }
2141 } else {
2142 const auto *VD = cast<VarDecl>(Global);
2143 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")(static_cast <bool> (VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2143, __extension__ __PRETTY_FUNCTION__))
;
2144 // We need to emit device-side global CUDA variables even if a
2145 // variable does not have a definition -- we still need to define
2146 // host-side shadow for it.
2147 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2148 !VD->hasDefinition() &&
2149 (VD->hasAttr<CUDAConstantAttr>() ||
2150 VD->hasAttr<CUDADeviceAttr>());
2151 if (!MustEmitForCuda &&
2152 VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2153 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2154 // If this declaration may have caused an inline variable definition to
2155 // change linkage, make sure that it's emitted.
2156 if (Context.getInlineVariableDefinitionKind(VD) ==
2157 ASTContext::InlineVariableDefinitionKind::Strong)
2158 GetAddrOfGlobalVar(VD);
2159 return;
2160 }
2161 }
2162
2163 // Defer code generation to first use when possible, e.g. if this is an inline
2164 // function. If the global must always be emitted, do it eagerly if possible
2165 // to benefit from cache locality.
2166 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2167 // Emit the definition if it can't be deferred.
2168 EmitGlobalDefinition(GD);
2169 return;
2170 }
2171
2172 // If we're deferring emission of a C++ variable with an
2173 // initializer, remember the order in which it appeared in the file.
2174 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2175 cast<VarDecl>(Global)->hasInit()) {
2176 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2177 CXXGlobalInits.push_back(nullptr);
2178 }
2179
2180 StringRef MangledName = getMangledName(GD);
2181 if (GetGlobalValue(MangledName) != nullptr) {
2182 // The value has already been used and should therefore be emitted.
2183 addDeferredDeclToEmit(GD);
2184 } else if (MustBeEmitted(Global)) {
2185 // The value must be emitted, but cannot be emitted eagerly.
2186 assert(!MayBeEmittedEagerly(Global))(static_cast <bool> (!MayBeEmittedEagerly(Global)) ? void
(0) : __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2186, __extension__ __PRETTY_FUNCTION__))
;
2187 addDeferredDeclToEmit(GD);
2188 } else {
2189 // Otherwise, remember that we saw a deferred decl with this name. The
2190 // first use of the mangled name will cause it to move into
2191 // DeferredDeclsToEmit.
2192 DeferredDecls[MangledName] = GD;
2193 }
2194}
2195
2196// Check if T is a class type with a destructor that's not dllimport.
2197static bool HasNonDllImportDtor(QualType T) {
2198 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2199 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2200 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2201 return true;
2202
2203 return false;
2204}
2205
2206namespace {
2207 struct FunctionIsDirectlyRecursive :
2208 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2209 const StringRef Name;
2210 const Builtin::Context &BI;
2211 bool Result;
2212 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2213 Name(N), BI(C), Result(false) {
2214 }
2215 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2216
2217 bool TraverseCallExpr(CallExpr *E) {
2218 const FunctionDecl *FD = E->getDirectCallee();
2219 if (!FD)
2220 return true;
2221 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2222 if (Attr && Name == Attr->getLabel()) {
2223 Result = true;
2224 return false;
2225 }
2226 unsigned BuiltinID = FD->getBuiltinID();
2227 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2228 return true;
2229 StringRef BuiltinName = BI.getName(BuiltinID);
2230 if (BuiltinName.startswith("__builtin_") &&
2231 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2232 Result = true;
2233 return false;
2234 }
2235 return true;
2236 }
2237 };
2238
2239 // Make sure we're not referencing non-imported vars or functions.
2240 struct DLLImportFunctionVisitor
2241 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2242 bool SafeToInline = true;
2243
2244 bool shouldVisitImplicitCode() const { return true; }
2245
2246 bool VisitVarDecl(VarDecl *VD) {
2247 if (VD->getTLSKind()) {
2248 // A thread-local variable cannot be imported.
2249 SafeToInline = false;
2250 return SafeToInline;
2251 }
2252
2253 // A variable definition might imply a destructor call.
2254 if (VD->isThisDeclarationADefinition())
2255 SafeToInline = !HasNonDllImportDtor(VD->getType());
2256
2257 return SafeToInline;
2258 }
2259
2260 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2261 if (const auto *D = E->getTemporary()->getDestructor())
2262 SafeToInline = D->hasAttr<DLLImportAttr>();
2263 return SafeToInline;
2264 }
2265
2266 bool VisitDeclRefExpr(DeclRefExpr *E) {
2267 ValueDecl *VD = E->getDecl();
2268 if (isa<FunctionDecl>(VD))
2269 SafeToInline = VD->hasAttr<DLLImportAttr>();
2270 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2271 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2272 return SafeToInline;
2273 }
2274
2275 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2276 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2277 return SafeToInline;
2278 }
2279
2280 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2281 CXXMethodDecl *M = E->getMethodDecl();
2282 if (!M) {
2283 // Call through a pointer to member function. This is safe to inline.
2284 SafeToInline = true;
2285 } else {
2286 SafeToInline = M->hasAttr<DLLImportAttr>();
2287 }
2288 return SafeToInline;
2289 }
2290
2291 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2292 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2293 return SafeToInline;
2294 }
2295
2296 bool VisitCXXNewExpr(CXXNewExpr *E) {
2297 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2298 return SafeToInline;
2299 }
2300 };
2301}
2302
2303// isTriviallyRecursive - Check if this function calls another
2304// decl that, because of the asm attribute or the other decl being a builtin,
2305// ends up pointing to itself.
2306bool
2307CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2308 StringRef Name;
2309 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2310 // asm labels are a special kind of mangling we have to support.
2311 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2312 if (!Attr)
2313 return false;
2314 Name = Attr->getLabel();
2315 } else {
2316 Name = FD->getName();
2317 }
2318
2319 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2320 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2321 return Walker.Result;
2322}
2323
2324bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2325 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2326 return true;
2327 const auto *F = cast<FunctionDecl>(GD.getDecl());
2328 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2329 return false;
2330
2331 if (F->hasAttr<DLLImportAttr>()) {
2332 // Check whether it would be safe to inline this dllimport function.
2333 DLLImportFunctionVisitor Visitor;
2334 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2335 if (!Visitor.SafeToInline)
2336 return false;
2337
2338 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2339 // Implicit destructor invocations aren't captured in the AST, so the
2340 // check above can't see them. Check for them manually here.
2341 for (const Decl *Member : Dtor->getParent()->decls())
2342 if (isa<FieldDecl>(Member))
2343 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2344 return false;
2345 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2346 if (HasNonDllImportDtor(B.getType()))
2347 return false;
2348 }
2349 }
2350
2351 // PR9614. Avoid cases where the source code is lying to us. An available
2352 // externally function should have an equivalent function somewhere else,
2353 // but a function that calls itself is clearly not equivalent to the real
2354 // implementation.
2355 // This happens in glibc's btowc and in some configure checks.
2356 return !isTriviallyRecursive(F);
2357}
2358
2359bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2360 return CodeGenOpts.OptimizationLevel > 0;
2361}
2362
2363void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2364 const auto *D = cast<ValueDecl>(GD.getDecl());
2365
2366 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2367 Context.getSourceManager(),
2368 "Generating code for declaration");
2369
2370 if (isa<FunctionDecl>(D)) {
2371 // At -O0, don't generate IR for functions with available_externally
2372 // linkage.
2373 if (!shouldEmitFunction(GD))
2374 return;
2375
2376 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2377 // Make sure to emit the definition(s) before we emit the thunks.
2378 // This is necessary for the generation of certain thunks.
2379 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2380 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2381 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2382 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2383 else
2384 EmitGlobalFunctionDefinition(GD, GV);
2385
2386 if (Method->isVirtual())
2387 getVTables().EmitThunks(GD);
2388
2389 return;
2390 }
2391
2392 return EmitGlobalFunctionDefinition(GD, GV);
2393 }
2394
2395 if (const auto *VD = dyn_cast<VarDecl>(D))
2396 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2397
2398 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2398)
;
2399}
2400
2401static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2402 llvm::Function *NewFn);
2403
2404void CodeGenModule::emitMultiVersionFunctions() {
2405 for (GlobalDecl GD : MultiVersionFuncs) {
2406 SmallVector<CodeGenFunction::TargetMultiVersionResolverOption, 10> Options;
2407 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2408 getContext().forEachMultiversionedFunctionVersion(
2409 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2410 GlobalDecl CurGD{
2411 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2412 StringRef MangledName = getMangledName(CurGD);
2413 llvm::Constant *Func = GetGlobalValue(MangledName);
2414 if (!Func) {
2415 if (CurFD->isDefined()) {
2416 EmitGlobalFunctionDefinition(CurGD, nullptr);
2417 Func = GetGlobalValue(MangledName);
2418 } else {
2419 const CGFunctionInfo &FI =
2420 getTypes().arrangeGlobalDeclaration(GD);
2421 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2422 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2423 /*DontDefer=*/false, ForDefinition);
2424 }
2425 assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created"
) ? void (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2425, __extension__ __PRETTY_FUNCTION__))
;
2426 }
2427 Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2428 CurFD->getAttr<TargetAttr>()->parse());
2429 });
2430
2431 llvm::Function *ResolverFunc = cast<llvm::Function>(
2432 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2433 if (supportsCOMDAT())
2434 ResolverFunc->setComdat(
2435 getModule().getOrInsertComdat(ResolverFunc->getName()));
2436 std::stable_sort(
2437 Options.begin(), Options.end(),
2438 std::greater<CodeGenFunction::TargetMultiVersionResolverOption>());
2439 CodeGenFunction CGF(*this);
2440 CGF.EmitTargetMultiVersionResolver(ResolverFunc, Options);
2441 }
2442}
2443
2444void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2445 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2446 assert(FD && "Not a FunctionDecl?")(static_cast <bool> (FD && "Not a FunctionDecl?"
) ? void (0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2446, __extension__ __PRETTY_FUNCTION__))
;
2447 const auto *DD = FD->getAttr<CPUDispatchAttr>();
2448 assert(DD && "Not a cpu_dispatch Function?")(static_cast <bool> (DD && "Not a cpu_dispatch Function?"
) ? void (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2448, __extension__ __PRETTY_FUNCTION__))
;
2449 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType());
2450
2451 StringRef ResolverName = getMangledName(GD);
2452 llvm::Type *ResolverType = llvm::FunctionType::get(
2453 llvm::PointerType::get(DeclTy,
2454 Context.getTargetAddressSpace(FD->getType())),
2455 false);
2456 auto *ResolverFunc = cast<llvm::Function>(
2457 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2458 /*ForVTable=*/false));
2459
2460 SmallVector<CodeGenFunction::CPUDispatchMultiVersionResolverOption, 10>
2461 Options;
2462 const TargetInfo &Target = getTarget();
2463 for (const IdentifierInfo *II : DD->cpus()) {
2464 // Get the name of the target function so we can look it up/create it.
2465 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2466 getCPUSpecificMangling(*this, II->getName());
2467 llvm::Constant *Func = GetOrCreateLLVMFunction(
2468 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false,
2469 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2470 llvm::SmallVector<StringRef, 32> Features;
2471 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2472 llvm::transform(Features, Features.begin(),
2473 [](StringRef Str) { return Str.substr(1); });
2474 Features.erase(std::remove_if(
2475 Features.begin(), Features.end(), [&Target](StringRef Feat) {
2476 return !Target.validateCpuSupports(Feat);
2477 }), Features.end());
2478 Options.emplace_back(cast<llvm::Function>(Func),
2479 CodeGenFunction::GetX86CpuSupportsMask(Features));
2480 }
2481
2482 llvm::sort(
2483 Options.begin(), Options.end(),
2484 std::greater<CodeGenFunction::CPUDispatchMultiVersionResolverOption>());
2485 CodeGenFunction CGF(*this);
2486 CGF.EmitCPUDispatchMultiVersionResolver(ResolverFunc, Options);
2487}
2488
2489/// If an ifunc for the specified mangled name is not in the module, create and
2490/// return an llvm IFunc Function with the specified type.
2491llvm::Constant *
2492CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2493 const FunctionDecl *FD) {
2494 std::string MangledName =
2495 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2496 std::string IFuncName = MangledName + ".ifunc";
2497 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2498 return IFuncGV;
2499
2500 // Since this is the first time we've created this IFunc, make sure
2501 // that we put this multiversioned function into the list to be
2502 // replaced later if necessary (target multiversioning only).
2503 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2504 MultiVersionFuncs.push_back(GD);
2505
2506 std::string ResolverName = MangledName + ".resolver";
2507 llvm::Type *ResolverType = llvm::FunctionType::get(
2508 llvm::PointerType::get(DeclTy,
2509 Context.getTargetAddressSpace(FD->getType())),
2510 false);
2511 llvm::Constant *Resolver =
2512 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2513 /*ForVTable=*/false);
2514 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2515 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2516 GIF->setName(IFuncName);
2517 SetCommonAttributes(FD, GIF);
2518
2519 return GIF;
2520}
2521
2522/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2523/// module, create and return an llvm Function with the specified type. If there
2524/// is something in the module with the specified name, return it potentially
2525/// bitcasted to the right type.
2526///
2527/// If D is non-null, it specifies a decl that correspond to this. This is used
2528/// to set the attributes on the function when it is first created.
2529llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2530 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2531 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2532 ForDefinition_t IsForDefinition) {
2533 const Decl *D = GD.getDecl();
2534
2535 // Any attempts to use a MultiVersion function should result in retrieving
2536 // the iFunc instead. Name Mangling will handle the rest of the changes.
2537 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2538 // For the device mark the function as one that should be emitted.
2539 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2540 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2541 !DontDefer && !IsForDefinition) {
2542 const FunctionDecl *FDDef = FD->getDefinition();
2543 GlobalDecl GDDef;
2544 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2545 GDDef = GlobalDecl(CD, GD.getCtorType());
2546 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2547 GDDef = GlobalDecl(DD, GD.getDtorType());
2548 else
2549 GDDef = GlobalDecl(FDDef);
2550 addDeferredDeclToEmit(GDDef);
2551 }
2552
2553 if (FD->isMultiVersion()) {
2554 const auto *TA = FD->getAttr<TargetAttr>();
2555 if (TA && TA->isDefaultVersion())
2556 UpdateMultiVersionNames(GD, FD);
2557 if (!IsForDefinition)
2558 return GetOrCreateMultiVersionIFunc(GD, Ty, FD);
2559 }
2560 }
2561
2562 // Lookup the entry, lazily creating it if necessary.
2563 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2564 if (Entry) {
2565 if (WeakRefReferences.erase(Entry)) {
2566 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2567 if (FD && !FD->hasAttr<WeakAttr>())
2568 Entry->setLinkage(llvm::Function::ExternalLinkage);
2569 }
2570
2571 // Handle dropped DLL attributes.
2572 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2573 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2574 setDSOLocal(Entry);
2575 }
2576
2577 // If there are two attempts to define the same mangled name, issue an
2578 // error.
2579 if (IsForDefinition && !Entry->isDeclaration()) {
2580 GlobalDecl OtherGD;
2581 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2582 // to make sure that we issue an error only once.
2583 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2584 (GD.getCanonicalDecl().getDecl() !=
2585 OtherGD.getCanonicalDecl().getDecl()) &&
2586 DiagnosedConflictingDefinitions.insert(GD).second) {
2587 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2588 << MangledName;
2589 getDiags().Report(OtherGD.getDecl()->getLocation(),
2590 diag::note_previous_definition);
2591 }
2592 }
2593
2594 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2595 (Entry->getType()->getElementType() == Ty)) {
2596 return Entry;
2597 }
2598
2599 // Make sure the result is of the correct type.
2600 // (If function is requested for a definition, we always need to create a new
2601 // function, not just return a bitcast.)
2602 if (!IsForDefinition)
2603 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2604 }
2605
2606 // This function doesn't have a complete type (for example, the return
2607 // type is an incomplete struct). Use a fake type instead, and make
2608 // sure not to try to set attributes.
2609 bool IsIncompleteFunction = false;
2610
2611 llvm::FunctionType *FTy;
2612 if (isa<llvm::FunctionType>(Ty)) {
2613 FTy = cast<llvm::FunctionType>(Ty);
2614 } else {
2615 FTy = llvm::FunctionType::get(VoidTy, false);
2616 IsIncompleteFunction = true;
2617 }
2618
2619 llvm::Function *F =
2620 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2621 Entry ? StringRef() : MangledName, &getModule());
2622
2623 // If we already created a function with the same mangled name (but different
2624 // type) before, take its name and add it to the list of functions to be
2625 // replaced with F at the end of CodeGen.
2626 //
2627 // This happens if there is a prototype for a function (e.g. "int f()") and
2628 // then a definition of a different type (e.g. "int f(int x)").
2629 if (Entry) {
2630 F->takeName(Entry);
2631
2632 // This might be an implementation of a function without a prototype, in
2633 // which case, try to do special replacement of calls which match the new
2634 // prototype. The really key thing here is that we also potentially drop
2635 // arguments from the call site so as to make a direct call, which makes the
2636 // inliner happier and suppresses a number of optimizer warnings (!) about
2637 // dropping arguments.
2638 if (!Entry->use_empty()) {
2639 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2640 Entry->removeDeadConstantUsers();
2641 }
2642
2643 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2644 F, Entry->getType()->getElementType()->getPointerTo());
2645 addGlobalValReplacement(Entry, BC);
2646 }
2647
2648 assert(F->getName() == MangledName && "name was uniqued!")(static_cast <bool> (F->getName() == MangledName &&
"name was uniqued!") ? void (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2648, __extension__ __PRETTY_FUNCTION__))
;
2649 if (D)
2650 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2651 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2652 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2653 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2654 }
2655
2656 if (!DontDefer) {
2657 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2658 // each other bottoming out with the base dtor. Therefore we emit non-base
2659 // dtors on usage, even if there is no dtor definition in the TU.
2660 if (D && isa<CXXDestructorDecl>(D) &&
2661 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2662 GD.getDtorType()))
2663 addDeferredDeclToEmit(GD);
2664
2665 // This is the first use or definition of a mangled name. If there is a
2666 // deferred decl with this name, remember that we need to emit it at the end
2667 // of the file.
2668 auto DDI = DeferredDecls.find(MangledName);
2669 if (DDI != DeferredDecls.end()) {
2670 // Move the potentially referenced deferred decl to the
2671 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2672 // don't need it anymore).
2673 addDeferredDeclToEmit(DDI->second);
2674 DeferredDecls.erase(DDI);
2675
2676 // Otherwise, there are cases we have to worry about where we're
2677 // using a declaration for which we must emit a definition but where
2678 // we might not find a top-level definition:
2679 // - member functions defined inline in their classes
2680 // - friend functions defined inline in some class
2681 // - special member functions with implicit definitions
2682 // If we ever change our AST traversal to walk into class methods,
2683 // this will be unnecessary.
2684 //
2685 // We also don't emit a definition for a function if it's going to be an
2686 // entry in a vtable, unless it's already marked as used.
2687 } else if (getLangOpts().CPlusPlus && D) {
2688 // Look for a declaration that's lexically in a record.
2689 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2690 FD = FD->getPreviousDecl()) {
2691 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2692 if (FD->doesThisDeclarationHaveABody()) {
2693 addDeferredDeclToEmit(GD.getWithDecl(FD));
2694 break;
2695 }
2696 }
2697 }
2698 }
2699 }
2700
2701 // Make sure the result is of the requested type.
2702 if (!IsIncompleteFunction) {
2703 assert(F->getType()->getElementType() == Ty)(static_cast <bool> (F->getType()->getElementType
() == Ty) ? void (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2703, __extension__ __PRETTY_FUNCTION__))
;
2704 return F;
2705 }
2706
2707 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2708 return llvm::ConstantExpr::getBitCast(F, PTy);
2709}
2710
2711/// GetAddrOfFunction - Return the address of the given function. If Ty is
2712/// non-null, then this function will use the specified type if it has to
2713/// create it (this occurs when we see a definition of the function).
2714llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2715 llvm::Type *Ty,
2716 bool ForVTable,
2717 bool DontDefer,
2718 ForDefinition_t IsForDefinition) {
2719 // If there was no specific requested type, just convert it now.
2720 if (!Ty) {
2721 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2722 auto CanonTy = Context.getCanonicalType(FD->getType());
2723 Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2724 }
2725
2726 // Devirtualized destructor calls may come through here instead of via
2727 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2728 // of the complete destructor when necessary.
2729 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2730 if (getTarget().getCXXABI().isMicrosoft() &&
2731 GD.getDtorType() == Dtor_Complete &&
2732 DD->getParent()->getNumVBases() == 0)
2733 GD = GlobalDecl(DD, Dtor_Base);
2734 }
2735
2736 StringRef MangledName = getMangledName(GD);
2737 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2738 /*IsThunk=*/false, llvm::AttributeList(),
2739 IsForDefinition);
2740}
2741
2742static const FunctionDecl *
2743GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2744 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2745 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2746
2747 IdentifierInfo &CII = C.Idents.get(Name);
2748 for (const auto &Result : DC->lookup(&CII))
2749 if (const auto FD = dyn_cast<FunctionDecl>(Result))
2750 return FD;
2751
2752 if (!C.getLangOpts().CPlusPlus)
2753 return nullptr;
2754
2755 // Demangle the premangled name from getTerminateFn()
2756 IdentifierInfo &CXXII =
2757 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2758 ? C.Idents.get("terminate")
2759 : C.Idents.get(Name);
2760
2761 for (const auto &N : {"__cxxabiv1", "std"}) {
2762 IdentifierInfo &NS = C.Idents.get(N);
2763 for (const auto &Result : DC->lookup(&NS)) {
2764 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2765 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2766 for (const auto &Result : LSD->lookup(&NS))
2767 if ((ND = dyn_cast<NamespaceDecl>(Result)))
2768 break;
2769
2770 if (ND)
2771 for (const auto &Result : ND->lookup(&CXXII))
2772 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2773 return FD;
2774 }
2775 }
2776
2777 return nullptr;
2778}
2779
2780/// CreateRuntimeFunction - Create a new runtime function with the specified
2781/// type and name.
2782llvm::Constant *
2783CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2784 llvm::AttributeList ExtraAttrs,
2785 bool Local) {
2786 llvm::Constant *C =
2787 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2788 /*DontDefer=*/false, /*IsThunk=*/false,
2789 ExtraAttrs);
2790
2791 if (auto *F = dyn_cast<llvm::Function>(C)) {
2792 if (F->empty()) {
2793 F->setCallingConv(getRuntimeCC());
2794
2795 if (!Local && getTriple().isOSBinFormatCOFF() &&
2796 !getCodeGenOpts().LTOVisibilityPublicStd &&
2797 !getTriple().isWindowsGNUEnvironment()) {
2798 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2799 if (!FD || FD->hasAttr<DLLImportAttr>()) {
2800 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2801 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2802 }
2803 }
2804 setDSOLocal(F);
2805 }
2806 }
2807
2808 return C;
2809}
2810
2811/// CreateBuiltinFunction - Create a new builtin function with the specified
2812/// type and name.
2813llvm::Constant *
2814CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2815 llvm::AttributeList ExtraAttrs) {
2816 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2817}
2818
2819/// isTypeConstant - Determine whether an object of this type can be emitted
2820/// as a constant.
2821///
2822/// If ExcludeCtor is true, the duration when the object's constructor runs
2823/// will not be considered. The caller will need to verify that the object is
2824/// not written to during its construction.
2825bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2826 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2827 return false;
2828
2829 if (Context.getLangOpts().CPlusPlus) {
2830 if (const CXXRecordDecl *Record
2831 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2832 return ExcludeCtor && !Record->hasMutableFields() &&
2833 Record->hasTrivialDestructor();
2834 }
2835
2836 return true;
2837}
2838
2839/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2840/// create and return an llvm GlobalVariable with the specified type. If there
2841/// is something in the module with the specified name, return it potentially
2842/// bitcasted to the right type.
2843///
2844/// If D is non-null, it specifies a decl that correspond to this. This is used
2845/// to set the attributes on the global when it is first created.
2846///
2847/// If IsForDefinition is true, it is guaranteed that an actual global with
2848/// type Ty will be returned, not conversion of a variable with the same
2849/// mangled name but some other type.
2850llvm::Constant *
2851CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2852 llvm::PointerType *Ty,
2853 const VarDecl *D,
2854 ForDefinition_t IsForDefinition) {
2855 // Lookup the entry, lazily creating it if necessary.
2856 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2857 if (Entry) {
2858 if (WeakRefReferences.erase(Entry)) {
2859 if (D && !D->hasAttr<WeakAttr>())
2860 Entry->setLinkage(llvm::Function::ExternalLinkage);
2861 }
2862
2863 // Handle dropped DLL attributes.
2864 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2865 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2866
2867 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2868 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2869
2870 if (Entry->getType() == Ty)
2871 return Entry;
2872
2873 // If there are two attempts to define the same mangled name, issue an
2874 // error.
2875 if (IsForDefinition && !Entry->isDeclaration()) {
2876 GlobalDecl OtherGD;
2877 const VarDecl *OtherD;
2878
2879 // Check that D is not yet in DiagnosedConflictingDefinitions is required
2880 // to make sure that we issue an error only once.
2881 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2882 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2883 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2884 OtherD->hasInit() &&
2885 DiagnosedConflictingDefinitions.insert(D).second) {
2886 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2887 << MangledName;
2888 getDiags().Report(OtherGD.getDecl()->getLocation(),
2889 diag::note_previous_definition);
2890 }
2891 }
2892
2893 // Make sure the result is of the correct type.
2894 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2895 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2896
2897 // (If global is requested for a definition, we always need to create a new
2898 // global, not just return a bitcast.)
2899 if (!IsForDefinition)
2900 return llvm::ConstantExpr::getBitCast(Entry, Ty);
2901 }
2902
2903 auto AddrSpace = GetGlobalVarAddressSpace(D);
2904 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2905
2906 auto *GV = new llvm::GlobalVariable(
2907 getModule(), Ty->getElementType(), false,
2908 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2909 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2910
2911 // If we already created a global with the same mangled name (but different
2912 // type) before, take its name and remove it from its parent.
2913 if (Entry) {
2914 GV->takeName(Entry);
2915
2916 if (!Entry->use_empty()) {
2917 llvm::Constant *NewPtrForOldDecl =
2918 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2919 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2920 }
2921
2922 Entry->eraseFromParent();
2923 }
2924
2925 // This is the first use or definition of a mangled name. If there is a
2926 // deferred decl with this name, remember that we need to emit it at the end
2927 // of the file.
2928 auto DDI = DeferredDecls.find(MangledName);
2929 if (DDI != DeferredDecls.end()) {
2930 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2931 // list, and remove it from DeferredDecls (since we don't need it anymore).
2932 addDeferredDeclToEmit(DDI->second);
2933 DeferredDecls.erase(DDI);
2934 }
2935
2936 // Handle things which are present even on external declarations.
2937 if (D) {
2938 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2939 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2940
2941 // FIXME: This code is overly simple and should be merged with other global
2942 // handling.
2943 GV->setConstant(isTypeConstant(D->getType(), false));
2944
2945 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2946
2947 setLinkageForGV(GV, D);
2948
2949 if (D->getTLSKind()) {
2950 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2951 CXXThreadLocals.push_back(D);
2952 setTLSMode(GV, *D);
2953 }
2954
2955 setGVProperties(GV, D);
2956
2957 // If required by the ABI, treat declarations of static data members with
2958 // inline initializers as definitions.
2959 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2960 EmitGlobalVarDefinition(D);
2961 }
2962
2963 // Emit section information for extern variables.
2964 if (D->hasExternalStorage()) {
2965 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2966 GV->setSection(SA->getName());
2967 }
2968
2969 // Handle XCore specific ABI requirements.
2970 if (getTriple().getArch() == llvm::Triple::xcore &&
2971 D->getLanguageLinkage() == CLanguageLinkage &&
2972 D->getType().isConstant(Context) &&
2973 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2974 GV->setSection(".cp.rodata");
2975
2976 // Check if we a have a const declaration with an initializer, we may be
2977 // able to emit it as available_externally to expose it's value to the
2978 // optimizer.
2979 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2980 D->getType().isConstQualified() && !GV->hasInitializer() &&
2981 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2982 const auto *Record =
2983 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2984 bool HasMutableFields = Record && Record->hasMutableFields();
2985 if (!HasMutableFields) {
2986 const VarDecl *InitDecl;
2987 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2988 if (InitExpr) {
2989 ConstantEmitter emitter(*this);
2990 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2991 if (Init) {
2992 auto *InitType = Init->getType();
2993 if (GV->getType()->getElementType() != InitType) {
2994 // The type of the initializer does not match the definition.
2995 // This happens when an initializer has a different type from
2996 // the type of the global (because of padding at the end of a
2997 // structure for instance).
2998 GV->setName(StringRef());
2999 // Make a new global with the correct type, this is now guaranteed
3000 // to work.
3001 auto *NewGV = cast<llvm::GlobalVariable>(
3002 GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3003
3004 // Erase the old global, since it is no longer used.
3005 GV->eraseFromParent();
3006 GV = NewGV;
3007 } else {
3008 GV->setInitializer(Init);
3009 GV->setConstant(true);
3010 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3011 }
3012 emitter.finalize(GV);
3013 }
3014 }
3015 }
3016 }
3017 }
3018
3019 LangAS ExpectedAS =
3020 D ? D->getType().getAddressSpace()
3021 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3022 assert(getContext().getTargetAddressSpace(ExpectedAS) ==(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3023, __extension__ __PRETTY_FUNCTION__))
3023 Ty->getPointerAddressSpace())(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3023, __extension__ __PRETTY_FUNCTION__))
;
3024 if (AddrSpace != ExpectedAS)
3025 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3026 ExpectedAS, Ty);
3027
3028 return GV;
3029}
3030
3031llvm::Constant *
3032CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3033 ForDefinition_t IsForDefinition) {
3034 const Decl *D = GD.getDecl();
3035 if (isa<CXXConstructorDecl>(D))
3036 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3037 getFromCtorType(GD.getCtorType()),
3038 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3039 /*DontDefer=*/false, IsForDefinition);
3040 else if (isa<CXXDestructorDecl>(D))
3041 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3042 getFromDtorType(GD.getDtorType()),
3043 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3044 /*DontDefer=*/false, IsForDefinition);
3045 else if (isa<CXXMethodDecl>(D)) {
3046 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3047 cast<CXXMethodDecl>(D));
3048 auto Ty = getTypes().GetFunctionType(*FInfo);
3049 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3050 IsForDefinition);
3051 } else if (isa<FunctionDecl>(D)) {
3052 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3053 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3054 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3055 IsForDefinition);
3056 } else
3057 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3058 IsForDefinition);
3059}
3060
3061llvm::GlobalVariable *
3062CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
3063 llvm::Type *Ty,
3064 llvm::GlobalValue::LinkageTypes Linkage) {
3065 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3066 llvm::GlobalVariable *OldGV = nullptr;
3067
3068 if (GV) {
3069 // Check if the variable has the right type.
3070 if (GV->getType()->getElementType() == Ty)
3071 return GV;
3072
3073 // Because C++ name mangling, the only way we can end up with an already
3074 // existing global with the same name is if it has been declared extern "C".
3075 assert(GV->isDeclaration() && "Declaration has wrong type!")(static_cast <bool> (GV->isDeclaration() && "Declaration has wrong type!"
) ? void (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3075, __extension__ __PRETTY_FUNCTION__))
;
3076 OldGV = GV;
3077 }
3078
3079 // Create a new variable.
3080 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3081 Linkage, nullptr, Name);
3082
3083 if (OldGV) {
3084 // Replace occurrences of the old variable if needed.
3085 GV->takeName(OldGV);
3086
3087 if (!OldGV->use_empty()) {
3088 llvm::Constant *NewPtrForOldDecl =
3089 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3090 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3091 }
3092
3093 OldGV->eraseFromParent();
3094 }
3095
3096 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3097 !GV->hasAvailableExternallyLinkage())
3098 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3099
3100 return GV;
3101}
3102
3103/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3104/// given global variable. If Ty is non-null and if the global doesn't exist,
3105/// then it will be created with the specified type instead of whatever the
3106/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3107/// that an actual global with type Ty will be returned, not conversion of a
3108/// variable with the same mangled name but some other type.
3109llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3110 llvm::Type *Ty,
3111 ForDefinition_t IsForDefinition) {
3112 assert(D->hasGlobalStorage() && "Not a global variable")(static_cast <bool> (D->hasGlobalStorage() &&
"Not a global variable") ? void (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3112, __extension__ __PRETTY_FUNCTION__))
;
3113 QualType ASTTy = D->getType();
3114 if (!Ty)
3115 Ty = getTypes().ConvertTypeForMem(ASTTy);
3116
3117 llvm::PointerType *PTy =
3118 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3119
3120 StringRef MangledName = getMangledName(D);
3121 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3122}
3123
3124/// CreateRuntimeVariable - Create a new runtime global variable with the
3125/// specified type and name.
3126llvm::Constant *
3127CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3128 StringRef Name) {
3129 auto *Ret =
3130 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3131 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3132 return Ret;
3133}
3134
3135void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3136 assert(!D->getInit() && "Cannot emit definite definitions here!")(static_cast <bool> (!D->getInit() && "Cannot emit definite definitions here!"
) ? void (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3136, __extension__ __PRETTY_FUNCTION__))
;
3137
3138 StringRef MangledName = getMangledName(D);
3139 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3140
3141 // We already have a definition, not declaration, with the same mangled name.
3142 // Emitting of declaration is not required (and actually overwrites emitted
3143 // definition).
3144 if (GV && !GV->isDeclaration())
3145 return;
3146
3147 // If we have not seen a reference to this variable yet, place it into the
3148 // deferred declarations table to be emitted if needed later.
3149 if (!MustBeEmitted(D) && !GV) {
3150 DeferredDecls[MangledName] = D;
3151 return;
3152 }
3153
3154 // The tentative definition is the only definition.
3155 EmitGlobalVarDefinition(D);
3156}
3157
3158CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3159 return Context.toCharUnitsFromBits(
3160 getDataLayout().getTypeStoreSizeInBits(Ty));
3161}
3162
3163LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3164 LangAS AddrSpace = LangAS::Default;
3165 if (LangOpts.OpenCL) {
3166 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3167 assert(AddrSpace == LangAS::opencl_global ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3170, __extension__ __PRETTY_FUNCTION__))
3168 AddrSpace == LangAS::opencl_constant ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3170, __extension__ __PRETTY_FUNCTION__))
3169 AddrSpace == LangAS::opencl_local ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3170, __extension__ __PRETTY_FUNCTION__))
3170 AddrSpace >= LangAS::FirstTargetAddressSpace)(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3170, __extension__ __PRETTY_FUNCTION__))
;
3171 return AddrSpace;
3172 }
3173
3174 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3175 if (D && D->hasAttr<CUDAConstantAttr>())
3176 return LangAS::cuda_constant;
3177 else if (D && D->hasAttr<CUDASharedAttr>())
3178 return LangAS::cuda_shared;
3179 else if (D && D->hasAttr<CUDADeviceAttr>())
3180 return LangAS::cuda_device;
3181 else if (D && D->getType().isConstQualified())
3182 return LangAS::cuda_constant;
3183 else
3184 return LangAS::cuda_device;
3185 }
3186
3187 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3188}
3189
3190LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3191 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3192 if (LangOpts.OpenCL)
3193 return LangAS::opencl_constant;
3194 if (auto AS = getTarget().getConstantAddressSpace())
3195 return AS.getValue();
3196 return LangAS::Default;
3197}
3198
3199// In address space agnostic languages, string literals are in default address
3200// space in AST. However, certain targets (e.g. amdgcn) request them to be
3201// emitted in constant address space in LLVM IR. To be consistent with other
3202// parts of AST, string literal global variables in constant address space
3203// need to be casted to default address space before being put into address
3204// map and referenced by other part of CodeGen.
3205// In OpenCL, string literals are in constant address space in AST, therefore
3206// they should not be casted to default address space.
3207static llvm::Constant *
3208castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3209 llvm::GlobalVariable *GV) {
3210 llvm::Constant *Cast = GV;
3211 if (!CGM.getLangOpts().OpenCL) {
3212 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3213 if (AS != LangAS::Default)
3214 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3215 CGM, GV, AS.getValue(), LangAS::Default,
3216 GV->getValueType()->getPointerTo(
3217 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3218 }
3219 }
3220 return Cast;
3221}
3222
3223template<typename SomeDecl>
3224void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3225 llvm::GlobalValue *GV) {
3226 if (!getLangOpts().CPlusPlus)
3227 return;
3228
3229 // Must have 'used' attribute, or else inline assembly can't rely on
3230 // the name existing.
3231 if (!D->template hasAttr<UsedAttr>())
3232 return;
3233
3234 // Must have internal linkage and an ordinary name.
3235 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3236 return;
3237
3238 // Must be in an extern "C" context. Entities declared directly within
3239 // a record are not extern "C" even if the record is in such a context.
3240 const SomeDecl *First = D->getFirstDecl();
3241 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3242 return;
3243
3244 // OK, this is an internal linkage entity inside an extern "C" linkage
3245 // specification. Make a note of that so we can give it the "expected"
3246 // mangled name if nothing else is using that name.
3247 std::pair<StaticExternCMap::iterator, bool> R =
3248 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3249
3250 // If we have multiple internal linkage entities with the same name
3251 // in extern "C" regions, none of them gets that name.
3252 if (!R.second)
3253 R.first->second = nullptr;
3254}
3255
3256static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3257 if (!CGM.supportsCOMDAT())
3258 return false;
3259
3260 if (D.hasAttr<SelectAnyAttr>())
3261 return true;
3262
3263 GVALinkage Linkage;
3264 if (auto *VD = dyn_cast<VarDecl>(&D))
3265 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3266 else
3267 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3268
3269 switch (Linkage) {
3270 case GVA_Internal:
3271 case GVA_AvailableExternally:
3272 case GVA_StrongExternal:
3273 return false;
3274 case GVA_DiscardableODR:
3275 case GVA_StrongODR:
3276 return true;
3277 }
3278 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3278)
;
3279}
3280
3281void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3282 llvm::GlobalObject &GO) {
3283 if (!shouldBeInCOMDAT(*this, D))
3284 return;
3285 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3286}
3287
3288/// Pass IsTentative as true if you want to create a tentative definition.
3289void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3290 bool IsTentative) {
3291 // OpenCL global variables of sampler type are translated to function calls,
3292 // therefore no need to be translated.
3293 QualType ASTTy = D->getType();
3294 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3295 return;
3296
3297 // If this is OpenMP device, check if it is legal to emit this global
3298 // normally.
3299 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3300 OpenMPRuntime->emitTargetGlobalVariable(D))
3301 return;
3302
3303 llvm::Constant *Init = nullptr;
3304 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3305 bool NeedsGlobalCtor = false;
3306 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3307
3308 const VarDecl *InitDecl;
3309 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3310
3311 Optional<ConstantEmitter> emitter;
3312
3313 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3314 // as part of their declaration." Sema has already checked for
3315 // error cases, so we just need to set Init to UndefValue.
3316 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3317 D->hasAttr<CUDASharedAttr>())
3318 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3319 else if (!InitExpr) {
3320 // This is a tentative definition; tentative definitions are
3321 // implicitly initialized with { 0 }.
3322 //
3323 // Note that tentative definitions are only emitted at the end of
3324 // a translation unit, so they should never have incomplete
3325 // type. In addition, EmitTentativeDefinition makes sure that we
3326 // never attempt to emit a tentative definition if a real one
3327 // exists. A use may still exists, however, so we still may need
3328 // to do a RAUW.
3329 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")(static_cast <bool> (!ASTTy->isIncompleteType() &&
"Unexpected incomplete type") ? void (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3329, __extension__ __PRETTY_FUNCTION__))
;
3330 Init = EmitNullConstant(D->getType());
3331 } else {
3332 initializedGlobalDecl = GlobalDecl(D);
3333 emitter.emplace(*this);
3334 Init = emitter->tryEmitForInitializer(*InitDecl);
3335
3336 if (!Init) {
3337 QualType T = InitExpr->getType();
3338 if (D->getType()->isReferenceType())
3339 T = D->getType();
3340
3341 if (getLangOpts().CPlusPlus) {
3342 Init = EmitNullConstant(T);
3343 NeedsGlobalCtor = true;
3344 } else {
3345 ErrorUnsupported(D, "static initializer");
3346 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3347 }
3348 } else {
3349 // We don't need an initializer, so remove the entry for the delayed
3350 // initializer position (just in case this entry was delayed) if we
3351 // also don't need to register a destructor.
3352 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3353 DelayedCXXInitPosition.erase(D);
3354 }
3355 }
3356
3357 llvm::Type* InitType = Init->getType();
3358 llvm::Constant *Entry =
3359 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3360
3361 // Strip off a bitcast if we got one back.
3362 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3363 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3366, __extension__ __PRETTY_FUNCTION__))
3364 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3366, __extension__ __PRETTY_FUNCTION__))
3365 // All zero index gep.(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3366, __extension__ __PRETTY_FUNCTION__))
3366 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3366, __extension__ __PRETTY_FUNCTION__))
;
3367 Entry = CE->getOperand(0);
3368 }
3369
3370 // Entry is now either a Function or GlobalVariable.
3371 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3372
3373 // We have a definition after a declaration with the wrong type.
3374 // We must make a new GlobalVariable* and update everything that used OldGV
3375 // (a declaration or tentative definition) with the new GlobalVariable*
3376 // (which will be a definition).
3377 //
3378 // This happens if there is a prototype for a global (e.g.
3379 // "extern int x[];") and then a definition of a different type (e.g.
3380 // "int x[10];"). This also happens when an initializer has a different type
3381 // from the type of the global (this happens with unions).
3382 if (!GV || GV->getType()->getElementType() != InitType ||
3383 GV->getType()->getAddressSpace() !=
3384 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3385
3386 // Move the old entry aside so that we'll create a new one.
3387 Entry->setName(StringRef());
3388
3389 // Make a new global with the correct type, this is now guaranteed to work.
3390 GV = cast<llvm::GlobalVariable>(
3391 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3392
3393 // Replace all uses of the old global with the new global
3394 llvm::Constant *NewPtrForOldDecl =
3395 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3396 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3397
3398 // Erase the old global, since it is no longer used.
3399 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3400 }
3401
3402 MaybeHandleStaticInExternC(D, GV);
3403
3404 if (D->hasAttr<AnnotateAttr>())
3405 AddGlobalAnnotations(D, GV);
3406
3407 // Set the llvm linkage type as appropriate.
3408 llvm::GlobalValue::LinkageTypes Linkage =
3409 getLLVMLinkageVarDefinition(D, GV->isConstant());
3410
3411 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3412 // the device. [...]"
3413 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3414 // __device__, declares a variable that: [...]
3415 // Is accessible from all the threads within the grid and from the host
3416 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3417 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3418 if (GV && LangOpts.CUDA) {
3419 if (LangOpts.CUDAIsDevice) {
3420 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3421 GV->setExternallyInitialized(true);
3422 } else {
3423 // Host-side shadows of external declarations of device-side
3424 // global variables become internal definitions. These have to
3425 // be internal in order to prevent name conflicts with global
3426 // host variables with the same name in a different TUs.
3427 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3428 Linkage = llvm::GlobalValue::InternalLinkage;
3429
3430 // Shadow variables and their properties must be registered
3431 // with CUDA runtime.
3432 unsigned Flags = 0;
3433 if (!D->hasDefinition())
3434 Flags |= CGCUDARuntime::ExternDeviceVar;
3435 if (D->hasAttr<CUDAConstantAttr>())
3436 Flags |= CGCUDARuntime::ConstantDeviceVar;
3437 getCUDARuntime().registerDeviceVar(*GV, Flags);
3438 } else if (D->hasAttr<CUDASharedAttr>())
3439 // __shared__ variables are odd. Shadows do get created, but
3440 // they are not registered with the CUDA runtime, so they
3441 // can't really be used to access their device-side
3442 // counterparts. It's not clear yet whether it's nvcc's bug or
3443 // a feature, but we've got to do the same for compatibility.
3444 Linkage = llvm::GlobalValue::InternalLinkage;
3445 }
3446 }
3447
3448 GV->setInitializer(Init);
3449 if (emitter) emitter->finalize(GV);
3450
3451 // If it is safe to mark the global 'constant', do so now.
3452 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3453 isTypeConstant(D->getType(), true));
3454
3455 // If it is in a read-only section, mark it 'constant'.
3456 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3457 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3458 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3459 GV->setConstant(true);
3460 }
3461
3462 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3463
3464
3465 // On Darwin, if the normal linkage of a C++ thread_local variable is
3466 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3467 // copies within a linkage unit; otherwise, the backing variable has
3468 // internal linkage and all accesses should just be calls to the
3469 // Itanium-specified entry point, which has the normal linkage of the
3470 // variable. This is to preserve the ability to change the implementation
3471 // behind the scenes.
3472 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3473 Context.getTargetInfo().getTriple().isOSDarwin() &&
3474 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3475 !llvm::GlobalVariable::isWeakLinkage(Linkage))
3476 Linkage = llvm::GlobalValue::InternalLinkage;
3477
3478 GV->setLinkage(Linkage);
3479 if (D->hasAttr<DLLImportAttr>())
3480 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3481 else if (D->hasAttr<DLLExportAttr>())
3482 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3483 else
3484 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3485
3486 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3487 // common vars aren't constant even if declared const.
3488 GV->setConstant(false);
3489 // Tentative definition of global variables may be initialized with
3490 // non-zero null pointers. In this case they should have weak linkage
3491 // since common linkage must have zero initializer and must not have
3492 // explicit section therefore cannot have non-zero initial value.
3493 if (!GV->getInitializer()->isNullValue())
3494 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3495 }
3496
3497 setNonAliasAttributes(D, GV);
3498
3499 if (D->getTLSKind() && !GV->isThreadLocal()) {
3500 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3501 CXXThreadLocals.push_back(D);
3502 setTLSMode(GV, *D);
3503 }
3504
3505 maybeSetTrivialComdat(*D, *GV);
3506
3507 // Emit the initializer function if necessary.
3508 if (NeedsGlobalCtor || NeedsGlobalDtor)
3509 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3510
3511 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3512
3513 // Emit global variable debug information.
3514 if (CGDebugInfo *DI = getModuleDebugInfo())
3515 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3516 DI->EmitGlobalVariable(GV, D);
3517}
3518
3519static bool isVarDeclStrongDefinition(const ASTContext &Context,
3520 CodeGenModule &CGM, const VarDecl *D,
3521 bool NoCommon) {
3522 // Don't give variables common linkage if -fno-common was specified unless it
3523 // was overridden by a NoCommon attribute.
3524 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3525 return true;
3526
3527 // C11 6.9.2/2:
3528 // A declaration of an identifier for an object that has file scope without
3529 // an initializer, and without a storage-class specifier or with the
3530 // storage-class specifier static, constitutes a tentative definition.
3531 if (D->getInit() || D->hasExternalStorage())
3532 return true;
3533
3534 // A variable cannot be both common and exist in a section.
3535 if (D->hasAttr<SectionAttr>())
3536 return true;
3537
3538 // A variable cannot be both common and exist in a section.
3539 // We don't try to determine which is the right section in the front-end.
3540 // If no specialized section name is applicable, it will resort to default.
3541 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3542 D->hasAttr<PragmaClangDataSectionAttr>() ||
3543 D->hasAttr<PragmaClangRodataSectionAttr>())
3544 return true;
3545
3546 // Thread local vars aren't considered common linkage.
3547 if (D->getTLSKind())
3548 return true;
3549
3550 // Tentative definitions marked with WeakImportAttr are true definitions.
3551 if (D->hasAttr<WeakImportAttr>())
3552 return true;
3553
3554 // A variable cannot be both common and exist in a comdat.
3555 if (shouldBeInCOMDAT(CGM, *D))
3556 return true;
3557
3558 // Declarations with a required alignment do not have common linkage in MSVC
3559 // mode.
3560 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3561 if (D->hasAttr<AlignedAttr>())
3562 return true;
3563 QualType VarType = D->getType();
3564 if (Context.isAlignmentRequired(VarType))
3565 return true;
3566
3567 if (const auto *RT = VarType->getAs<RecordType>()) {
3568 const RecordDecl *RD = RT->getDecl();
3569 for (const FieldDecl *FD : RD->fields()) {
3570 if (FD->isBitField())
3571 continue;
3572 if (FD->hasAttr<AlignedAttr>())
3573 return true;
3574 if (Context.isAlignmentRequired(FD->getType()))
3575 return true;
3576 }
3577 }
3578 }
3579
3580 return false;
3581}
3582
3583llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3584 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3585 if (Linkage == GVA_Internal)
20
Assuming 'Linkage' is not equal to GVA_Internal
21
Taking false branch
3586 return llvm::Function::InternalLinkage;
3587
3588 if (D->hasAttr<WeakAttr>()) {
22
Called C++ object pointer is null
3589 if (IsConstantVariable)
3590 return llvm::GlobalVariable::WeakODRLinkage;
3591 else
3592 return llvm::GlobalVariable::WeakAnyLinkage;
3593 }
3594
3595 // We are guaranteed to have a strong definition somewhere else,
3596 // so we can use available_externally linkage.
3597 if (Linkage == GVA_AvailableExternally)
3598 return llvm::GlobalValue::AvailableExternallyLinkage;
3599
3600 // Note that Apple's kernel linker doesn't support symbol
3601 // coalescing, so we need to avoid linkonce and weak linkages there.
3602 // Normally, this means we just map to internal, but for explicit
3603 // instantiations we'll map to external.
3604
3605 // In C++, the compiler has to emit a definition in every translation unit
3606 // that references the function. We should use linkonce_odr because
3607 // a) if all references in this translation unit are optimized away, we
3608 // don't need to codegen it. b) if the function persists, it needs to be
3609 // merged with other definitions. c) C++ has the ODR, so we know the
3610 // definition is dependable.
3611 if (Linkage == GVA_DiscardableODR)
3612 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3613 : llvm::Function::InternalLinkage;
3614
3615 // An explicit instantiation of a template has weak linkage, since
3616 // explicit instantiations can occur in multiple translation units
3617 // and must all be equivalent. However, we are not allowed to
3618 // throw away these explicit instantiations.
3619 //
3620 // We don't currently support CUDA device code spread out across multiple TUs,
3621 // so say that CUDA templates are either external (for kernels) or internal.
3622 // This lets llvm perform aggressive inter-procedural optimizations.
3623 if (Linkage == GVA_StrongODR) {
3624 if (Context.getLangOpts().AppleKext)
3625 return llvm::Function::ExternalLinkage;
3626 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3627 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3628 : llvm::Function::InternalLinkage;
3629 return llvm::Function::WeakODRLinkage;
3630 }
3631
3632 // C++ doesn't have tentative definitions and thus cannot have common
3633 // linkage.
3634 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3635 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3636 CodeGenOpts.NoCommon))
3637 return llvm::GlobalVariable::CommonLinkage;
3638
3639 // selectany symbols are externally visible, so use weak instead of
3640 // linkonce. MSVC optimizes away references to const selectany globals, so
3641 // all definitions should be the same and ODR linkage should be used.
3642 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3643 if (D->hasAttr<SelectAnyAttr>())
3644 return llvm::GlobalVariable::WeakODRLinkage;
3645
3646 // Otherwise, we have strong external linkage.
3647 assert(Linkage == GVA_StrongExternal)(static_cast <bool> (Linkage == GVA_StrongExternal) ? void
(0) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3647, __extension__ __PRETTY_FUNCTION__))
;
3648 return llvm::GlobalVariable::ExternalLinkage;
3649}
3650
3651llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3652 const VarDecl *VD, bool IsConstant) {
3653 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3654 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
18
Passing null pointer value via 1st parameter 'D'
19
Calling 'CodeGenModule::getLLVMLinkageForDeclarator'
3655}
3656
3657/// Replace the uses of a function that was declared with a non-proto type.
3658/// We want to silently drop extra arguments from call sites
3659static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3660 llvm::Function *newFn) {
3661 // Fast path.
3662 if (old->use_empty()) return;
3663
3664 llvm::Type *newRetTy = newFn->getReturnType();
3665 SmallVector<llvm::Value*, 4> newArgs;
3666 SmallVector<llvm::OperandBundleDef, 1> newBundles;
3667
3668 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3669 ui != ue; ) {
3670 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3671 llvm::User *user = use->getUser();
3672
3673 // Recognize and replace uses of bitcasts. Most calls to
3674 // unprototyped functions will use bitcasts.
3675 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3676 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3677 replaceUsesOfNonProtoConstant(bitcast, newFn);
3678 continue;
3679 }
3680
3681 // Recognize calls to the function.
3682 llvm::CallSite callSite(user);
3683 if (!callSite) continue;
3684 if (!callSite.isCallee(&*use)) continue;
3685
3686 // If the return types don't match exactly, then we can't
3687 // transform this call unless it's dead.
3688 if (callSite->getType() != newRetTy && !callSite->use_empty())
3689 continue;
3690
3691 // Get the call site's attribute list.
3692 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3693 llvm::AttributeList oldAttrs = callSite.getAttributes();
3694
3695 // If the function was passed too few arguments, don't transform.
3696 unsigned newNumArgs = newFn->arg_size();
3697 if (callSite.arg_size() < newNumArgs) continue;
3698
3699 // If extra arguments were passed, we silently drop them.
3700 // If any of the types mismatch, we don't transform.
3701 unsigned argNo = 0;
3702 bool dontTransform = false;
3703 for (llvm::Argument &A : newFn->args()) {
3704 if (callSite.getArgument(argNo)->getType() != A.getType()) {
3705 dontTransform = true;
3706 break;
3707 }
3708
3709 // Add any parameter attributes.
3710 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3711 argNo++;
3712 }
3713 if (dontTransform)
3714 continue;
3715
3716 // Okay, we can transform this. Create the new call instruction and copy
3717 // over the required information.
3718 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3719
3720 // Copy over any operand bundles.
3721 callSite.getOperandBundlesAsDefs(newBundles);
3722
3723 llvm::CallSite newCall;
3724 if (callSite.isCall()) {
3725 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3726 callSite.getInstruction());
3727 } else {
3728 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3729 newCall = llvm::InvokeInst::Create(newFn,
3730 oldInvoke->getNormalDest(),
3731 oldInvoke->getUnwindDest(),
3732 newArgs, newBundles, "",
3733 callSite.getInstruction());
3734 }
3735 newArgs.clear(); // for the next iteration
3736
3737 if (!newCall->getType()->isVoidTy())
3738 newCall->takeName(callSite.getInstruction());
3739 newCall.setAttributes(llvm::AttributeList::get(
3740 newFn->getContext(), oldAttrs.getFnAttributes(),
3741 oldAttrs.getRetAttributes(), newArgAttrs));
3742 newCall.setCallingConv(callSite.getCallingConv());
3743
3744 // Finally, remove the old call, replacing any uses with the new one.
3745 if (!callSite->use_empty())
3746 callSite->replaceAllUsesWith(newCall.getInstruction());
3747
3748 // Copy debug location attached to CI.
3749 if (callSite->getDebugLoc())
3750 newCall->setDebugLoc(callSite->getDebugLoc());
3751
3752 callSite->eraseFromParent();
3753 }
3754}
3755
3756/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3757/// implement a function with no prototype, e.g. "int foo() {}". If there are
3758/// existing call uses of the old function in the module, this adjusts them to
3759/// call the new function directly.
3760///
3761/// This is not just a cleanup: the always_inline pass requires direct calls to
3762/// functions to be able to inline them. If there is a bitcast in the way, it
3763/// won't inline them. Instcombine normally deletes these calls, but it isn't
3764/// run at -O0.
3765static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3766 llvm::Function *NewFn) {
3767 // If we're redefining a global as a function, don't transform it.
3768 if (!isa<llvm::Function>(Old)) return;
3769
3770 replaceUsesOfNonProtoConstant(Old, NewFn);
3771}
3772
3773void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3774 auto DK = VD->isThisDeclarationADefinition();
3775 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3776 return;
3777
3778 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3779 // If we have a definition, this might be a deferred decl. If the
3780 // instantiation is explicit, make sure we emit it at the end.
3781 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3782 GetAddrOfGlobalVar(VD);
3783
3784 EmitTopLevelDecl(VD);
3785}
3786
3787void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3788 llvm::GlobalValue *GV) {
3789 const auto *D = cast<FunctionDecl>(GD.getDecl());
3790
3791 // Compute the function info and LLVM type.
3792 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3793 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3794
3795 // Get or create the prototype for the function.
3796 if (!GV || (GV->getType()->getElementType() != Ty))
3797 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3798 /*DontDefer=*/true,
3799 ForDefinition));
3800
3801 // Already emitted.
3802 if (!GV->isDeclaration())
3803 return;
3804
3805 // We need to set linkage and visibility on the function before
3806 // generating code for it because various parts of IR generation
3807 // want to propagate this information down (e.g. to local static
3808 // declarations).
3809 auto *Fn = cast<llvm::Function>(GV);
3810 setFunctionLinkage(GD, Fn);
3811
3812 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3813 setGVProperties(Fn, GD);
3814
3815 MaybeHandleStaticInExternC(D, Fn);
3816
3817
3818 maybeSetTrivialComdat(*D, *Fn);
3819
3820 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3821
3822 setNonAliasAttributes(GD, Fn);
3823 SetLLVMFunctionAttributesForDefinition(D, Fn);
3824
3825 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3826 AddGlobalCtor(Fn, CA->getPriority());
3827 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3828 AddGlobalDtor(Fn, DA->getPriority());
3829 if (D->hasAttr<AnnotateAttr>())
3830 AddGlobalAnnotations(D, Fn);
3831
3832 if (D->isCPUSpecificMultiVersion()) {
3833 auto *Spec = D->getAttr<CPUSpecificAttr>();
3834 // If there is another specific version we need to emit, do so here.
3835 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) {
3836 ++Spec->ActiveArgIndex;
3837 EmitGlobalFunctionDefinition(GD, nullptr);
3838 }
3839 }
3840}
3841
3842void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3843 const auto *D = cast<ValueDecl>(GD.getDecl());
3844 const AliasAttr *AA = D->getAttr<AliasAttr>();
3845 assert(AA && "Not an alias?")(static_cast <bool> (AA && "Not an alias?") ? void
(0) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3845, __extension__ __PRETTY_FUNCTION__))
;
3846
3847 StringRef MangledName = getMangledName(GD);
3848
3849 if (AA->getAliasee() == MangledName) {
3850 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3851 return;
3852 }
3853
3854 // If there is a definition in the module, then it wins over the alias.
3855 // This is dubious, but allow it to be safe. Just ignore the alias.
3856 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3857 if (Entry && !Entry->isDeclaration())
3858 return;
3859
3860 Aliases.push_back(GD);
3861
3862 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3863
3864 // Create a reference to the named value. This ensures that it is emitted
3865 // if a deferred decl.
3866 llvm::Constant *Aliasee;
3867 if (isa<llvm::FunctionType>(DeclTy))
3868 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3869 /*ForVTable=*/false);
3870 else
3871 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3872 llvm::PointerType::getUnqual(DeclTy),
3873 /*D=*/nullptr);
3874
3875 // Create the new alias itself, but don't set a name yet.
3876 auto *GA = llvm::GlobalAlias::create(
3877 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3878
3879 if (Entry) {
3880 if (GA->getAliasee() == Entry) {
3881 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3882 return;
3883 }
3884
3885 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3885, __extension__ __PRETTY_FUNCTION__))
;
3886
3887 // If there is a declaration in the module, then we had an extern followed
3888 // by the alias, as in:
3889 // extern int test6();
3890 // ...
3891 // int test6() __attribute__((alias("test7")));
3892 //
3893 // Remove it and replace uses of it with the alias.
3894 GA->takeName(Entry);
3895
3896 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3897 Entry->getType()));
3898 Entry->eraseFromParent();
3899 } else {
3900 GA->setName(MangledName);
3901 }
3902
3903 // Set attributes which are particular to an alias; this is a
3904 // specialization of the attributes which may be set on a global
3905 // variable/function.
3906 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3907 D->isWeakImported()) {
3908 GA->setLinkage(llvm::Function::WeakAnyLinkage);
3909 }
3910
3911 if (const auto *VD = dyn_cast<VarDecl>(D))
3912 if (VD->getTLSKind())
3913 setTLSMode(GA, *VD);
3914
3915 SetCommonAttributes(GD, GA);
3916}
3917
3918void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3919 const auto *D = cast<ValueDecl>(GD.getDecl());
3920 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3921 assert(IFA && "Not an ifunc?")(static_cast <bool> (IFA && "Not an ifunc?") ? void
(0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3921, __extension__ __PRETTY_FUNCTION__))
;
3922
3923 StringRef MangledName = getMangledName(GD);
3924
3925 if (IFA->getResolver() == MangledName) {
3926 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3927 return;
3928 }
3929
3930 // Report an error if some definition overrides ifunc.
3931 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3932 if (Entry && !Entry->isDeclaration()) {
3933 GlobalDecl OtherGD;
3934 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3935 DiagnosedConflictingDefinitions.insert(GD).second) {
3936 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3937 << MangledName;
3938 Diags.Report(OtherGD.getDecl()->getLocation(),
3939 diag::note_previous_definition);
3940 }
3941 return;
3942 }
3943
3944 Aliases.push_back(GD);
3945
3946 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3947 llvm::Constant *Resolver =
3948 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3949 /*ForVTable=*/false);
3950 llvm::GlobalIFunc *GIF =
3951 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3952 "", Resolver, &getModule());
3953 if (Entry) {
3954 if (GIF->getResolver() == Entry) {
3955 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3956 return;
3957 }
3958 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3958, __extension__ __PRETTY_FUNCTION__))
;
3959
3960 // If there is a declaration in the module, then we had an extern followed
3961 // by the ifunc, as in:
3962 // extern int test();
3963 // ...
3964 // int test() __attribute__((ifunc("resolver")));
3965 //
3966 // Remove it and replace uses of it with the ifunc.
3967 GIF->takeName(Entry);
3968
3969 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3970 Entry->getType()));
3971 Entry->eraseFromParent();
3972 } else
3973 GIF->setName(MangledName);
3974
3975 SetCommonAttributes(GD, GIF);
3976}
3977
3978llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3979 ArrayRef<llvm::Type*> Tys) {
3980 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3981 Tys);
3982}
3983
3984static llvm::StringMapEntry<llvm::GlobalVariable *> &
3985GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3986 const StringLiteral *Literal, bool TargetIsLSB,
3987 bool &IsUTF16, unsigned &StringLength) {
3988 StringRef String = Literal->getString();
3989 unsigned NumBytes = String.size();
3990
3991 // Check for simple case.
3992 if (!Literal->containsNonAsciiOrNull()) {
3993 StringLength = NumBytes;
3994 return *Map.insert(std::make_pair(String, nullptr)).first;
3995 }
3996
3997 // Otherwise, convert the UTF8 literals into a string of shorts.
3998 IsUTF16 = true;
3999
4000 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4001 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4002 llvm::UTF16 *ToPtr = &ToBuf[0];
4003
4004 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4005 ToPtr + NumBytes, llvm::strictConversion);
4006
4007 // ConvertUTF8toUTF16 returns the length in ToPtr.
4008 StringLength = ToPtr - &ToBuf[0];
4009
4010 // Add an explicit null.
4011 *ToPtr = 0;
4012 return *Map.insert(std::make_pair(
4013 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4014 (StringLength + 1) * 2),
4015 nullptr)).first;
4016}
4017
4018ConstantAddress
4019CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4020 unsigned StringLength = 0;
4021 bool isUTF16 = false;
4022 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4023 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4024 getDataLayout().isLittleEndian(), isUTF16,
4025 StringLength);
4026
4027 if (auto *C = Entry.second)
4028 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4029
4030 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4031 llvm::Constant *Zeros[] = { Zero, Zero };
4032
4033 // If we don't already have it, get __CFConstantStringClassReference.
4034 if (!CFConstantStringClassRef) {
4035 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4036 Ty = llvm::ArrayType::get(Ty, 0);
4037 llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
4038 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
4039
4040 if (getTriple().isOSBinFormatCOFF()) {
4041 IdentifierInfo &II = getContext().Idents.get(GV->getName());
4042 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
4043 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4044
4045 const VarDecl *VD = nullptr;
4046 for (const auto &Result : DC->lookup(&II))
4047 if ((VD = dyn_cast<VarDecl>(Result)))
4048 break;
4049
4050 if (!VD || !VD->hasAttr<DLLExportAttr>()) {
4051 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4052 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4053 } else {
4054 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4055 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4056 }
4057 }
4058 setDSOLocal(GV);
4059
4060 // Decay array -> ptr
4061 CFConstantStringClassRef =
4062 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
4063 }
4064
4065 QualType CFTy = getContext().getCFConstantStringType();
4066
4067 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4068
4069 ConstantInitBuilder Builder(*this);
4070 auto Fields = Builder.beginStruct(STy);
4071
4072 // Class pointer.
4073 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4074
4075 // Flags.
4076 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4077
4078 // String pointer.
4079 llvm::Constant *C = nullptr;
4080 if (isUTF16) {
4081 auto Arr = llvm::makeArrayRef(
4082 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4083 Entry.first().size() / 2);
4084 C = llvm::ConstantDataArray::get(VMContext, Arr);
4085 } else {
4086 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4087 }
4088
4089 // Note: -fwritable-strings doesn't make the backing store strings of
4090 // CFStrings writable. (See <rdar://problem/10657500>)
4091 auto *GV =
4092 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4093 llvm::GlobalValue::PrivateLinkage, C, ".str");
4094 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4095 // Don't enforce the target's minimum global alignment, since the only use
4096 // of the string is via this class initializer.
4097 CharUnits Align = isUTF16
4098 ? getContext().getTypeAlignInChars(getContext().ShortTy)
4099 : getContext().getTypeAlignInChars(getContext().CharTy);
4100 GV->setAlignment(Align.getQuantity());
4101
4102 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4103 // Without it LLVM can merge the string with a non unnamed_addr one during
4104 // LTO. Doing that changes the section it ends in, which surprises ld64.
4105 if (getTriple().isOSBinFormatMachO())
4106 GV->setSection(isUTF16 ? "__TEXT,__ustring"
4107 : "__TEXT,__cstring,cstring_literals");
4108
4109 // String.
4110 llvm::Constant *Str =
4111 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4112
4113 if (isUTF16)
4114 // Cast the UTF16 string to the correct type.
4115 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4116 Fields.add(Str);
4117
4118 // String length.
4119 auto Ty = getTypes().ConvertType(getContext().LongTy);
4120 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
4121
4122 CharUnits Alignment = getPointerAlign();
4123
4124 // The struct.
4125 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4126 /*isConstant=*/false,
4127 llvm::GlobalVariable::PrivateLinkage);
4128 switch (getTriple().getObjectFormat()) {
4129 case llvm::Triple::UnknownObjectFormat:
4130 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4130)
;
4131 case llvm::Triple::COFF:
4132 case llvm::Triple::ELF:
4133 case llvm::Triple::Wasm:
4134 GV->setSection("cfstring");
4135 break;
4136 case llvm::Triple::MachO:
4137 GV->setSection("__DATA,__cfstring");
4138 break;
4139 }
4140 Entry.second = GV;
4141
4142 return ConstantAddress(GV, Alignment);
4143}
4144
4145bool CodeGenModule::getExpressionLocationsEnabled() const {
4146 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4147}
4148
4149QualType CodeGenModule::getObjCFastEnumerationStateType() {
4150 if (ObjCFastEnumerationStateType.isNull()) {
4151 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4152 D->startDefinition();
4153
4154 QualType FieldTypes[] = {
4155 Context.UnsignedLongTy,
4156 Context.getPointerType(Context.getObjCIdType()),
4157 Context.getPointerType(Context.UnsignedLongTy),
4158 Context.getConstantArrayType(Context.UnsignedLongTy,
4159 llvm::APInt(32, 5), ArrayType::Normal, 0)
4160 };
4161
4162 for (size_t i = 0; i < 4; ++i) {
4163 FieldDecl *Field = FieldDecl::Create(Context,
4164 D,
4165 SourceLocation(),
4166 SourceLocation(), nullptr,
4167 FieldTypes[i], /*TInfo=*/nullptr,
4168 /*BitWidth=*/nullptr,
4169 /*Mutable=*/false,
4170 ICIS_NoInit);
4171 Field->setAccess(AS_public);
4172 D->addDecl(Field);
4173 }
4174
4175 D->completeDefinition();
4176 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4177 }
4178
4179 return ObjCFastEnumerationStateType;
4180}
4181
4182llvm::Constant *
4183CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4184 assert(!E->getType()->isPointerType() && "Strings are always arrays")(static_cast <bool> (!E->getType()->isPointerType
() && "Strings are always arrays") ? void (0) : __assert_fail
("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4184, __extension__ __PRETTY_FUNCTION__))
;
4185
4186 // Don't emit it as the address of the string, emit the string data itself
4187 // as an inline array.
4188 if (E->getCharByteWidth() == 1) {
4189 SmallString<64> Str(E->getString());
4190
4191 // Resize the string to the right size, which is indicated by its type.
4192 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4193 Str.resize(CAT->getSize().getZExtValue());
4194 return llvm::ConstantDataArray::getString(VMContext, Str, false);
4195 }
4196
4197 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4198 llvm::Type *ElemTy = AType->getElementType();
4199 unsigned NumElements = AType->getNumElements();
4200
4201 // Wide strings have either 2-byte or 4-byte elements.
4202 if (ElemTy->getPrimitiveSizeInBits() == 16) {
4203 SmallVector<uint16_t, 32> Elements;
4204 Elements.reserve(NumElements);
4205
4206 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4207 Elements.push_back(E->getCodeUnit(i));
4208 Elements.resize(NumElements);
4209 return llvm::ConstantDataArray::get(VMContext, Elements);
4210 }
4211
4212 assert(ElemTy->getPrimitiveSizeInBits() == 32)(static_cast <bool> (ElemTy->getPrimitiveSizeInBits(
) == 32) ? void (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4212, __extension__ __PRETTY_FUNCTION__))
;
4213 SmallVector<uint32_t, 32> Elements;
4214 Elements.reserve(NumElements);
4215
4216 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4217 Elements.push_back(E->getCodeUnit(i));
4218 Elements.resize(NumElements);
4219 return llvm::ConstantDataArray::get(VMContext, Elements);
4220}
4221
4222static llvm::GlobalVariable *
4223GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4224 CodeGenModule &CGM, StringRef GlobalName,
4225 CharUnits Alignment) {
4226 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4227 CGM.getStringLiteralAddressSpace());
4228
4229 llvm::Module &M = CGM.getModule();
4230 // Create a global variable for this string
4231 auto *GV = new llvm::GlobalVariable(
4232 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4233 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4234 GV->setAlignment(Alignment.getQuantity());
4235 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4236 if (GV->isWeakForLinker()) {
4237 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")(static_cast <bool> (CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? void (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4237, __extension__ __PRETTY_FUNCTION__))
;
4238 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4239 }
4240 CGM.setDSOLocal(GV);
4241
4242 return GV;
4243}
4244
4245/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4246/// constant array for the given string literal.
4247ConstantAddress
4248CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4249 StringRef Name) {
4250 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4251
4252 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4253 llvm::GlobalVariable **Entry = nullptr;
4254 if (!LangOpts.WritableStrings) {
4255 Entry = &ConstantStringMap[C];
4256 if (auto GV = *Entry) {
4257 if (Alignment.getQuantity() > GV->getAlignment())
4258 GV->setAlignment(Alignment.getQuantity());
4259 return ConstantAddress(GV, Alignment);
4260 }
4261 }
4262
4263 SmallString<256> MangledNameBuffer;
4264 StringRef GlobalVariableName;
4265 llvm::GlobalValue::LinkageTypes LT;
4266
4267 // Mangle the string literal if the ABI allows for it. However, we cannot
4268 // do this if we are compiling with ASan or -fwritable-strings because they
4269 // rely on strings having normal linkage.
4270 if (!LangOpts.WritableStrings &&
4271 !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4272 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4273 llvm::raw_svector_ostream Out(MangledNameBuffer);
4274 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4275
4276 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4277 GlobalVariableName = MangledNameBuffer;
4278 } else {
4279 LT = llvm::GlobalValue::PrivateLinkage;
4280 GlobalVariableName = Name;
4281 }
4282
4283 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4284 if (Entry)
4285 *Entry = GV;
4286
4287 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4288 QualType());
4289
4290 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4291 Alignment);
4292}
4293
4294/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4295/// array for the given ObjCEncodeExpr node.
4296ConstantAddress
4297CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4298 std::string Str;
4299 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4300
4301 return GetAddrOfConstantCString(Str);
4302}
4303
4304/// GetAddrOfConstantCString - Returns a pointer to a character array containing
4305/// the literal and a terminating '\0' character.
4306/// The result has pointer to array type.
4307ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4308 const std::string &Str, const char *GlobalName) {
4309 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4310 CharUnits Alignment =
4311 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4312
4313 llvm::Constant *C =
4314 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4315
4316 // Don't share any string literals if strings aren't constant.
4317 llvm::GlobalVariable **Entry = nullptr;
4318 if (!LangOpts.WritableStrings) {
4319 Entry = &ConstantStringMap[C];
4320 if (auto GV = *Entry) {
4321 if (Alignment.getQuantity() > GV->getAlignment())
4322 GV->setAlignment(Alignment.getQuantity());
4323 return ConstantAddress(GV, Alignment);
4324 }
4325 }
4326
4327 // Get the default prefix if a name wasn't specified.
4328 if (!GlobalName)
4329 GlobalName = ".str";
4330 // Create a global variable for this.
4331 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4332 GlobalName, Alignment);
4333 if (Entry)
4334 *Entry = GV;
4335
4336 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4337 Alignment);
4338}
4339
4340ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4341 const MaterializeTemporaryExpr *E, const Expr *Init) {
4342 assert((E->getStorageDuration() == SD_Static ||(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4343, __extension__ __PRETTY_FUNCTION__))
4343 E->getStorageDuration() == SD_Thread) && "not a global temporary")(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4343, __extension__ __PRETTY_FUNCTION__))
;
4344 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
1
Calling 'cast<clang::VarDecl, const clang::ValueDecl>'
5
Returning from 'cast<clang::VarDecl, const clang::ValueDecl>'
6
'VD' initialized here
4345
4346 // If we're not materializing a subobject of the temporary, keep the
4347 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4348 QualType MaterializedType = Init->getType();
4349 if (Init == E->GetTemporaryExpr())
7
Assuming the condition is false
8
Taking false branch
4350 MaterializedType = E->getType();
4351
4352 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4353
4354 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
9
Assuming 'Slot' is null
10
Taking false branch
4355 return ConstantAddress(Slot, Align);
4356
4357 // FIXME: If an externally-visible declaration extends multiple temporaries,
4358 // we need to give each temporary the same name in every translation unit (and
4359 // we also need to make the temporaries externally-visible).
4360 SmallString<256> Name;
4361 llvm::raw_svector_ostream Out(Name);
4362 getCXXABI().getMangleContext().mangleReferenceTemporary(
4363 VD, E->getManglingNumber(), Out);
4364
4365 APValue *Value = nullptr;
4366 if (E->getStorageDuration() == SD_Static) {
11
Taking false branch
4367 // We might have a cached constant initializer for this temporary. Note
4368 // that this might have a different value from the value computed by
4369 // evaluating the initializer if the surrounding constant expression
4370 // modifies the temporary.
4371 Value = getContext().getMaterializedTemporaryValue(E, false);
4372 if (Value && Value->isUninit())
4373 Value = nullptr;
4374 }
4375
4376 // Try evaluating it now, it might have a constant initializer.
4377 Expr::EvalResult EvalResult;
4378 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
12
Assuming the condition is false
4379 !EvalResult.hasSideEffects())
4380 Value = &EvalResult.Val;
4381
4382 LangAS AddrSpace =
4383 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
13
Assuming 'VD' is null
14
'?' condition is false
4384
4385 Optional<ConstantEmitter> emitter;
4386 llvm::Constant *InitialValue = nullptr;
4387 bool Constant = false;
4388 llvm::Type *Type;
4389 if (Value) {
15
Taking false branch
4390 // The temporary has a constant initializer, use it.
4391 emitter.emplace(*this);
4392 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4393 MaterializedType);
4394 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4395 Type = InitialValue->getType();
4396 } else {
4397 // No initializer, the initialization will be provided when we
4398 // initialize the declaration which performed lifetime extension.
4399 Type = getTypes().ConvertTypeForMem(MaterializedType);
4400 }
4401
4402 // Create a global variable for this lifetime-extended temporary.
4403 llvm::GlobalValue::LinkageTypes Linkage =
4404 getLLVMLinkageVarDefinition(VD, Constant);
16
Passing null pointer value via 1st parameter 'VD'
17
Calling 'CodeGenModule::getLLVMLinkageVarDefinition'
4405 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4406 const VarDecl *InitVD;
4407 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4408 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4409 // Temporaries defined inside a class get linkonce_odr linkage because the
4410 // class can be defined in multiple translation units.
4411 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4412 } else {
4413 // There is no need for this temporary to have external linkage if the
4414 // VarDecl has external linkage.
4415 Linkage = llvm::GlobalVariable::InternalLinkage;
4416 }
4417 }
4418 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4419 auto *GV = new llvm::GlobalVariable(
4420 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4421 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4422 if (emitter) emitter->finalize(GV);
4423 setGVProperties(GV, VD);
4424 GV->setAlignment(Align.getQuantity());
4425 if (supportsCOMDAT() && GV->isWeakForLinker())
4426 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4427 if (VD->getTLSKind())
4428 setTLSMode(GV, *VD);
4429 llvm::Constant *CV = GV;
4430 if (AddrSpace != LangAS::Default)
4431 CV = getTargetCodeGenInfo().performAddrSpaceCast(
4432 *this, GV, AddrSpace, LangAS::Default,
4433 Type->getPointerTo(
4434 getContext().getTargetAddressSpace(LangAS::Default)));
4435 MaterializedGlobalTemporaryMap[E] = CV;
4436 return ConstantAddress(CV, Align);
4437}
4438
4439/// EmitObjCPropertyImplementations - Emit information for synthesized
4440/// properties for an implementation.
4441void CodeGenModule::EmitObjCPropertyImplementations(const
4442 ObjCImplementationDecl *D) {
4443 for (const auto *PID : D->property_impls()) {
4444 // Dynamic is just for type-checking.
4445 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4446 ObjCPropertyDecl *PD = PID->getPropertyDecl();
4447
4448 // Determine which methods need to be implemented, some may have
4449 // been overridden. Note that ::isPropertyAccessor is not the method
4450 // we want, that just indicates if the decl came from a
4451 // property. What we want to know is if the method is defined in
4452 // this implementation.
4453 if (!D->getInstanceMethod(PD->getGetterName()))
4454 CodeGenFunction(*this).GenerateObjCGetter(
4455 const_cast<ObjCImplementationDecl *>(D), PID);
4456 if (!PD->isReadOnly() &&
4457 !D->getInstanceMethod(PD->getSetterName()))
4458 CodeGenFunction(*this).GenerateObjCSetter(
4459 const_cast<ObjCImplementationDecl *>(D), PID);
4460 }
4461 }
4462}
4463
4464static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4465 const ObjCInterfaceDecl *iface = impl->getClassInterface();
4466 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4467 ivar; ivar = ivar->getNextIvar())
4468 if (ivar->getType().isDestructedType())
4469 return true;
4470
4471 return false;
4472}
4473
4474static bool AllTrivialInitializers(CodeGenModule &CGM,
4475 ObjCImplementationDecl *D) {
4476 CodeGenFunction CGF(CGM);
4477 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4478 E = D->init_end(); B != E; ++B) {
4479 CXXCtorInitializer *CtorInitExp = *B;
4480 Expr *Init = CtorInitExp->getInit();
4481 if (!CGF.isTrivialInitializer(Init))
4482 return false;
4483 }
4484 return true;
4485}
4486
4487/// EmitObjCIvarInitializations - Emit information for ivar initialization
4488/// for an implementation.
4489void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4490 // We might need a .cxx_destruct even if we don't have any ivar initializers.
4491 if (needsDestructMethod(D)) {
4492 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4493 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4494 ObjCMethodDecl *DTORMethod =
4495 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4496 cxxSelector, getContext().VoidTy, nullptr, D,
4497 /*isInstance=*/true, /*isVariadic=*/false,
4498 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4499 /*isDefined=*/false, ObjCMethodDecl::Required);
4500 D->addInstanceMethod(DTORMethod);
4501 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4502 D->setHasDestructors(true);
4503 }
4504
4505 // If the implementation doesn't have any ivar initializers, we don't need
4506 // a .cxx_construct.
4507 if (D->getNumIvarInitializers() == 0 ||
4508 AllTrivialInitializers(*this, D))
4509 return;
4510
4511 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4512 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4513 // The constructor returns 'self'.
4514 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4515 D->getLocation(),
4516 D->getLocation(),
4517 cxxSelector,
4518 getContext().getObjCIdType(),
4519 nullptr, D, /*isInstance=*/true,
4520 /*isVariadic=*/false,
4521 /*isPropertyAccessor=*/true,
4522 /*isImplicitlyDeclared=*/true,
4523 /*isDefined=*/false,
4524 ObjCMethodDecl::Required);
4525 D->addInstanceMethod(CTORMethod);
4526 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4527 D->setHasNonZeroConstructors(true);
4528}
4529
4530// EmitLinkageSpec - Emit all declarations in a linkage spec.
4531void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4532 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4533 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4534 ErrorUnsupported(LSD, "linkage spec");
4535 return;
4536 }
4537
4538 EmitDeclContext(LSD);
4539}
4540
4541void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4542 for (auto *I : DC->decls()) {
4543 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4544 // are themselves considered "top-level", so EmitTopLevelDecl on an
4545 // ObjCImplDecl does not recursively visit them. We need to do that in
4546 // case they're nested inside another construct (LinkageSpecDecl /
4547 // ExportDecl) that does stop them from being considered "top-level".
4548 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4549 for (auto *M : OID->methods())
4550 EmitTopLevelDecl(M);
4551 }
4552
4553 EmitTopLevelDecl(I);
4554 }
4555}
4556
4557/// EmitTopLevelDecl - Emit code for a single top level declaration.
4558void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4559 // Ignore dependent declarations.
4560 if (D->isTemplated())
4561 return;
4562
4563 switch (D->getKind()) {
4564 case Decl::CXXConversion:
4565 case Decl::CXXMethod:
4566 case Decl::Function:
4567 EmitGlobal(cast<FunctionDecl>(D));
4568 // Always provide some coverage mapping
4569 // even for the functions that aren't emitted.
4570 AddDeferredUnusedCoverageMapping(D);
4571 break;
4572
4573 case Decl::CXXDeductionGuide:
4574 // Function-like, but does not result in code emission.
4575 break;
4576
4577 case Decl::Var:
4578 case Decl::Decomposition:
4579 case Decl::VarTemplateSpecialization:
4580 EmitGlobal(cast<VarDecl>(D));
4581 if (auto *DD = dyn_cast<DecompositionDecl>(D))
4582 for (auto *B : DD->bindings())
4583 if (auto *HD = B->getHoldingVar())
4584 EmitGlobal(HD);
4585 break;
4586
4587 // Indirect fields from global anonymous structs and unions can be
4588 // ignored; only the actual variable requires IR gen support.
4589 case Decl::IndirectField:
4590 break;
4591
4592 // C++ Decls
4593 case Decl::Namespace:
4594 EmitDeclContext(cast<NamespaceDecl>(D));
4595 break;
4596 case Decl::ClassTemplateSpecialization: {
4597 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4598 if (DebugInfo &&
4599 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4600 Spec->hasDefinition())
4601 DebugInfo->completeTemplateDefinition(*Spec);
4602 } LLVM_FALLTHROUGH[[clang::fallthrough]];
4603 case Decl::CXXRecord:
4604 if (DebugInfo) {
4605 if (auto *ES = D->getASTContext().getExternalSource())
4606 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4607 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4608 }
4609 // Emit any static data members, they may be definitions.
4610 for (auto *I : cast<CXXRecordDecl>(D)->decls())
4611 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4612 EmitTopLevelDecl(I);
4613 break;
4614 // No code generation needed.
4615 case Decl::UsingShadow:
4616 case Decl::ClassTemplate:
4617 case Decl::VarTemplate:
4618 case Decl::VarTemplatePartialSpecialization:
4619 case Decl::FunctionTemplate:
4620 case Decl::TypeAliasTemplate:
4621 case Decl::Block:
4622 case Decl::Empty:
4623 break;
4624 case Decl::Using: // using X; [C++]
4625 if (CGDebugInfo *DI = getModuleDebugInfo())
4626 DI->EmitUsingDecl(cast<UsingDecl>(*D));
4627 return;
4628 case Decl::NamespaceAlias:
4629 if (CGDebugInfo *DI = getModuleDebugInfo())
4630 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4631 return;
4632 case Decl::UsingDirective: // using namespace X; [C++]
4633 if (CGDebugInfo *DI = getModuleDebugInfo())
4634 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4635 return;
4636 case Decl::CXXConstructor:
4637 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4638 break;
4639 case Decl::CXXDestructor:
4640 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4641 break;
4642
4643 case Decl::StaticAssert:
4644 // Nothing to do.
4645 break;
4646
4647 // Objective-C Decls
4648
4649 // Forward declarations, no (immediate) code generation.
4650 case Decl::ObjCInterface:
4651 case Decl::ObjCCategory:
4652 break;
4653
4654 case Decl::ObjCProtocol: {
4655 auto *Proto = cast<ObjCProtocolDecl>(D);
4656 if (Proto->isThisDeclarationADefinition())
4657 ObjCRuntime->GenerateProtocol(Proto);
4658 break;
4659 }
4660
4661 case Decl::ObjCCategoryImpl:
4662 // Categories have properties but don't support synthesize so we
4663 // can ignore them here.
4664 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4665 break;
4666
4667 case Decl::ObjCImplementation: {
4668 auto *OMD = cast<ObjCImplementationDecl>(D);
4669 EmitObjCPropertyImplementations(OMD);
4670 EmitObjCIvarInitializations(OMD);
4671 ObjCRuntime->GenerateClass(OMD);
4672 // Emit global variable debug information.
4673 if (CGDebugInfo *DI = getModuleDebugInfo())
4674 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4675 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4676 OMD->getClassInterface()), OMD->getLocation());
4677 break;
4678 }
4679 case Decl::ObjCMethod: {
4680 auto *OMD = cast<ObjCMethodDecl>(D);
4681 // If this is not a prototype, emit the body.
4682 if (OMD->getBody())
4683 CodeGenFunction(*this).GenerateObjCMethod(OMD);
4684 break;
4685 }
4686 case Decl::ObjCCompatibleAlias:
4687 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4688 break;
4689
4690 case Decl::PragmaComment: {
4691 const auto *PCD = cast<PragmaCommentDecl>(D);
4692 switch (PCD->getCommentKind()) {
4693 case PCK_Unknown:
4694 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4694)
;
4695 case PCK_Linker:
4696 AppendLinkerOptions(PCD->getArg());
4697 break;
4698 case PCK_Lib:
4699 if (getTarget().getTriple().isOSBinFormatELF() &&
4700 !getTarget().getTriple().isPS4())
4701 AddELFLibDirective(PCD->getArg());
4702 else
4703 AddDependentLib(PCD->getArg());
4704 break;
4705 case PCK_Compiler:
4706 case PCK_ExeStr:
4707 case PCK_User:
4708 break; // We ignore all of these.
4709 }
4710 break;
4711 }
4712
4713 case Decl::PragmaDetectMismatch: {
4714 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4715 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4716 break;
4717 }
4718
4719 case Decl::LinkageSpec:
4720 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4721 break;
4722
4723 case Decl::FileScopeAsm: {
4724 // File-scope asm is ignored during device-side CUDA compilation.
4725 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4726 break;
4727 // File-scope asm is ignored during device-side OpenMP compilation.
4728 if (LangOpts.OpenMPIsDevice)
4729 break;
4730 auto *AD = cast<FileScopeAsmDecl>(D);
4731 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4732 break;
4733 }
4734
4735 case Decl::Import: {
4736 auto *Import = cast<ImportDecl>(D);
4737
4738 // If we've already imported this module, we're done.
4739 if (!ImportedModules.insert(Import->getImportedModule()))
4740 break;
4741
4742 // Emit debug information for direct imports.
4743 if (!Import->getImportedOwningModule()) {
4744 if (CGDebugInfo *DI = getModuleDebugInfo())
4745 DI->EmitImportDecl(*Import);
4746 }
4747
4748 // Find all of the submodules and emit the module initializers.
4749 llvm::SmallPtrSet<clang::Module *, 16> Visited;
4750 SmallVector<clang::Module *, 16> Stack;
4751 Visited.insert(Import->getImportedModule());
4752 Stack.push_back(Import->getImportedModule());
4753
4754 while (!Stack.empty()) {
4755 clang::Module *Mod = Stack.pop_back_val();
4756 if (!EmittedModuleInitializers.insert(Mod).second)
4757 continue;
4758
4759 for (auto *D : Context.getModuleInitializers(Mod))
4760 EmitTopLevelDecl(D);
4761
4762 // Visit the submodules of this module.
4763 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4764 SubEnd = Mod->submodule_end();
4765 Sub != SubEnd; ++Sub) {
4766 // Skip explicit children; they need to be explicitly imported to emit
4767 // the initializers.
4768 if ((*Sub)->IsExplicit)
4769 continue;
4770
4771 if (Visited.insert(*Sub).second)
4772 Stack.push_back(*Sub);
4773 }
4774 }
4775 break;
4776 }
4777
4778 case Decl::Export:
4779 EmitDeclContext(cast<ExportDecl>(D));
4780 break;
4781
4782 case Decl::OMPThreadPrivate:
4783 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4784 break;
4785
4786 case Decl::OMPDeclareReduction:
4787 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4788 break;
4789
4790 default:
4791 // Make sure we handled everything we should, every other kind is a
4792 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
4793 // function. Need to recode Decl::Kind to do that easily.
4794 assert(isa<TypeDecl>(D) && "Unsupported decl kind")(static_cast <bool> (isa<TypeDecl>(D) && "Unsupported decl kind"
) ? void (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4794, __extension__ __PRETTY_FUNCTION__))
;
4795 break;
4796 }
4797}
4798
4799void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4800 // Do we need to generate coverage mapping?
4801 if (!CodeGenOpts.CoverageMapping)
4802 return;
4803 switch (D->getKind()) {
4804 case Decl::CXXConversion:
4805 case Decl::CXXMethod:
4806 case Decl::Function:
4807 case Decl::ObjCMethod:
4808 case Decl::CXXConstructor:
4809 case Decl::CXXDestructor: {
4810 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4811 return;
4812 SourceManager &SM = getContext().getSourceManager();
4813 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4814 return;
4815 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4816 if (I == DeferredEmptyCoverageMappingDecls.end())
4817 DeferredEmptyCoverageMappingDecls[D] = true;
4818 break;
4819 }
4820 default:
4821 break;
4822 };
4823}
4824
4825void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4826 // Do we need to generate coverage mapping?
4827 if (!CodeGenOpts.CoverageMapping)
4828 return;
4829 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4830 if (Fn->isTemplateInstantiation())
4831 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4832 }
4833 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4834 if (I == DeferredEmptyCoverageMappingDecls.end())
4835 DeferredEmptyCoverageMappingDecls[D] = false;
4836 else
4837 I->second = false;
4838}
4839
4840void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4841 // We call takeVector() here to avoid use-after-free.
4842 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4843 // we deserialize function bodies to emit coverage info for them, and that
4844 // deserializes more declarations. How should we handle that case?
4845 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4846 if (!Entry.second)
4847 continue;
4848 const Decl *D = Entry.first;
4849 switch (D->getKind()) {
4850 case Decl::CXXConversion:
4851 case Decl::CXXMethod:
4852 case Decl::Function:
4853 case Decl::ObjCMethod: {
4854 CodeGenPGO PGO(*this);
4855 GlobalDecl GD(cast<FunctionDecl>(D));
4856 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4857 getFunctionLinkage(GD));
4858 break;
4859 }
4860 case Decl::CXXConstructor: {
4861 CodeGenPGO PGO(*this);
4862 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4863 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4864 getFunctionLinkage(GD));
4865 break;
4866 }
4867 case Decl::CXXDestructor: {
4868 CodeGenPGO PGO(*this);
4869 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4870 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4871 getFunctionLinkage(GD));
4872 break;
4873 }
4874 default:
4875 break;
4876 };
4877 }
4878}
4879
4880/// Turns the given pointer into a constant.
4881static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4882 const void *Ptr) {
4883 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4884 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4885 return llvm::ConstantInt::get(i64, PtrInt);
4886}
4887
4888static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4889 llvm::NamedMDNode *&GlobalMetadata,
4890 GlobalDecl D,
4891 llvm::GlobalValue *Addr) {
4892 if (!GlobalMetadata)
4893 GlobalMetadata =
4894 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4895
4896 // TODO: should we report variant information for ctors/dtors?
4897 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4898 llvm::ConstantAsMetadata::get(GetPointerConstant(
4899 CGM.getLLVMContext(), D.getDecl()))};
4900 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4901}
4902
4903/// For each function which is declared within an extern "C" region and marked
4904/// as 'used', but has internal linkage, create an alias from the unmangled
4905/// name to the mangled name if possible. People expect to be able to refer
4906/// to such functions with an unmangled name from inline assembly within the
4907/// same translation unit.
4908void CodeGenModule::EmitStaticExternCAliases() {
4909 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4910 return;
4911 for (auto &I : StaticExternCValues) {
4912 IdentifierInfo *Name = I.first;
4913 llvm::GlobalValue *Val = I.second;
4914 if (Val && !getModule().getNamedValue(Name->getName()))
4915 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4916 }
4917}
4918
4919bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4920 GlobalDecl &Result) const {
4921 auto Res = Manglings.find(MangledName);
4922 if (Res == Manglings.end())
4923 return false;
4924 Result = Res->getValue();
4925 return true;
4926}
4927
4928/// Emits metadata nodes associating all the global values in the
4929/// current module with the Decls they came from. This is useful for
4930/// projects using IR gen as a subroutine.
4931///
4932/// Since there's currently no way to associate an MDNode directly
4933/// with an llvm::GlobalValue, we create a global named metadata
4934/// with the name 'clang.global.decl.ptrs'.
4935void CodeGenModule::EmitDeclMetadata() {
4936 llvm::NamedMDNode *GlobalMetadata = nullptr;
4937
4938 for (auto &I : MangledDeclNames) {
4939 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4940 // Some mangled names don't necessarily have an associated GlobalValue
4941 // in this module, e.g. if we mangled it for DebugInfo.
4942 if (Addr)
4943 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4944 }
4945}
4946
4947/// Emits metadata nodes for all the local variables in the current
4948/// function.
4949void CodeGenFunction::EmitDeclMetadata() {
4950 if (LocalDeclMap.empty()) return;
4951
4952 llvm::LLVMContext &Context = getLLVMContext();
4953
4954 // Find the unique metadata ID for this name.
4955 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4956
4957 llvm::NamedMDNode *GlobalMetadata = nullptr;
4958
4959 for (auto &I : LocalDeclMap) {
4960 const Decl *D = I.first;
4961 llvm::Value *Addr = I.second.getPointer();
4962 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4963 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4964 Alloca->setMetadata(
4965 DeclPtrKind, llvm::MDNode::get(
4966 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4967 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4968 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4969 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4970 }
4971 }
4972}
4973
4974void CodeGenModule::EmitVersionIdentMetadata() {
4975 llvm::NamedMDNode *IdentMetadata =
4976 TheModule.getOrInsertNamedMetadata("llvm.ident");
4977 std::string Version = getClangFullVersion();
4978 llvm::LLVMContext &Ctx = TheModule.getContext();
4979
4980 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4981 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4982}
4983
4984void CodeGenModule::EmitTargetMetadata() {
4985 // Warning, new MangledDeclNames may be appended within this loop.
4986 // We rely on MapVector insertions adding new elements to the end
4987 // of the container.
4988 // FIXME: Move this loop into the one target that needs it, and only
4989 // loop over those declarations for which we couldn't emit the target
4990 // metadata when we emitted the declaration.
4991 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4992 auto Val = *(MangledDeclNames.begin() + I);
4993 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4994 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4995 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4996 }
4997}
4998
4999void CodeGenModule::EmitCoverageFile() {
5000 if (getCodeGenOpts().CoverageDataFile.empty() &&
5001 getCodeGenOpts().CoverageNotesFile.empty())
5002 return;
5003
5004 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5005 if (!CUNode)
5006 return;
5007
5008 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5009 llvm::LLVMContext &Ctx = TheModule.getContext();
5010 auto *CoverageDataFile =
5011 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5012 auto *CoverageNotesFile =
5013 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5014 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5015 llvm::MDNode *CU = CUNode->getOperand(i);
5016 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5017 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5018 }
5019}
5020
5021llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5022 // Sema has checked that all uuid strings are of the form
5023 // "12345678-1234-1234-1234-1234567890ab".
5024 assert(Uuid.size() == 36)(static_cast <bool> (Uuid.size() == 36) ? void (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5024, __extension__ __PRETTY_FUNCTION__))
;
5025 for (unsigned i = 0; i < 36; ++i) {
5026 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')(static_cast <bool> (Uuid[i] == '-') ? void (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5026, __extension__ __PRETTY_FUNCTION__))
;
5027 else assert(isHexDigit(Uuid[i]))(static_cast <bool> (isHexDigit(Uuid[i])) ? void (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5027, __extension__ __PRETTY_FUNCTION__))
;
5028 }
5029
5030 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5031 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5032
5033 llvm::Constant *Field3[8];
5034 for (unsigned Idx = 0; Idx < 8; ++Idx)
5035 Field3[Idx] = llvm::ConstantInt::get(
5036 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5037
5038 llvm::Constant *Fields[4] = {
5039 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
5040 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
5041 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5042 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5043 };
5044
5045 return llvm::ConstantStruct::getAnon(Fields);
5046}
5047
5048llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5049 bool ForEH) {
5050 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5051 // FIXME: should we even be calling this method if RTTI is disabled
5052 // and it's not for EH?
5053 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5054 return llvm::Constant::getNullValue(Int8PtrTy);
5055
5056 if (ForEH && Ty->isObjCObjectPointerType() &&
5057 LangOpts.ObjCRuntime.isGNUFamily())
5058 return ObjCRuntime->GetEHType(Ty);
5059
5060 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5061}
5062
5063void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5064 // Do not emit threadprivates in simd-only mode.
5065 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5066 return;
5067 for (auto RefExpr : D->varlists()) {
5068 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5069 bool PerformInit =
5070 VD->getAnyInitializer() &&
5071 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5072 /*ForRef=*/false);
5073
5074 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5075 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5076 VD, Addr, RefExpr->getLocStart(), PerformInit))
5077 CXXGlobalInits.push_back(InitFunction);
5078 }
5079}
5080
5081llvm::Metadata *
5082CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5083 StringRef Suffix) {
5084 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5085 if (InternalId)
5086 return InternalId;
5087
5088 if (isExternallyVisible(T->getLinkage())) {
5089 std::string OutName;
5090 llvm::raw_string_ostream Out(OutName);
5091 getCXXABI().getMangleContext().mangleTypeName(T, Out);
5092 Out << Suffix;
5093
5094 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5095 } else {
5096 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5097 llvm::ArrayRef<llvm::Metadata *>());
5098 }
5099
5100 return InternalId;
5101}
5102
5103llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5104 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5105}
5106
5107llvm::Metadata *
5108CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5109 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5110}
5111
5112// Generalize pointer types to a void pointer with the qualifiers of the
5113// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5114// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5115// 'void *'.
5116static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5117 if (!Ty->isPointerType())
5118 return Ty;
5119
5120 return Ctx.getPointerType(
5121 QualType(Ctx.VoidTy).withCVRQualifiers(
5122 Ty->getPointeeType().getCVRQualifiers()));
5123}
5124
5125// Apply type generalization to a FunctionType's return and argument types
5126static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5127 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5128 SmallVector<QualType, 8> GeneralizedParams;
5129 for (auto &Param : FnType->param_types())
5130 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5131
5132 return Ctx.getFunctionType(
5133 GeneralizeType(Ctx, FnType->getReturnType()),
5134 GeneralizedParams, FnType->getExtProtoInfo());
5135 }
5136
5137 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5138 return Ctx.getFunctionNoProtoType(
5139 GeneralizeType(Ctx, FnType->getReturnType()));
5140
5141 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5141)
;
5142}
5143
5144llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5145 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5146 GeneralizedMetadataIdMap, ".generalized");
5147}
5148
5149/// Returns whether this module needs the "all-vtables" type identifier.
5150bool CodeGenModule::NeedAllVtablesTypeId() const {
5151 // Returns true if at least one of vtable-based CFI checkers is enabled and
5152 // is not in the trapping mode.
5153 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5154 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5155 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5156 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5157 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5158 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5159 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5160 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5161}
5162
5163void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5164 CharUnits Offset,
5165 const CXXRecordDecl *RD) {
5166 llvm::Metadata *MD =
5167 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5168 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5169
5170 if (CodeGenOpts.SanitizeCfiCrossDso)
5171 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5172 VTable->addTypeMetadata(Offset.getQuantity(),
5173 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5174
5175 if (NeedAllVtablesTypeId()) {
5176 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5177 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5178 }
5179}
5180
5181TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5182 assert(TD != nullptr)(static_cast <bool> (TD != nullptr) ? void (0) : __assert_fail
("TD != nullptr", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5182, __extension__ __PRETTY_FUNCTION__))
;
5183 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5184
5185 ParsedAttr.Features.erase(
5186 llvm::remove_if(ParsedAttr.Features,
5187 [&](const std::string &Feat) {
5188 return !Target.isValidFeatureName(
5189 StringRef{Feat}.substr(1));
5190 }),
5191 ParsedAttr.Features.end());
5192 return ParsedAttr;
5193}
5194
5195
5196// Fills in the supplied string map with the set of target features for the
5197// passed in function.
5198void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5199 const FunctionDecl *FD) {
5200 StringRef TargetCPU = Target.getTargetOpts().CPU;
5201 if (const auto *TD = FD->getAttr<TargetAttr>()) {
5202 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5203
5204 // Make a copy of the features as passed on the command line into the
5205 // beginning of the additional features from the function to override.
5206 ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5207 Target.getTargetOpts().FeaturesAsWritten.begin(),
5208 Target.getTargetOpts().FeaturesAsWritten.end());
5209
5210 if (ParsedAttr.Architecture != "" &&
5211 Target.isValidCPUName(ParsedAttr.Architecture))
5212 TargetCPU = ParsedAttr.Architecture;
5213
5214 // Now populate the feature map, first with the TargetCPU which is either
5215 // the default or a new one from the target attribute string. Then we'll use
5216 // the passed in features (FeaturesAsWritten) along with the new ones from
5217 // the attribute.
5218 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5219 ParsedAttr.Features);
5220 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5221 llvm::SmallVector<StringRef, 32> FeaturesTmp;
5222 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(),
5223 FeaturesTmp);
5224 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5225 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5226 } else {
5227 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5228 Target.getTargetOpts().Features);
5229 }
5230}
5231
5232llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5233 if (!SanStats)
5234 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5235
5236 return *SanStats;
5237}
5238llvm::Value *
5239CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5240 CodeGenFunction &CGF) {
5241 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5242 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5243 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5244 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5245 "__translate_sampler_initializer"),
5246 {C});
5247}

/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
11// and dyn_cast_or_null<X>() templates.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_CASTING_H
16#define LLVM_SUPPORT_CASTING_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// isa<x> Support Templates
28//===----------------------------------------------------------------------===//
29
30// Define a template that can be specialized by smart pointers to reflect the
31// fact that they are automatically dereferenced, and are not involved with the
32// template selection process... the default implementation is a noop.
33//
34template<typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template<typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType =
44 typename add_const_past_pointer<NonConstSimpleType>::type;
45 using RetType =
46 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
47
48 static RetType getSimplifiedValue(const From& Val) {
49 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
50 }
51};
52
53// The core of the implementation of isa<X> is here; To and From should be
54// the names of classes. This template can be specialized to customize the
55// implementation of isa<> without rewriting it from scratch.
56template <typename To, typename From, typename Enabler = void>
57struct isa_impl {
58 static inline bool doit(const From &Val) {
59 return To::classof(&Val);
60 }
61};
62
63/// Always allow upcasts, and perform no dynamic check for them.
64template <typename To, typename From>
65struct isa_impl<
66 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
67 static inline bool doit(const From &) { return true; }
68};
69
70template <typename To, typename From> struct isa_impl_cl {
71 static inline bool doit(const From &Val) {
72 return isa_impl<To, From>::doit(Val);
73 }
74};
75
76template <typename To, typename From> struct isa_impl_cl<To, const From> {
77 static inline bool doit(const From &Val) {
78 return isa_impl<To, From>::doit(Val);
79 }
80};
81
82template <typename To, typename From>
83struct isa_impl_cl<To, const std::unique_ptr<From>> {
84 static inline bool doit(const std::unique_ptr<From> &Val) {
85 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return isa_impl_cl<To, From>::doit(*Val);
87 }
88};
89
90template <typename To, typename From> struct isa_impl_cl<To, From*> {
91 static inline bool doit(const From *Val) {
92 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 return isa_impl<To, From>::doit(*Val);
94 }
95};
96
97template <typename To, typename From> struct isa_impl_cl<To, From*const> {
98 static inline bool doit(const From *Val) {
99 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 99, __extension__ __PRETTY_FUNCTION__))
;
100 return isa_impl<To, From>::doit(*Val);
101 }
102};
103
104template <typename To, typename From> struct isa_impl_cl<To, const From*> {
105 static inline bool doit(const From *Val) {
106 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 106, __extension__ __PRETTY_FUNCTION__))
;
107 return isa_impl<To, From>::doit(*Val);
108 }
109};
110
111template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
112 static inline bool doit(const From *Val) {
113 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 113, __extension__ __PRETTY_FUNCTION__))
;
114 return isa_impl<To, From>::doit(*Val);
115 }
116};
117
118template<typename To, typename From, typename SimpleFrom>
119struct isa_impl_wrap {
120 // When From != SimplifiedType, we can simplify the type some more by using
121 // the simplify_type template.
122 static bool doit(const From &Val) {
123 return isa_impl_wrap<To, SimpleFrom,
124 typename simplify_type<SimpleFrom>::SimpleType>::doit(
125 simplify_type<const From>::getSimplifiedValue(Val));
126 }
127};
128
129template<typename To, typename FromTy>
130struct isa_impl_wrap<To, FromTy, FromTy> {
131 // When From == SimpleType, we are as simple as we are going to get.
132 static bool doit(const FromTy &Val) {
133 return isa_impl_cl<To,FromTy>::doit(Val);
134 }
135};
136
137// isa<X> - Return true if the parameter to the template is an instance of the
138// template type argument. Used like this:
139//
140// if (isa<Type>(myVal)) { ... }
141//
142template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
143 return isa_impl_wrap<X, const Y,
144 typename simplify_type<const Y>::SimpleType>::doit(Val);
145}
146
147//===----------------------------------------------------------------------===//
148// cast<x> Support Templates
149//===----------------------------------------------------------------------===//
150
151template<class To, class From> struct cast_retty;
152
153// Calculate what type the 'cast' function should return, based on a requested
154// type of To and a source type of From.
155template<class To, class From> struct cast_retty_impl {
156 using ret_type = To &; // Normal case, return Ty&
157};
158template<class To, class From> struct cast_retty_impl<To, const From> {
159 using ret_type = const To &; // Normal case, return Ty&
160};
161
162template<class To, class From> struct cast_retty_impl<To, From*> {
163 using ret_type = To *; // Pointer arg case, return Ty*
164};
165
166template<class To, class From> struct cast_retty_impl<To, const From*> {
167 using ret_type = const To *; // Constant pointer arg case, return const Ty*
168};
169
170template<class To, class From> struct cast_retty_impl<To, const From*const> {
171 using ret_type = const To *; // Constant pointer arg case, return const Ty*
172};
173
174template <class To, class From>
175struct cast_retty_impl<To, std::unique_ptr<From>> {
176private:
177 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
178 using ResultType = typename std::remove_pointer<PointerType>::type;
179
180public:
181 using ret_type = std::unique_ptr<ResultType>;
182};
183
184template<class To, class From, class SimpleFrom>
185struct cast_retty_wrap {
186 // When the simplified type and the from type are not the same, use the type
187 // simplifier to reduce the type, then reuse cast_retty_impl to get the
188 // resultant type.
189 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
190};
191
192template<class To, class FromTy>
193struct cast_retty_wrap<To, FromTy, FromTy> {
194 // When the simplified type is equal to the from type, use it directly.
195 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
196};
197
198template<class To, class From>
199struct cast_retty {
200 using ret_type = typename cast_retty_wrap<
201 To, From, typename simplify_type<From>::SimpleType>::ret_type;
202};
203
204// Ensure the non-simple values are converted using the simplify_type template
205// that may be specialized by smart pointers...
206//
207template<class To, class From, class SimpleFrom> struct cast_convert_val {
208 // This is not a simple type, use the template to simplify it...
209 static typename cast_retty<To, From>::ret_type doit(From &Val) {
210 return cast_convert_val<To, SimpleFrom,
211 typename simplify_type<SimpleFrom>::SimpleType>::doit(
212 simplify_type<From>::getSimplifiedValue(Val));
213 }
214};
215
216template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
217 // This _is_ a simple type, just cast it.
218 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
219 typename cast_retty<To, FromTy>::ret_type Res2
220 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
221 return Res2;
222 }
223};
224
225template <class X> struct is_simple_type {
226 static const bool value =
227 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
228};
229
230// cast<X> - Return the argument parameter cast to the specified type. This
231// casting operator asserts that the type is correct, so it does not return null
232// on failure. It does not allow a null argument (use cast_or_null for that).
233// It is typically used like this:
234//
235// cast<Instruction>(myVal)->getParent()
236//
237template <class X, class Y>
238inline typename std::enable_if<!is_simple_type<Y>::value,
239 typename cast_retty<X, const Y>::ret_type>::type
240cast(const Y &Val) {
241 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 return cast_convert_val<
243 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
244}
245
246template <class X, class Y>
247inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
248 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 248, __extension__ __PRETTY_FUNCTION__))
;
249 return cast_convert_val<X, Y,
250 typename simplify_type<Y>::SimpleType>::doit(Val);
251}
252
253template <class X, class Y>
254inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
2
Within the expansion of the macro 'assert':
256 return cast_convert_val<X, Y*,
3
Calling 'cast_convert_val::doit'
4
Returning from 'cast_convert_val::doit'
257 typename simplify_type<Y*>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
262cast(std::unique_ptr<Y> &&Val) {
263 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
265 return ret_type(
266 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
267 Val.release()));
268}
269
270// cast_or_null<X> - Functionally identical to cast, except that a null value is
271// accepted.
272//
273template <class X, class Y>
274LLVM_NODISCARD[[clang::warn_unused_result]] inline
275 typename std::enable_if<!is_simple_type<Y>::value,
276 typename cast_retty<X, const Y>::ret_type>::type
277 cast_or_null(const Y &Val) {
278 if (!Val)
279 return nullptr;
280 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return cast<X>(Val);
282}
283
284template <class X, class Y>
285LLVM_NODISCARD[[clang::warn_unused_result]] inline
286 typename std::enable_if<!is_simple_type<Y>::value,
287 typename cast_retty<X, Y>::ret_type>::type
288 cast_or_null(Y &Val) {
289 if (!Val)
290 return nullptr;
291 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 291, __extension__ __PRETTY_FUNCTION__))
;
292 return cast<X>(Val);
293}
294
295template <class X, class Y>
296LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
297cast_or_null(Y *Val) {
298 if (!Val) return nullptr;
299 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/Support/Casting.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return cast<X>(Val);
301}
302
303template <class X, class Y>
304inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
305cast_or_null(std::unique_ptr<Y> &&Val) {
306 if (!Val)
307 return nullptr;
308 return cast<X>(std::move(Val));
309}
310
311// dyn_cast<X> - Return the argument parameter cast to the specified type. This
312// casting operator returns null if the argument is of the wrong type, so it can
313// be used to test for a type as well as cast if successful. This should be
314// used in the context of an if statement like this:
315//
316// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
317//
318
319template <class X, class Y>
320LLVM_NODISCARD[[clang::warn_unused_result]] inline
321 typename std::enable_if<!is_simple_type<Y>::value,
322 typename cast_retty<X, const Y>::ret_type>::type
323 dyn_cast(const Y &Val) {
324 return isa<X>(Val) ? cast<X>(Val) : nullptr;
325}
326
327template <class X, class Y>
328LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
329 return isa<X>(Val) ? cast<X>(Val) : nullptr;
330}
331
332template <class X, class Y>
333LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
334 return isa<X>(Val) ? cast<X>(Val) : nullptr;
335}
336
337// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
338// value is accepted.
339//
340template <class X, class Y>
341LLVM_NODISCARD[[clang::warn_unused_result]] inline
342 typename std::enable_if<!is_simple_type<Y>::value,
343 typename cast_retty<X, const Y>::ret_type>::type
344 dyn_cast_or_null(const Y &Val) {
345 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
346}
347
348template <class X, class Y>
349LLVM_NODISCARD[[clang::warn_unused_result]] inline
350 typename std::enable_if<!is_simple_type<Y>::value,
351 typename cast_retty<X, Y>::ret_type>::type
352 dyn_cast_or_null(Y &Val) {
353 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
354}
355
356template <class X, class Y>
357LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
358dyn_cast_or_null(Y *Val) {
359 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
360}
361
362// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
363// taking ownership of the input pointer iff isa<X>(Val) is true. If the
364// cast is successful, From refers to nullptr on exit and the casted value
365// is returned. If the cast is unsuccessful, the function returns nullptr
366// and From is unchanged.
367template <class X, class Y>
368LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
369 -> decltype(cast<X>(Val)) {
370 if (!isa<X>(Val))
371 return nullptr;
372 return cast<X>(std::move(Val));
373}
374
375template <class X, class Y>
376LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
377 -> decltype(cast<X>(Val)) {
378 return unique_dyn_cast<X, Y>(Val);
379}
380
381// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
382// a null value is accepted.
383template <class X, class Y>
384LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
385 -> decltype(cast<X>(Val)) {
386 if (!Val)
387 return nullptr;
388 return unique_dyn_cast<X, Y>(Val);
389}
390
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
393 -> decltype(cast<X>(Val)) {
394 return unique_dyn_cast_or_null<X, Y>(Val);
395}
396
397} // end namespace llvm
398
399#endif // LLVM_SUPPORT_CASTING_H