Bug Summary

File:tools/lld/ELF/Relocations.cpp
Warning:line 1299, column 9
3rd function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Relocations.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lld/ELF -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lld/ELF -I /build/llvm-toolchain-snapshot-7~svn338205/tools/lld/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lld/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/lld/ELF -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/lld/ELF/Relocations.cpp -faddrsig
1//===- Relocations.cpp ----------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains platform-independent functions to process relocations.
11// I'll describe the overview of this file here.
12//
13// Simple relocations are easy to handle for the linker. For example,
14// for R_X86_64_PC64 relocs, the linker just has to fix up locations
15// with the relative offsets to the target symbols. It would just be
16// reading records from relocation sections and applying them to output.
17//
18// But not all relocations are that easy to handle. For example, for
19// R_386_GOTOFF relocs, the linker has to create new GOT entries for
20// symbols if they don't exist, and fix up locations with GOT entry
21// offsets from the beginning of GOT section. So there is more than
22// fixing addresses in relocation processing.
23//
24// ELF defines a large number of complex relocations.
25//
26// The functions in this file analyze relocations and do whatever needs
27// to be done. It includes, but not limited to, the following.
28//
29// - create GOT/PLT entries
30// - create new relocations in .dynsym to let the dynamic linker resolve
31// them at runtime (since ELF supports dynamic linking, not all
32// relocations can be resolved at link-time)
33// - create COPY relocs and reserve space in .bss
34// - replace expensive relocs (in terms of runtime cost) with cheap ones
35// - error out infeasible combinations such as PIC and non-relative relocs
36//
37// Note that the functions in this file don't actually apply relocations
38// because it doesn't know about the output file nor the output file buffer.
39// It instead stores Relocation objects to InputSection's Relocations
40// vector to let it apply later in InputSection::writeTo.
41//
42//===----------------------------------------------------------------------===//
43
44#include "Relocations.h"
45#include "Config.h"
46#include "LinkerScript.h"
47#include "OutputSections.h"
48#include "SymbolTable.h"
49#include "Symbols.h"
50#include "SyntheticSections.h"
51#include "Target.h"
52#include "Thunks.h"
53#include "lld/Common/Memory.h"
54#include "lld/Common/Strings.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/Support/Endian.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59
60using namespace llvm;
61using namespace llvm::ELF;
62using namespace llvm::object;
63using namespace llvm::support::endian;
64
65using namespace lld;
66using namespace lld::elf;
67
68// Construct a message in the following format.
69//
70// >>> defined in /home/alice/src/foo.o
71// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
72// >>> /home/alice/src/bar.o:(.text+0x1)
73static std::string getLocation(InputSectionBase &S, const Symbol &Sym,
74 uint64_t Off) {
75 std::string Msg =
76 "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by ";
77 std::string Src = S.getSrcMsg(Sym, Off);
78 if (!Src.empty())
79 Msg += Src + "\n>>> ";
80 return Msg + S.getObjMsg(Off);
81}
82
83// This function is similar to the `handleTlsRelocation`. MIPS does not
84// support any relaxations for TLS relocations so by factoring out MIPS
85// handling in to the separate function we can simplify the code and do not
86// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
87// Mips has a custom MipsGotSection that handles the writing of GOT entries
88// without dynamic relocations.
89static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym,
90 InputSectionBase &C, uint64_t Offset,
91 int64_t Addend, RelExpr Expr) {
92 if (Expr == R_MIPS_TLSLD) {
93 InX::MipsGot->addTlsIndex(*C.File);
94 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
95 return 1;
96 }
97 if (Expr == R_MIPS_TLSGD) {
98 InX::MipsGot->addDynTlsEntry(*C.File, Sym);
99 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
100 return 1;
101 }
102 return 0;
103}
104
105// This function is similar to the `handleMipsTlsRelocation`. ARM also does not
106// support any relaxations for TLS relocations. ARM is logically similar to Mips
107// in how it handles TLS, but Mips uses its own custom GOT which handles some
108// of the cases that ARM uses GOT relocations for.
109//
110// We look for TLS global dynamic and local dynamic relocations, these may
111// require the generation of a pair of GOT entries that have associated
112// dynamic relocations. When the results of the dynamic relocations can be
113// resolved at static link time we do so. This is necessary for static linking
114// as there will be no dynamic loader to resolve them at load-time.
115//
116// The pair of GOT entries created are of the form
117// GOT[e0] Module Index (Used to find pointer to TLS block at run-time)
118// GOT[e1] Offset of symbol in TLS block
119template <class ELFT>
120static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym,
121 InputSectionBase &C, uint64_t Offset,
122 int64_t Addend, RelExpr Expr) {
123 // The Dynamic TLS Module Index Relocation for a symbol defined in an
124 // executable is always 1. If the target Symbol is not preemptible then
125 // we know the offset into the TLS block at static link time.
126 bool NeedDynId = Sym.IsPreemptible || Config->Shared;
127 bool NeedDynOff = Sym.IsPreemptible;
128
129 auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) {
130 if (Dyn)
131 InX::RelaDyn->addReloc(Type, InX::Got, Off, Dest);
132 else
133 InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest});
134 };
135
136 // Local Dynamic is for access to module local TLS variables, while still
137 // being suitable for being dynamically loaded via dlopen.
138 // GOT[e0] is the module index, with a special value of 0 for the current
139 // module. GOT[e1] is unused. There only needs to be one module index entry.
140 if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) {
141 AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel,
142 NeedDynId ? nullptr : &Sym, NeedDynId);
143 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
144 return 1;
145 }
146
147 // Global Dynamic is the most general purpose access model. When we know
148 // the module index and offset of symbol in TLS block we can fill these in
149 // using static GOT relocations.
150 if (Expr == R_TLSGD_PC) {
151 if (InX::Got->addDynTlsEntry(Sym)) {
152 uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
153 AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId);
154 AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym,
155 NeedDynOff);
156 }
157 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
158 return 1;
159 }
160 return 0;
161}
162
163// Returns the number of relocations processed.
164template <class ELFT>
165static unsigned
166handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C,
167 typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) {
168 if (!(C.Flags & SHF_ALLOC))
169 return 0;
170
171 if (!Sym.isTls())
172 return 0;
173
174 if (Config->EMachine == EM_ARM)
175 return handleARMTlsRelocation<ELFT>(Type, Sym, C, Offset, Addend, Expr);
176 if (Config->EMachine == EM_MIPS)
177 return handleMipsTlsRelocation(Type, Sym, C, Offset, Addend, Expr);
178
179 if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL>(Expr) &&
180 Config->Shared) {
181 if (InX::Got->addDynTlsEntry(Sym)) {
182 uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
183 InX::RelaDyn->addReloc(
184 {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0});
185 }
186 if (Expr != R_TLSDESC_CALL)
187 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
188 return 1;
189 }
190
191 if (isRelExprOneOf<R_TLSLD_GOT, R_TLSLD_GOT_FROM_END, R_TLSLD_PC,
192 R_TLSLD_HINT>(Expr)) {
193 // Local-Dynamic relocs can be relaxed to Local-Exec.
194 if (!Config->Shared) {
195 C.Relocations.push_back(
196 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type,
197 Offset, Addend, &Sym});
198 return Target->TlsGdRelaxSkip;
199 }
200 if (Expr == R_TLSLD_HINT)
201 return 1;
202 if (InX::Got->addTlsIndex())
203 InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got,
204 InX::Got->getTlsIndexOff(), nullptr);
205 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
206 return 1;
207 }
208
209 // Local-Dynamic relocs can be relaxed to Local-Exec.
210 if (Expr == R_ABS && !Config->Shared) {
211 C.Relocations.push_back(
212 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_LD_TO_LE), Type,
213 Offset, Addend, &Sym});
214 return 1;
215 }
216
217 // Local-Dynamic sequence where offset of tls variable relative to dynamic
218 // thread pointer is stored in the got.
219 if (Expr == R_TLSLD_GOT_OFF) {
220 // Local-Dynamic relocs can be relaxed to local-exec
221 if (!Config->Shared) {
222 C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym});
223 return 1;
224 }
225 if (!Sym.isInGot()) {
226 InX::Got->addEntry(Sym);
227 uint64_t Off = Sym.getGotOffset();
228 InX::Got->Relocations.push_back({R_ABS, Target->TlsOffsetRel, Off, 0, &Sym});
229 }
230 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
231 return 1;
232 }
233
234 if (isRelExprOneOf<R_TLSDESC, R_TLSDESC_PAGE, R_TLSDESC_CALL, R_TLSGD_GOT,
235 R_TLSGD_GOT_FROM_END, R_TLSGD_PC>(Expr)) {
236 if (Config->Shared) {
237 if (InX::Got->addDynTlsEntry(Sym)) {
238 uint64_t Off = InX::Got->getGlobalDynOffset(Sym);
239 InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, InX::Got, Off, &Sym);
240
241 // If the symbol is preemptible we need the dynamic linker to write
242 // the offset too.
243 uint64_t OffsetOff = Off + Config->Wordsize;
244 if (Sym.IsPreemptible)
245 InX::RelaDyn->addReloc(Target->TlsOffsetRel, InX::Got, OffsetOff,
246 &Sym);
247 else
248 InX::Got->Relocations.push_back(
249 {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym});
250 }
251 C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
252 return 1;
253 }
254
255 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
256 // depending on the symbol being locally defined or not.
257 if (Sym.IsPreemptible) {
258 C.Relocations.push_back(
259 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
260 Offset, Addend, &Sym});
261 if (!Sym.isInGot()) {
262 InX::Got->addEntry(Sym);
263 InX::RelaDyn->addReloc(Target->TlsGotRel, InX::Got, Sym.getGotOffset(),
264 &Sym);
265 }
266 } else {
267 C.Relocations.push_back(
268 {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type,
269 Offset, Addend, &Sym});
270 }
271 return Target->TlsGdRelaxSkip;
272 }
273
274 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
275 // defined.
276 if (isRelExprOneOf<R_GOT, R_GOT_FROM_END, R_GOT_PC, R_GOT_PAGE_PC>(Expr) &&
277 !Config->Shared && !Sym.IsPreemptible) {
278 C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym});
279 return 1;
280 }
281
282 if (Expr == R_TLSDESC_CALL)
283 return 1;
284 return 0;
285}
286
287static RelType getMipsPairType(RelType Type, bool IsLocal) {
288 switch (Type) {
289 case R_MIPS_HI16:
290 return R_MIPS_LO16;
291 case R_MIPS_GOT16:
292 // In case of global symbol, the R_MIPS_GOT16 relocation does not
293 // have a pair. Each global symbol has a unique entry in the GOT
294 // and a corresponding instruction with help of the R_MIPS_GOT16
295 // relocation loads an address of the symbol. In case of local
296 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
297 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
298 // relocations handle low 16 bits of the address. That allows
299 // to allocate only one GOT entry for every 64 KBytes of local data.
300 return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE;
301 case R_MICROMIPS_GOT16:
302 return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
303 case R_MIPS_PCHI16:
304 return R_MIPS_PCLO16;
305 case R_MICROMIPS_HI16:
306 return R_MICROMIPS_LO16;
307 default:
308 return R_MIPS_NONE;
309 }
310}
311
312// True if non-preemptable symbol always has the same value regardless of where
313// the DSO is loaded.
314static bool isAbsolute(const Symbol &Sym) {
315 if (Sym.isUndefWeak())
316 return true;
317 if (const auto *DR = dyn_cast<Defined>(&Sym))
318 return DR->Section == nullptr; // Absolute symbol.
319 return false;
320}
321
322static bool isAbsoluteValue(const Symbol &Sym) {
323 return isAbsolute(Sym) || Sym.isTls();
324}
325
326// Returns true if Expr refers a PLT entry.
327static bool needsPlt(RelExpr Expr) {
328 return isRelExprOneOf<R_PLT_PC, R_PPC_CALL_PLT, R_PLT, R_PLT_PAGE_PC>(Expr);
329}
330
331// Returns true if Expr refers a GOT entry. Note that this function
332// returns false for TLS variables even though they need GOT, because
333// TLS variables uses GOT differently than the regular variables.
334static bool needsGot(RelExpr Expr) {
335 return isRelExprOneOf<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
336 R_MIPS_GOT_OFF32, R_GOT_PAGE_PC, R_GOT_PC,
337 R_GOT_FROM_END>(Expr);
338}
339
340// True if this expression is of the form Sym - X, where X is a position in the
341// file (PC, or GOT for example).
342static bool isRelExpr(RelExpr Expr) {
343 return isRelExprOneOf<R_PC, R_GOTREL, R_GOTREL_FROM_END, R_MIPS_GOTREL,
344 R_PPC_CALL, R_PPC_CALL_PLT, R_PAGE_PC,
345 R_RELAX_GOT_PC>(Expr);
346}
347
348// Returns true if a given relocation can be computed at link-time.
349//
350// For instance, we know the offset from a relocation to its target at
351// link-time if the relocation is PC-relative and refers a
352// non-interposable function in the same executable. This function
353// will return true for such relocation.
354//
355// If this function returns false, that means we need to emit a
356// dynamic relocation so that the relocation will be fixed at load-time.
357static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym,
358 InputSectionBase &S, uint64_t RelOff) {
359 // These expressions always compute a constant
360 if (isRelExprOneOf<
361 R_GOT_FROM_END, R_GOT_OFF, R_TLSLD_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE,
362 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
363 R_MIPS_TLSGD, R_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC,
364 R_GOTONLY_PC_FROM_END, R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOT_FROM_END,
365 R_TLSGD_PC, R_PPC_CALL_PLT, R_TLSDESC_CALL, R_TLSDESC_PAGE, R_HINT,
366 R_TLSLD_HINT>(E))
367 return true;
368
369 // These never do, except if the entire file is position dependent or if
370 // only the low bits are used.
371 if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
372 return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
373
374 if (Sym.IsPreemptible)
375 return false;
376 if (!Config->Pic)
377 return true;
378
379 // The size of a non preemptible symbol is a constant.
380 if (E == R_SIZE)
381 return true;
382
383 // For the target and the relocation, we want to know if they are
384 // absolute or relative.
385 bool AbsVal = isAbsoluteValue(Sym);
386 bool RelE = isRelExpr(E);
387 if (AbsVal && !RelE)
388 return true;
389 if (!AbsVal && RelE)
390 return true;
391 if (!AbsVal && !RelE)
392 return Target->usesOnlyLowPageBits(Type);
393
394 // Relative relocation to an absolute value. This is normally unrepresentable,
395 // but if the relocation refers to a weak undefined symbol, we allow it to
396 // resolve to the image base. This is a little strange, but it allows us to
397 // link function calls to such symbols. Normally such a call will be guarded
398 // with a comparison, which will load a zero from the GOT.
399 // Another special case is MIPS _gp_disp symbol which represents offset
400 // between start of a function and '_gp' value and defined as absolute just
401 // to simplify the code.
402 assert(AbsVal && RelE)(static_cast <bool> (AbsVal && RelE) ? void (0)
: __assert_fail ("AbsVal && RelE", "/build/llvm-toolchain-snapshot-7~svn338205/tools/lld/ELF/Relocations.cpp"
, 402, __extension__ __PRETTY_FUNCTION__))
;
403 if (Sym.isUndefWeak())
404 return true;
405
406 error("relocation " + toString(Type) + " cannot refer to absolute symbol: " +
407 toString(Sym) + getLocation(S, Sym, RelOff));
408 return true;
409}
410
411static RelExpr toPlt(RelExpr Expr) {
412 switch (Expr) {
413 case R_PPC_CALL:
414 return R_PPC_CALL_PLT;
415 case R_PC:
416 return R_PLT_PC;
417 case R_PAGE_PC:
418 return R_PLT_PAGE_PC;
419 case R_ABS:
420 return R_PLT;
421 default:
422 return Expr;
423 }
424}
425
426static RelExpr fromPlt(RelExpr Expr) {
427 // We decided not to use a plt. Optimize a reference to the plt to a
428 // reference to the symbol itself.
429 switch (Expr) {
430 case R_PLT_PC:
431 return R_PC;
432 case R_PPC_CALL_PLT:
433 return R_PPC_CALL;
434 case R_PLT:
435 return R_ABS;
436 default:
437 return Expr;
438 }
439}
440
441// Returns true if a given shared symbol is in a read-only segment in a DSO.
442template <class ELFT> static bool isReadOnly(SharedSymbol &SS) {
443 typedef typename ELFT::Phdr Elf_Phdr;
444
445 // Determine if the symbol is read-only by scanning the DSO's program headers.
446 const SharedFile<ELFT> &File = SS.getFile<ELFT>();
447 for (const Elf_Phdr &Phdr : check(File.getObj().program_headers()))
448 if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) &&
449 !(Phdr.p_flags & ELF::PF_W) && SS.Value >= Phdr.p_vaddr &&
450 SS.Value < Phdr.p_vaddr + Phdr.p_memsz)
451 return true;
452 return false;
453}
454
455// Returns symbols at the same offset as a given symbol, including SS itself.
456//
457// If two or more symbols are at the same offset, and at least one of
458// them are copied by a copy relocation, all of them need to be copied.
459// Otherwise, they would refer to different places at runtime.
460template <class ELFT>
461static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &SS) {
462 typedef typename ELFT::Sym Elf_Sym;
463
464 SharedFile<ELFT> &File = SS.getFile<ELFT>();
465
466 SmallSet<SharedSymbol *, 4> Ret;
467 for (const Elf_Sym &S : File.getGlobalELFSyms()) {
468 if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS ||
469 S.st_value != SS.Value)
470 continue;
471 StringRef Name = check(S.getName(File.getStringTable()));
472 Symbol *Sym = Symtab->find(Name);
473 if (auto *Alias = dyn_cast_or_null<SharedSymbol>(Sym))
474 Ret.insert(Alias);
475 }
476 return Ret;
477}
478
479// When a symbol is copy relocated or we create a canonical plt entry, it is
480// effectively a defined symbol. In the case of copy relocation the symbol is
481// in .bss and in the case of a canonical plt entry it is in .plt. This function
482// replaces the existing symbol with a Defined pointing to the appropriate
483// location.
484static void replaceWithDefined(Symbol &Sym, SectionBase *Sec, uint64_t Value,
485 uint64_t Size) {
486 Symbol Old = Sym;
487 replaceSymbol<Defined>(&Sym, Sym.File, Sym.getName(), Sym.Binding,
488 Sym.StOther, Sym.Type, Value, Size, Sec);
489 Sym.PltIndex = Old.PltIndex;
490 Sym.GotIndex = Old.GotIndex;
491 Sym.VerdefIndex = Old.VerdefIndex;
492 Sym.IsPreemptible = true;
493 Sym.ExportDynamic = true;
494 Sym.IsUsedInRegularObj = true;
495 Sym.Used = true;
496}
497
498// Reserve space in .bss or .bss.rel.ro for copy relocation.
499//
500// The copy relocation is pretty much a hack. If you use a copy relocation
501// in your program, not only the symbol name but the symbol's size, RW/RO
502// bit and alignment become part of the ABI. In addition to that, if the
503// symbol has aliases, the aliases become part of the ABI. That's subtle,
504// but if you violate that implicit ABI, that can cause very counter-
505// intuitive consequences.
506//
507// So, what is the copy relocation? It's for linking non-position
508// independent code to DSOs. In an ideal world, all references to data
509// exported by DSOs should go indirectly through GOT. But if object files
510// are compiled as non-PIC, all data references are direct. There is no
511// way for the linker to transform the code to use GOT, as machine
512// instructions are already set in stone in object files. This is where
513// the copy relocation takes a role.
514//
515// A copy relocation instructs the dynamic linker to copy data from a DSO
516// to a specified address (which is usually in .bss) at load-time. If the
517// static linker (that's us) finds a direct data reference to a DSO
518// symbol, it creates a copy relocation, so that the symbol can be
519// resolved as if it were in .bss rather than in a DSO.
520//
521// As you can see in this function, we create a copy relocation for the
522// dynamic linker, and the relocation contains not only symbol name but
523// various other informtion about the symbol. So, such attributes become a
524// part of the ABI.
525//
526// Note for application developers: I can give you a piece of advice if
527// you are writing a shared library. You probably should export only
528// functions from your library. You shouldn't export variables.
529//
530// As an example what can happen when you export variables without knowing
531// the semantics of copy relocations, assume that you have an exported
532// variable of type T. It is an ABI-breaking change to add new members at
533// end of T even though doing that doesn't change the layout of the
534// existing members. That's because the space for the new members are not
535// reserved in .bss unless you recompile the main program. That means they
536// are likely to overlap with other data that happens to be laid out next
537// to the variable in .bss. This kind of issue is sometimes very hard to
538// debug. What's a solution? Instead of exporting a varaible V from a DSO,
539// define an accessor getV().
540template <class ELFT> static void addCopyRelSymbol(SharedSymbol &SS) {
541 // Copy relocation against zero-sized symbol doesn't make sense.
542 uint64_t SymSize = SS.getSize();
543 if (SymSize == 0 || SS.Alignment == 0)
544 fatal("cannot create a copy relocation for symbol " + toString(SS));
545
546 // See if this symbol is in a read-only segment. If so, preserve the symbol's
547 // memory protection by reserving space in the .bss.rel.ro section.
548 bool IsReadOnly = isReadOnly<ELFT>(SS);
549 BssSection *Sec = make<BssSection>(IsReadOnly ? ".bss.rel.ro" : ".bss",
550 SymSize, SS.Alignment);
551 if (IsReadOnly)
552 InX::BssRelRo->getParent()->addSection(Sec);
553 else
554 InX::Bss->getParent()->addSection(Sec);
555
556 // Look through the DSO's dynamic symbol table for aliases and create a
557 // dynamic symbol for each one. This causes the copy relocation to correctly
558 // interpose any aliases.
559 for (SharedSymbol *Sym : getSymbolsAt<ELFT>(SS))
560 replaceWithDefined(*Sym, Sec, 0, Sym->Size);
561
562 InX::RelaDyn->addReloc(Target->CopyRel, Sec, 0, &SS);
563}
564
565// MIPS has an odd notion of "paired" relocations to calculate addends.
566// For example, if a relocation is of R_MIPS_HI16, there must be a
567// R_MIPS_LO16 relocation after that, and an addend is calculated using
568// the two relocations.
569template <class ELFT, class RelTy>
570static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End,
571 InputSectionBase &Sec, RelExpr Expr,
572 bool IsLocal) {
573 if (Expr == R_MIPS_GOTREL && IsLocal)
574 return Sec.getFile<ELFT>()->MipsGp0;
575
576 // The ABI says that the paired relocation is used only for REL.
577 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
578 if (RelTy::IsRela)
579 return 0;
580
581 RelType Type = Rel.getType(Config->IsMips64EL);
582 uint32_t PairTy = getMipsPairType(Type, IsLocal);
583 if (PairTy == R_MIPS_NONE)
584 return 0;
585
586 const uint8_t *Buf = Sec.Data.data();
587 uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL);
588
589 // To make things worse, paired relocations might not be contiguous in
590 // the relocation table, so we need to do linear search. *sigh*
591 for (const RelTy *RI = &Rel; RI != End; ++RI)
592 if (RI->getType(Config->IsMips64EL) == PairTy &&
593 RI->getSymbol(Config->IsMips64EL) == SymIndex)
594 return Target->getImplicitAddend(Buf + RI->r_offset, PairTy);
595
596 warn("can't find matching " + toString(PairTy) + " relocation for " +
597 toString(Type));
598 return 0;
599}
600
601// Returns an addend of a given relocation. If it is RELA, an addend
602// is in a relocation itself. If it is REL, we need to read it from an
603// input section.
604template <class ELFT, class RelTy>
605static int64_t computeAddend(const RelTy &Rel, const RelTy *End,
606 InputSectionBase &Sec, RelExpr Expr,
607 bool IsLocal) {
608 int64_t Addend;
609 RelType Type = Rel.getType(Config->IsMips64EL);
610
611 if (RelTy::IsRela) {
612 Addend = getAddend<ELFT>(Rel);
613 } else {
614 const uint8_t *Buf = Sec.Data.data();
615 Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type);
616 }
617
618 if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC)
619 Addend += getPPC64TocBase();
620 if (Config->EMachine == EM_MIPS)
621 Addend += computeMipsAddend<ELFT>(Rel, End, Sec, Expr, IsLocal);
622
623 return Addend;
624}
625
626// Report an undefined symbol if necessary.
627// Returns true if this function printed out an error message.
628static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec,
629 uint64_t Offset) {
630 if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll)
631 return false;
632
633 if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak())
634 return false;
635
636 bool CanBeExternal =
637 Sym.computeBinding() != STB_LOCAL && Sym.Visibility == STV_DEFAULT;
638 if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal)
639 return false;
640
641 std::string Msg =
642 "undefined symbol: " + toString(Sym) + "\n>>> referenced by ";
643
644 std::string Src = Sec.getSrcMsg(Sym, Offset);
645 if (!Src.empty())
646 Msg += Src + "\n>>> ";
647 Msg += Sec.getObjMsg(Offset);
648
649 if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) ||
650 Config->NoinhibitExec) {
651 warn(Msg);
652 return false;
653 }
654
655 error(Msg);
656 return true;
657}
658
659// MIPS N32 ABI treats series of successive relocations with the same offset
660// as a single relocation. The similar approach used by N64 ABI, but this ABI
661// packs all relocations into the single relocation record. Here we emulate
662// this for the N32 ABI. Iterate over relocation with the same offset and put
663// theirs types into the single bit-set.
664template <class RelTy> static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) {
665 RelType Type = 0;
666 uint64_t Offset = Rel->r_offset;
667
668 int N = 0;
669 while (Rel != End && Rel->r_offset == Offset)
670 Type |= (Rel++)->getType(Config->IsMips64EL) << (8 * N++);
671 return Type;
672}
673
674// .eh_frame sections are mergeable input sections, so their input
675// offsets are not linearly mapped to output section. For each input
676// offset, we need to find a section piece containing the offset and
677// add the piece's base address to the input offset to compute the
678// output offset. That isn't cheap.
679//
680// This class is to speed up the offset computation. When we process
681// relocations, we access offsets in the monotonically increasing
682// order. So we can optimize for that access pattern.
683//
684// For sections other than .eh_frame, this class doesn't do anything.
685namespace {
686class OffsetGetter {
687public:
688 explicit OffsetGetter(InputSectionBase &Sec) {
689 if (auto *Eh = dyn_cast<EhInputSection>(&Sec))
690 Pieces = Eh->Pieces;
691 }
692
693 // Translates offsets in input sections to offsets in output sections.
694 // Given offset must increase monotonically. We assume that Piece is
695 // sorted by InputOff.
696 uint64_t get(uint64_t Off) {
697 if (Pieces.empty())
698 return Off;
699
700 while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off)
701 ++I;
702 if (I == Pieces.size())
703 return Off;
704
705 // Pieces must be contiguous, so there must be no holes in between.
706 assert(Pieces[I].InputOff <= Off && "Relocation not in any piece")(static_cast <bool> (Pieces[I].InputOff <= Off &&
"Relocation not in any piece") ? void (0) : __assert_fail ("Pieces[I].InputOff <= Off && \"Relocation not in any piece\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/lld/ELF/Relocations.cpp"
, 706, __extension__ __PRETTY_FUNCTION__))
;
707
708 // Offset -1 means that the piece is dead (i.e. garbage collected).
709 if (Pieces[I].OutputOff == -1)
710 return -1;
711 return Pieces[I].OutputOff + Off - Pieces[I].InputOff;
712 }
713
714private:
715 ArrayRef<EhSectionPiece> Pieces;
716 size_t I = 0;
717};
718} // namespace
719
720static void addRelativeReloc(InputSectionBase *IS, uint64_t OffsetInSec,
721 Symbol *Sym, int64_t Addend, RelExpr Expr,
722 RelType Type) {
723 // Add a relative relocation. If RelrDyn section is enabled, and the
724 // relocation offset is guaranteed to be even, add the relocation to
725 // the RelrDyn section, otherwise add it to the RelaDyn section.
726 // RelrDyn sections don't support odd offsets. Also, RelrDyn sections
727 // don't store the addend values, so we must write it to the relocated
728 // address.
729 if (InX::RelrDyn && IS->Alignment >= 2 && OffsetInSec % 2 == 0) {
730 IS->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym});
731 InX::RelrDyn->Relocs.push_back({IS, OffsetInSec});
732 return;
733 }
734 InX::RelaDyn->addReloc(Target->RelativeRel, IS, OffsetInSec, Sym, Addend,
735 Expr, Type);
736}
737
738template <class ELFT, class GotPltSection>
739static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt,
740 RelocationBaseSection *Rel, RelType Type, Symbol &Sym) {
741 Plt->addEntry<ELFT>(Sym);
742 GotPlt->addEntry(Sym);
743 Rel->addReloc(
744 {Type, GotPlt, Sym.getGotPltOffset(), !Sym.IsPreemptible, &Sym, 0});
745}
746
747template <class ELFT> static void addGotEntry(Symbol &Sym) {
748 InX::Got->addEntry(Sym);
749
750 RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS;
751 uint64_t Off = Sym.getGotOffset();
752
753 // If a GOT slot value can be calculated at link-time, which is now,
754 // we can just fill that out.
755 //
756 // (We don't actually write a value to a GOT slot right now, but we
757 // add a static relocation to a Relocations vector so that
758 // InputSection::relocate will do the work for us. We may be able
759 // to just write a value now, but it is a TODO.)
760 bool IsLinkTimeConstant =
761 !Sym.IsPreemptible && (!Config->Pic || isAbsolute(Sym));
762 if (IsLinkTimeConstant) {
763 InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym});
764 return;
765 }
766
767 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
768 // the GOT slot will be fixed at load-time.
769 if (!Sym.isTls() && !Sym.IsPreemptible && Config->Pic && !isAbsolute(Sym)) {
770 addRelativeReloc(InX::Got, Off, &Sym, 0, R_ABS, Target->GotRel);
771 return;
772 }
773 InX::RelaDyn->addReloc(Sym.isTls() ? Target->TlsGotRel : Target->GotRel,
774 InX::Got, Off, &Sym, 0,
775 Sym.IsPreemptible ? R_ADDEND : R_ABS, Target->GotRel);
776}
777
778// Return true if we can define a symbol in the executable that
779// contains the value/function of a symbol defined in a shared
780// library.
781static bool canDefineSymbolInExecutable(Symbol &Sym) {
782 // If the symbol has default visibility the symbol defined in the
783 // executable will preempt it.
784 // Note that we want the visibility of the shared symbol itself, not
785 // the visibility of the symbol in the output file we are producing. That is
786 // why we use Sym.StOther.
787 if ((Sym.StOther & 0x3) == STV_DEFAULT)
788 return true;
789
790 // If we are allowed to break address equality of functions, defining
791 // a plt entry will allow the program to call the function in the
792 // .so, but the .so and the executable will no agree on the address
793 // of the function. Similar logic for objects.
794 return ((Sym.isFunc() && Config->IgnoreFunctionAddressEquality) ||
795 (Sym.isObject() && Config->IgnoreDataAddressEquality));
796}
797
798// The reason we have to do this early scan is as follows
799// * To mmap the output file, we need to know the size
800// * For that, we need to know how many dynamic relocs we will have.
801// It might be possible to avoid this by outputting the file with write:
802// * Write the allocated output sections, computing addresses.
803// * Apply relocations, recording which ones require a dynamic reloc.
804// * Write the dynamic relocations.
805// * Write the rest of the file.
806// This would have some drawbacks. For example, we would only know if .rela.dyn
807// is needed after applying relocations. If it is, it will go after rw and rx
808// sections. Given that it is ro, we will need an extra PT_LOAD. This
809// complicates things for the dynamic linker and means we would have to reserve
810// space for the extra PT_LOAD even if we end up not using it.
811template <class ELFT, class RelTy>
812static void processRelocAux(InputSectionBase &Sec, RelExpr Expr, RelType Type,
813 uint64_t Offset, Symbol &Sym, const RelTy &Rel,
814 int64_t Addend) {
815 if (isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Offset)) {
816 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
817 return;
818 }
819 bool CanWrite = (Sec.Flags & SHF_WRITE) || !Config->ZText;
820 if (CanWrite) {
821 // R_GOT refers to a position in the got, even if the symbol is preemptible.
822 bool IsPreemptibleValue = Sym.IsPreemptible && Expr != R_GOT;
823
824 if (!IsPreemptibleValue) {
825 addRelativeReloc(&Sec, Offset, &Sym, Addend, Expr, Type);
826 return;
827 } else if (RelType Rel = Target->getDynRel(Type)) {
828 InX::RelaDyn->addReloc(Rel, &Sec, Offset, &Sym, Addend, R_ADDEND, Type);
829
830 // MIPS ABI turns using of GOT and dynamic relocations inside out.
831 // While regular ABI uses dynamic relocations to fill up GOT entries
832 // MIPS ABI requires dynamic linker to fills up GOT entries using
833 // specially sorted dynamic symbol table. This affects even dynamic
834 // relocations against symbols which do not require GOT entries
835 // creation explicitly, i.e. do not have any GOT-relocations. So if
836 // a preemptible symbol has a dynamic relocation we anyway have
837 // to create a GOT entry for it.
838 // If a non-preemptible symbol has a dynamic relocation against it,
839 // dynamic linker takes it st_value, adds offset and writes down
840 // result of the dynamic relocation. In case of preemptible symbol
841 // dynamic linker performs symbol resolution, writes the symbol value
842 // to the GOT entry and reads the GOT entry when it needs to perform
843 // a dynamic relocation.
844 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
845 if (Config->EMachine == EM_MIPS)
846 InX::MipsGot->addEntry(*Sec.File, Sym, Addend, Expr);
847 return;
848 }
849 }
850
851 // If the relocation is to a weak undef, and we are producing
852 // executable, give up on it and produce a non preemptible 0.
853 if (!Config->Shared && Sym.isUndefWeak()) {
854 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
855 return;
856 }
857
858 if (!CanWrite && (Config->Pic && !isRelExpr(Expr))) {
859 error(
860 "can't create dynamic relocation " + toString(Type) + " against " +
861 (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) +
862 " in readonly segment; recompile object files with -fPIC "
863 "or pass '-Wl,-z,notext' to allow text relocations in the output" +
864 getLocation(Sec, Sym, Offset));
865 return;
866 }
867
868 // Copy relocations are only possible if we are creating an executable.
869 if (Config->Shared) {
870 errorOrWarn("relocation " + toString(Type) +
871 " cannot be used against symbol " + toString(Sym) +
872 "; recompile with -fPIC" + getLocation(Sec, Sym, Offset));
873 return;
874 }
875
876 // If the symbol is undefined we already reported any relevant errors.
877 if (Sym.isUndefined())
878 return;
879
880 if (!canDefineSymbolInExecutable(Sym)) {
881 error("cannot preempt symbol: " + toString(Sym) +
882 getLocation(Sec, Sym, Offset));
883 return;
884 }
885
886 if (Sym.isObject()) {
887 // Produce a copy relocation.
888 if (auto *SS = dyn_cast<SharedSymbol>(&Sym)) {
889 if (!Config->ZCopyreloc)
890 error("unresolvable relocation " + toString(Type) +
891 " against symbol '" + toString(*SS) +
892 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
893 getLocation(Sec, Sym, Offset));
894 addCopyRelSymbol<ELFT>(*SS);
895 }
896 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
897 return;
898 }
899
900 if (Sym.isFunc()) {
901 // This handles a non PIC program call to function in a shared library. In
902 // an ideal world, we could just report an error saying the relocation can
903 // overflow at runtime. In the real world with glibc, crt1.o has a
904 // R_X86_64_PC32 pointing to libc.so.
905 //
906 // The general idea on how to handle such cases is to create a PLT entry and
907 // use that as the function value.
908 //
909 // For the static linking part, we just return a plt expr and everything
910 // else will use the PLT entry as the address.
911 //
912 // The remaining problem is making sure pointer equality still works. We
913 // need the help of the dynamic linker for that. We let it know that we have
914 // a direct reference to a so symbol by creating an undefined symbol with a
915 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
916 // the value of the symbol we created. This is true even for got entries, so
917 // pointer equality is maintained. To avoid an infinite loop, the only entry
918 // that points to the real function is a dedicated got entry used by the
919 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
920 // R_386_JMP_SLOT, etc).
921
922 // For position independent executable on i386, the plt entry requires ebx
923 // to be set. This causes two problems:
924 // * If some code has a direct reference to a function, it was probably
925 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
926 // * If a library definition gets preempted to the executable, it will have
927 // the wrong ebx value.
928 if (Config->Pie && Config->EMachine == EM_386)
929 errorOrWarn("symbol '" + toString(Sym) +
930 "' cannot be preempted; recompile with -fPIE" +
931 getLocation(Sec, Sym, Offset));
932 if (!Sym.isInPlt())
933 addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
934 Sym);
935 if (!Sym.isDefined())
936 replaceWithDefined(Sym, InX::Plt, Sym.getPltOffset(), 0);
937 Sym.NeedsPltAddr = true;
938 Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym});
939 return;
940 }
941
942 errorOrWarn("symbol '" + toString(Sym) + "' has no type" +
943 getLocation(Sec, Sym, Offset));
944}
945
946template <class ELFT, class RelTy>
947static void scanReloc(InputSectionBase &Sec, OffsetGetter &GetOffset, RelTy *&I,
948 RelTy *End) {
949 const RelTy &Rel = *I;
950 Symbol &Sym = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
951 RelType Type;
952
953 // Deal with MIPS oddity.
954 if (Config->MipsN32Abi) {
955 Type = getMipsN32RelType(I, End);
956 } else {
957 Type = Rel.getType(Config->IsMips64EL);
958 ++I;
959 }
960
961 // Get an offset in an output section this relocation is applied to.
962 uint64_t Offset = GetOffset.get(Rel.r_offset);
963 if (Offset == uint64_t(-1))
964 return;
965
966 // Skip if the target symbol is an erroneous undefined symbol.
967 if (maybeReportUndefined(Sym, Sec, Rel.r_offset))
968 return;
969
970 const uint8_t *RelocatedAddr = Sec.Data.begin() + Rel.r_offset;
971 RelExpr Expr = Target->getRelExpr(Type, Sym, RelocatedAddr);
972
973 // Ignore "hint" relocations because they are only markers for relaxation.
974 if (isRelExprOneOf<R_HINT, R_NONE>(Expr))
975 return;
976
977 // Strenghten or relax relocations.
978 //
979 // GNU ifunc symbols must be accessed via PLT because their addresses
980 // are determined by runtime.
981 //
982 // On the other hand, if we know that a PLT entry will be resolved within
983 // the same ELF module, we can skip PLT access and directly jump to the
984 // destination function. For example, if we are linking a main exectuable,
985 // all dynamic symbols that can be resolved within the executable will
986 // actually be resolved that way at runtime, because the main exectuable
987 // is always at the beginning of a search list. We can leverage that fact.
988 if (Sym.isGnuIFunc())
989 Expr = toPlt(Expr);
990 else if (!Sym.IsPreemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym))
991 Expr = Target->adjustRelaxExpr(Type, RelocatedAddr, Expr);
992 else if (!Sym.IsPreemptible)
993 Expr = fromPlt(Expr);
994
995 // This relocation does not require got entry, but it is relative to got and
996 // needs it to be created. Here we request for that.
997 if (isRelExprOneOf<R_GOTONLY_PC, R_GOTONLY_PC_FROM_END, R_GOTREL,
998 R_GOTREL_FROM_END, R_PPC_TOC>(Expr))
999 InX::Got->HasGotOffRel = true;
1000
1001 // Read an addend.
1002 int64_t Addend = computeAddend<ELFT>(Rel, End, Sec, Expr, Sym.isLocal());
1003
1004 // Process some TLS relocations, including relaxing TLS relocations.
1005 // Note that this function does not handle all TLS relocations.
1006 if (unsigned Processed =
1007 handleTlsRelocation<ELFT>(Type, Sym, Sec, Offset, Addend, Expr)) {
1008 I += (Processed - 1);
1009 return;
1010 }
1011
1012 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1013 if (needsPlt(Expr) && !Sym.isInPlt()) {
1014 if (Sym.isGnuIFunc() && !Sym.IsPreemptible)
1015 addPltEntry<ELFT>(InX::Iplt, InX::IgotPlt, InX::RelaIplt,
1016 Target->IRelativeRel, Sym);
1017 else
1018 addPltEntry<ELFT>(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel,
1019 Sym);
1020 }
1021
1022 // Create a GOT slot if a relocation needs GOT.
1023 if (needsGot(Expr)) {
1024 if (Config->EMachine == EM_MIPS) {
1025 // MIPS ABI has special rules to process GOT entries and doesn't
1026 // require relocation entries for them. A special case is TLS
1027 // relocations. In that case dynamic loader applies dynamic
1028 // relocations to initialize TLS GOT entries.
1029 // See "Global Offset Table" in Chapter 5 in the following document
1030 // for detailed description:
1031 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1032 InX::MipsGot->addEntry(*Sec.File, Sym, Addend, Expr);
1033 } else if (!Sym.isInGot()) {
1034 addGotEntry<ELFT>(Sym);
1035 }
1036 }
1037
1038 processRelocAux<ELFT>(Sec, Expr, Type, Offset, Sym, Rel, Addend);
1039}
1040
1041template <class ELFT, class RelTy>
1042static void scanRelocs(InputSectionBase &Sec, ArrayRef<RelTy> Rels) {
1043 OffsetGetter GetOffset(Sec);
1044
1045 // Not all relocations end up in Sec.Relocations, but a lot do.
1046 Sec.Relocations.reserve(Rels.size());
1047
1048 for (auto I = Rels.begin(), End = Rels.end(); I != End;)
1049 scanReloc<ELFT>(Sec, GetOffset, I, End);
1050}
1051
1052template <class ELFT> void elf::scanRelocations(InputSectionBase &S) {
1053 if (S.AreRelocsRela)
1054 scanRelocs<ELFT>(S, S.relas<ELFT>());
1055 else
1056 scanRelocs<ELFT>(S, S.rels<ELFT>());
1057}
1058
1059// Thunk Implementation
1060//
1061// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1062// of code that the linker inserts inbetween a caller and a callee. The thunks
1063// are added at link time rather than compile time as the decision on whether
1064// a thunk is needed, such as the caller and callee being out of range, can only
1065// be made at link time.
1066//
1067// It is straightforward to tell given the current state of the program when a
1068// thunk is needed for a particular call. The more difficult part is that
1069// the thunk needs to be placed in the program such that the caller can reach
1070// the thunk and the thunk can reach the callee; furthermore, adding thunks to
1071// the program alters addresses, which can mean more thunks etc.
1072//
1073// In lld we have a synthetic ThunkSection that can hold many Thunks.
1074// The decision to have a ThunkSection act as a container means that we can
1075// more easily handle the most common case of a single block of contiguous
1076// Thunks by inserting just a single ThunkSection.
1077//
1078// The implementation of Thunks in lld is split across these areas
1079// Relocations.cpp : Framework for creating and placing thunks
1080// Thunks.cpp : The code generated for each supported thunk
1081// Target.cpp : Target specific hooks that the framework uses to decide when
1082// a thunk is used
1083// Synthetic.cpp : Implementation of ThunkSection
1084// Writer.cpp : Iteratively call framework until no more Thunks added
1085//
1086// Thunk placement requirements:
1087// Mips LA25 thunks. These must be placed immediately before the callee section
1088// We can assume that the caller is in range of the Thunk. These are modelled
1089// by Thunks that return the section they must precede with
1090// getTargetInputSection().
1091//
1092// ARM interworking and range extension thunks. These thunks must be placed
1093// within range of the caller. All implemented ARM thunks can always reach the
1094// callee as they use an indirect jump via a register that has no range
1095// restrictions.
1096//
1097// Thunk placement algorithm:
1098// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1099// getTargetInputSection().
1100//
1101// For thunks that must be placed within range of the caller there are many
1102// possible choices given that the maximum range from the caller is usually
1103// much larger than the average InputSection size. Desirable properties include:
1104// - Maximize reuse of thunks by multiple callers
1105// - Minimize number of ThunkSections to simplify insertion
1106// - Handle impact of already added Thunks on addresses
1107// - Simple to understand and implement
1108//
1109// In lld for the first pass, we pre-create one or more ThunkSections per
1110// InputSectionDescription at Target specific intervals. A ThunkSection is
1111// placed so that the estimated end of the ThunkSection is within range of the
1112// start of the InputSectionDescription or the previous ThunkSection. For
1113// example:
1114// InputSectionDescription
1115// Section 0
1116// ...
1117// Section N
1118// ThunkSection 0
1119// Section N + 1
1120// ...
1121// Section N + K
1122// Thunk Section 1
1123//
1124// The intention is that we can add a Thunk to a ThunkSection that is well
1125// spaced enough to service a number of callers without having to do a lot
1126// of work. An important principle is that it is not an error if a Thunk cannot
1127// be placed in a pre-created ThunkSection; when this happens we create a new
1128// ThunkSection placed next to the caller. This allows us to handle the vast
1129// majority of thunks simply, but also handle rare cases where the branch range
1130// is smaller than the target specific spacing.
1131//
1132// The algorithm is expected to create all the thunks that are needed in a
1133// single pass, with a small number of programs needing a second pass due to
1134// the insertion of thunks in the first pass increasing the offset between
1135// callers and callees that were only just in range.
1136//
1137// A consequence of allowing new ThunkSections to be created outside of the
1138// pre-created ThunkSections is that in rare cases calls to Thunks that were in
1139// range in pass K, are out of range in some pass > K due to the insertion of
1140// more Thunks in between the caller and callee. When this happens we retarget
1141// the relocation back to the original target and create another Thunk.
1142
1143// Remove ThunkSections that are empty, this should only be the initial set
1144// precreated on pass 0.
1145
1146// Insert the Thunks for OutputSection OS into their designated place
1147// in the Sections vector, and recalculate the InputSection output section
1148// offsets.
1149// This may invalidate any output section offsets stored outside of InputSection
1150void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> OutputSections) {
1151 forEachInputSectionDescription(
1152 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1153 if (ISD->ThunkSections.empty())
1154 return;
1155
1156 // Remove any zero sized precreated Thunks.
1157 llvm::erase_if(ISD->ThunkSections,
1158 [](const std::pair<ThunkSection *, uint32_t> &TS) {
1159 return TS.first->getSize() == 0;
1160 });
1161 // ISD->ThunkSections contains all created ThunkSections, including
1162 // those inserted in previous passes. Extract the Thunks created this
1163 // pass and order them in ascending OutSecOff.
1164 std::vector<ThunkSection *> NewThunks;
1165 for (const std::pair<ThunkSection *, uint32_t> TS : ISD->ThunkSections)
1166 if (TS.second == Pass)
1167 NewThunks.push_back(TS.first);
1168 std::stable_sort(NewThunks.begin(), NewThunks.end(),
1169 [](const ThunkSection *A, const ThunkSection *B) {
1170 return A->OutSecOff < B->OutSecOff;
1171 });
1172
1173 // Merge sorted vectors of Thunks and InputSections by OutSecOff
1174 std::vector<InputSection *> Tmp;
1175 Tmp.reserve(ISD->Sections.size() + NewThunks.size());
1176 auto MergeCmp = [](const InputSection *A, const InputSection *B) {
1177 // std::merge requires a strict weak ordering.
1178 if (A->OutSecOff < B->OutSecOff)
1179 return true;
1180 if (A->OutSecOff == B->OutSecOff) {
1181 auto *TA = dyn_cast<ThunkSection>(A);
1182 auto *TB = dyn_cast<ThunkSection>(B);
1183 // Check if Thunk is immediately before any specific Target
1184 // InputSection for example Mips LA25 Thunks.
1185 if (TA && TA->getTargetInputSection() == B)
1186 return true;
1187 if (TA && !TB && !TA->getTargetInputSection())
1188 // Place Thunk Sections without specific targets before
1189 // non-Thunk Sections.
1190 return true;
1191 }
1192 return false;
1193 };
1194 std::merge(ISD->Sections.begin(), ISD->Sections.end(),
1195 NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp),
1196 MergeCmp);
1197 ISD->Sections = std::move(Tmp);
1198 });
1199}
1200
1201// Find or create a ThunkSection within the InputSectionDescription (ISD) that
1202// is in range of Src. An ISD maps to a range of InputSections described by a
1203// linker script section pattern such as { .text .text.* }.
1204ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS,
1205 InputSectionDescription *ISD,
1206 uint32_t Type, uint64_t Src) {
1207 for (std::pair<ThunkSection *, uint32_t> TP : ISD->ThunkSections) {
1208 ThunkSection *TS = TP.first;
1209 uint64_t TSBase = OS->Addr + TS->OutSecOff;
1210 uint64_t TSLimit = TSBase + TS->getSize();
1211 if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit))
1212 return TS;
1213 }
1214
1215 // No suitable ThunkSection exists. This can happen when there is a branch
1216 // with lower range than the ThunkSection spacing or when there are too
1217 // many Thunks. Create a new ThunkSection as close to the InputSection as
1218 // possible. Error if InputSection is so large we cannot place ThunkSection
1219 // anywhere in Range.
1220 uint64_t ThunkSecOff = IS->OutSecOff;
1221 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) {
1222 ThunkSecOff = IS->OutSecOff + IS->getSize();
1223 if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff))
1224 fatal("InputSection too large for range extension thunk " +
1225 IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff)));
1226 }
1227 return addThunkSection(OS, ISD, ThunkSecOff);
1228}
1229
1230// Add a Thunk that needs to be placed in a ThunkSection that immediately
1231// precedes its Target.
1232ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) {
1233 ThunkSection *TS = ThunkedSections.lookup(IS);
1234 if (TS)
1235 return TS;
1236
1237 // Find InputSectionRange within Target Output Section (TOS) that the
1238 // InputSection (IS) that we need to precede is in.
1239 OutputSection *TOS = IS->getParent();
1240 for (BaseCommand *BC : TOS->SectionCommands)
1241 if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
1242 if (ISD->Sections.empty())
1243 continue;
1244 InputSection *first = ISD->Sections.front();
1245 InputSection *last = ISD->Sections.back();
1246 if (IS->OutSecOff >= first->OutSecOff &&
1247 IS->OutSecOff <= last->OutSecOff) {
1248 TS = addThunkSection(TOS, ISD, IS->OutSecOff);
1249 ThunkedSections[IS] = TS;
1250 break;
1251 }
1252 }
1253 return TS;
1254}
1255
1256// Create one or more ThunkSections per OS that can be used to place Thunks.
1257// We attempt to place the ThunkSections using the following desirable
1258// properties:
1259// - Within range of the maximum number of callers
1260// - Minimise the number of ThunkSections
1261//
1262// We follow a simple but conservative heuristic to place ThunkSections at
1263// offsets that are multiples of a Target specific branch range.
1264// For an InputSectionDescription that is smaller than the range, a single
1265// ThunkSection at the end of the range will do.
1266//
1267// For an InputSectionDescription that is more than twice the size of the range,
1268// we place the last ThunkSection at range bytes from the end of the
1269// InputSectionDescription in order to increase the likelihood that the
1270// distance from a thunk to its target will be sufficiently small to
1271// allow for the creation of a short thunk.
1272void ThunkCreator::createInitialThunkSections(
1273 ArrayRef<OutputSection *> OutputSections) {
1274 forEachInputSectionDescription(
1275 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1276 if (ISD->Sections.empty())
1
Assuming the condition is false
2
Taking false branch
1277 return;
1278 uint32_t ISDBegin = ISD->Sections.front()->OutSecOff;
1279 uint32_t ISDEnd =
1280 ISD->Sections.back()->OutSecOff + ISD->Sections.back()->getSize();
1281 uint32_t LastThunkLowerBound = -1;
1282 if (ISDEnd - ISDBegin > Target->ThunkSectionSpacing * 2)
3
Assuming the condition is false
4
Taking false branch
1283 LastThunkLowerBound = ISDEnd - Target->ThunkSectionSpacing;
1284
1285 uint32_t ISLimit;
5
'ISLimit' declared without an initial value
1286 uint32_t PrevISLimit = ISDBegin;
1287 uint32_t ThunkUpperBound = ISDBegin + Target->ThunkSectionSpacing;
1288
1289 for (const InputSection *IS : ISD->Sections) {
1290 ISLimit = IS->OutSecOff + IS->getSize();
1291 if (ISLimit > ThunkUpperBound) {
1292 addThunkSection(OS, ISD, PrevISLimit);
1293 ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
1294 }
1295 if (ISLimit > LastThunkLowerBound)
1296 break;
1297 PrevISLimit = ISLimit;
1298 }
1299 addThunkSection(OS, ISD, ISLimit);
6
3rd function call argument is an uninitialized value
1300 });
1301}
1302
1303ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS,
1304 InputSectionDescription *ISD,
1305 uint64_t Off) {
1306 auto *TS = make<ThunkSection>(OS, Off);
1307 ISD->ThunkSections.push_back(std::make_pair(TS, Pass));
1308 return TS;
1309}
1310
1311std::pair<Thunk *, bool> ThunkCreator::getThunk(Symbol &Sym, RelType Type,
1312 uint64_t Src) {
1313 std::vector<Thunk *> *ThunkVec = nullptr;
1314 // We use (section, offset) pair to find the thunk position if possible so
1315 // that we create only one thunk for aliased symbols or ICFed sections.
1316 if (auto *D = dyn_cast<Defined>(&Sym))
1317 if (!D->isInPlt() && D->Section)
1318 ThunkVec = &ThunkedSymbolsBySection[{D->Section->Repl, D->Value}];
1319 if (!ThunkVec)
1320 ThunkVec = &ThunkedSymbols[&Sym];
1321 // Check existing Thunks for Sym to see if they can be reused
1322 for (Thunk *ET : *ThunkVec)
1323 if (ET->isCompatibleWith(Type) &&
1324 Target->inBranchRange(Type, Src, ET->getThunkTargetSym()->getVA()))
1325 return std::make_pair(ET, false);
1326 // No existing compatible Thunk in range, create a new one
1327 Thunk *T = addThunk(Type, Sym);
1328 ThunkVec->push_back(T);
1329 return std::make_pair(T, true);
1330}
1331
1332// Call Fn on every executable InputSection accessed via the linker script
1333// InputSectionDescription::Sections.
1334void ThunkCreator::forEachInputSectionDescription(
1335 ArrayRef<OutputSection *> OutputSections,
1336 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> Fn) {
1337 for (OutputSection *OS : OutputSections) {
1338 if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
1339 continue;
1340 for (BaseCommand *BC : OS->SectionCommands)
1341 if (auto *ISD = dyn_cast<InputSectionDescription>(BC))
1342 Fn(OS, ISD);
1343 }
1344}
1345
1346// Return true if the relocation target is an in range Thunk.
1347// Return false if the relocation is not to a Thunk. If the relocation target
1348// was originally to a Thunk, but is no longer in range we revert the
1349// relocation back to its original non-Thunk target.
1350bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) {
1351 if (Thunk *ET = Thunks.lookup(Rel.Sym)) {
1352 if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA()))
1353 return true;
1354 Rel.Sym = &ET->Destination;
1355 if (Rel.Sym->isInPlt())
1356 Rel.Expr = toPlt(Rel.Expr);
1357 }
1358 return false;
1359}
1360
1361// Process all relocations from the InputSections that have been assigned
1362// to InputSectionDescriptions and redirect through Thunks if needed. The
1363// function should be called iteratively until it returns false.
1364//
1365// PreConditions:
1366// All InputSections that may need a Thunk are reachable from
1367// OutputSectionCommands.
1368//
1369// All OutputSections have an address and all InputSections have an offset
1370// within the OutputSection.
1371//
1372// The offsets between caller (relocation place) and callee
1373// (relocation target) will not be modified outside of createThunks().
1374//
1375// PostConditions:
1376// If return value is true then ThunkSections have been inserted into
1377// OutputSections. All relocations that needed a Thunk based on the information
1378// available to createThunks() on entry have been redirected to a Thunk. Note
1379// that adding Thunks changes offsets between caller and callee so more Thunks
1380// may be required.
1381//
1382// If return value is false then no more Thunks are needed, and createThunks has
1383// made no changes. If the target requires range extension thunks, currently
1384// ARM, then any future change in offset between caller and callee risks a
1385// relocation out of range error.
1386bool ThunkCreator::createThunks(ArrayRef<OutputSection *> OutputSections) {
1387 bool AddressesChanged = false;
1388 if (Pass == 0 && Target->ThunkSectionSpacing)
1389 createInitialThunkSections(OutputSections);
1390 else if (Pass == 10)
1391 // With Thunk Size much smaller than branch range we expect to
1392 // converge quickly; if we get to 10 something has gone wrong.
1393 fatal("thunk creation not converged");
1394
1395 // Create all the Thunks and insert them into synthetic ThunkSections. The
1396 // ThunkSections are later inserted back into InputSectionDescriptions.
1397 // We separate the creation of ThunkSections from the insertion of the
1398 // ThunkSections as ThunkSections are not always inserted into the same
1399 // InputSectionDescription as the caller.
1400 forEachInputSectionDescription(
1401 OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) {
1402 for (InputSection *IS : ISD->Sections)
1403 for (Relocation &Rel : IS->Relocations) {
1404 uint64_t Src = IS->getVA(Rel.Offset);
1405
1406 // If we are a relocation to an existing Thunk, check if it is
1407 // still in range. If not then Rel will be altered to point to its
1408 // original target so another Thunk can be generated.
1409 if (Pass > 0 && normalizeExistingThunk(Rel, Src))
1410 continue;
1411
1412 if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src,
1413 *Rel.Sym))
1414 continue;
1415 Thunk *T;
1416 bool IsNew;
1417 std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src);
1418 if (IsNew) {
1419 // Find or create a ThunkSection for the new Thunk
1420 ThunkSection *TS;
1421 if (auto *TIS = T->getTargetInputSection())
1422 TS = getISThunkSec(TIS);
1423 else
1424 TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src);
1425 TS->addThunk(T);
1426 Thunks[T->getThunkTargetSym()] = T;
1427 }
1428 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
1429 Rel.Sym = T->getThunkTargetSym();
1430 Rel.Expr = fromPlt(Rel.Expr);
1431 }
1432 for (auto &P : ISD->ThunkSections)
1433 AddressesChanged |= P.first->assignOffsets();
1434 });
1435 for (auto &P : ThunkedSections)
1436 AddressesChanged |= P.second->assignOffsets();
1437
1438 // Merge all created synthetic ThunkSections back into OutputSection
1439 mergeThunks(OutputSections);
1440 ++Pass;
1441 return AddressesChanged;
1442}
1443
1444template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
1445template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
1446template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
1447template void elf::scanRelocations<ELF64BE>(InputSectionBase &);