Bug Summary

File:lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 3342, column 32
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SLPVectorizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Transforms/Vectorize -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp -faddrsig
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/MapVector.h"
24#include "llvm/ADT/None.h"
25#include "llvm/ADT/Optional.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/iterator.h"
34#include "llvm/ADT/iterator_range.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/CodeMetrics.h"
37#include "llvm/Analysis/DemandedBits.h"
38#include "llvm/Analysis/GlobalsModRef.h"
39#include "llvm/Analysis/LoopAccessAnalysis.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/MemoryLocation.h"
42#include "llvm/Analysis/OptimizationRemarkEmitter.h"
43#include "llvm/Analysis/ScalarEvolution.h"
44#include "llvm/Analysis/ScalarEvolutionExpressions.h"
45#include "llvm/Analysis/TargetLibraryInfo.h"
46#include "llvm/Analysis/TargetTransformInfo.h"
47#include "llvm/Analysis/ValueTracking.h"
48#include "llvm/Analysis/VectorUtils.h"
49#include "llvm/IR/Attributes.h"
50#include "llvm/IR/BasicBlock.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
54#include "llvm/IR/DebugLoc.h"
55#include "llvm/IR/DerivedTypes.h"
56#include "llvm/IR/Dominators.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/IRBuilder.h"
59#include "llvm/IR/InstrTypes.h"
60#include "llvm/IR/Instruction.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/IR/IntrinsicInst.h"
63#include "llvm/IR/Intrinsics.h"
64#include "llvm/IR/Module.h"
65#include "llvm/IR/NoFolder.h"
66#include "llvm/IR/Operator.h"
67#include "llvm/IR/PassManager.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/IR/Type.h"
70#include "llvm/IR/Use.h"
71#include "llvm/IR/User.h"
72#include "llvm/IR/Value.h"
73#include "llvm/IR/ValueHandle.h"
74#include "llvm/IR/Verifier.h"
75#include "llvm/Pass.h"
76#include "llvm/Support/Casting.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Compiler.h"
79#include "llvm/Support/DOTGraphTraits.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Support/GraphWriter.h"
83#include "llvm/Support/KnownBits.h"
84#include "llvm/Support/MathExtras.h"
85#include "llvm/Support/raw_ostream.h"
86#include "llvm/Transforms/Utils/LoopUtils.h"
87#include "llvm/Transforms/Vectorize.h"
88#include <algorithm>
89#include <cassert>
90#include <cstdint>
91#include <iterator>
92#include <memory>
93#include <set>
94#include <string>
95#include <tuple>
96#include <utility>
97#include <vector>
98
99using namespace llvm;
100using namespace llvm::PatternMatch;
101using namespace slpvectorizer;
102
103#define SV_NAME"slp-vectorizer" "slp-vectorizer"
104#define DEBUG_TYPE"SLP" "SLP"
105
106STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated", {0}, {false}}
;
107
108cl::opt<bool>
109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
110 cl::desc("Run the SLP vectorization passes"));
111
112static cl::opt<int>
113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
114 cl::desc("Only vectorize if you gain more than this "
115 "number "));
116
117static cl::opt<bool>
118ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
119 cl::desc("Attempt to vectorize horizontal reductions"));
120
121static cl::opt<bool> ShouldStartVectorizeHorAtStore(
122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
123 cl::desc(
124 "Attempt to vectorize horizontal reductions feeding into a store"));
125
126static cl::opt<int>
127MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
128 cl::desc("Attempt to vectorize for this register size in bits"));
129
130/// Limits the size of scheduling regions in a block.
131/// It avoid long compile times for _very_ large blocks where vector
132/// instructions are spread over a wide range.
133/// This limit is way higher than needed by real-world functions.
134static cl::opt<int>
135ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
136 cl::desc("Limit the size of the SLP scheduling region per block"));
137
138static cl::opt<int> MinVectorRegSizeOption(
139 "slp-min-reg-size", cl::init(128), cl::Hidden,
140 cl::desc("Attempt to vectorize for this register size in bits"));
141
142static cl::opt<unsigned> RecursionMaxDepth(
143 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
144 cl::desc("Limit the recursion depth when building a vectorizable tree"));
145
146static cl::opt<unsigned> MinTreeSize(
147 "slp-min-tree-size", cl::init(3), cl::Hidden,
148 cl::desc("Only vectorize small trees if they are fully vectorizable"));
149
150static cl::opt<bool>
151 ViewSLPTree("view-slp-tree", cl::Hidden,
152 cl::desc("Display the SLP trees with Graphviz"));
153
154// Limit the number of alias checks. The limit is chosen so that
155// it has no negative effect on the llvm benchmarks.
156static const unsigned AliasedCheckLimit = 10;
157
158// Another limit for the alias checks: The maximum distance between load/store
159// instructions where alias checks are done.
160// This limit is useful for very large basic blocks.
161static const unsigned MaxMemDepDistance = 160;
162
163/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
164/// regions to be handled.
165static const int MinScheduleRegionSize = 16;
166
167/// Predicate for the element types that the SLP vectorizer supports.
168///
169/// The most important thing to filter here are types which are invalid in LLVM
170/// vectors. We also filter target specific types which have absolutely no
171/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
172/// avoids spending time checking the cost model and realizing that they will
173/// be inevitably scalarized.
174static bool isValidElementType(Type *Ty) {
175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
176 !Ty->isPPC_FP128Ty();
177}
178
179/// \returns true if all of the instructions in \p VL are in the same block or
180/// false otherwise.
181static bool allSameBlock(ArrayRef<Value *> VL) {
182 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
183 if (!I0)
184 return false;
185 BasicBlock *BB = I0->getParent();
186 for (int i = 1, e = VL.size(); i < e; i++) {
187 Instruction *I = dyn_cast<Instruction>(VL[i]);
188 if (!I)
189 return false;
190
191 if (BB != I->getParent())
192 return false;
193 }
194 return true;
195}
196
197/// \returns True if all of the values in \p VL are constants.
198static bool allConstant(ArrayRef<Value *> VL) {
199 for (Value *i : VL)
200 if (!isa<Constant>(i))
201 return false;
202 return true;
203}
204
205/// \returns True if all of the values in \p VL are identical.
206static bool isSplat(ArrayRef<Value *> VL) {
207 for (unsigned i = 1, e = VL.size(); i < e; ++i)
208 if (VL[i] != VL[0])
209 return false;
210 return true;
211}
212
213/// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
214static bool isCommutative(Instruction *I) {
215 if (auto *IC = dyn_cast<CmpInst>(I))
216 return IC->isCommutative();
217 return I->isCommutative();
218}
219
220/// Checks if the vector of instructions can be represented as a shuffle, like:
221/// %x0 = extractelement <4 x i8> %x, i32 0
222/// %x3 = extractelement <4 x i8> %x, i32 3
223/// %y1 = extractelement <4 x i8> %y, i32 1
224/// %y2 = extractelement <4 x i8> %y, i32 2
225/// %x0x0 = mul i8 %x0, %x0
226/// %x3x3 = mul i8 %x3, %x3
227/// %y1y1 = mul i8 %y1, %y1
228/// %y2y2 = mul i8 %y2, %y2
229/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
230/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
231/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
232/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
233/// ret <4 x i8> %ins4
234/// can be transformed into:
235/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
236/// i32 6>
237/// %2 = mul <4 x i8> %1, %1
238/// ret <4 x i8> %2
239/// We convert this initially to something like:
240/// %x0 = extractelement <4 x i8> %x, i32 0
241/// %x3 = extractelement <4 x i8> %x, i32 3
242/// %y1 = extractelement <4 x i8> %y, i32 1
243/// %y2 = extractelement <4 x i8> %y, i32 2
244/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
245/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
246/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
247/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
248/// %5 = mul <4 x i8> %4, %4
249/// %6 = extractelement <4 x i8> %5, i32 0
250/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
251/// %7 = extractelement <4 x i8> %5, i32 1
252/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
253/// %8 = extractelement <4 x i8> %5, i32 2
254/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
255/// %9 = extractelement <4 x i8> %5, i32 3
256/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
257/// ret <4 x i8> %ins4
258/// InstCombiner transforms this into a shuffle and vector mul
259/// TODO: Can we split off and reuse the shuffle mask detection from
260/// TargetTransformInfo::getInstructionThroughput?
261static Optional<TargetTransformInfo::ShuffleKind>
262isShuffle(ArrayRef<Value *> VL) {
263 auto *EI0 = cast<ExtractElementInst>(VL[0]);
264 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
265 Value *Vec1 = nullptr;
266 Value *Vec2 = nullptr;
267 enum ShuffleMode { Unknown, Select, Permute };
268 ShuffleMode CommonShuffleMode = Unknown;
269 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
270 auto *EI = cast<ExtractElementInst>(VL[I]);
271 auto *Vec = EI->getVectorOperand();
272 // All vector operands must have the same number of vector elements.
273 if (Vec->getType()->getVectorNumElements() != Size)
274 return None;
275 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
276 if (!Idx)
277 return None;
278 // Undefined behavior if Idx is negative or >= Size.
279 if (Idx->getValue().uge(Size))
280 continue;
281 unsigned IntIdx = Idx->getValue().getZExtValue();
282 // We can extractelement from undef vector.
283 if (isa<UndefValue>(Vec))
284 continue;
285 // For correct shuffling we have to have at most 2 different vector operands
286 // in all extractelement instructions.
287 if (!Vec1 || Vec1 == Vec)
288 Vec1 = Vec;
289 else if (!Vec2 || Vec2 == Vec)
290 Vec2 = Vec;
291 else
292 return None;
293 if (CommonShuffleMode == Permute)
294 continue;
295 // If the extract index is not the same as the operation number, it is a
296 // permutation.
297 if (IntIdx != I) {
298 CommonShuffleMode = Permute;
299 continue;
300 }
301 CommonShuffleMode = Select;
302 }
303 // If we're not crossing lanes in different vectors, consider it as blending.
304 if (CommonShuffleMode == Select && Vec2)
305 return TargetTransformInfo::SK_Select;
306 // If Vec2 was never used, we have a permutation of a single vector, otherwise
307 // we have permutation of 2 vectors.
308 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
309 : TargetTransformInfo::SK_PermuteSingleSrc;
310}
311
312namespace {
313
314/// Main data required for vectorization of instructions.
315struct InstructionsState {
316 /// The very first instruction in the list with the main opcode.
317 Value *OpValue = nullptr;
318
319 /// The main/alternate instruction.
320 Instruction *MainOp = nullptr;
321 Instruction *AltOp = nullptr;
322
323 /// The main/alternate opcodes for the list of instructions.
324 unsigned getOpcode() const {
325 return MainOp ? MainOp->getOpcode() : 0;
326 }
327
328 unsigned getAltOpcode() const {
329 return AltOp ? AltOp->getOpcode() : 0;
330 }
331
332 /// Some of the instructions in the list have alternate opcodes.
333 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
334
335 bool isOpcodeOrAlt(Instruction *I) const {
336 unsigned CheckedOpcode = I->getOpcode();
337 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
338 }
339
340 InstructionsState() = delete;
341 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
342 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
343};
344
345} // end anonymous namespace
346
347/// Chooses the correct key for scheduling data. If \p Op has the same (or
348/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
349/// OpValue.
350static Value *isOneOf(const InstructionsState &S, Value *Op) {
351 auto *I = dyn_cast<Instruction>(Op);
352 if (I && S.isOpcodeOrAlt(I))
353 return Op;
354 return S.OpValue;
355}
356
357/// \returns analysis of the Instructions in \p VL described in
358/// InstructionsState, the Opcode that we suppose the whole list
359/// could be vectorized even if its structure is diverse.
360static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
361 unsigned BaseIndex = 0) {
362 // Make sure these are all Instructions.
363 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
364 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
365
366 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
367 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
368 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
369 unsigned AltOpcode = Opcode;
370 unsigned AltIndex = BaseIndex;
371
372 // Check for one alternate opcode from another BinaryOperator.
373 // TODO - generalize to support all operators (types, calls etc.).
374 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
375 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
376 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
377 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
378 continue;
379 if (Opcode == AltOpcode) {
380 AltOpcode = InstOpcode;
381 AltIndex = Cnt;
382 continue;
383 }
384 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
385 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
386 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
387 if (Ty0 == Ty1) {
388 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
389 continue;
390 if (Opcode == AltOpcode) {
391 AltOpcode = InstOpcode;
392 AltIndex = Cnt;
393 continue;
394 }
395 }
396 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
397 continue;
398 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
399 }
400
401 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
402 cast<Instruction>(VL[AltIndex]));
403}
404
405/// \returns true if all of the values in \p VL have the same type or false
406/// otherwise.
407static bool allSameType(ArrayRef<Value *> VL) {
408 Type *Ty = VL[0]->getType();
409 for (int i = 1, e = VL.size(); i < e; i++)
410 if (VL[i]->getType() != Ty)
411 return false;
412
413 return true;
414}
415
416/// \returns True if Extract{Value,Element} instruction extracts element Idx.
417static Optional<unsigned> getExtractIndex(Instruction *E) {
418 unsigned Opcode = E->getOpcode();
419 assert((Opcode == Instruction::ExtractElement ||(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 421, __PRETTY_FUNCTION__))
420 Opcode == Instruction::ExtractValue) &&(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 421, __PRETTY_FUNCTION__))
421 "Expected extractelement or extractvalue instruction.")(((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) && "Expected extractelement or extractvalue instruction."
) ? static_cast<void> (0) : __assert_fail ("(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && \"Expected extractelement or extractvalue instruction.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 421, __PRETTY_FUNCTION__))
;
422 if (Opcode == Instruction::ExtractElement) {
423 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
424 if (!CI)
425 return None;
426 return CI->getZExtValue();
427 }
428 ExtractValueInst *EI = cast<ExtractValueInst>(E);
429 if (EI->getNumIndices() != 1)
430 return None;
431 return *EI->idx_begin();
432}
433
434/// \returns True if in-tree use also needs extract. This refers to
435/// possible scalar operand in vectorized instruction.
436static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
437 TargetLibraryInfo *TLI) {
438 unsigned Opcode = UserInst->getOpcode();
439 switch (Opcode) {
440 case Instruction::Load: {
441 LoadInst *LI = cast<LoadInst>(UserInst);
442 return (LI->getPointerOperand() == Scalar);
443 }
444 case Instruction::Store: {
445 StoreInst *SI = cast<StoreInst>(UserInst);
446 return (SI->getPointerOperand() == Scalar);
447 }
448 case Instruction::Call: {
449 CallInst *CI = cast<CallInst>(UserInst);
450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
452 if (hasVectorInstrinsicScalarOpd(ID, i))
453 return (CI->getArgOperand(i) == Scalar);
454 }
455 LLVM_FALLTHROUGH[[clang::fallthrough]];
456 }
457 default:
458 return false;
459 }
460}
461
462/// \returns the AA location that is being access by the instruction.
463static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
464 if (StoreInst *SI = dyn_cast<StoreInst>(I))
465 return MemoryLocation::get(SI);
466 if (LoadInst *LI = dyn_cast<LoadInst>(I))
467 return MemoryLocation::get(LI);
468 return MemoryLocation();
469}
470
471/// \returns True if the instruction is not a volatile or atomic load/store.
472static bool isSimple(Instruction *I) {
473 if (LoadInst *LI = dyn_cast<LoadInst>(I))
474 return LI->isSimple();
475 if (StoreInst *SI = dyn_cast<StoreInst>(I))
476 return SI->isSimple();
477 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
478 return !MI->isVolatile();
479 return true;
480}
481
482namespace llvm {
483
484namespace slpvectorizer {
485
486/// Bottom Up SLP Vectorizer.
487class BoUpSLP {
488 struct TreeEntry;
489
490public:
491 using ValueList = SmallVector<Value *, 8>;
492 using InstrList = SmallVector<Instruction *, 16>;
493 using ValueSet = SmallPtrSet<Value *, 16>;
494 using StoreList = SmallVector<StoreInst *, 8>;
495 using ExtraValueToDebugLocsMap =
496 MapVector<Value *, SmallVector<Instruction *, 2>>;
497
498 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
499 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
500 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
501 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
502 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
503 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
504 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
505 // Use the vector register size specified by the target unless overridden
506 // by a command-line option.
507 // TODO: It would be better to limit the vectorization factor based on
508 // data type rather than just register size. For example, x86 AVX has
509 // 256-bit registers, but it does not support integer operations
510 // at that width (that requires AVX2).
511 if (MaxVectorRegSizeOption.getNumOccurrences())
512 MaxVecRegSize = MaxVectorRegSizeOption;
513 else
514 MaxVecRegSize = TTI->getRegisterBitWidth(true);
515
516 if (MinVectorRegSizeOption.getNumOccurrences())
517 MinVecRegSize = MinVectorRegSizeOption;
518 else
519 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
520 }
521
522 /// Vectorize the tree that starts with the elements in \p VL.
523 /// Returns the vectorized root.
524 Value *vectorizeTree();
525
526 /// Vectorize the tree but with the list of externally used values \p
527 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
528 /// generated extractvalue instructions.
529 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
530
531 /// \returns the cost incurred by unwanted spills and fills, caused by
532 /// holding live values over call sites.
533 int getSpillCost() const;
534
535 /// \returns the vectorization cost of the subtree that starts at \p VL.
536 /// A negative number means that this is profitable.
537 int getTreeCost();
538
539 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
540 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
541 void buildTree(ArrayRef<Value *> Roots,
542 ArrayRef<Value *> UserIgnoreLst = None);
543
544 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
545 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
546 /// into account (anf updating it, if required) list of externally used
547 /// values stored in \p ExternallyUsedValues.
548 void buildTree(ArrayRef<Value *> Roots,
549 ExtraValueToDebugLocsMap &ExternallyUsedValues,
550 ArrayRef<Value *> UserIgnoreLst = None);
551
552 /// Clear the internal data structures that are created by 'buildTree'.
553 void deleteTree() {
554 VectorizableTree.clear();
555 ScalarToTreeEntry.clear();
556 MustGather.clear();
557 ExternalUses.clear();
558 NumOpsWantToKeepOrder.clear();
559 NumOpsWantToKeepOriginalOrder = 0;
560 for (auto &Iter : BlocksSchedules) {
561 BlockScheduling *BS = Iter.second.get();
562 BS->clear();
563 }
564 MinBWs.clear();
565 }
566
567 unsigned getTreeSize() const { return VectorizableTree.size(); }
568
569 /// Perform LICM and CSE on the newly generated gather sequences.
570 void optimizeGatherSequence();
571
572 /// \returns The best order of instructions for vectorization.
573 Optional<ArrayRef<unsigned>> bestOrder() const {
574 auto I = std::max_element(
575 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
576 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
577 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
578 return D1.second < D2.second;
579 });
580 if (I == NumOpsWantToKeepOrder.end() ||
581 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
582 return None;
583
584 return makeArrayRef(I->getFirst());
585 }
586
587 /// \return The vector element size in bits to use when vectorizing the
588 /// expression tree ending at \p V. If V is a store, the size is the width of
589 /// the stored value. Otherwise, the size is the width of the largest loaded
590 /// value reaching V. This method is used by the vectorizer to calculate
591 /// vectorization factors.
592 unsigned getVectorElementSize(Value *V) const;
593
594 /// Compute the minimum type sizes required to represent the entries in a
595 /// vectorizable tree.
596 void computeMinimumValueSizes();
597
598 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
599 unsigned getMaxVecRegSize() const {
600 return MaxVecRegSize;
601 }
602
603 // \returns minimum vector register size as set by cl::opt.
604 unsigned getMinVecRegSize() const {
605 return MinVecRegSize;
606 }
607
608 /// Check if ArrayType or StructType is isomorphic to some VectorType.
609 ///
610 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
611 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
612
613 /// \returns True if the VectorizableTree is both tiny and not fully
614 /// vectorizable. We do not vectorize such trees.
615 bool isTreeTinyAndNotFullyVectorizable() const;
616
617 OptimizationRemarkEmitter *getORE() { return ORE; }
618
619 /// This structure holds any data we need about the edges being traversed
620 /// during buildTree_rec(). We keep track of:
621 /// (i) the user TreeEntry index, and
622 /// (ii) the index of the edge.
623 struct EdgeInfo {
624 EdgeInfo() = default;
625 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
626 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
627 /// The user TreeEntry.
628 TreeEntry *UserTE = nullptr;
629 /// The operand index of the use.
630 unsigned EdgeIdx = UINT_MAX(2147483647 *2U +1U);
631#ifndef NDEBUG
632 friend inline raw_ostream &operator<<(raw_ostream &OS,
633 const BoUpSLP::EdgeInfo &EI) {
634 EI.dump(OS);
635 return OS;
636 }
637 /// Debug print.
638 void dump(raw_ostream &OS) const {
639 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
640 << " EdgeIdx:" << EdgeIdx << "}";
641 }
642 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { dump(dbgs()); }
643#endif
644 };
645
646 /// A helper data structure to hold the operands of a vector of instructions.
647 /// This supports a fixed vector length for all operand vectors.
648 class VLOperands {
649 /// For each operand we need (i) the value, and (ii) the opcode that it
650 /// would be attached to if the expression was in a left-linearized form.
651 /// This is required to avoid illegal operand reordering.
652 /// For example:
653 /// \verbatim
654 /// 0 Op1
655 /// |/
656 /// Op1 Op2 Linearized + Op2
657 /// \ / ----------> |/
658 /// - -
659 ///
660 /// Op1 - Op2 (0 + Op1) - Op2
661 /// \endverbatim
662 ///
663 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
664 ///
665 /// Another way to think of this is to track all the operations across the
666 /// path from the operand all the way to the root of the tree and to
667 /// calculate the operation that corresponds to this path. For example, the
668 /// path from Op2 to the root crosses the RHS of the '-', therefore the
669 /// corresponding operation is a '-' (which matches the one in the
670 /// linearized tree, as shown above).
671 ///
672 /// For lack of a better term, we refer to this operation as Accumulated
673 /// Path Operation (APO).
674 struct OperandData {
675 OperandData() = default;
676 OperandData(Value *V, bool APO, bool IsUsed)
677 : V(V), APO(APO), IsUsed(IsUsed) {}
678 /// The operand value.
679 Value *V = nullptr;
680 /// TreeEntries only allow a single opcode, or an alternate sequence of
681 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
682 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
683 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
684 /// (e.g., Add/Mul)
685 bool APO = false;
686 /// Helper data for the reordering function.
687 bool IsUsed = false;
688 };
689
690 /// During operand reordering, we are trying to select the operand at lane
691 /// that matches best with the operand at the neighboring lane. Our
692 /// selection is based on the type of value we are looking for. For example,
693 /// if the neighboring lane has a load, we need to look for a load that is
694 /// accessing a consecutive address. These strategies are summarized in the
695 /// 'ReorderingMode' enumerator.
696 enum class ReorderingMode {
697 Load, ///< Matching loads to consecutive memory addresses
698 Opcode, ///< Matching instructions based on opcode (same or alternate)
699 Constant, ///< Matching constants
700 Splat, ///< Matching the same instruction multiple times (broadcast)
701 Failed, ///< We failed to create a vectorizable group
702 };
703
704 using OperandDataVec = SmallVector<OperandData, 2>;
705
706 /// A vector of operand vectors.
707 SmallVector<OperandDataVec, 4> OpsVec;
708
709 const DataLayout &DL;
710 ScalarEvolution &SE;
711
712 /// \returns the operand data at \p OpIdx and \p Lane.
713 OperandData &getData(unsigned OpIdx, unsigned Lane) {
714 return OpsVec[OpIdx][Lane];
715 }
716
717 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
718 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
719 return OpsVec[OpIdx][Lane];
720 }
721
722 /// Clears the used flag for all entries.
723 void clearUsed() {
724 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
725 OpIdx != NumOperands; ++OpIdx)
726 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
727 ++Lane)
728 OpsVec[OpIdx][Lane].IsUsed = false;
729 }
730
731 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
732 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
733 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
734 }
735
736 // Search all operands in Ops[*][Lane] for the one that matches best
737 // Ops[OpIdx][LastLane] and return its opreand index.
738 // If no good match can be found, return None.
739 Optional<unsigned>
740 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
741 ArrayRef<ReorderingMode> ReorderingModes) {
742 unsigned NumOperands = getNumOperands();
743
744 // The operand of the previous lane at OpIdx.
745 Value *OpLastLane = getData(OpIdx, LastLane).V;
746
747 // Our strategy mode for OpIdx.
748 ReorderingMode RMode = ReorderingModes[OpIdx];
749
750 // The linearized opcode of the operand at OpIdx, Lane.
751 bool OpIdxAPO = getData(OpIdx, Lane).APO;
752
753 const unsigned BestScore = 2;
754 const unsigned GoodScore = 1;
755
756 // The best operand index and its score.
757 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
758 // are using the score to differentiate between the two.
759 struct BestOpData {
760 Optional<unsigned> Idx = None;
761 unsigned Score = 0;
762 } BestOp;
763
764 // Iterate through all unused operands and look for the best.
765 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
766 // Get the operand at Idx and Lane.
767 OperandData &OpData = getData(Idx, Lane);
768 Value *Op = OpData.V;
769 bool OpAPO = OpData.APO;
770
771 // Skip already selected operands.
772 if (OpData.IsUsed)
773 continue;
774
775 // Skip if we are trying to move the operand to a position with a
776 // different opcode in the linearized tree form. This would break the
777 // semantics.
778 if (OpAPO != OpIdxAPO)
779 continue;
780
781 // Look for an operand that matches the current mode.
782 switch (RMode) {
783 case ReorderingMode::Load:
784 if (isa<LoadInst>(Op)) {
785 // Figure out which is left and right, so that we can check for
786 // consecutive loads
787 bool LeftToRight = Lane > LastLane;
788 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
789 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
790 if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
791 cast<LoadInst>(OpRight), DL, SE))
792 BestOp.Idx = Idx;
793 }
794 break;
795 case ReorderingMode::Opcode:
796 // We accept both Instructions and Undefs, but with different scores.
797 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
798 cast<Instruction>(Op)->getOpcode() ==
799 cast<Instruction>(OpLastLane)->getOpcode()) ||
800 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
801 isa<UndefValue>(Op)) {
802 // An instruction has a higher score than an undef.
803 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
804 if (Score > BestOp.Score) {
805 BestOp.Idx = Idx;
806 BestOp.Score = Score;
807 }
808 }
809 break;
810 case ReorderingMode::Constant:
811 if (isa<Constant>(Op)) {
812 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
813 if (Score > BestOp.Score) {
814 BestOp.Idx = Idx;
815 BestOp.Score = Score;
816 }
817 }
818 break;
819 case ReorderingMode::Splat:
820 if (Op == OpLastLane)
821 BestOp.Idx = Idx;
822 break;
823 case ReorderingMode::Failed:
824 return None;
825 }
826 }
827
828 if (BestOp.Idx) {
829 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
830 return BestOp.Idx;
831 }
832 // If we could not find a good match return None.
833 return None;
834 }
835
836 /// Helper for reorderOperandVecs. \Returns the lane that we should start
837 /// reordering from. This is the one which has the least number of operands
838 /// that can freely move about.
839 unsigned getBestLaneToStartReordering() const {
840 unsigned BestLane = 0;
841 unsigned Min = UINT_MAX(2147483647 *2U +1U);
842 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
843 ++Lane) {
844 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
845 if (NumFreeOps < Min) {
846 Min = NumFreeOps;
847 BestLane = Lane;
848 }
849 }
850 return BestLane;
851 }
852
853 /// \Returns the maximum number of operands that are allowed to be reordered
854 /// for \p Lane. This is used as a heuristic for selecting the first lane to
855 /// start operand reordering.
856 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
857 unsigned CntTrue = 0;
858 unsigned NumOperands = getNumOperands();
859 // Operands with the same APO can be reordered. We therefore need to count
860 // how many of them we have for each APO, like this: Cnt[APO] = x.
861 // Since we only have two APOs, namely true and false, we can avoid using
862 // a map. Instead we can simply count the number of operands that
863 // correspond to one of them (in this case the 'true' APO), and calculate
864 // the other by subtracting it from the total number of operands.
865 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
866 if (getData(OpIdx, Lane).APO)
867 ++CntTrue;
868 unsigned CntFalse = NumOperands - CntTrue;
869 return std::max(CntTrue, CntFalse);
870 }
871
872 /// Go through the instructions in VL and append their operands.
873 void appendOperandsOfVL(ArrayRef<Value *> VL) {
874 assert(!VL.empty() && "Bad VL")((!VL.empty() && "Bad VL") ? static_cast<void> (
0) : __assert_fail ("!VL.empty() && \"Bad VL\"", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 874, __PRETTY_FUNCTION__))
;
875 assert((empty() || VL.size() == getNumLanes()) &&(((empty() || VL.size() == getNumLanes()) && "Expected same number of lanes"
) ? static_cast<void> (0) : __assert_fail ("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 876, __PRETTY_FUNCTION__))
876 "Expected same number of lanes")(((empty() || VL.size() == getNumLanes()) && "Expected same number of lanes"
) ? static_cast<void> (0) : __assert_fail ("(empty() || VL.size() == getNumLanes()) && \"Expected same number of lanes\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 876, __PRETTY_FUNCTION__))
;
877 assert(isa<Instruction>(VL[0]) && "Expected instruction")((isa<Instruction>(VL[0]) && "Expected instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(VL[0]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 877, __PRETTY_FUNCTION__))
;
878 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
879 OpsVec.resize(NumOperands);
880 unsigned NumLanes = VL.size();
881 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
882 OpsVec[OpIdx].resize(NumLanes);
883 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
884 assert(isa<Instruction>(VL[Lane]) && "Expected instruction")((isa<Instruction>(VL[Lane]) && "Expected instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(VL[Lane]) && \"Expected instruction\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 884, __PRETTY_FUNCTION__))
;
885 // Our tree has just 3 nodes: the root and two operands.
886 // It is therefore trivial to get the APO. We only need to check the
887 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
888 // RHS operand. The LHS operand of both add and sub is never attached
889 // to an inversese operation in the linearized form, therefore its APO
890 // is false. The RHS is true only if VL[Lane] is an inverse operation.
891
892 // Since operand reordering is performed on groups of commutative
893 // operations or alternating sequences (e.g., +, -), we can safely
894 // tell the inverse operations by checking commutativity.
895 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
896 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
897 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
898 APO, false};
899 }
900 }
901 }
902
903 /// \returns the number of operands.
904 unsigned getNumOperands() const { return OpsVec.size(); }
905
906 /// \returns the number of lanes.
907 unsigned getNumLanes() const { return OpsVec[0].size(); }
908
909 /// \returns the operand value at \p OpIdx and \p Lane.
910 Value *getValue(unsigned OpIdx, unsigned Lane) const {
911 return getData(OpIdx, Lane).V;
912 }
913
914 /// \returns true if the data structure is empty.
915 bool empty() const { return OpsVec.empty(); }
916
917 /// Clears the data.
918 void clear() { OpsVec.clear(); }
919
920 public:
921 /// Initialize with all the operands of the instruction vector \p RootVL.
922 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
923 ScalarEvolution &SE)
924 : DL(DL), SE(SE) {
925 // Append all the operands of RootVL.
926 appendOperandsOfVL(RootVL);
927 }
928
929 /// \Returns a value vector with the operands across all lanes for the
930 /// opearnd at \p OpIdx.
931 ValueList getVL(unsigned OpIdx) const {
932 ValueList OpVL(OpsVec[OpIdx].size());
933 assert(OpsVec[OpIdx].size() == getNumLanes() &&((OpsVec[OpIdx].size() == getNumLanes() && "Expected same num of lanes across all operands"
) ? static_cast<void> (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 934, __PRETTY_FUNCTION__))
934 "Expected same num of lanes across all operands")((OpsVec[OpIdx].size() == getNumLanes() && "Expected same num of lanes across all operands"
) ? static_cast<void> (0) : __assert_fail ("OpsVec[OpIdx].size() == getNumLanes() && \"Expected same num of lanes across all operands\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 934, __PRETTY_FUNCTION__))
;
935 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
936 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
937 return OpVL;
938 }
939
940 // Performs operand reordering for 2 or more operands.
941 // The original operands are in OrigOps[OpIdx][Lane].
942 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
943 void reorder() {
944 unsigned NumOperands = getNumOperands();
945 unsigned NumLanes = getNumLanes();
946 // Each operand has its own mode. We are using this mode to help us select
947 // the instructions for each lane, so that they match best with the ones
948 // we have selected so far.
949 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
950
951 // This is a greedy single-pass algorithm. We are going over each lane
952 // once and deciding on the best order right away with no back-tracking.
953 // However, in order to increase its effectiveness, we start with the lane
954 // that has operands that can move the least. For example, given the
955 // following lanes:
956 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
957 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
958 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
959 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
960 // we will start at Lane 1, since the operands of the subtraction cannot
961 // be reordered. Then we will visit the rest of the lanes in a circular
962 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
963
964 // Find the first lane that we will start our search from.
965 unsigned FirstLane = getBestLaneToStartReordering();
966
967 // Initialize the modes.
968 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
969 Value *OpLane0 = getValue(OpIdx, FirstLane);
970 // Keep track if we have instructions with all the same opcode on one
971 // side.
972 if (isa<LoadInst>(OpLane0))
973 ReorderingModes[OpIdx] = ReorderingMode::Load;
974 else if (isa<Instruction>(OpLane0))
975 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
976 else if (isa<Constant>(OpLane0))
977 ReorderingModes[OpIdx] = ReorderingMode::Constant;
978 else if (isa<Argument>(OpLane0))
979 // Our best hope is a Splat. It may save some cost in some cases.
980 ReorderingModes[OpIdx] = ReorderingMode::Splat;
981 else
982 // NOTE: This should be unreachable.
983 ReorderingModes[OpIdx] = ReorderingMode::Failed;
984 }
985
986 // If the initial strategy fails for any of the operand indexes, then we
987 // perform reordering again in a second pass. This helps avoid assigning
988 // high priority to the failed strategy, and should improve reordering for
989 // the non-failed operand indexes.
990 for (int Pass = 0; Pass != 2; ++Pass) {
991 // Skip the second pass if the first pass did not fail.
992 bool StrategyFailed = false;
993 // Mark the operand data as free to use for all but the first pass.
994 if (Pass > 0)
995 clearUsed();
996 // We keep the original operand order for the FirstLane, so reorder the
997 // rest of the lanes. We are visiting the nodes in a circular fashion,
998 // using FirstLane as the center point and increasing the radius
999 // distance.
1000 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1001 // Visit the lane on the right and then the lane on the left.
1002 for (int Direction : {+1, -1}) {
1003 int Lane = FirstLane + Direction * Distance;
1004 if (Lane < 0 || Lane >= (int)NumLanes)
1005 continue;
1006 int LastLane = Lane - Direction;
1007 assert(LastLane >= 0 && LastLane < (int)NumLanes &&((LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds") ? static_cast<void> (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1008, __PRETTY_FUNCTION__))
1008 "Out of bounds")((LastLane >= 0 && LastLane < (int)NumLanes &&
"Out of bounds") ? static_cast<void> (0) : __assert_fail
("LastLane >= 0 && LastLane < (int)NumLanes && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1008, __PRETTY_FUNCTION__))
;
1009 // Look for a good match for each operand.
1010 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1011 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1012 Optional<unsigned> BestIdx =
1013 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1014 // By not selecting a value, we allow the operands that follow to
1015 // select a better matching value. We will get a non-null value in
1016 // the next run of getBestOperand().
1017 if (BestIdx) {
1018 // Swap the current operand with the one returned by
1019 // getBestOperand().
1020 swap(OpIdx, BestIdx.getValue(), Lane);
1021 } else {
1022 // We failed to find a best operand, set mode to 'Failed'.
1023 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1024 // Enable the second pass.
1025 StrategyFailed = true;
1026 }
1027 }
1028 }
1029 }
1030 // Skip second pass if the strategy did not fail.
1031 if (!StrategyFailed)
1032 break;
1033 }
1034 }
1035
1036#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1037 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static StringRef getModeStr(ReorderingMode RMode) {
1038 switch (RMode) {
1039 case ReorderingMode::Load:
1040 return "Load";
1041 case ReorderingMode::Opcode:
1042 return "Opcode";
1043 case ReorderingMode::Constant:
1044 return "Constant";
1045 case ReorderingMode::Splat:
1046 return "Splat";
1047 case ReorderingMode::Failed:
1048 return "Failed";
1049 }
1050 llvm_unreachable("Unimplemented Reordering Type")::llvm::llvm_unreachable_internal("Unimplemented Reordering Type"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1050)
;
1051 }
1052
1053 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static raw_ostream &printMode(ReorderingMode RMode,
1054 raw_ostream &OS) {
1055 return OS << getModeStr(RMode);
1056 }
1057
1058 /// Debug print.
1059 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) static void dumpMode(ReorderingMode RMode) {
1060 printMode(RMode, dbgs());
1061 }
1062
1063 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1064 return printMode(RMode, OS);
1065 }
1066
1067 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) raw_ostream &print(raw_ostream &OS) const {
1068 const unsigned Indent = 2;
1069 unsigned Cnt = 0;
1070 for (const OperandDataVec &OpDataVec : OpsVec) {
1071 OS << "Operand " << Cnt++ << "\n";
1072 for (const OperandData &OpData : OpDataVec) {
1073 OS.indent(Indent) << "{";
1074 if (Value *V = OpData.V)
1075 OS << *V;
1076 else
1077 OS << "null";
1078 OS << ", APO:" << OpData.APO << "}\n";
1079 }
1080 OS << "\n";
1081 }
1082 return OS;
1083 }
1084
1085 /// Debug print.
1086 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
1087#endif
1088 };
1089
1090private:
1091 /// Checks if all users of \p I are the part of the vectorization tree.
1092 bool areAllUsersVectorized(Instruction *I) const;
1093
1094 /// \returns the cost of the vectorizable entry.
1095 int getEntryCost(TreeEntry *E);
1096
1097 /// This is the recursive part of buildTree.
1098 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1099 const EdgeInfo &EI);
1100
1101 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1102 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1103 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1104 /// returns false, setting \p CurrentOrder to either an empty vector or a
1105 /// non-identity permutation that allows to reuse extract instructions.
1106 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1107 SmallVectorImpl<unsigned> &CurrentOrder) const;
1108
1109 /// Vectorize a single entry in the tree.
1110 Value *vectorizeTree(TreeEntry *E);
1111
1112 /// Vectorize a single entry in the tree, starting in \p VL.
1113 Value *vectorizeTree(ArrayRef<Value *> VL);
1114
1115 /// \returns the scalarization cost for this type. Scalarization in this
1116 /// context means the creation of vectors from a group of scalars.
1117 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1118
1119 /// \returns the scalarization cost for this list of values. Assuming that
1120 /// this subtree gets vectorized, we may need to extract the values from the
1121 /// roots. This method calculates the cost of extracting the values.
1122 int getGatherCost(ArrayRef<Value *> VL) const;
1123
1124 /// Set the Builder insert point to one after the last instruction in
1125 /// the bundle
1126 void setInsertPointAfterBundle(ArrayRef<Value *> VL,
1127 const InstructionsState &S);
1128
1129 /// \returns a vector from a collection of scalars in \p VL.
1130 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1131
1132 /// \returns whether the VectorizableTree is fully vectorizable and will
1133 /// be beneficial even the tree height is tiny.
1134 bool isFullyVectorizableTinyTree() const;
1135
1136 /// Reorder commutative or alt operands to get better probability of
1137 /// generating vectorized code.
1138 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1139 SmallVectorImpl<Value *> &Left,
1140 SmallVectorImpl<Value *> &Right,
1141 const DataLayout &DL,
1142 ScalarEvolution &SE);
1143 struct TreeEntry {
1144 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1145 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1146
1147 /// \returns true if the scalars in VL are equal to this entry.
1148 bool isSame(ArrayRef<Value *> VL) const {
1149 if (VL.size() == Scalars.size())
1150 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1151 return VL.size() == ReuseShuffleIndices.size() &&
1152 std::equal(
1153 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1154 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1155 }
1156
1157 /// A vector of scalars.
1158 ValueList Scalars;
1159
1160 /// The Scalars are vectorized into this value. It is initialized to Null.
1161 Value *VectorizedValue = nullptr;
1162
1163 /// Do we need to gather this sequence ?
1164 bool NeedToGather = false;
1165
1166 /// Does this sequence require some shuffling?
1167 SmallVector<unsigned, 4> ReuseShuffleIndices;
1168
1169 /// Does this entry require reordering?
1170 ArrayRef<unsigned> ReorderIndices;
1171
1172 /// Points back to the VectorizableTree.
1173 ///
1174 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1175 /// to be a pointer and needs to be able to initialize the child iterator.
1176 /// Thus we need a reference back to the container to translate the indices
1177 /// to entries.
1178 VecTreeTy &Container;
1179
1180 /// The TreeEntry index containing the user of this entry. We can actually
1181 /// have multiple users so the data structure is not truly a tree.
1182 SmallVector<EdgeInfo, 1> UserTreeIndices;
1183
1184 /// The index of this treeEntry in VectorizableTree.
1185 int Idx = -1;
1186
1187 private:
1188 /// The operands of each instruction in each lane Operands[op_index][lane].
1189 /// Note: This helps avoid the replication of the code that performs the
1190 /// reordering of operands during buildTree_rec() and vectorizeTree().
1191 SmallVector<ValueList, 2> Operands;
1192
1193 public:
1194 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1195 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL,
1196 ArrayRef<unsigned> ReuseShuffleIndices) {
1197 if (Operands.size() < OpIdx + 1)
1198 Operands.resize(OpIdx + 1);
1199 assert(Operands[OpIdx].size() == 0 && "Already resized?")((Operands[OpIdx].size() == 0 && "Already resized?") ?
static_cast<void> (0) : __assert_fail ("Operands[OpIdx].size() == 0 && \"Already resized?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1199, __PRETTY_FUNCTION__))
;
1200 Operands[OpIdx].resize(Scalars.size());
1201 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1202 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty())
1203 ? OpVL[ReuseShuffleIndices[Lane]]
1204 : OpVL[Lane];
1205 }
1206
1207 /// If there is a user TreeEntry, then set its operand.
1208 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx,
1209 ArrayRef<Value *> OpVL,
1210 ArrayRef<unsigned> ReuseShuffleIndices) {
1211 if (UserTreeIdx.UserTE)
1212 UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL,
1213 ReuseShuffleIndices);
1214 }
1215
1216 /// \returns the \p OpIdx operand of this TreeEntry.
1217 ValueList &getOperand(unsigned OpIdx) {
1218 assert(OpIdx < Operands.size() && "Off bounds")((OpIdx < Operands.size() && "Off bounds") ? static_cast
<void> (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1218, __PRETTY_FUNCTION__))
;
1219 return Operands[OpIdx];
1220 }
1221
1222 /// \return the single \p OpIdx operand.
1223 Value *getSingleOperand(unsigned OpIdx) const {
1224 assert(OpIdx < Operands.size() && "Off bounds")((OpIdx < Operands.size() && "Off bounds") ? static_cast
<void> (0) : __assert_fail ("OpIdx < Operands.size() && \"Off bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1224, __PRETTY_FUNCTION__))
;
1225 assert(!Operands[OpIdx].empty() && "No operand availabe")((!Operands[OpIdx].empty() && "No operand availabe") ?
static_cast<void> (0) : __assert_fail ("!Operands[OpIdx].empty() && \"No operand availabe\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1225, __PRETTY_FUNCTION__))
;
1226 return Operands[OpIdx][0];
1227 }
1228
1229#ifndef NDEBUG
1230 /// Debug printer.
1231 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const {
1232 dbgs() << Idx << ".\n";
1233 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1234 dbgs() << "Operand " << OpI << ":\n";
1235 for (const Value *V : Operands[OpI])
1236 dbgs().indent(2) << *V << "\n";
1237 }
1238 dbgs() << "Scalars: \n";
1239 for (Value *V : Scalars)
1240 dbgs().indent(2) << *V << "\n";
1241 dbgs() << "NeedToGather: " << NeedToGather << "\n";
1242 dbgs() << "VectorizedValue: ";
1243 if (VectorizedValue)
1244 dbgs() << *VectorizedValue;
1245 else
1246 dbgs() << "NULL";
1247 dbgs() << "\n";
1248 dbgs() << "ReuseShuffleIndices: ";
1249 if (ReuseShuffleIndices.empty())
1250 dbgs() << "Emtpy";
1251 else
1252 for (unsigned Idx : ReuseShuffleIndices)
1253 dbgs() << Idx << ", ";
1254 dbgs() << "\n";
1255 dbgs() << "ReorderIndices: ";
1256 for (unsigned Idx : ReorderIndices)
1257 dbgs() << Idx << ", ";
1258 dbgs() << "\n";
1259 dbgs() << "UserTreeIndices: ";
1260 for (const auto &EInfo : UserTreeIndices)
1261 dbgs() << EInfo << ", ";
1262 dbgs() << "\n";
1263 }
1264#endif
1265 };
1266
1267 /// Create a new VectorizableTree entry.
1268 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
1269 const EdgeInfo &UserTreeIdx,
1270 ArrayRef<unsigned> ReuseShuffleIndices = None,
1271 ArrayRef<unsigned> ReorderIndices = None) {
1272 VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree));
1273 TreeEntry *Last = VectorizableTree.back().get();
1274 Last->Idx = VectorizableTree.size() - 1;
1275 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1276 Last->NeedToGather = !Vectorized;
1277 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1278 ReuseShuffleIndices.end());
1279 Last->ReorderIndices = ReorderIndices;
1280 if (Vectorized) {
1281 for (int i = 0, e = VL.size(); i != e; ++i) {
1282 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!")((!getTreeEntry(VL[i]) && "Scalar already in tree!") ?
static_cast<void> (0) : __assert_fail ("!getTreeEntry(VL[i]) && \"Scalar already in tree!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1282, __PRETTY_FUNCTION__))
;
1283 ScalarToTreeEntry[VL[i]] = Last->Idx;
1284 }
1285 } else {
1286 MustGather.insert(VL.begin(), VL.end());
1287 }
1288
1289 if (UserTreeIdx.UserTE)
1290 Last->UserTreeIndices.push_back(UserTreeIdx);
1291
1292 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices);
1293 return Last;
1294 }
1295
1296 /// -- Vectorization State --
1297 /// Holds all of the tree entries.
1298 TreeEntry::VecTreeTy VectorizableTree;
1299
1300#ifndef NDEBUG
1301 /// Debug printer.
1302 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dumpVectorizableTree() const {
1303 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1304 VectorizableTree[Id]->dump();
1305 dbgs() << "\n";
1306 }
1307 }
1308#endif
1309
1310 TreeEntry *getTreeEntry(Value *V) {
1311 auto I = ScalarToTreeEntry.find(V);
1312 if (I != ScalarToTreeEntry.end())
1313 return VectorizableTree[I->second].get();
1314 return nullptr;
1315 }
1316
1317 const TreeEntry *getTreeEntry(Value *V) const {
1318 auto I = ScalarToTreeEntry.find(V);
1319 if (I != ScalarToTreeEntry.end())
1320 return VectorizableTree[I->second].get();
1321 return nullptr;
1322 }
1323
1324 /// Maps a specific scalar to its tree entry.
1325 SmallDenseMap<Value*, int> ScalarToTreeEntry;
1326
1327 /// A list of scalars that we found that we need to keep as scalars.
1328 ValueSet MustGather;
1329
1330 /// This POD struct describes one external user in the vectorized tree.
1331 struct ExternalUser {
1332 ExternalUser(Value *S, llvm::User *U, int L)
1333 : Scalar(S), User(U), Lane(L) {}
1334
1335 // Which scalar in our function.
1336 Value *Scalar;
1337
1338 // Which user that uses the scalar.
1339 llvm::User *User;
1340
1341 // Which lane does the scalar belong to.
1342 int Lane;
1343 };
1344 using UserList = SmallVector<ExternalUser, 16>;
1345
1346 /// Checks if two instructions may access the same memory.
1347 ///
1348 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1349 /// is invariant in the calling loop.
1350 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1351 Instruction *Inst2) {
1352 // First check if the result is already in the cache.
1353 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1354 Optional<bool> &result = AliasCache[key];
1355 if (result.hasValue()) {
1356 return result.getValue();
1357 }
1358 MemoryLocation Loc2 = getLocation(Inst2, AA);
1359 bool aliased = true;
1360 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1361 // Do the alias check.
1362 aliased = AA->alias(Loc1, Loc2);
1363 }
1364 // Store the result in the cache.
1365 result = aliased;
1366 return aliased;
1367 }
1368
1369 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1370
1371 /// Cache for alias results.
1372 /// TODO: consider moving this to the AliasAnalysis itself.
1373 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1374
1375 /// Removes an instruction from its block and eventually deletes it.
1376 /// It's like Instruction::eraseFromParent() except that the actual deletion
1377 /// is delayed until BoUpSLP is destructed.
1378 /// This is required to ensure that there are no incorrect collisions in the
1379 /// AliasCache, which can happen if a new instruction is allocated at the
1380 /// same address as a previously deleted instruction.
1381 void eraseInstruction(Instruction *I) {
1382 I->removeFromParent();
1383 I->dropAllReferences();
1384 DeletedInstructions.emplace_back(I);
1385 }
1386
1387 /// Temporary store for deleted instructions. Instructions will be deleted
1388 /// eventually when the BoUpSLP is destructed.
1389 SmallVector<unique_value, 8> DeletedInstructions;
1390
1391 /// A list of values that need to extracted out of the tree.
1392 /// This list holds pairs of (Internal Scalar : External User). External User
1393 /// can be nullptr, it means that this Internal Scalar will be used later,
1394 /// after vectorization.
1395 UserList ExternalUses;
1396
1397 /// Values used only by @llvm.assume calls.
1398 SmallPtrSet<const Value *, 32> EphValues;
1399
1400 /// Holds all of the instructions that we gathered.
1401 SetVector<Instruction *> GatherSeq;
1402
1403 /// A list of blocks that we are going to CSE.
1404 SetVector<BasicBlock *> CSEBlocks;
1405
1406 /// Contains all scheduling relevant data for an instruction.
1407 /// A ScheduleData either represents a single instruction or a member of an
1408 /// instruction bundle (= a group of instructions which is combined into a
1409 /// vector instruction).
1410 struct ScheduleData {
1411 // The initial value for the dependency counters. It means that the
1412 // dependencies are not calculated yet.
1413 enum { InvalidDeps = -1 };
1414
1415 ScheduleData() = default;
1416
1417 void init(int BlockSchedulingRegionID, Value *OpVal) {
1418 FirstInBundle = this;
1419 NextInBundle = nullptr;
1420 NextLoadStore = nullptr;
1421 IsScheduled = false;
1422 SchedulingRegionID = BlockSchedulingRegionID;
1423 UnscheduledDepsInBundle = UnscheduledDeps;
1424 clearDependencies();
1425 OpValue = OpVal;
1426 }
1427
1428 /// Returns true if the dependency information has been calculated.
1429 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1430
1431 /// Returns true for single instructions and for bundle representatives
1432 /// (= the head of a bundle).
1433 bool isSchedulingEntity() const { return FirstInBundle == this; }
1434
1435 /// Returns true if it represents an instruction bundle and not only a
1436 /// single instruction.
1437 bool isPartOfBundle() const {
1438 return NextInBundle != nullptr || FirstInBundle != this;
1439 }
1440
1441 /// Returns true if it is ready for scheduling, i.e. it has no more
1442 /// unscheduled depending instructions/bundles.
1443 bool isReady() const {
1444 assert(isSchedulingEntity() &&((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1445, __PRETTY_FUNCTION__))
1445 "can't consider non-scheduling entity for ready list")((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1445, __PRETTY_FUNCTION__))
;
1446 return UnscheduledDepsInBundle == 0 && !IsScheduled;
1447 }
1448
1449 /// Modifies the number of unscheduled dependencies, also updating it for
1450 /// the whole bundle.
1451 int incrementUnscheduledDeps(int Incr) {
1452 UnscheduledDeps += Incr;
1453 return FirstInBundle->UnscheduledDepsInBundle += Incr;
1454 }
1455
1456 /// Sets the number of unscheduled dependencies to the number of
1457 /// dependencies.
1458 void resetUnscheduledDeps() {
1459 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1460 }
1461
1462 /// Clears all dependency information.
1463 void clearDependencies() {
1464 Dependencies = InvalidDeps;
1465 resetUnscheduledDeps();
1466 MemoryDependencies.clear();
1467 }
1468
1469 void dump(raw_ostream &os) const {
1470 if (!isSchedulingEntity()) {
1471 os << "/ " << *Inst;
1472 } else if (NextInBundle) {
1473 os << '[' << *Inst;
1474 ScheduleData *SD = NextInBundle;
1475 while (SD) {
1476 os << ';' << *SD->Inst;
1477 SD = SD->NextInBundle;
1478 }
1479 os << ']';
1480 } else {
1481 os << *Inst;
1482 }
1483 }
1484
1485 Instruction *Inst = nullptr;
1486
1487 /// Points to the head in an instruction bundle (and always to this for
1488 /// single instructions).
1489 ScheduleData *FirstInBundle = nullptr;
1490
1491 /// Single linked list of all instructions in a bundle. Null if it is a
1492 /// single instruction.
1493 ScheduleData *NextInBundle = nullptr;
1494
1495 /// Single linked list of all memory instructions (e.g. load, store, call)
1496 /// in the block - until the end of the scheduling region.
1497 ScheduleData *NextLoadStore = nullptr;
1498
1499 /// The dependent memory instructions.
1500 /// This list is derived on demand in calculateDependencies().
1501 SmallVector<ScheduleData *, 4> MemoryDependencies;
1502
1503 /// This ScheduleData is in the current scheduling region if this matches
1504 /// the current SchedulingRegionID of BlockScheduling.
1505 int SchedulingRegionID = 0;
1506
1507 /// Used for getting a "good" final ordering of instructions.
1508 int SchedulingPriority = 0;
1509
1510 /// The number of dependencies. Constitutes of the number of users of the
1511 /// instruction plus the number of dependent memory instructions (if any).
1512 /// This value is calculated on demand.
1513 /// If InvalidDeps, the number of dependencies is not calculated yet.
1514 int Dependencies = InvalidDeps;
1515
1516 /// The number of dependencies minus the number of dependencies of scheduled
1517 /// instructions. As soon as this is zero, the instruction/bundle gets ready
1518 /// for scheduling.
1519 /// Note that this is negative as long as Dependencies is not calculated.
1520 int UnscheduledDeps = InvalidDeps;
1521
1522 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1523 /// single instructions.
1524 int UnscheduledDepsInBundle = InvalidDeps;
1525
1526 /// True if this instruction is scheduled (or considered as scheduled in the
1527 /// dry-run).
1528 bool IsScheduled = false;
1529
1530 /// Opcode of the current instruction in the schedule data.
1531 Value *OpValue = nullptr;
1532 };
1533
1534#ifndef NDEBUG
1535 friend inline raw_ostream &operator<<(raw_ostream &os,
1536 const BoUpSLP::ScheduleData &SD) {
1537 SD.dump(os);
1538 return os;
1539 }
1540#endif
1541
1542 friend struct GraphTraits<BoUpSLP *>;
1543 friend struct DOTGraphTraits<BoUpSLP *>;
1544
1545 /// Contains all scheduling data for a basic block.
1546 struct BlockScheduling {
1547 BlockScheduling(BasicBlock *BB)
1548 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1549
1550 void clear() {
1551 ReadyInsts.clear();
1552 ScheduleStart = nullptr;
1553 ScheduleEnd = nullptr;
1554 FirstLoadStoreInRegion = nullptr;
1555 LastLoadStoreInRegion = nullptr;
1556
1557 // Reduce the maximum schedule region size by the size of the
1558 // previous scheduling run.
1559 ScheduleRegionSizeLimit -= ScheduleRegionSize;
1560 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1561 ScheduleRegionSizeLimit = MinScheduleRegionSize;
1562 ScheduleRegionSize = 0;
1563
1564 // Make a new scheduling region, i.e. all existing ScheduleData is not
1565 // in the new region yet.
1566 ++SchedulingRegionID;
1567 }
1568
1569 ScheduleData *getScheduleData(Value *V) {
1570 ScheduleData *SD = ScheduleDataMap[V];
1571 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1572 return SD;
1573 return nullptr;
1574 }
1575
1576 ScheduleData *getScheduleData(Value *V, Value *Key) {
1577 if (V == Key)
1578 return getScheduleData(V);
1579 auto I = ExtraScheduleDataMap.find(V);
1580 if (I != ExtraScheduleDataMap.end()) {
1581 ScheduleData *SD = I->second[Key];
1582 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1583 return SD;
1584 }
1585 return nullptr;
1586 }
1587
1588 bool isInSchedulingRegion(ScheduleData *SD) {
1589 return SD->SchedulingRegionID == SchedulingRegionID;
1590 }
1591
1592 /// Marks an instruction as scheduled and puts all dependent ready
1593 /// instructions into the ready-list.
1594 template <typename ReadyListType>
1595 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1596 SD->IsScheduled = true;
1597 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
1598
1599 ScheduleData *BundleMember = SD;
1600 while (BundleMember) {
1601 if (BundleMember->Inst != BundleMember->OpValue) {
1602 BundleMember = BundleMember->NextInBundle;
1603 continue;
1604 }
1605 // Handle the def-use chain dependencies.
1606 for (Use &U : BundleMember->Inst->operands()) {
1607 auto *I = dyn_cast<Instruction>(U.get());
1608 if (!I)
1609 continue;
1610 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1611 if (OpDef && OpDef->hasValidDependencies() &&
1612 OpDef->incrementUnscheduledDeps(-1) == 0) {
1613 // There are no more unscheduled dependencies after
1614 // decrementing, so we can put the dependent instruction
1615 // into the ready list.
1616 ScheduleData *DepBundle = OpDef->FirstInBundle;
1617 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1618, __PRETTY_FUNCTION__))
1618 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1618, __PRETTY_FUNCTION__))
;
1619 ReadyList.insert(DepBundle);
1620 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
1621 << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
1622 }
1623 });
1624 }
1625 // Handle the memory dependencies.
1626 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1627 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1628 // There are no more unscheduled dependencies after decrementing,
1629 // so we can put the dependent instruction into the ready list.
1630 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1631 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1632, __PRETTY_FUNCTION__))
1632 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1632, __PRETTY_FUNCTION__))
;
1633 ReadyList.insert(DepBundle);
1634 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
1635 << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
1636 }
1637 }
1638 BundleMember = BundleMember->NextInBundle;
1639 }
1640 }
1641
1642 void doForAllOpcodes(Value *V,
1643 function_ref<void(ScheduleData *SD)> Action) {
1644 if (ScheduleData *SD = getScheduleData(V))
1645 Action(SD);
1646 auto I = ExtraScheduleDataMap.find(V);
1647 if (I != ExtraScheduleDataMap.end())
1648 for (auto &P : I->second)
1649 if (P.second->SchedulingRegionID == SchedulingRegionID)
1650 Action(P.second);
1651 }
1652
1653 /// Put all instructions into the ReadyList which are ready for scheduling.
1654 template <typename ReadyListType>
1655 void initialFillReadyList(ReadyListType &ReadyList) {
1656 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1657 doForAllOpcodes(I, [&](ScheduleData *SD) {
1658 if (SD->isSchedulingEntity() && SD->isReady()) {
1659 ReadyList.insert(SD);
1660 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
1661 << "SLP: initially in ready list: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
;
1662 }
1663 });
1664 }
1665 }
1666
1667 /// Checks if a bundle of instructions can be scheduled, i.e. has no
1668 /// cyclic dependencies. This is only a dry-run, no instructions are
1669 /// actually moved at this stage.
1670 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
1671 const InstructionsState &S);
1672
1673 /// Un-bundles a group of instructions.
1674 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1675
1676 /// Allocates schedule data chunk.
1677 ScheduleData *allocateScheduleDataChunks();
1678
1679 /// Extends the scheduling region so that V is inside the region.
1680 /// \returns true if the region size is within the limit.
1681 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
1682
1683 /// Initialize the ScheduleData structures for new instructions in the
1684 /// scheduling region.
1685 void initScheduleData(Instruction *FromI, Instruction *ToI,
1686 ScheduleData *PrevLoadStore,
1687 ScheduleData *NextLoadStore);
1688
1689 /// Updates the dependency information of a bundle and of all instructions/
1690 /// bundles which depend on the original bundle.
1691 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1692 BoUpSLP *SLP);
1693
1694 /// Sets all instruction in the scheduling region to un-scheduled.
1695 void resetSchedule();
1696
1697 BasicBlock *BB;
1698
1699 /// Simple memory allocation for ScheduleData.
1700 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1701
1702 /// The size of a ScheduleData array in ScheduleDataChunks.
1703 int ChunkSize;
1704
1705 /// The allocator position in the current chunk, which is the last entry
1706 /// of ScheduleDataChunks.
1707 int ChunkPos;
1708
1709 /// Attaches ScheduleData to Instruction.
1710 /// Note that the mapping survives during all vectorization iterations, i.e.
1711 /// ScheduleData structures are recycled.
1712 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1713
1714 /// Attaches ScheduleData to Instruction with the leading key.
1715 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1716 ExtraScheduleDataMap;
1717
1718 struct ReadyList : SmallVector<ScheduleData *, 8> {
1719 void insert(ScheduleData *SD) { push_back(SD); }
1720 };
1721
1722 /// The ready-list for scheduling (only used for the dry-run).
1723 ReadyList ReadyInsts;
1724
1725 /// The first instruction of the scheduling region.
1726 Instruction *ScheduleStart = nullptr;
1727
1728 /// The first instruction _after_ the scheduling region.
1729 Instruction *ScheduleEnd = nullptr;
1730
1731 /// The first memory accessing instruction in the scheduling region
1732 /// (can be null).
1733 ScheduleData *FirstLoadStoreInRegion = nullptr;
1734
1735 /// The last memory accessing instruction in the scheduling region
1736 /// (can be null).
1737 ScheduleData *LastLoadStoreInRegion = nullptr;
1738
1739 /// The current size of the scheduling region.
1740 int ScheduleRegionSize = 0;
1741
1742 /// The maximum size allowed for the scheduling region.
1743 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1744
1745 /// The ID of the scheduling region. For a new vectorization iteration this
1746 /// is incremented which "removes" all ScheduleData from the region.
1747 // Make sure that the initial SchedulingRegionID is greater than the
1748 // initial SchedulingRegionID in ScheduleData (which is 0).
1749 int SchedulingRegionID = 1;
1750 };
1751
1752 /// Attaches the BlockScheduling structures to basic blocks.
1753 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1754
1755 /// Performs the "real" scheduling. Done before vectorization is actually
1756 /// performed in a basic block.
1757 void scheduleBlock(BlockScheduling *BS);
1758
1759 /// List of users to ignore during scheduling and that don't need extracting.
1760 ArrayRef<Value *> UserIgnoreList;
1761
1762 using OrdersType = SmallVector<unsigned, 4>;
1763 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
1764 /// sorted SmallVectors of unsigned.
1765 struct OrdersTypeDenseMapInfo {
1766 static OrdersType getEmptyKey() {
1767 OrdersType V;
1768 V.push_back(~1U);
1769 return V;
1770 }
1771
1772 static OrdersType getTombstoneKey() {
1773 OrdersType V;
1774 V.push_back(~2U);
1775 return V;
1776 }
1777
1778 static unsigned getHashValue(const OrdersType &V) {
1779 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1780 }
1781
1782 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
1783 return LHS == RHS;
1784 }
1785 };
1786
1787 /// Contains orders of operations along with the number of bundles that have
1788 /// operations in this order. It stores only those orders that require
1789 /// reordering, if reordering is not required it is counted using \a
1790 /// NumOpsWantToKeepOriginalOrder.
1791 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
1792 /// Number of bundles that do not require reordering.
1793 unsigned NumOpsWantToKeepOriginalOrder = 0;
1794
1795 // Analysis and block reference.
1796 Function *F;
1797 ScalarEvolution *SE;
1798 TargetTransformInfo *TTI;
1799 TargetLibraryInfo *TLI;
1800 AliasAnalysis *AA;
1801 LoopInfo *LI;
1802 DominatorTree *DT;
1803 AssumptionCache *AC;
1804 DemandedBits *DB;
1805 const DataLayout *DL;
1806 OptimizationRemarkEmitter *ORE;
1807
1808 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1809 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1810
1811 /// Instruction builder to construct the vectorized tree.
1812 IRBuilder<> Builder;
1813
1814 /// A map of scalar integer values to the smallest bit width with which they
1815 /// can legally be represented. The values map to (width, signed) pairs,
1816 /// where "width" indicates the minimum bit width and "signed" is True if the
1817 /// value must be signed-extended, rather than zero-extended, back to its
1818 /// original width.
1819 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1820};
1821
1822} // end namespace slpvectorizer
1823
1824template <> struct GraphTraits<BoUpSLP *> {
1825 using TreeEntry = BoUpSLP::TreeEntry;
1826
1827 /// NodeRef has to be a pointer per the GraphWriter.
1828 using NodeRef = TreeEntry *;
1829
1830 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
1831
1832 /// Add the VectorizableTree to the index iterator to be able to return
1833 /// TreeEntry pointers.
1834 struct ChildIteratorType
1835 : public iterator_adaptor_base<
1836 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
1837 ContainerTy &VectorizableTree;
1838
1839 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
1840 ContainerTy &VT)
1841 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1842
1843 NodeRef operator*() { return I->UserTE; }
1844 };
1845
1846 static NodeRef getEntryNode(BoUpSLP &R) {
1847 return R.VectorizableTree[0].get();
1848 }
1849
1850 static ChildIteratorType child_begin(NodeRef N) {
1851 return {N->UserTreeIndices.begin(), N->Container};
1852 }
1853
1854 static ChildIteratorType child_end(NodeRef N) {
1855 return {N->UserTreeIndices.end(), N->Container};
1856 }
1857
1858 /// For the node iterator we just need to turn the TreeEntry iterator into a
1859 /// TreeEntry* iterator so that it dereferences to NodeRef.
1860 class nodes_iterator {
1861 using ItTy = ContainerTy::iterator;
1862 ItTy It;
1863
1864 public:
1865 nodes_iterator(const ItTy &It2) : It(It2) {}
1866 NodeRef operator*() { return It->get(); }
1867 nodes_iterator operator++() {
1868 ++It;
1869 return *this;
1870 }
1871 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
1872 };
1873
1874 static nodes_iterator nodes_begin(BoUpSLP *R) {
1875 return nodes_iterator(R->VectorizableTree.begin());
1876 }
1877
1878 static nodes_iterator nodes_end(BoUpSLP *R) {
1879 return nodes_iterator(R->VectorizableTree.end());
1880 }
1881
1882 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
1883};
1884
1885template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
1886 using TreeEntry = BoUpSLP::TreeEntry;
1887
1888 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
1889
1890 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
1891 std::string Str;
1892 raw_string_ostream OS(Str);
1893 if (isSplat(Entry->Scalars)) {
1894 OS << "<splat> " << *Entry->Scalars[0];
1895 return Str;
1896 }
1897 for (auto V : Entry->Scalars) {
1898 OS << *V;
1899 if (std::any_of(
1900 R->ExternalUses.begin(), R->ExternalUses.end(),
1901 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
1902 OS << " <extract>";
1903 OS << "\n";
1904 }
1905 return Str;
1906 }
1907
1908 static std::string getNodeAttributes(const TreeEntry *Entry,
1909 const BoUpSLP *) {
1910 if (Entry->NeedToGather)
1911 return "color=red";
1912 return "";
1913 }
1914};
1915
1916} // end namespace llvm
1917
1918void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1919 ArrayRef<Value *> UserIgnoreLst) {
1920 ExtraValueToDebugLocsMap ExternallyUsedValues;
1921 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
1922}
1923
1924void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1925 ExtraValueToDebugLocsMap &ExternallyUsedValues,
1926 ArrayRef<Value *> UserIgnoreLst) {
1927 deleteTree();
1928 UserIgnoreList = UserIgnoreLst;
1929 if (!allSameType(Roots))
1930 return;
1931 buildTree_rec(Roots, 0, EdgeInfo());
1932
1933 // Collect the values that we need to extract from the tree.
1934 for (auto &TEPtr : VectorizableTree) {
1935 TreeEntry *Entry = TEPtr.get();
1936
1937 // No need to handle users of gathered values.
1938 if (Entry->NeedToGather)
1939 continue;
1940
1941 // For each lane:
1942 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1943 Value *Scalar = Entry->Scalars[Lane];
1944 int FoundLane = Lane;
1945 if (!Entry->ReuseShuffleIndices.empty()) {
1946 FoundLane =
1947 std::distance(Entry->ReuseShuffleIndices.begin(),
1948 llvm::find(Entry->ReuseShuffleIndices, FoundLane));
1949 }
1950
1951 // Check if the scalar is externally used as an extra arg.
1952 auto ExtI = ExternallyUsedValues.find(Scalar);
1953 if (ExtI != ExternallyUsedValues.end()) {
1954 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
1955 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
1956 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
1957 }
1958 for (User *U : Scalar->users()) {
1959 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
1960
1961 Instruction *UserInst = dyn_cast<Instruction>(U);
1962 if (!UserInst)
1963 continue;
1964
1965 // Skip in-tree scalars that become vectors
1966 if (TreeEntry *UseEntry = getTreeEntry(U)) {
1967 Value *UseScalar = UseEntry->Scalars[0];
1968 // Some in-tree scalars will remain as scalar in vectorized
1969 // instructions. If that is the case, the one in Lane 0 will
1970 // be used.
1971 if (UseScalar != U ||
1972 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
1973 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
1974 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
1975 assert(!UseEntry->NeedToGather && "Bad state")((!UseEntry->NeedToGather && "Bad state") ? static_cast
<void> (0) : __assert_fail ("!UseEntry->NeedToGather && \"Bad state\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1975, __PRETTY_FUNCTION__))
;
1976 continue;
1977 }
1978 }
1979
1980 // Ignore users in the user ignore list.
1981 if (is_contained(UserIgnoreList, UserInst))
1982 continue;
1983
1984 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
1985 << Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
1986 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
1987 }
1988 }
1989 }
1990}
1991
1992void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
1993 const EdgeInfo &UserTreeIdx) {
1994 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(((allConstant(VL) || allSameType(VL)) && "Invalid types!"
) ? static_cast<void> (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1994, __PRETTY_FUNCTION__))
;
1995
1996 InstructionsState S = getSameOpcode(VL);
1997 if (Depth == RecursionMaxDepth) {
1998 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
1999 newTreeEntry(VL, false, UserTreeIdx);
2000 return;
2001 }
2002
2003 // Don't handle vectors.
2004 if (S.OpValue->getType()->isVectorTy()) {
2005 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
2006 newTreeEntry(VL, false, UserTreeIdx);
2007 return;
2008 }
2009
2010 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2011 if (SI->getValueOperand()->getType()->isVectorTy()) {
2012 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
2013 newTreeEntry(VL, false, UserTreeIdx);
2014 return;
2015 }
2016
2017 // If all of the operands are identical or constant we have a simple solution.
2018 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2019 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (false)
;
2020 newTreeEntry(VL, false, UserTreeIdx);
2021 return;
2022 }
2023
2024 // We now know that this is a vector of instructions of the same type from
2025 // the same block.
2026
2027 // Don't vectorize ephemeral values.
2028 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
2029 if (EphValues.count(VL[i])) {
2030 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is ephemeral.\n"; } } while (false)
2031 << ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is ephemeral.\n"; } } while (false)
;
2032 newTreeEntry(VL, false, UserTreeIdx);
2033 return;
2034 }
2035 }
2036
2037 // Check if this is a duplicate of another entry.
2038 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2039 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*S.OpValue << ".\n"; } } while (false)
;
2040 if (!E->isSame(VL)) {
2041 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
2042 newTreeEntry(VL, false, UserTreeIdx);
2043 return;
2044 }
2045 // Record the reuse of the tree node. FIXME, currently this is only used to
2046 // properly draw the graph rather than for the actual vectorization.
2047 E->UserTreeIndices.push_back(UserTreeIdx);
2048 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
2049 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*S.OpValue << ".\n"; } } while (false)
;
2050 E->trySetUserTEOperand(UserTreeIdx, VL, None);
2051 return;
2052 }
2053
2054 // Check that none of the instructions in the bundle are already in the tree.
2055 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
2056 auto *I = dyn_cast<Instruction>(VL[i]);
2057 if (!I)
2058 continue;
2059 if (getTreeEntry(I)) {
2060 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is already in tree.\n"; } } while (false)
2061 << ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is already in tree.\n"; } } while (false)
;
2062 newTreeEntry(VL, false, UserTreeIdx);
2063 return;
2064 }
2065 }
2066
2067 // If any of the scalars is marked as a value that needs to stay scalar, then
2068 // we need to gather the scalars.
2069 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2070 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
2071 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) {
2072 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
2073 newTreeEntry(VL, false, UserTreeIdx);
2074 return;
2075 }
2076 }
2077
2078 // Check that all of the users of the scalars that we want to vectorize are
2079 // schedulable.
2080 auto *VL0 = cast<Instruction>(S.OpValue);
2081 BasicBlock *BB = VL0->getParent();
2082
2083 if (!DT->isReachableFromEntry(BB)) {
2084 // Don't go into unreachable blocks. They may contain instructions with
2085 // dependency cycles which confuse the final scheduling.
2086 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
2087 newTreeEntry(VL, false, UserTreeIdx);
2088 return;
2089 }
2090
2091 // Check that every instruction appears once in this bundle.
2092 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2093 SmallVector<Value *, 4> UniqueValues;
2094 DenseMap<Value *, unsigned> UniquePositions;
2095 for (Value *V : VL) {
2096 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2097 ReuseShuffleIndicies.emplace_back(Res.first->second);
2098 if (Res.second)
2099 UniqueValues.emplace_back(V);
2100 }
2101 if (UniqueValues.size() == VL.size()) {
2102 ReuseShuffleIndicies.clear();
2103 } else {
2104 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Shuffle for reused scalars.\n"
; } } while (false)
;
2105 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) {
2106 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
2107 newTreeEntry(VL, false, UserTreeIdx);
2108 return;
2109 }
2110 VL = UniqueValues;
2111 }
2112
2113 auto &BSRef = BlocksSchedules[BB];
2114 if (!BSRef)
2115 BSRef = llvm::make_unique<BlockScheduling>(BB);
2116
2117 BlockScheduling &BS = *BSRef.get();
2118
2119 if (!BS.tryScheduleBundle(VL, this, S)) {
2120 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
2121 assert((!BS.getScheduleData(VL0) ||(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2123, __PRETTY_FUNCTION__))
2122 !BS.getScheduleData(VL0)->isPartOfBundle()) &&(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2123, __PRETTY_FUNCTION__))
2123 "tryScheduleBundle should cancelScheduling on failure")(((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle
()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2123, __PRETTY_FUNCTION__))
;
2124 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2125 return;
2126 }
2127 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
2128
2129 unsigned ShuffleOrOp = S.isAltShuffle() ?
2130 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2131 switch (ShuffleOrOp) {
2132 case Instruction::PHI: {
2133 PHINode *PH = dyn_cast<PHINode>(VL0);
2134
2135 // Check for terminator values (e.g. invoke).
2136 for (unsigned j = 0; j < VL.size(); ++j)
2137 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2138 Instruction *Term = dyn_cast<Instruction>(
2139 cast<PHINode>(VL[j])->getIncomingValueForBlock(
2140 PH->getIncomingBlock(i)));
2141 if (Term && Term->isTerminator()) {
2142 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
2143 << "SLP: Need to swizzle PHINodes (terminator use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"
; } } while (false)
;
2144 BS.cancelScheduling(VL, VL0);
2145 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2146 return;
2147 }
2148 }
2149
2150 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2151 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
2152
2153 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2154 ValueList Operands;
2155 // Prepare the operand vector.
2156 for (Value *j : VL)
2157 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2158 PH->getIncomingBlock(i)));
2159
2160 buildTree_rec(Operands, Depth + 1, {TE, i});
2161 }
2162 return;
2163 }
2164 case Instruction::ExtractValue:
2165 case Instruction::ExtractElement: {
2166 OrdersType CurrentOrder;
2167 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2168 if (Reuse) {
2169 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing or shuffling extract sequence.\n"
; } } while (false)
;
2170 ++NumOpsWantToKeepOriginalOrder;
2171 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
2172 ReuseShuffleIndicies);
2173 // This is a special case, as it does not gather, but at the same time
2174 // we are not extending buildTree_rec() towards the operands.
2175 ValueList Op0;
2176 Op0.assign(VL.size(), VL0->getOperand(0));
2177 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies);
2178 return;
2179 }
2180 if (!CurrentOrder.empty()) {
2181 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2182 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2183 "with order";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2184 for (unsigned Idx : CurrentOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2185 dbgs() << " " << Idx;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2186 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
2187 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
"with order"; for (unsigned Idx : CurrentOrder) dbgs() <<
" " << Idx; dbgs() << "\n"; }; } } while (false)
;
2188 // Insert new order with initial value 0, if it does not exist,
2189 // otherwise return the iterator to the existing one.
2190 auto StoredCurrentOrderAndNum =
2191 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2192 ++StoredCurrentOrderAndNum->getSecond();
2193 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies,
2194 StoredCurrentOrderAndNum->getFirst());
2195 // This is a special case, as it does not gather, but at the same time
2196 // we are not extending buildTree_rec() towards the operands.
2197 ValueList Op0;
2198 Op0.assign(VL.size(), VL0->getOperand(0));
2199 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies);
2200 return;
2201 }
2202 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gather extract sequence.\n";
} } while (false)
;
2203 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies);
2204 BS.cancelScheduling(VL, VL0);
2205 return;
2206 }
2207 case Instruction::Load: {
2208 // Check that a vectorized load would load the same memory as a scalar
2209 // load. For example, we don't want to vectorize loads that are smaller
2210 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2211 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2212 // from such a struct, we read/write packed bits disagreeing with the
2213 // unvectorized version.
2214 Type *ScalarTy = VL0->getType();
2215
2216 if (DL->getTypeSizeInBits(ScalarTy) !=
2217 DL->getTypeAllocSizeInBits(ScalarTy)) {
2218 BS.cancelScheduling(VL, VL0);
2219 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2220 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
2221 return;
2222 }
2223
2224 // Make sure all loads in the bundle are simple - we can't vectorize
2225 // atomic or volatile loads.
2226 SmallVector<Value *, 4> PointerOps(VL.size());
2227 auto POIter = PointerOps.begin();
2228 for (Value *V : VL) {
2229 auto *L = cast<LoadInst>(V);
2230 if (!L->isSimple()) {
2231 BS.cancelScheduling(VL, VL0);
2232 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2233 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
2234 return;
2235 }
2236 *POIter = L->getPointerOperand();
2237 ++POIter;
2238 }
2239
2240 OrdersType CurrentOrder;
2241 // Check the order of pointer operands.
2242 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2243 Value *Ptr0;
2244 Value *PtrN;
2245 if (CurrentOrder.empty()) {
2246 Ptr0 = PointerOps.front();
2247 PtrN = PointerOps.back();
2248 } else {
2249 Ptr0 = PointerOps[CurrentOrder.front()];
2250 PtrN = PointerOps[CurrentOrder.back()];
2251 }
2252 const SCEV *Scev0 = SE->getSCEV(Ptr0);
2253 const SCEV *ScevN = SE->getSCEV(PtrN);
2254 const auto *Diff =
2255 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2256 uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2257 // Check that the sorted loads are consecutive.
2258 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
2259 if (CurrentOrder.empty()) {
2260 // Original loads are consecutive and does not require reordering.
2261 ++NumOpsWantToKeepOriginalOrder;
2262 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
2263 ReuseShuffleIndicies);
2264 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
2265 } else {
2266 // Need to reorder.
2267 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2268 ++I->getSecond();
2269 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
2270 ReuseShuffleIndicies, I->getFirst());
2271 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of jumbled loads.\n"
; } } while (false)
;
2272 }
2273 return;
2274 }
2275 }
2276
2277 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
2278 BS.cancelScheduling(VL, VL0);
2279 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2280 return;
2281 }
2282 case Instruction::ZExt:
2283 case Instruction::SExt:
2284 case Instruction::FPToUI:
2285 case Instruction::FPToSI:
2286 case Instruction::FPExt:
2287 case Instruction::PtrToInt:
2288 case Instruction::IntToPtr:
2289 case Instruction::SIToFP:
2290 case Instruction::UIToFP:
2291 case Instruction::Trunc:
2292 case Instruction::FPTrunc:
2293 case Instruction::BitCast: {
2294 Type *SrcTy = VL0->getOperand(0)->getType();
2295 for (unsigned i = 0; i < VL.size(); ++i) {
2296 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
2297 if (Ty != SrcTy || !isValidElementType(Ty)) {
2298 BS.cancelScheduling(VL, VL0);
2299 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2300 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
2301 << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
2302 return;
2303 }
2304 }
2305 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2306 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
2307
2308 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2309 ValueList Operands;
2310 // Prepare the operand vector.
2311 for (Value *j : VL)
2312 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2313
2314 buildTree_rec(Operands, Depth + 1, {TE, i});
2315 }
2316 return;
2317 }
2318 case Instruction::ICmp:
2319 case Instruction::FCmp: {
2320 // Check that all of the compares have the same predicate.
2321 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2322 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2323 Type *ComparedTy = VL0->getOperand(0)->getType();
2324 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
2325 CmpInst *Cmp = cast<CmpInst>(VL[i]);
2326 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2327 Cmp->getOperand(0)->getType() != ComparedTy) {
2328 BS.cancelScheduling(VL, VL0);
2329 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2330 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
2331 << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
2332 return;
2333 }
2334 }
2335
2336 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2337 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
2338
2339 ValueList Left, Right;
2340 if (cast<CmpInst>(VL0)->isCommutative()) {
2341 // Commutative predicate - collect + sort operands of the instructions
2342 // so that each side is more likely to have the same opcode.
2343 assert(P0 == SwapP0 && "Commutative Predicate mismatch")((P0 == SwapP0 && "Commutative Predicate mismatch") ?
static_cast<void> (0) : __assert_fail ("P0 == SwapP0 && \"Commutative Predicate mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2343, __PRETTY_FUNCTION__))
;
2344 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2345 } else {
2346 // Collect operands - commute if it uses the swapped predicate.
2347 for (Value *V : VL) {
2348 auto *Cmp = cast<CmpInst>(V);
2349 Value *LHS = Cmp->getOperand(0);
2350 Value *RHS = Cmp->getOperand(1);
2351 if (Cmp->getPredicate() != P0)
2352 std::swap(LHS, RHS);
2353 Left.push_back(LHS);
2354 Right.push_back(RHS);
2355 }
2356 }
2357
2358 buildTree_rec(Left, Depth + 1, {TE, 0});
2359 buildTree_rec(Right, Depth + 1, {TE, 1});
2360 return;
2361 }
2362 case Instruction::Select:
2363 case Instruction::Add:
2364 case Instruction::FAdd:
2365 case Instruction::Sub:
2366 case Instruction::FSub:
2367 case Instruction::Mul:
2368 case Instruction::FMul:
2369 case Instruction::UDiv:
2370 case Instruction::SDiv:
2371 case Instruction::FDiv:
2372 case Instruction::URem:
2373 case Instruction::SRem:
2374 case Instruction::FRem:
2375 case Instruction::Shl:
2376 case Instruction::LShr:
2377 case Instruction::AShr:
2378 case Instruction::And:
2379 case Instruction::Or:
2380 case Instruction::Xor: {
2381 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2382 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of bin op.\n"
; } } while (false)
;
2383
2384 // Sort operands of the instructions so that each side is more likely to
2385 // have the same opcode.
2386 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2387 ValueList Left, Right;
2388 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2389 buildTree_rec(Left, Depth + 1, {TE, 0});
2390 buildTree_rec(Right, Depth + 1, {TE, 1});
2391 return;
2392 }
2393
2394 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2395 ValueList Operands;
2396 // Prepare the operand vector.
2397 for (Value *j : VL)
2398 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2399
2400 buildTree_rec(Operands, Depth + 1, {TE, i});
2401 }
2402 return;
2403 }
2404 case Instruction::GetElementPtr: {
2405 // We don't combine GEPs with complicated (nested) indexing.
2406 for (unsigned j = 0; j < VL.size(); ++j) {
2407 if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
2408 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
2409 BS.cancelScheduling(VL, VL0);
2410 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2411 return;
2412 }
2413 }
2414
2415 // We can't combine several GEPs into one vector if they operate on
2416 // different types.
2417 Type *Ty0 = VL0->getOperand(0)->getType();
2418 for (unsigned j = 0; j < VL.size(); ++j) {
2419 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
2420 if (Ty0 != CurTy) {
2421 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
2422 << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
2423 BS.cancelScheduling(VL, VL0);
2424 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2425 return;
2426 }
2427 }
2428
2429 // We don't combine GEPs with non-constant indexes.
2430 for (unsigned j = 0; j < VL.size(); ++j) {
2431 auto Op = cast<Instruction>(VL[j])->getOperand(1);
2432 if (!isa<ConstantInt>(Op)) {
2433 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
2434 << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
2435 BS.cancelScheduling(VL, VL0);
2436 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2437 return;
2438 }
2439 }
2440
2441 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2442 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
2443 for (unsigned i = 0, e = 2; i < e; ++i) {
2444 ValueList Operands;
2445 // Prepare the operand vector.
2446 for (Value *j : VL)
2447 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2448
2449 buildTree_rec(Operands, Depth + 1, {TE, i});
2450 }
2451 return;
2452 }
2453 case Instruction::Store: {
2454 // Check if the stores are consecutive or of we need to swizzle them.
2455 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
2456 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
2457 BS.cancelScheduling(VL, VL0);
2458 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2459 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
2460 return;
2461 }
2462
2463 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2464 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
2465
2466 ValueList Operands;
2467 for (Value *j : VL)
2468 Operands.push_back(cast<Instruction>(j)->getOperand(0));
2469
2470 buildTree_rec(Operands, Depth + 1, {TE, 0});
2471 return;
2472 }
2473 case Instruction::Call: {
2474 // Check if the calls are all to the same vectorizable intrinsic.
2475 CallInst *CI = cast<CallInst>(VL0);
2476 // Check if this is an Intrinsic call or something that can be
2477 // represented by an intrinsic call
2478 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2479 if (!isTriviallyVectorizable(ID)) {
2480 BS.cancelScheduling(VL, VL0);
2481 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2482 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
2483 return;
2484 }
2485 Function *Int = CI->getCalledFunction();
2486 unsigned NumArgs = CI->getNumArgOperands();
2487 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
2488 for (unsigned j = 0; j != NumArgs; ++j)
2489 if (hasVectorInstrinsicScalarOpd(ID, j))
2490 ScalarArgs[j] = CI->getArgOperand(j);
2491 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2492 CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
2493 if (!CI2 || CI2->getCalledFunction() != Int ||
2494 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
2495 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
2496 BS.cancelScheduling(VL, VL0);
2497 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2498 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *VL[i] << "\n"; } } while (false
)
2499 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *VL[i] << "\n"; } } while (false
)
;
2500 return;
2501 }
2502 // Some intrinsics have scalar arguments and should be same in order for
2503 // them to be vectorized.
2504 for (unsigned j = 0; j != NumArgs; ++j) {
2505 if (hasVectorInstrinsicScalarOpd(ID, j)) {
2506 Value *A1J = CI2->getArgOperand(j);
2507 if (ScalarArgs[j] != A1J) {
2508 BS.cancelScheduling(VL, VL0);
2509 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2510 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
2511 << " argument " << ScalarArgs[j] << "!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
2512 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument " << ScalarArgs[j] <<
"!=" << A1J << "\n"; } } while (false)
;
2513 return;
2514 }
2515 }
2516 }
2517 // Verify that the bundle operands are identical between the two calls.
2518 if (CI->hasOperandBundles() &&
2519 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
2520 CI->op_begin() + CI->getBundleOperandsEndIndex(),
2521 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
2522 BS.cancelScheduling(VL, VL0);
2523 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2524 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *VL[i] << '\n'; } }
while (false)
2525 << *CI << "!=" << *VL[i] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *VL[i] << '\n'; } }
while (false)
;
2526 return;
2527 }
2528 }
2529
2530 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2531 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
2532 ValueList Operands;
2533 // Prepare the operand vector.
2534 for (Value *j : VL) {
2535 CallInst *CI2 = dyn_cast<CallInst>(j);
2536 Operands.push_back(CI2->getArgOperand(i));
2537 }
2538 buildTree_rec(Operands, Depth + 1, {TE, i});
2539 }
2540 return;
2541 }
2542 case Instruction::ShuffleVector: {
2543 // If this is not an alternate sequence of opcode like add-sub
2544 // then do not vectorize this instruction.
2545 if (!S.isAltShuffle()) {
2546 BS.cancelScheduling(VL, VL0);
2547 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2548 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
2549 return;
2550 }
2551 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
2552 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
2553
2554 // Reorder operands if reordering would enable vectorization.
2555 if (isa<BinaryOperator>(VL0)) {
2556 ValueList Left, Right;
2557 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2558 buildTree_rec(Left, Depth + 1, {TE, 0});
2559 buildTree_rec(Right, Depth + 1, {TE, 1});
2560 return;
2561 }
2562
2563 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2564 ValueList Operands;
2565 // Prepare the operand vector.
2566 for (Value *j : VL)
2567 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2568
2569 buildTree_rec(Operands, Depth + 1, {TE, i});
2570 }
2571 return;
2572 }
2573 default:
2574 BS.cancelScheduling(VL, VL0);
2575 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
2576 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
2577 return;
2578 }
2579}
2580
2581unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
2582 unsigned N;
2583 Type *EltTy;
2584 auto *ST = dyn_cast<StructType>(T);
2585 if (ST) {
2586 N = ST->getNumElements();
2587 EltTy = *ST->element_begin();
2588 } else {
2589 N = cast<ArrayType>(T)->getNumElements();
2590 EltTy = cast<ArrayType>(T)->getElementType();
2591 }
2592 if (!isValidElementType(EltTy))
2593 return 0;
2594 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
2595 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
2596 return 0;
2597 if (ST) {
2598 // Check that struct is homogeneous.
2599 for (const auto *Ty : ST->elements())
2600 if (Ty != EltTy)
2601 return 0;
2602 }
2603 return N;
2604}
2605
2606bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2607 SmallVectorImpl<unsigned> &CurrentOrder) const {
2608 Instruction *E0 = cast<Instruction>(OpValue);
2609 assert(E0->getOpcode() == Instruction::ExtractElement ||((E0->getOpcode() == Instruction::ExtractElement || E0->
getOpcode() == Instruction::ExtractValue) ? static_cast<void
> (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2610, __PRETTY_FUNCTION__))
2610 E0->getOpcode() == Instruction::ExtractValue)((E0->getOpcode() == Instruction::ExtractElement || E0->
getOpcode() == Instruction::ExtractValue) ? static_cast<void
> (0) : __assert_fail ("E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2610, __PRETTY_FUNCTION__))
;
2611 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode")((E0->getOpcode() == getSameOpcode(VL).getOpcode() &&
"Invalid opcode") ? static_cast<void> (0) : __assert_fail
("E0->getOpcode() == getSameOpcode(VL).getOpcode() && \"Invalid opcode\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2611, __PRETTY_FUNCTION__))
;
2612 // Check if all of the extracts come from the same vector and from the
2613 // correct offset.
2614 Value *Vec = E0->getOperand(0);
2615
2616 CurrentOrder.clear();
2617
2618 // We have to extract from a vector/aggregate with the same number of elements.
2619 unsigned NElts;
2620 if (E0->getOpcode() == Instruction::ExtractValue) {
2621 const DataLayout &DL = E0->getModule()->getDataLayout();
2622 NElts = canMapToVector(Vec->getType(), DL);
2623 if (!NElts)
2624 return false;
2625 // Check if load can be rewritten as load of vector.
2626 LoadInst *LI = dyn_cast<LoadInst>(Vec);
2627 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
2628 return false;
2629 } else {
2630 NElts = Vec->getType()->getVectorNumElements();
2631 }
2632
2633 if (NElts != VL.size())
2634 return false;
2635
2636 // Check that all of the indices extract from the correct offset.
2637 bool ShouldKeepOrder = true;
2638 unsigned E = VL.size();
2639 // Assign to all items the initial value E + 1 so we can check if the extract
2640 // instruction index was used already.
2641 // Also, later we can check that all the indices are used and we have a
2642 // consecutive access in the extract instructions, by checking that no
2643 // element of CurrentOrder still has value E + 1.
2644 CurrentOrder.assign(E, E + 1);
2645 unsigned I = 0;
2646 for (; I < E; ++I) {
2647 auto *Inst = cast<Instruction>(VL[I]);
2648 if (Inst->getOperand(0) != Vec)
2649 break;
2650 Optional<unsigned> Idx = getExtractIndex(Inst);
2651 if (!Idx)
2652 break;
2653 const unsigned ExtIdx = *Idx;
2654 if (ExtIdx != I) {
2655 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
2656 break;
2657 ShouldKeepOrder = false;
2658 CurrentOrder[ExtIdx] = I;
2659 } else {
2660 if (CurrentOrder[I] != E + 1)
2661 break;
2662 CurrentOrder[I] = I;
2663 }
2664 }
2665 if (I < E) {
2666 CurrentOrder.clear();
2667 return false;
2668 }
2669
2670 return ShouldKeepOrder;
2671}
2672
2673bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
2674 return I->hasOneUse() ||
2675 std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
2676 return ScalarToTreeEntry.count(U) > 0;
2677 });
2678}
2679
2680int BoUpSLP::getEntryCost(TreeEntry *E) {
2681 ArrayRef<Value*> VL = E->Scalars;
2682
2683 Type *ScalarTy = VL[0]->getType();
2684 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2685 ScalarTy = SI->getValueOperand()->getType();
2686 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
2687 ScalarTy = CI->getOperand(0)->getType();
2688 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2689
2690 // If we have computed a smaller type for the expression, update VecTy so
2691 // that the costs will be accurate.
2692 if (MinBWs.count(VL[0]))
2693 VecTy = VectorType::get(
2694 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
2695
2696 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
2697 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2698 int ReuseShuffleCost = 0;
2699 if (NeedToShuffleReuses) {
2700 ReuseShuffleCost =
2701 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2702 }
2703 if (E->NeedToGather) {
2704 if (allConstant(VL))
2705 return 0;
2706 if (isSplat(VL)) {
2707 return ReuseShuffleCost +
2708 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
2709 }
2710 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement &&
2711 allSameType(VL) && allSameBlock(VL)) {
2712 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
2713 if (ShuffleKind.hasValue()) {
2714 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
2715 for (auto *V : VL) {
2716 // If all users of instruction are going to be vectorized and this
2717 // instruction itself is not going to be vectorized, consider this
2718 // instruction as dead and remove its cost from the final cost of the
2719 // vectorized tree.
2720 if (areAllUsersVectorized(cast<Instruction>(V)) &&
2721 !ScalarToTreeEntry.count(V)) {
2722 auto *IO = cast<ConstantInt>(
2723 cast<ExtractElementInst>(V)->getIndexOperand());
2724 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2725 IO->getZExtValue());
2726 }
2727 }
2728 return ReuseShuffleCost + Cost;
2729 }
2730 }
2731 return ReuseShuffleCost + getGatherCost(VL);
2732 }
2733 InstructionsState S = getSameOpcode(VL);
2734 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL")((S.getOpcode() && allSameType(VL) && allSameBlock
(VL) && "Invalid VL") ? static_cast<void> (0) :
__assert_fail ("S.getOpcode() && allSameType(VL) && allSameBlock(VL) && \"Invalid VL\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2734, __PRETTY_FUNCTION__))
;
2735 Instruction *VL0 = cast<Instruction>(S.OpValue);
2736 unsigned ShuffleOrOp = S.isAltShuffle() ?
2737 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2738 switch (ShuffleOrOp) {
2739 case Instruction::PHI:
2740 return 0;
2741
2742 case Instruction::ExtractValue:
2743 case Instruction::ExtractElement:
2744 if (NeedToShuffleReuses) {
2745 unsigned Idx = 0;
2746 for (unsigned I : E->ReuseShuffleIndices) {
2747 if (ShuffleOrOp == Instruction::ExtractElement) {
2748 auto *IO = cast<ConstantInt>(
2749 cast<ExtractElementInst>(VL[I])->getIndexOperand());
2750 Idx = IO->getZExtValue();
2751 ReuseShuffleCost -= TTI->getVectorInstrCost(
2752 Instruction::ExtractElement, VecTy, Idx);
2753 } else {
2754 ReuseShuffleCost -= TTI->getVectorInstrCost(
2755 Instruction::ExtractElement, VecTy, Idx);
2756 ++Idx;
2757 }
2758 }
2759 Idx = ReuseShuffleNumbers;
2760 for (Value *V : VL) {
2761 if (ShuffleOrOp == Instruction::ExtractElement) {
2762 auto *IO = cast<ConstantInt>(
2763 cast<ExtractElementInst>(V)->getIndexOperand());
2764 Idx = IO->getZExtValue();
2765 } else {
2766 --Idx;
2767 }
2768 ReuseShuffleCost +=
2769 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
2770 }
2771 }
2772 if (!E->NeedToGather) {
2773 int DeadCost = ReuseShuffleCost;
2774 if (!E->ReorderIndices.empty()) {
2775 // TODO: Merge this shuffle with the ReuseShuffleCost.
2776 DeadCost += TTI->getShuffleCost(
2777 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2778 }
2779 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2780 Instruction *E = cast<Instruction>(VL[i]);
2781 // If all users are going to be vectorized, instruction can be
2782 // considered as dead.
2783 // The same, if have only one user, it will be vectorized for sure.
2784 if (areAllUsersVectorized(E)) {
2785 // Take credit for instruction that will become dead.
2786 if (E->hasOneUse()) {
2787 Instruction *Ext = E->user_back();
2788 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2789 all_of(Ext->users(),
2790 [](User *U) { return isa<GetElementPtrInst>(U); })) {
2791 // Use getExtractWithExtendCost() to calculate the cost of
2792 // extractelement/ext pair.
2793 DeadCost -= TTI->getExtractWithExtendCost(
2794 Ext->getOpcode(), Ext->getType(), VecTy, i);
2795 // Add back the cost of s|zext which is subtracted separately.
2796 DeadCost += TTI->getCastInstrCost(
2797 Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
2798 continue;
2799 }
2800 }
2801 DeadCost -=
2802 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
2803 }
2804 }
2805 return DeadCost;
2806 }
2807 return ReuseShuffleCost + getGatherCost(VL);
2808
2809 case Instruction::ZExt:
2810 case Instruction::SExt:
2811 case Instruction::FPToUI:
2812 case Instruction::FPToSI:
2813 case Instruction::FPExt:
2814 case Instruction::PtrToInt:
2815 case Instruction::IntToPtr:
2816 case Instruction::SIToFP:
2817 case Instruction::UIToFP:
2818 case Instruction::Trunc:
2819 case Instruction::FPTrunc:
2820 case Instruction::BitCast: {
2821 Type *SrcTy = VL0->getOperand(0)->getType();
2822 int ScalarEltCost =
2823 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0);
2824 if (NeedToShuffleReuses) {
2825 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2826 }
2827
2828 // Calculate the cost of this instruction.
2829 int ScalarCost = VL.size() * ScalarEltCost;
2830
2831 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
2832 int VecCost = 0;
2833 // Check if the values are candidates to demote.
2834 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
2835 VecCost = ReuseShuffleCost +
2836 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0);
2837 }
2838 return VecCost - ScalarCost;
2839 }
2840 case Instruction::FCmp:
2841 case Instruction::ICmp:
2842 case Instruction::Select: {
2843 // Calculate the cost of this instruction.
2844 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy,
2845 Builder.getInt1Ty(), VL0);
2846 if (NeedToShuffleReuses) {
2847 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2848 }
2849 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
2850 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2851 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0);
2852 return ReuseShuffleCost + VecCost - ScalarCost;
2853 }
2854 case Instruction::Add:
2855 case Instruction::FAdd:
2856 case Instruction::Sub:
2857 case Instruction::FSub:
2858 case Instruction::Mul:
2859 case Instruction::FMul:
2860 case Instruction::UDiv:
2861 case Instruction::SDiv:
2862 case Instruction::FDiv:
2863 case Instruction::URem:
2864 case Instruction::SRem:
2865 case Instruction::FRem:
2866 case Instruction::Shl:
2867 case Instruction::LShr:
2868 case Instruction::AShr:
2869 case Instruction::And:
2870 case Instruction::Or:
2871 case Instruction::Xor: {
2872 // Certain instructions can be cheaper to vectorize if they have a
2873 // constant second vector operand.
2874 TargetTransformInfo::OperandValueKind Op1VK =
2875 TargetTransformInfo::OK_AnyValue;
2876 TargetTransformInfo::OperandValueKind Op2VK =
2877 TargetTransformInfo::OK_UniformConstantValue;
2878 TargetTransformInfo::OperandValueProperties Op1VP =
2879 TargetTransformInfo::OP_None;
2880 TargetTransformInfo::OperandValueProperties Op2VP =
2881 TargetTransformInfo::OP_PowerOf2;
2882
2883 // If all operands are exactly the same ConstantInt then set the
2884 // operand kind to OK_UniformConstantValue.
2885 // If instead not all operands are constants, then set the operand kind
2886 // to OK_AnyValue. If all operands are constants but not the same,
2887 // then set the operand kind to OK_NonUniformConstantValue.
2888 ConstantInt *CInt0 = nullptr;
2889 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2890 const Instruction *I = cast<Instruction>(VL[i]);
2891 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1));
2892 if (!CInt) {
2893 Op2VK = TargetTransformInfo::OK_AnyValue;
2894 Op2VP = TargetTransformInfo::OP_None;
2895 break;
2896 }
2897 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
2898 !CInt->getValue().isPowerOf2())
2899 Op2VP = TargetTransformInfo::OP_None;
2900 if (i == 0) {
2901 CInt0 = CInt;
2902 continue;
2903 }
2904 if (CInt0 != CInt)
2905 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
2906 }
2907
2908 SmallVector<const Value *, 4> Operands(VL0->operand_values());
2909 int ScalarEltCost = TTI->getArithmeticInstrCost(
2910 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
2911 if (NeedToShuffleReuses) {
2912 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2913 }
2914 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2915 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK,
2916 Op2VK, Op1VP, Op2VP, Operands);
2917 return ReuseShuffleCost + VecCost - ScalarCost;
2918 }
2919 case Instruction::GetElementPtr: {
2920 TargetTransformInfo::OperandValueKind Op1VK =
2921 TargetTransformInfo::OK_AnyValue;
2922 TargetTransformInfo::OperandValueKind Op2VK =
2923 TargetTransformInfo::OK_UniformConstantValue;
2924
2925 int ScalarEltCost =
2926 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
2927 if (NeedToShuffleReuses) {
2928 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2929 }
2930 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2931 int VecCost =
2932 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
2933 return ReuseShuffleCost + VecCost - ScalarCost;
2934 }
2935 case Instruction::Load: {
2936 // Cost of wide load - cost of scalar loads.
2937 unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
2938 int ScalarEltCost =
2939 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
2940 if (NeedToShuffleReuses) {
2941 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2942 }
2943 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
2944 int VecLdCost =
2945 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
2946 if (!E->ReorderIndices.empty()) {
2947 // TODO: Merge this shuffle with the ReuseShuffleCost.
2948 VecLdCost += TTI->getShuffleCost(
2949 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2950 }
2951 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
2952 }
2953 case Instruction::Store: {
2954 // We know that we can merge the stores. Calculate the cost.
2955 unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
2956 int ScalarEltCost =
2957 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
2958 if (NeedToShuffleReuses) {
2959 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2960 }
2961 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
2962 int VecStCost =
2963 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
2964 return ReuseShuffleCost + VecStCost - ScalarStCost;
2965 }
2966 case Instruction::Call: {
2967 CallInst *CI = cast<CallInst>(VL0);
2968 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2969
2970 // Calculate the cost of the scalar and vector calls.
2971 SmallVector<Type *, 4> ScalarTys;
2972 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
2973 ScalarTys.push_back(CI->getArgOperand(op)->getType());
2974
2975 FastMathFlags FMF;
2976 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2977 FMF = FPMO->getFastMathFlags();
2978
2979 int ScalarEltCost =
2980 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
2981 if (NeedToShuffleReuses) {
2982 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2983 }
2984 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
2985
2986 SmallVector<Value *, 4> Args(CI->arg_operands());
2987 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
2988 VecTy->getNumElements());
2989
2990 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
2991 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
2992 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost " << VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
;
2993
2994 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
2995 }
2996 case Instruction::ShuffleVector: {
2997 assert(S.isAltShuffle() &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3002, __PRETTY_FUNCTION__))
2998 ((Instruction::isBinaryOp(S.getOpcode()) &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3002, __PRETTY_FUNCTION__))
2999 Instruction::isBinaryOp(S.getAltOpcode())) ||((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3002, __PRETTY_FUNCTION__))
3000 (Instruction::isCast(S.getOpcode()) &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3002, __PRETTY_FUNCTION__))
3001 Instruction::isCast(S.getAltOpcode()))) &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3002, __PRETTY_FUNCTION__))
3002 "Invalid Shuffle Vector Operand")((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3002, __PRETTY_FUNCTION__))
;
3003 int ScalarCost = 0;
3004 if (NeedToShuffleReuses) {
3005 for (unsigned Idx : E->ReuseShuffleIndices) {
3006 Instruction *I = cast<Instruction>(VL[Idx]);
3007 ReuseShuffleCost -= TTI->getInstructionCost(
3008 I, TargetTransformInfo::TCK_RecipThroughput);
3009 }
3010 for (Value *V : VL) {
3011 Instruction *I = cast<Instruction>(V);
3012 ReuseShuffleCost += TTI->getInstructionCost(
3013 I, TargetTransformInfo::TCK_RecipThroughput);
3014 }
3015 }
3016 for (Value *i : VL) {
3017 Instruction *I = cast<Instruction>(i);
3018 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode")((S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"
) ? static_cast<void> (0) : __assert_fail ("S.isOpcodeOrAlt(I) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3018, __PRETTY_FUNCTION__))
;
3019 ScalarCost += TTI->getInstructionCost(
3020 I, TargetTransformInfo::TCK_RecipThroughput);
3021 }
3022 // VecCost is equal to sum of the cost of creating 2 vectors
3023 // and the cost of creating shuffle.
3024 int VecCost = 0;
3025 if (Instruction::isBinaryOp(S.getOpcode())) {
3026 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy);
3027 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy);
3028 } else {
3029 Type *Src0SclTy = S.MainOp->getOperand(0)->getType();
3030 Type *Src1SclTy = S.AltOp->getOperand(0)->getType();
3031 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3032 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3033 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty);
3034 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty);
3035 }
3036 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3037 return ReuseShuffleCost + VecCost - ScalarCost;
3038 }
3039 default:
3040 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3040)
;
3041 }
3042}
3043
3044bool BoUpSLP::isFullyVectorizableTinyTree() const {
3045 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
3046 << VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
3047
3048 // We only handle trees of heights 1 and 2.
3049 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather)
3050 return true;
3051
3052 if (VectorizableTree.size() != 2)
3053 return false;
3054
3055 // Handle splat and all-constants stores.
3056 if (!VectorizableTree[0]->NeedToGather &&
3057 (allConstant(VectorizableTree[1]->Scalars) ||
3058 isSplat(VectorizableTree[1]->Scalars)))
3059 return true;
3060
3061 // Gathering cost would be too much for tiny trees.
3062 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather)
3063 return false;
3064
3065 return true;
3066}
3067
3068bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3069 // We can vectorize the tree if its size is greater than or equal to the
3070 // minimum size specified by the MinTreeSize command line option.
3071 if (VectorizableTree.size() >= MinTreeSize)
3072 return false;
3073
3074 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3075 // can vectorize it if we can prove it fully vectorizable.
3076 if (isFullyVectorizableTinyTree())
3077 return false;
3078
3079 assert(VectorizableTree.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3081, __PRETTY_FUNCTION__))
3080 ? ExternalUses.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3081, __PRETTY_FUNCTION__))
3081 : true && "We shouldn't have any external users")((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3081, __PRETTY_FUNCTION__))
;
3082
3083 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3084 // vectorizable.
3085 return true;
3086}
3087
3088int BoUpSLP::getSpillCost() const {
3089 // Walk from the bottom of the tree to the top, tracking which values are
3090 // live. When we see a call instruction that is not part of our tree,
3091 // query TTI to see if there is a cost to keeping values live over it
3092 // (for example, if spills and fills are required).
3093 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3094 int Cost = 0;
3095
3096 SmallPtrSet<Instruction*, 4> LiveValues;
3097 Instruction *PrevInst = nullptr;
3098
3099 for (const auto &TEPtr : VectorizableTree) {
3100 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3101 if (!Inst)
3102 continue;
3103
3104 if (!PrevInst) {
3105 PrevInst = Inst;
3106 continue;
3107 }
3108
3109 // Update LiveValues.
3110 LiveValues.erase(PrevInst);
3111 for (auto &J : PrevInst->operands()) {
3112 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3113 LiveValues.insert(cast<Instruction>(&*J));
3114 }
3115
3116 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3117 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3118 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3119 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3120 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3121 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
3122 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { { dbgs() << "SLP: #LV: " << LiveValues
.size(); for (auto *X : LiveValues) dbgs() << " " <<
X->getName(); dbgs() << ", Looking at "; Inst->dump
(); }; } } while (false)
;
3123
3124 // Now find the sequence of instructions between PrevInst and Inst.
3125 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3126 PrevInstIt =
3127 PrevInst->getIterator().getReverse();
3128 while (InstIt != PrevInstIt) {
3129 if (PrevInstIt == PrevInst->getParent()->rend()) {
3130 PrevInstIt = Inst->getParent()->rbegin();
3131 continue;
3132 }
3133
3134 // Debug informations don't impact spill cost.
3135 if ((isa<CallInst>(&*PrevInstIt) &&
3136 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3137 &*PrevInstIt != PrevInst) {
3138 SmallVector<Type*, 4> V;
3139 for (auto *II : LiveValues)
3140 V.push_back(VectorType::get(II->getType(), BundleWidth));
3141 Cost += TTI->getCostOfKeepingLiveOverCall(V);
3142 }
3143
3144 ++PrevInstIt;
3145 }
3146
3147 PrevInst = Inst;
3148 }
3149
3150 return Cost;
3151}
3152
3153int BoUpSLP::getTreeCost() {
3154 int Cost = 0;
3155 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
3156 << VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
3157
3158 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3159
3160 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3161 TreeEntry &TE = *VectorizableTree[I].get();
3162
3163 // We create duplicate tree entries for gather sequences that have multiple
3164 // uses. However, we should not compute the cost of duplicate sequences.
3165 // For example, if we have a build vector (i.e., insertelement sequence)
3166 // that is used by more than one vector instruction, we only need to
3167 // compute the cost of the insertelement instructions once. The redundant
3168 // instructions will be eliminated by CSE.
3169 //
3170 // We should consider not creating duplicate tree entries for gather
3171 // sequences, and instead add additional edges to the tree representing
3172 // their uses. Since such an approach results in fewer total entries,
3173 // existing heuristics based on tree size may yield different results.
3174 //
3175 if (TE.NeedToGather &&
3176 std::any_of(
3177 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(),
3178 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3179 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars);
3180 }))
3181 continue;
3182
3183 int C = getEntryCost(&TE);
3184 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
3185 << " for bundle that starts with " << *TE.Scalars[0]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
3186 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
;
3187 Cost += C;
3188 }
3189
3190 SmallPtrSet<Value *, 16> ExtractCostCalculated;
3191 int ExtractCost = 0;
3192 for (ExternalUser &EU : ExternalUses) {
3193 // We only add extract cost once for the same scalar.
3194 if (!ExtractCostCalculated.insert(EU.Scalar).second)
3195 continue;
3196
3197 // Uses by ephemeral values are free (because the ephemeral value will be
3198 // removed prior to code generation, and so the extraction will be
3199 // removed as well).
3200 if (EphValues.count(EU.User))
3201 continue;
3202
3203 // If we plan to rewrite the tree in a smaller type, we will need to sign
3204 // extend the extracted value back to the original type. Here, we account
3205 // for the extract and the added cost of the sign extend if needed.
3206 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3207 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3208 if (MinBWs.count(ScalarRoot)) {
3209 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3210 auto Extend =
3211 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3212 VecTy = VectorType::get(MinTy, BundleWidth);
3213 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3214 VecTy, EU.Lane);
3215 } else {
3216 ExtractCost +=
3217 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3218 }
3219 }
3220
3221 int SpillCost = getSpillCost();
3222 Cost += SpillCost + ExtractCost;
3223
3224 std::string Str;
3225 {
3226 raw_string_ostream OS(Str);
3227 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3228 << "SLP: Extract Cost = " << ExtractCost << ".\n"
3229 << "SLP: Total Cost = " << Cost << ".\n";
3230 }
3231 LLVM_DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
3232
3233 if (ViewSLPTree)
3234 ViewGraph(this, "SLP" + F->getName(), false, Str);
3235
3236 return Cost;
3237}
3238
3239int BoUpSLP::getGatherCost(Type *Ty,
3240 const DenseSet<unsigned> &ShuffledIndices) const {
3241 int Cost = 0;
3242 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3243 if (!ShuffledIndices.count(i))
3244 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3245 if (!ShuffledIndices.empty())
3246 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3247 return Cost;
3248}
3249
3250int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3251 // Find the type of the operands in VL.
3252 Type *ScalarTy = VL[0]->getType();
3253 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3254 ScalarTy = SI->getValueOperand()->getType();
3255 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3256 // Find the cost of inserting/extracting values from the vector.
3257 // Check if the same elements are inserted several times and count them as
3258 // shuffle candidates.
3259 DenseSet<unsigned> ShuffledElements;
3260 DenseSet<Value *> UniqueElements;
3261 // Iterate in reverse order to consider insert elements with the high cost.
3262 for (unsigned I = VL.size(); I > 0; --I) {
3263 unsigned Idx = I - 1;
3264 if (!UniqueElements.insert(VL[Idx]).second)
3265 ShuffledElements.insert(Idx);
3266 }
3267 return getGatherCost(VecTy, ShuffledElements);
3268}
3269
3270// Perform operand reordering on the instructions in VL and return the reordered
3271// operands in Left and Right.
3272void BoUpSLP::reorderInputsAccordingToOpcode(
3273 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
3274 SmallVectorImpl<Value *> &Right, const DataLayout &DL,
3275 ScalarEvolution &SE) {
3276 if (VL.empty())
3277 return;
3278 VLOperands Ops(VL, DL, SE);
3279 // Reorder the operands in place.
3280 Ops.reorder();
3281 Left = Ops.getVL(0);
3282 Right = Ops.getVL(1);
3283}
3284
3285void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL,
3286 const InstructionsState &S) {
3287 // Get the basic block this bundle is in. All instructions in the bundle
3288 // should be in this block.
3289 auto *Front = cast<Instruction>(S.OpValue);
3290 auto *BB = Front->getParent();
3291 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {((llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V
) -> bool { auto *I = cast<Instruction>(V); return !
S.isOpcodeOrAlt(I) || I->getParent() == BB; })) ? static_cast
<void> (0) : __assert_fail ("llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !S.isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3294, __PRETTY_FUNCTION__))
7
'?' condition is true
3292 auto *I = cast<Instruction>(V);((llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V
) -> bool { auto *I = cast<Instruction>(V); return !
S.isOpcodeOrAlt(I) || I->getParent() == BB; })) ? static_cast
<void> (0) : __assert_fail ("llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !S.isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3294, __PRETTY_FUNCTION__))
3293 return !S.isOpcodeOrAlt(I) || I->getParent() == BB;((llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V
) -> bool { auto *I = cast<Instruction>(V); return !
S.isOpcodeOrAlt(I) || I->getParent() == BB; })) ? static_cast
<void> (0) : __assert_fail ("llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !S.isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3294, __PRETTY_FUNCTION__))
3294 }))((llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V
) -> bool { auto *I = cast<Instruction>(V); return !
S.isOpcodeOrAlt(I) || I->getParent() == BB; })) ? static_cast
<void> (0) : __assert_fail ("llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { auto *I = cast<Instruction>(V); return !S.isOpcodeOrAlt(I) || I->getParent() == BB; })"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3294, __PRETTY_FUNCTION__))
;
3295
3296 // The last instruction in the bundle in program order.
3297 Instruction *LastInst = nullptr;
8
'LastInst' initialized to a null pointer value
3298
3299 // Find the last instruction. The common case should be that BB has been
3300 // scheduled, and the last instruction is VL.back(). So we start with
3301 // VL.back() and iterate over schedule data until we reach the end of the
3302 // bundle. The end of the bundle is marked by null ScheduleData.
3303 if (BlocksSchedules.count(BB)) {
9
Assuming the condition is false
10
Taking false branch
3304 auto *Bundle =
3305 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back()));
3306 if (Bundle && Bundle->isPartOfBundle())
3307 for (; Bundle; Bundle = Bundle->NextInBundle)
3308 if (Bundle->OpValue == Bundle->Inst)
3309 LastInst = Bundle->Inst;
3310 }
3311
3312 // LastInst can still be null at this point if there's either not an entry
3313 // for BB in BlocksSchedules or there's no ScheduleData available for
3314 // VL.back(). This can be the case if buildTree_rec aborts for various
3315 // reasons (e.g., the maximum recursion depth is reached, the maximum region
3316 // size is reached, etc.). ScheduleData is initialized in the scheduling
3317 // "dry-run".
3318 //
3319 // If this happens, we can still find the last instruction by brute force. We
3320 // iterate forwards from Front (inclusive) until we either see all
3321 // instructions in the bundle or reach the end of the block. If Front is the
3322 // last instruction in program order, LastInst will be set to Front, and we
3323 // will visit all the remaining instructions in the block.
3324 //
3325 // One of the reasons we exit early from buildTree_rec is to place an upper
3326 // bound on compile-time. Thus, taking an additional compile-time hit here is
3327 // not ideal. However, this should be exceedingly rare since it requires that
3328 // we both exit early from buildTree_rec and that the bundle be out-of-order
3329 // (causing us to iterate all the way to the end of the block).
3330 if (!LastInst) {
11
Taking true branch
3331 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
3332 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3333 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I))
3334 LastInst = &I;
3335 if (Bundle.empty())
3336 break;
3337 }
3338 }
3339
3340 // Set the insertion point after the last instruction in the bundle. Set the
3341 // debug location to Front.
3342 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
12
Called C++ object pointer is null
3343 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3344}
3345
3346Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3347 Value *Vec = UndefValue::get(Ty);
3348 // Generate the 'InsertElement' instruction.
3349 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3350 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3351 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
3352 GatherSeq.insert(Insrt);
3353 CSEBlocks.insert(Insrt->getParent());
3354
3355 // Add to our 'need-to-extract' list.
3356 if (TreeEntry *E = getTreeEntry(VL[i])) {
3357 // Find which lane we need to extract.
3358 int FoundLane = -1;
3359 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3360 // Is this the lane of the scalar that we are looking for ?
3361 if (E->Scalars[Lane] == VL[i]) {
3362 FoundLane = Lane;
3363 break;
3364 }
3365 }
3366 assert(FoundLane >= 0 && "Could not find the correct lane")((FoundLane >= 0 && "Could not find the correct lane"
) ? static_cast<void> (0) : __assert_fail ("FoundLane >= 0 && \"Could not find the correct lane\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3366, __PRETTY_FUNCTION__))
;
3367 if (!E->ReuseShuffleIndices.empty()) {
3368 FoundLane =
3369 std::distance(E->ReuseShuffleIndices.begin(),
3370 llvm::find(E->ReuseShuffleIndices, FoundLane));
3371 }
3372 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
3373 }
3374 }
3375 }
3376
3377 return Vec;
3378}
3379
3380Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
3381 InstructionsState S = getSameOpcode(VL);
3382 if (S.getOpcode()) {
3383 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3384 if (E->isSame(VL)) {
3385 Value *V = vectorizeTree(E);
3386 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
3387 // We need to get the vectorized value but without shuffle.
3388 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
3389 V = SV->getOperand(0);
3390 } else {
3391 // Reshuffle to get only unique values.
3392 SmallVector<unsigned, 4> UniqueIdxs;
3393 SmallSet<unsigned, 4> UsedIdxs;
3394 for(unsigned Idx : E->ReuseShuffleIndices)
3395 if (UsedIdxs.insert(Idx).second)
3396 UniqueIdxs.emplace_back(Idx);
3397 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3398 UniqueIdxs);
3399 }
3400 }
3401 return V;
3402 }
3403 }
3404 }
3405
3406 Type *ScalarTy = S.OpValue->getType();
3407 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3408 ScalarTy = SI->getValueOperand()->getType();
3409
3410 // Check that every instruction appears once in this bundle.
3411 SmallVector<unsigned, 4> ReuseShuffleIndicies;
3412 SmallVector<Value *, 4> UniqueValues;
3413 if (VL.size() > 2) {
3414 DenseMap<Value *, unsigned> UniquePositions;
3415 for (Value *V : VL) {
3416 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3417 ReuseShuffleIndicies.emplace_back(Res.first->second);
3418 if (Res.second || isa<Constant>(V))
3419 UniqueValues.emplace_back(V);
3420 }
3421 // Do not shuffle single element or if number of unique values is not power
3422 // of 2.
3423 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
3424 !llvm::isPowerOf2_32(UniqueValues.size()))
3425 ReuseShuffleIndicies.clear();
3426 else
3427 VL = UniqueValues;
3428 }
3429 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3430
3431 Value *V = Gather(VL, VecTy);
3432 if (!ReuseShuffleIndicies.empty()) {
3433 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3434 ReuseShuffleIndicies, "shuffle");
3435 if (auto *I = dyn_cast<Instruction>(V)) {
3436 GatherSeq.insert(I);
3437 CSEBlocks.insert(I->getParent());
3438 }
3439 }
3440 return V;
3441}
3442
3443static void inversePermutation(ArrayRef<unsigned> Indices,
3444 SmallVectorImpl<unsigned> &Mask) {
3445 Mask.clear();
3446 const unsigned E = Indices.size();
3447 Mask.resize(E);
3448 for (unsigned I = 0; I < E; ++I)
3449 Mask[Indices[I]] = I;
3450}
3451
3452Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
3453 IRBuilder<>::InsertPointGuard Guard(Builder);
3454
3455 if (E->VectorizedValue) {
1
Assuming the condition is false
2
Taking false branch
3456 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
3457 return E->VectorizedValue;
3458 }
3459
3460 InstructionsState S = getSameOpcode(E->Scalars);
3461 Instruction *VL0 = cast<Instruction>(S.OpValue);
3462 Type *ScalarTy = VL0->getType();
3463 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
3
Taking false branch
3464 ScalarTy = SI->getValueOperand()->getType();
3465 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
3466
3467 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3468
3469 if (E->NeedToGather) {
4
Assuming the condition is true
5
Taking true branch
3470 setInsertPointAfterBundle(E->Scalars, S);
6
Calling 'BoUpSLP::setInsertPointAfterBundle'
3471 auto *V = Gather(E->Scalars, VecTy);
3472 if (NeedToShuffleReuses) {
3473 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3474 E->ReuseShuffleIndices, "shuffle");
3475 if (auto *I = dyn_cast<Instruction>(V)) {
3476 GatherSeq.insert(I);
3477 CSEBlocks.insert(I->getParent());
3478 }
3479 }
3480 E->VectorizedValue = V;
3481 return V;
3482 }
3483
3484 unsigned ShuffleOrOp = S.isAltShuffle() ?
3485 (unsigned) Instruction::ShuffleVector : S.getOpcode();
3486 switch (ShuffleOrOp) {
3487 case Instruction::PHI: {
3488 PHINode *PH = dyn_cast<PHINode>(VL0);
3489 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
3490 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3491 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
3492 Value *V = NewPhi;
3493 if (NeedToShuffleReuses) {
3494 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3495 E->ReuseShuffleIndices, "shuffle");
3496 }
3497 E->VectorizedValue = V;
3498
3499 // PHINodes may have multiple entries from the same block. We want to
3500 // visit every block once.
3501 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
3502
3503 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
3504 ValueList Operands;
3505 BasicBlock *IBB = PH->getIncomingBlock(i);
3506
3507 if (!VisitedBBs.insert(IBB).second) {
3508 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
3509 continue;
3510 }
3511
3512 Builder.SetInsertPoint(IBB->getTerminator());
3513 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3514 Value *Vec = vectorizeTree(E->getOperand(i));
3515 NewPhi->addIncoming(Vec, IBB);
3516 }
3517
3518 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3519, __PRETTY_FUNCTION__))
3519 "Invalid number of incoming values")((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3519, __PRETTY_FUNCTION__))
;
3520 return V;
3521 }
3522
3523 case Instruction::ExtractElement: {
3524 if (!E->NeedToGather) {
3525 Value *V = E->getSingleOperand(0);
3526 if (!E->ReorderIndices.empty()) {
3527 OrdersType Mask;
3528 inversePermutation(E->ReorderIndices, Mask);
3529 Builder.SetInsertPoint(VL0);
3530 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
3531 "reorder_shuffle");
3532 }
3533 if (NeedToShuffleReuses) {
3534 // TODO: Merge this shuffle with the ReorderShuffleMask.
3535 if (E->ReorderIndices.empty())
3536 Builder.SetInsertPoint(VL0);
3537 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3538 E->ReuseShuffleIndices, "shuffle");
3539 }
3540 E->VectorizedValue = V;
3541 return V;
3542 }
3543 setInsertPointAfterBundle(E->Scalars, S);
3544 auto *V = Gather(E->Scalars, VecTy);
3545 if (NeedToShuffleReuses) {
3546 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3547 E->ReuseShuffleIndices, "shuffle");
3548 if (auto *I = dyn_cast<Instruction>(V)) {
3549 GatherSeq.insert(I);
3550 CSEBlocks.insert(I->getParent());
3551 }
3552 }
3553 E->VectorizedValue = V;
3554 return V;
3555 }
3556 case Instruction::ExtractValue: {
3557 if (!E->NeedToGather) {
3558 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
3559 Builder.SetInsertPoint(LI);
3560 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
3561 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
3562 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
3563 Value *NewV = propagateMetadata(V, E->Scalars);
3564 if (!E->ReorderIndices.empty()) {
3565 OrdersType Mask;
3566 inversePermutation(E->ReorderIndices, Mask);
3567 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
3568 "reorder_shuffle");
3569 }
3570 if (NeedToShuffleReuses) {
3571 // TODO: Merge this shuffle with the ReorderShuffleMask.
3572 NewV = Builder.CreateShuffleVector(
3573 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
3574 }
3575 E->VectorizedValue = NewV;
3576 return NewV;
3577 }
3578 setInsertPointAfterBundle(E->Scalars, S);
3579 auto *V = Gather(E->Scalars, VecTy);
3580 if (NeedToShuffleReuses) {
3581 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3582 E->ReuseShuffleIndices, "shuffle");
3583 if (auto *I = dyn_cast<Instruction>(V)) {
3584 GatherSeq.insert(I);
3585 CSEBlocks.insert(I->getParent());
3586 }
3587 }
3588 E->VectorizedValue = V;
3589 return V;
3590 }
3591 case Instruction::ZExt:
3592 case Instruction::SExt:
3593 case Instruction::FPToUI:
3594 case Instruction::FPToSI:
3595 case Instruction::FPExt:
3596 case Instruction::PtrToInt:
3597 case Instruction::IntToPtr:
3598 case Instruction::SIToFP:
3599 case Instruction::UIToFP:
3600 case Instruction::Trunc:
3601 case Instruction::FPTrunc:
3602 case Instruction::BitCast: {
3603 setInsertPointAfterBundle(E->Scalars, S);
3604
3605 Value *InVec = vectorizeTree(E->getOperand(0));
3606
3607 if (E->VectorizedValue) {
3608 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
3609 return E->VectorizedValue;
3610 }
3611
3612 CastInst *CI = dyn_cast<CastInst>(VL0);
3613 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
3614 if (NeedToShuffleReuses) {
3615 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3616 E->ReuseShuffleIndices, "shuffle");
3617 }
3618 E->VectorizedValue = V;
3619 ++NumVectorInstructions;
3620 return V;
3621 }
3622 case Instruction::FCmp:
3623 case Instruction::ICmp: {
3624 setInsertPointAfterBundle(E->Scalars, S);
3625
3626 Value *L = vectorizeTree(E->getOperand(0));
3627 Value *R = vectorizeTree(E->getOperand(1));
3628
3629 if (E->VectorizedValue) {
3630 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
3631 return E->VectorizedValue;
3632 }
3633
3634 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3635 Value *V;
3636 if (S.getOpcode() == Instruction::FCmp)
3637 V = Builder.CreateFCmp(P0, L, R);
3638 else
3639 V = Builder.CreateICmp(P0, L, R);
3640
3641 propagateIRFlags(V, E->Scalars, VL0);
3642 if (NeedToShuffleReuses) {
3643 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3644 E->ReuseShuffleIndices, "shuffle");
3645 }
3646 E->VectorizedValue = V;
3647 ++NumVectorInstructions;
3648 return V;
3649 }
3650 case Instruction::Select: {
3651 setInsertPointAfterBundle(E->Scalars, S);
3652
3653 Value *Cond = vectorizeTree(E->getOperand(0));
3654 Value *True = vectorizeTree(E->getOperand(1));
3655 Value *False = vectorizeTree(E->getOperand(2));
3656
3657 if (E->VectorizedValue) {
3658 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
3659 return E->VectorizedValue;
3660 }
3661
3662 Value *V = Builder.CreateSelect(Cond, True, False);
3663 if (NeedToShuffleReuses) {
3664 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3665 E->ReuseShuffleIndices, "shuffle");
3666 }
3667 E->VectorizedValue = V;
3668 ++NumVectorInstructions;
3669 return V;
3670 }
3671 case Instruction::Add:
3672 case Instruction::FAdd:
3673 case Instruction::Sub:
3674 case Instruction::FSub:
3675 case Instruction::Mul:
3676 case Instruction::FMul:
3677 case Instruction::UDiv:
3678 case Instruction::SDiv:
3679 case Instruction::FDiv:
3680 case Instruction::URem:
3681 case Instruction::SRem:
3682 case Instruction::FRem:
3683 case Instruction::Shl:
3684 case Instruction::LShr:
3685 case Instruction::AShr:
3686 case Instruction::And:
3687 case Instruction::Or:
3688 case Instruction::Xor: {
3689 setInsertPointAfterBundle(E->Scalars, S);
3690
3691 Value *LHS = vectorizeTree(E->getOperand(0));
3692 Value *RHS = vectorizeTree(E->getOperand(1));
3693
3694 if (E->VectorizedValue) {
3695 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
3696 return E->VectorizedValue;
3697 }
3698
3699 Value *V = Builder.CreateBinOp(
3700 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
3701 propagateIRFlags(V, E->Scalars, VL0);
3702 if (auto *I = dyn_cast<Instruction>(V))
3703 V = propagateMetadata(I, E->Scalars);
3704
3705 if (NeedToShuffleReuses) {
3706 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3707 E->ReuseShuffleIndices, "shuffle");
3708 }
3709 E->VectorizedValue = V;
3710 ++NumVectorInstructions;
3711
3712 return V;
3713 }
3714 case Instruction::Load: {
3715 // Loads are inserted at the head of the tree because we don't want to
3716 // sink them all the way down past store instructions.
3717 bool IsReorder = !E->ReorderIndices.empty();
3718 if (IsReorder) {
3719 S = getSameOpcode(E->Scalars, E->ReorderIndices.front());
3720 VL0 = cast<Instruction>(S.OpValue);
3721 }
3722 setInsertPointAfterBundle(E->Scalars, S);
3723
3724 LoadInst *LI = cast<LoadInst>(VL0);
3725 Type *ScalarLoadTy = LI->getType();
3726 unsigned AS = LI->getPointerAddressSpace();
3727
3728 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
3729 VecTy->getPointerTo(AS));
3730
3731 // The pointer operand uses an in-tree scalar so we add the new BitCast to
3732 // ExternalUses list to make sure that an extract will be generated in the
3733 // future.
3734 Value *PO = LI->getPointerOperand();
3735 if (getTreeEntry(PO))
3736 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
3737
3738 unsigned Alignment = LI->getAlignment();
3739 LI = Builder.CreateLoad(VecTy, VecPtr);
3740 if (!Alignment) {
3741 Alignment = DL->getABITypeAlignment(ScalarLoadTy);
3742 }
3743 LI->setAlignment(Alignment);
3744 Value *V = propagateMetadata(LI, E->Scalars);
3745 if (IsReorder) {
3746 OrdersType Mask;
3747 inversePermutation(E->ReorderIndices, Mask);
3748 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3749 Mask, "reorder_shuffle");
3750 }
3751 if (NeedToShuffleReuses) {
3752 // TODO: Merge this shuffle with the ReorderShuffleMask.
3753 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3754 E->ReuseShuffleIndices, "shuffle");
3755 }
3756 E->VectorizedValue = V;
3757 ++NumVectorInstructions;
3758 return V;
3759 }
3760 case Instruction::Store: {
3761 StoreInst *SI = cast<StoreInst>(VL0);
3762 unsigned Alignment = SI->getAlignment();
3763 unsigned AS = SI->getPointerAddressSpace();
3764
3765 setInsertPointAfterBundle(E->Scalars, S);
3766
3767 Value *VecValue = vectorizeTree(E->getOperand(0));
3768 Value *ScalarPtr = SI->getPointerOperand();
3769 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
3770 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
3771
3772 // The pointer operand uses an in-tree scalar, so add the new BitCast to
3773 // ExternalUses to make sure that an extract will be generated in the
3774 // future.
3775 if (getTreeEntry(ScalarPtr))
3776 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
3777
3778 if (!Alignment)
3779 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
3780
3781 ST->setAlignment(Alignment);
3782 Value *V = propagateMetadata(ST, E->Scalars);
3783 if (NeedToShuffleReuses) {
3784 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3785 E->ReuseShuffleIndices, "shuffle");
3786 }
3787 E->VectorizedValue = V;
3788 ++NumVectorInstructions;
3789 return V;
3790 }
3791 case Instruction::GetElementPtr: {
3792 setInsertPointAfterBundle(E->Scalars, S);
3793
3794 Value *Op0 = vectorizeTree(E->getOperand(0));
3795
3796 std::vector<Value *> OpVecs;
3797 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
3798 ++j) {
3799 Value *OpVec = vectorizeTree(E->getOperand(j));
3800 OpVecs.push_back(OpVec);
3801 }
3802
3803 Value *V = Builder.CreateGEP(
3804 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
3805 if (Instruction *I = dyn_cast<Instruction>(V))
3806 V = propagateMetadata(I, E->Scalars);
3807
3808 if (NeedToShuffleReuses) {
3809 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3810 E->ReuseShuffleIndices, "shuffle");
3811 }
3812 E->VectorizedValue = V;
3813 ++NumVectorInstructions;
3814
3815 return V;
3816 }
3817 case Instruction::Call: {
3818 CallInst *CI = cast<CallInst>(VL0);
3819 setInsertPointAfterBundle(E->Scalars, S);
3820 Function *FI;
3821 Intrinsic::ID IID = Intrinsic::not_intrinsic;
3822 Value *ScalarArg = nullptr;
3823 if (CI && (FI = CI->getCalledFunction())) {
3824 IID = FI->getIntrinsicID();
3825 }
3826 std::vector<Value *> OpVecs;
3827 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
3828 ValueList OpVL;
3829 // Some intrinsics have scalar arguments. This argument should not be
3830 // vectorized.
3831 if (hasVectorInstrinsicScalarOpd(IID, j)) {
3832 CallInst *CEI = cast<CallInst>(VL0);
3833 ScalarArg = CEI->getArgOperand(j);
3834 OpVecs.push_back(CEI->getArgOperand(j));
3835 continue;
3836 }
3837
3838 Value *OpVec = vectorizeTree(E->getOperand(j));
3839 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
3840 OpVecs.push_back(OpVec);
3841 }
3842
3843 Module *M = F->getParent();
3844 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3845 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
3846 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
3847 SmallVector<OperandBundleDef, 1> OpBundles;
3848 CI->getOperandBundlesAsDefs(OpBundles);
3849 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
3850
3851 // The scalar argument uses an in-tree scalar so we add the new vectorized
3852 // call to ExternalUses list to make sure that an extract will be
3853 // generated in the future.
3854 if (ScalarArg && getTreeEntry(ScalarArg))
3855 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
3856
3857 propagateIRFlags(V, E->Scalars, VL0);
3858 if (NeedToShuffleReuses) {
3859 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3860 E->ReuseShuffleIndices, "shuffle");
3861 }
3862 E->VectorizedValue = V;
3863 ++NumVectorInstructions;
3864 return V;
3865 }
3866 case Instruction::ShuffleVector: {
3867 assert(S.isAltShuffle() &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3872, __PRETTY_FUNCTION__))
3868 ((Instruction::isBinaryOp(S.getOpcode()) &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3872, __PRETTY_FUNCTION__))
3869 Instruction::isBinaryOp(S.getAltOpcode())) ||((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3872, __PRETTY_FUNCTION__))
3870 (Instruction::isCast(S.getOpcode()) &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3872, __PRETTY_FUNCTION__))
3871 Instruction::isCast(S.getAltOpcode()))) &&((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3872, __PRETTY_FUNCTION__))
3872 "Invalid Shuffle Vector Operand")((S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode
()) && Instruction::isBinaryOp(S.getAltOpcode())) || (
Instruction::isCast(S.getOpcode()) && Instruction::isCast
(S.getAltOpcode()))) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("S.isAltShuffle() && ((Instruction::isBinaryOp(S.getOpcode()) && Instruction::isBinaryOp(S.getAltOpcode())) || (Instruction::isCast(S.getOpcode()) && Instruction::isCast(S.getAltOpcode()))) && \"Invalid Shuffle Vector Operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3872, __PRETTY_FUNCTION__))
;
3873
3874 Value *LHS, *RHS;
3875 if (Instruction::isBinaryOp(S.getOpcode())) {
3876 setInsertPointAfterBundle(E->Scalars, S);
3877 LHS = vectorizeTree(E->getOperand(0));
3878 RHS = vectorizeTree(E->getOperand(1));
3879 } else {
3880 setInsertPointAfterBundle(E->Scalars, S);
3881 LHS = vectorizeTree(E->getOperand(0));
3882 }
3883
3884 if (E->VectorizedValue) {
3885 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*VL0 << ".\n"; } } while (false)
;
3886 return E->VectorizedValue;
3887 }
3888
3889 Value *V0, *V1;
3890 if (Instruction::isBinaryOp(S.getOpcode())) {
3891 V0 = Builder.CreateBinOp(
3892 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
3893 V1 = Builder.CreateBinOp(
3894 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS);
3895 } else {
3896 V0 = Builder.CreateCast(
3897 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy);
3898 V1 = Builder.CreateCast(
3899 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy);
3900 }
3901
3902 // Create shuffle to take alternate operations from the vector.
3903 // Also, gather up main and alt scalar ops to propagate IR flags to
3904 // each vector operation.
3905 ValueList OpScalars, AltScalars;
3906 unsigned e = E->Scalars.size();
3907 SmallVector<Constant *, 8> Mask(e);
3908 for (unsigned i = 0; i < e; ++i) {
3909 auto *OpInst = cast<Instruction>(E->Scalars[i]);
3910 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode")((S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"
) ? static_cast<void> (0) : __assert_fail ("S.isOpcodeOrAlt(OpInst) && \"Unexpected main/alternate opcode\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3910, __PRETTY_FUNCTION__))
;
3911 if (OpInst->getOpcode() == S.getAltOpcode()) {
3912 Mask[i] = Builder.getInt32(e + i);
3913 AltScalars.push_back(E->Scalars[i]);
3914 } else {
3915 Mask[i] = Builder.getInt32(i);
3916 OpScalars.push_back(E->Scalars[i]);
3917 }
3918 }
3919
3920 Value *ShuffleMask = ConstantVector::get(Mask);
3921 propagateIRFlags(V0, OpScalars);
3922 propagateIRFlags(V1, AltScalars);
3923
3924 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
3925 if (Instruction *I = dyn_cast<Instruction>(V))
3926 V = propagateMetadata(I, E->Scalars);
3927 if (NeedToShuffleReuses) {
3928 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3929 E->ReuseShuffleIndices, "shuffle");
3930 }
3931 E->VectorizedValue = V;
3932 ++NumVectorInstructions;
3933
3934 return V;
3935 }
3936 default:
3937 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3937)
;
3938 }
3939 return nullptr;
3940}
3941
3942Value *BoUpSLP::vectorizeTree() {
3943 ExtraValueToDebugLocsMap ExternallyUsedValues;
3944 return vectorizeTree(ExternallyUsedValues);
3945}
3946
3947Value *
3948BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3949 // All blocks must be scheduled before any instructions are inserted.
3950 for (auto &BSIter : BlocksSchedules) {
3951 scheduleBlock(BSIter.second.get());
3952 }
3953
3954 Builder.SetInsertPoint(&F->getEntryBlock().front());
3955 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
3956
3957 // If the vectorized tree can be rewritten in a smaller type, we truncate the
3958 // vectorized root. InstCombine will then rewrite the entire expression. We
3959 // sign extend the extracted values below.
3960 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3961 if (MinBWs.count(ScalarRoot)) {
3962 if (auto *I = dyn_cast<Instruction>(VectorRoot))
3963 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
3964 auto BundleWidth = VectorizableTree[0]->Scalars.size();
3965 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3966 auto *VecTy = VectorType::get(MinTy, BundleWidth);
3967 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
3968 VectorizableTree[0]->VectorizedValue = Trunc;
3969 }
3970
3971 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
3972 << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
3973
3974 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
3975 // specified by ScalarType.
3976 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
3977 if (!MinBWs.count(ScalarRoot))
3978 return Ex;
3979 if (MinBWs[ScalarRoot].second)
3980 return Builder.CreateSExt(Ex, ScalarType);
3981 return Builder.CreateZExt(Ex, ScalarType);
3982 };
3983
3984 // Extract all of the elements with the external uses.
3985 for (const auto &ExternalUse : ExternalUses) {
3986 Value *Scalar = ExternalUse.Scalar;
3987 llvm::User *User = ExternalUse.User;
3988
3989 // Skip users that we already RAUW. This happens when one instruction
3990 // has multiple uses of the same value.
3991 if (User && !is_contained(Scalar->users(), User))
3992 continue;
3993 TreeEntry *E = getTreeEntry(Scalar);
3994 assert(E && "Invalid scalar")((E && "Invalid scalar") ? static_cast<void> (0
) : __assert_fail ("E && \"Invalid scalar\"", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3994, __PRETTY_FUNCTION__))
;
3995 assert(!E->NeedToGather && "Extracting from a gather list")((!E->NeedToGather && "Extracting from a gather list"
) ? static_cast<void> (0) : __assert_fail ("!E->NeedToGather && \"Extracting from a gather list\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3995, __PRETTY_FUNCTION__))
;
3996
3997 Value *Vec = E->VectorizedValue;
3998 assert(Vec && "Can't find vectorizable value")((Vec && "Can't find vectorizable value") ? static_cast
<void> (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3998, __PRETTY_FUNCTION__))
;
3999
4000 Value *Lane = Builder.getInt32(ExternalUse.Lane);
4001 // If User == nullptr, the Scalar is used as extra arg. Generate
4002 // ExtractElement instruction and update the record for this scalar in
4003 // ExternallyUsedValues.
4004 if (!User) {
4005 assert(ExternallyUsedValues.count(Scalar) &&((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4007, __PRETTY_FUNCTION__))
4006 "Scalar with nullptr as an external user must be registered in "((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4007, __PRETTY_FUNCTION__))
4007 "ExternallyUsedValues map")((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4007, __PRETTY_FUNCTION__))
;
4008 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4009 Builder.SetInsertPoint(VecI->getParent(),
4010 std::next(VecI->getIterator()));
4011 } else {
4012 Builder.SetInsertPoint(&F->getEntryBlock().front());
4013 }
4014 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4015 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4016 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4017 auto &Locs = ExternallyUsedValues[Scalar];
4018 ExternallyUsedValues.insert({Ex, Locs});
4019 ExternallyUsedValues.erase(Scalar);
4020 // Required to update internally referenced instructions.
4021 Scalar->replaceAllUsesWith(Ex);
4022 continue;
4023 }
4024
4025 // Generate extracts for out-of-tree users.
4026 // Find the insertion point for the extractelement lane.
4027 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4028 if (PHINode *PH = dyn_cast<PHINode>(User)) {
4029 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4030 if (PH->getIncomingValue(i) == Scalar) {
4031 Instruction *IncomingTerminator =
4032 PH->getIncomingBlock(i)->getTerminator();
4033 if (isa<CatchSwitchInst>(IncomingTerminator)) {
4034 Builder.SetInsertPoint(VecI->getParent(),
4035 std::next(VecI->getIterator()));
4036 } else {
4037 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4038 }
4039 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4040 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4041 CSEBlocks.insert(PH->getIncomingBlock(i));
4042 PH->setOperand(i, Ex);
4043 }
4044 }
4045 } else {
4046 Builder.SetInsertPoint(cast<Instruction>(User));
4047 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4048 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4049 CSEBlocks.insert(cast<Instruction>(User)->getParent());
4050 User->replaceUsesOfWith(Scalar, Ex);
4051 }
4052 } else {
4053 Builder.SetInsertPoint(&F->getEntryBlock().front());
4054 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4055 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4056 CSEBlocks.insert(&F->getEntryBlock());
4057 User->replaceUsesOfWith(Scalar, Ex);
4058 }
4059
4060 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
4061 }
4062
4063 // For each vectorized value:
4064 for (auto &TEPtr : VectorizableTree) {
4065 TreeEntry *Entry = TEPtr.get();
4066
4067 // No need to handle users of gathered values.
4068 if (Entry->NeedToGather)
4069 continue;
4070
4071 assert(Entry->VectorizedValue && "Can't find vectorizable value")((Entry->VectorizedValue && "Can't find vectorizable value"
) ? static_cast<void> (0) : __assert_fail ("Entry->VectorizedValue && \"Can't find vectorizable value\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4071, __PRETTY_FUNCTION__))
;
4072
4073 // For each lane:
4074 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4075 Value *Scalar = Entry->Scalars[Lane];
4076
4077 Type *Ty = Scalar->getType();
4078 if (!Ty->isVoidTy()) {
4079#ifndef NDEBUG
4080 for (User *U : Scalar->users()) {
4081 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
4082
4083 // It is legal to replace users in the ignorelist by undef.
4084 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&(((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Replacing out-of-tree value with undef") ? static_cast<void
> (0) : __assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Replacing out-of-tree value with undef\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4085, __PRETTY_FUNCTION__))
4085 "Replacing out-of-tree value with undef")(((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
"Replacing out-of-tree value with undef") ? static_cast<void
> (0) : __assert_fail ("(getTreeEntry(U) || is_contained(UserIgnoreList, U)) && \"Replacing out-of-tree value with undef\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4085, __PRETTY_FUNCTION__))
;
4086 }
4087#endif
4088 Value *Undef = UndefValue::get(Ty);
4089 Scalar->replaceAllUsesWith(Undef);
4090 }
4091 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
4092 eraseInstruction(cast<Instruction>(Scalar));
4093 }
4094 }
4095
4096 Builder.ClearInsertionPoint();
4097
4098 return VectorizableTree[0]->VectorizedValue;
4099}
4100
4101void BoUpSLP::optimizeGatherSequence() {
4102 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
4103 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
4104 // LICM InsertElementInst sequences.
4105 for (Instruction *I : GatherSeq) {
4106 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
4107 continue;
4108
4109 // Check if this block is inside a loop.
4110 Loop *L = LI->getLoopFor(I->getParent());
4111 if (!L)
4112 continue;
4113
4114 // Check if it has a preheader.
4115 BasicBlock *PreHeader = L->getLoopPreheader();
4116 if (!PreHeader)
4117 continue;
4118
4119 // If the vector or the element that we insert into it are
4120 // instructions that are defined in this basic block then we can't
4121 // hoist this instruction.
4122 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4123 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4124 if (Op0 && L->contains(Op0))
4125 continue;
4126 if (Op1 && L->contains(Op1))
4127 continue;
4128
4129 // We can hoist this instruction. Move it to the pre-header.
4130 I->moveBefore(PreHeader->getTerminator());
4131 }
4132
4133 // Make a list of all reachable blocks in our CSE queue.
4134 SmallVector<const DomTreeNode *, 8> CSEWorkList;
4135 CSEWorkList.reserve(CSEBlocks.size());
4136 for (BasicBlock *BB : CSEBlocks)
4137 if (DomTreeNode *N = DT->getNode(BB)) {
4138 assert(DT->isReachableFromEntry(N))((DT->isReachableFromEntry(N)) ? static_cast<void> (
0) : __assert_fail ("DT->isReachableFromEntry(N)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4138, __PRETTY_FUNCTION__))
;
4139 CSEWorkList.push_back(N);
4140 }
4141
4142 // Sort blocks by domination. This ensures we visit a block after all blocks
4143 // dominating it are visited.
4144 llvm::stable_sort(CSEWorkList,
4145 [this](const DomTreeNode *A, const DomTreeNode *B) {
4146 return DT->properlyDominates(A, B);
4147 });
4148
4149 // Perform O(N^2) search over the gather sequences and merge identical
4150 // instructions. TODO: We can further optimize this scan if we split the
4151 // instructions into different buckets based on the insert lane.
4152 SmallVector<Instruction *, 16> Visited;
4153 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4154 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4155, __PRETTY_FUNCTION__))
4155 "Worklist not sorted properly!")(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4155, __PRETTY_FUNCTION__))
;
4156 BasicBlock *BB = (*I)->getBlock();
4157 // For all instructions in blocks containing gather sequences:
4158 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4159 Instruction *In = &*it++;
4160 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4161 continue;
4162
4163 // Check if we can replace this instruction with any of the
4164 // visited instructions.
4165 for (Instruction *v : Visited) {
4166 if (In->isIdenticalTo(v) &&
4167 DT->dominates(v->getParent(), In->getParent())) {
4168 In->replaceAllUsesWith(v);
4169 eraseInstruction(In);
4170 In = nullptr;
4171 break;
4172 }
4173 }
4174 if (In) {
4175 assert(!is_contained(Visited, In))((!is_contained(Visited, In)) ? static_cast<void> (0) :
__assert_fail ("!is_contained(Visited, In)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4175, __PRETTY_FUNCTION__))
;
4176 Visited.push_back(In);
4177 }
4178 }
4179 }
4180 CSEBlocks.clear();
4181 GatherSeq.clear();
4182}
4183
4184// Groups the instructions to a bundle (which is then a single scheduling entity)
4185// and schedules instructions until the bundle gets ready.
4186bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
4187 BoUpSLP *SLP,
4188 const InstructionsState &S) {
4189 if (isa<PHINode>(S.OpValue))
4190 return true;
4191
4192 // Initialize the instruction bundle.
4193 Instruction *OldScheduleEnd = ScheduleEnd;
4194 ScheduleData *PrevInBundle = nullptr;
4195 ScheduleData *Bundle = nullptr;
4196 bool ReSchedule = false;
4197 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *S.OpValue
<< "\n"; } } while (false)
;
4198
4199 // Make sure that the scheduling region contains all
4200 // instructions of the bundle.
4201 for (Value *V : VL) {
4202 if (!extendSchedulingRegion(V, S))
4203 return false;
4204 }
4205
4206 for (Value *V : VL) {
4207 ScheduleData *BundleMember = getScheduleData(V);
4208 assert(BundleMember &&((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4209, __PRETTY_FUNCTION__))
4209 "no ScheduleData for bundle member (maybe not in same basic block)")((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4209, __PRETTY_FUNCTION__))
;
4210 if (BundleMember->IsScheduled) {
4211 // A bundle member was scheduled as single instruction before and now
4212 // needs to be scheduled as part of the bundle. We just get rid of the
4213 // existing schedule.
4214 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
4215 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
4216 ReSchedule = true;
4217 }
4218 assert(BundleMember->isSchedulingEntity() &&((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4219, __PRETTY_FUNCTION__))
4219 "bundle member already part of other bundle")((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4219, __PRETTY_FUNCTION__))
;
4220 if (PrevInBundle) {
4221 PrevInBundle->NextInBundle = BundleMember;
4222 } else {
4223 Bundle = BundleMember;
4224 }
4225 BundleMember->UnscheduledDepsInBundle = 0;
4226 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4227
4228 // Group the instructions to a bundle.
4229 BundleMember->FirstInBundle = Bundle;
4230 PrevInBundle = BundleMember;
4231 }
4232 if (ScheduleEnd != OldScheduleEnd) {
4233 // The scheduling region got new instructions at the lower end (or it is a
4234 // new region for the first bundle). This makes it necessary to
4235 // recalculate all dependencies.
4236 // It is seldom that this needs to be done a second time after adding the
4237 // initial bundle to the region.
4238 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4239 doForAllOpcodes(I, [](ScheduleData *SD) {
4240 SD->clearDependencies();
4241 });
4242 }
4243 ReSchedule = true;
4244 }
4245 if (ReSchedule) {
4246 resetSchedule();
4247 initialFillReadyList(ReadyInsts);
4248 }
4249
4250 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
4251 << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
4252
4253 calculateDependencies(Bundle, true, SLP);
4254
4255 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4256 // means that there are no cyclic dependencies and we can schedule it.
4257 // Note that's important that we don't "schedule" the bundle yet (see
4258 // cancelScheduling).
4259 while (!Bundle->isReady() && !ReadyInsts.empty()) {
4260
4261 ScheduleData *pickedSD = ReadyInsts.back();
4262 ReadyInsts.pop_back();
4263
4264 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4265 schedule(pickedSD, ReadyInsts);
4266 }
4267 }
4268 if (!Bundle->isReady()) {
4269 cancelScheduling(VL, S.OpValue);
4270 return false;
4271 }
4272 return true;
4273}
4274
4275void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4276 Value *OpValue) {
4277 if (isa<PHINode>(OpValue))
4278 return;
4279
4280 ScheduleData *Bundle = getScheduleData(OpValue);
4281 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
4282 assert(!Bundle->IsScheduled &&((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4283, __PRETTY_FUNCTION__))
4283 "Can't cancel bundle which is already scheduled")((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4283, __PRETTY_FUNCTION__))
;
4284 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4285, __PRETTY_FUNCTION__))
4285 "tried to unbundle something which is not a bundle")((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4285, __PRETTY_FUNCTION__))
;
4286
4287 // Un-bundle: make single instructions out of the bundle.
4288 ScheduleData *BundleMember = Bundle;
4289 while (BundleMember) {
4290 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")((BundleMember->FirstInBundle == Bundle && "corrupt bundle links"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4290, __PRETTY_FUNCTION__))
;
4291 BundleMember->FirstInBundle = BundleMember;
4292 ScheduleData *Next = BundleMember->NextInBundle;
4293 BundleMember->NextInBundle = nullptr;
4294 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4295 if (BundleMember->UnscheduledDepsInBundle == 0) {
4296 ReadyInsts.insert(BundleMember);
4297 }
4298 BundleMember = Next;
4299 }
4300}
4301
4302BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4303 // Allocate a new ScheduleData for the instruction.
4304 if (ChunkPos >= ChunkSize) {
4305 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
4306 ChunkPos = 0;
4307 }
4308 return &(ScheduleDataChunks.back()[ChunkPos++]);
4309}
4310
4311bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4312 const InstructionsState &S) {
4313 if (getScheduleData(V, isOneOf(S, V)))
4314 return true;
4315 Instruction *I = dyn_cast<Instruction>(V);
4316 assert(I && "bundle member must be an instruction")((I && "bundle member must be an instruction") ? static_cast
<void> (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4316, __PRETTY_FUNCTION__))
;
4317 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled")((!isa<PHINode>(I) && "phi nodes don't need to be scheduled"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"phi nodes don't need to be scheduled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4317, __PRETTY_FUNCTION__))
;
4318 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4319 ScheduleData *ISD = getScheduleData(I);
4320 if (!ISD)
4321 return false;
4322 assert(isInSchedulingRegion(ISD) &&((isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4323, __PRETTY_FUNCTION__))
4323 "ScheduleData not in scheduling region")((isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(ISD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4323, __PRETTY_FUNCTION__))
;
4324 ScheduleData *SD = allocateScheduleDataChunks();
4325 SD->Inst = I;
4326 SD->init(SchedulingRegionID, S.OpValue);
4327 ExtraScheduleDataMap[I][S.OpValue] = SD;
4328 return true;
4329 };
4330 if (CheckSheduleForI(I))
4331 return true;
4332 if (!ScheduleStart) {
4333 // It's the first instruction in the new region.
4334 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
4335 ScheduleStart = I;
4336 ScheduleEnd = I->getNextNode();
4337 if (isOneOf(S, I) != I)
4338 CheckSheduleForI(I);
4339 assert(ScheduleEnd && "tried to vectorize a terminator?")((ScheduleEnd && "tried to vectorize a terminator?") ?
static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4339, __PRETTY_FUNCTION__))
;
4340 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
4341 return true;
4342 }
4343 // Search up and down at the same time, because we don't know if the new
4344 // instruction is above or below the existing scheduling region.
4345 BasicBlock::reverse_iterator UpIter =
4346 ++ScheduleStart->getIterator().getReverse();
4347 BasicBlock::reverse_iterator UpperEnd = BB->rend();
4348 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
4349 BasicBlock::iterator LowerEnd = BB->end();
4350 while (true) {
4351 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
4352 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
4353 return false;
4354 }
4355
4356 if (UpIter != UpperEnd) {
4357 if (&*UpIter == I) {
4358 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
4359 ScheduleStart = I;
4360 if (isOneOf(S, I) != I)
4361 CheckSheduleForI(I);
4362 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
4363 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
4364 return true;
4365 }
4366 ++UpIter;
4367 }
4368 if (DownIter != LowerEnd) {
4369 if (&*DownIter == I) {
4370 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
4371 nullptr);
4372 ScheduleEnd = I->getNextNode();
4373 if (isOneOf(S, I) != I)
4374 CheckSheduleForI(I);
4375 assert(ScheduleEnd && "tried to vectorize a terminator?")((ScheduleEnd && "tried to vectorize a terminator?") ?
static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a terminator?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4375, __PRETTY_FUNCTION__))
;
4376 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
4377 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
4378 return true;
4379 }
4380 ++DownIter;
4381 }
4382 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4383, __PRETTY_FUNCTION__))
4383 "instruction not found in block")(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4383, __PRETTY_FUNCTION__))
;
4384 }
4385 return true;
4386}
4387
4388void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
4389 Instruction *ToI,
4390 ScheduleData *PrevLoadStore,
4391 ScheduleData *NextLoadStore) {
4392 ScheduleData *CurrentLoadStore = PrevLoadStore;
4393 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
4394 ScheduleData *SD = ScheduleDataMap[I];
4395 if (!SD) {
4396 SD = allocateScheduleDataChunks();
4397 ScheduleDataMap[I] = SD;
4398 SD->Inst = I;
4399 }
4400 assert(!isInSchedulingRegion(SD) &&((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4401, __PRETTY_FUNCTION__))
4401 "new ScheduleData already in scheduling region")((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4401, __PRETTY_FUNCTION__))
;
4402 SD->init(SchedulingRegionID, I);
4403
4404 if (I->mayReadOrWriteMemory() &&
4405 (!isa<IntrinsicInst>(I) ||
4406 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
4407 // Update the linked list of memory accessing instructions.
4408 if (CurrentLoadStore) {
4409 CurrentLoadStore->NextLoadStore = SD;
4410 } else {
4411 FirstLoadStoreInRegion = SD;
4412 }
4413 CurrentLoadStore = SD;
4414 }
4415 }
4416 if (NextLoadStore) {
4417 if (CurrentLoadStore)
4418 CurrentLoadStore->NextLoadStore = NextLoadStore;
4419 } else {
4420 LastLoadStoreInRegion = CurrentLoadStore;
4421 }
4422}
4423
4424void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
4425 bool InsertInReadyList,
4426 BoUpSLP *SLP) {
4427 assert(SD->isSchedulingEntity())((SD->isSchedulingEntity()) ? static_cast<void> (0) :
__assert_fail ("SD->isSchedulingEntity()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4427, __PRETTY_FUNCTION__))
;
4428
4429 SmallVector<ScheduleData *, 10> WorkList;
4430 WorkList.push_back(SD);
4431
4432 while (!WorkList.empty()) {
4433 ScheduleData *SD = WorkList.back();
4434 WorkList.pop_back();
4435
4436 ScheduleData *BundleMember = SD;
4437 while (BundleMember) {
4438 assert(isInSchedulingRegion(BundleMember))((isInSchedulingRegion(BundleMember)) ? static_cast<void>
(0) : __assert_fail ("isInSchedulingRegion(BundleMember)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4438, __PRETTY_FUNCTION__))
;
4439 if (!BundleMember->hasValidDependencies()) {
4440
4441 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
4442 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
4443 BundleMember->Dependencies = 0;
4444 BundleMember->resetUnscheduledDeps();
4445
4446 // Handle def-use chain dependencies.
4447 if (BundleMember->OpValue != BundleMember->Inst) {
4448 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
4449 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4450 BundleMember->Dependencies++;
4451 ScheduleData *DestBundle = UseSD->FirstInBundle;
4452 if (!DestBundle->IsScheduled)
4453 BundleMember->incrementUnscheduledDeps(1);
4454 if (!DestBundle->hasValidDependencies())
4455 WorkList.push_back(DestBundle);
4456 }
4457 } else {
4458 for (User *U : BundleMember->Inst->users()) {
4459 if (isa<Instruction>(U)) {
4460 ScheduleData *UseSD = getScheduleData(U);
4461 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4462 BundleMember->Dependencies++;
4463 ScheduleData *DestBundle = UseSD->FirstInBundle;
4464 if (!DestBundle->IsScheduled)
4465 BundleMember->incrementUnscheduledDeps(1);
4466 if (!DestBundle->hasValidDependencies())
4467 WorkList.push_back(DestBundle);
4468 }
4469 } else {
4470 // I'm not sure if this can ever happen. But we need to be safe.
4471 // This lets the instruction/bundle never be scheduled and
4472 // eventually disable vectorization.
4473 BundleMember->Dependencies++;
4474 BundleMember->incrementUnscheduledDeps(1);
4475 }
4476 }
4477 }
4478
4479 // Handle the memory dependencies.
4480 ScheduleData *DepDest = BundleMember->NextLoadStore;
4481 if (DepDest) {
4482 Instruction *SrcInst = BundleMember->Inst;
4483 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
4484 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
4485 unsigned numAliased = 0;
4486 unsigned DistToSrc = 1;
4487
4488 while (DepDest) {
4489 assert(isInSchedulingRegion(DepDest))((isInSchedulingRegion(DepDest)) ? static_cast<void> (0
) : __assert_fail ("isInSchedulingRegion(DepDest)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4489, __PRETTY_FUNCTION__))
;
4490
4491 // We have two limits to reduce the complexity:
4492 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
4493 // SLP->isAliased (which is the expensive part in this loop).
4494 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
4495 // the whole loop (even if the loop is fast, it's quadratic).
4496 // It's important for the loop break condition (see below) to
4497 // check this limit even between two read-only instructions.
4498 if (DistToSrc >= MaxMemDepDistance ||
4499 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
4500 (numAliased >= AliasedCheckLimit ||
4501 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
4502
4503 // We increment the counter only if the locations are aliased
4504 // (instead of counting all alias checks). This gives a better
4505 // balance between reduced runtime and accurate dependencies.
4506 numAliased++;
4507
4508 DepDest->MemoryDependencies.push_back(BundleMember);
4509 BundleMember->Dependencies++;
4510 ScheduleData *DestBundle = DepDest->FirstInBundle;
4511 if (!DestBundle->IsScheduled) {
4512 BundleMember->incrementUnscheduledDeps(1);
4513 }
4514 if (!DestBundle->hasValidDependencies()) {
4515 WorkList.push_back(DestBundle);
4516 }
4517 }
4518 DepDest = DepDest->NextLoadStore;
4519
4520 // Example, explaining the loop break condition: Let's assume our
4521 // starting instruction is i0 and MaxMemDepDistance = 3.
4522 //
4523 // +--------v--v--v
4524 // i0,i1,i2,i3,i4,i5,i6,i7,i8
4525 // +--------^--^--^
4526 //
4527 // MaxMemDepDistance let us stop alias-checking at i3 and we add
4528 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
4529 // Previously we already added dependencies from i3 to i6,i7,i8
4530 // (because of MaxMemDepDistance). As we added a dependency from
4531 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4532 // and we can abort this loop at i6.
4533 if (DistToSrc >= 2 * MaxMemDepDistance)
4534 break;
4535 DistToSrc++;
4536 }
4537 }
4538 }
4539 BundleMember = BundleMember->NextInBundle;
4540 }
4541 if (InsertInReadyList && SD->isReady()) {
4542 ReadyInsts.push_back(SD);
4543 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
4544 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
4545 }
4546 }
4547}
4548
4549void BoUpSLP::BlockScheduling::resetSchedule() {
4550 assert(ScheduleStart &&((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4551, __PRETTY_FUNCTION__))
4551 "tried to reset schedule on block which has not been scheduled")((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4551, __PRETTY_FUNCTION__))
;
4552 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4553 doForAllOpcodes(I, [&](ScheduleData *SD) {
4554 assert(isInSchedulingRegion(SD) &&((isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4555, __PRETTY_FUNCTION__))
4555 "ScheduleData not in scheduling region")((isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("isInSchedulingRegion(SD) && \"ScheduleData not in scheduling region\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4555, __PRETTY_FUNCTION__))
;
4556 SD->IsScheduled = false;
4557 SD->resetUnscheduledDeps();
4558 });
4559 }
4560 ReadyInsts.clear();
4561}
4562
4563void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
4564 if (!BS->ScheduleStart)
4565 return;
4566
4567 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
4568
4569 BS->resetSchedule();
4570
4571 // For the real scheduling we use a more sophisticated ready-list: it is
4572 // sorted by the original instruction location. This lets the final schedule
4573 // be as close as possible to the original instruction order.
4574 struct ScheduleDataCompare {
4575 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
4576 return SD2->SchedulingPriority < SD1->SchedulingPriority;
4577 }
4578 };
4579 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
4580
4581 // Ensure that all dependency data is updated and fill the ready-list with
4582 // initial instructions.
4583 int Idx = 0;
4584 int NumToSchedule = 0;
4585 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
4586 I = I->getNextNode()) {
4587 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
4588 assert(SD->isPartOfBundle() ==((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4590, __PRETTY_FUNCTION__))
4589 (getTreeEntry(SD->Inst) != nullptr) &&((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4590, __PRETTY_FUNCTION__))
4590 "scheduler and vectorizer bundle mismatch")((SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr
) && "scheduler and vectorizer bundle mismatch") ? static_cast
<void> (0) : __assert_fail ("SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && \"scheduler and vectorizer bundle mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4590, __PRETTY_FUNCTION__))
;
4591 SD->FirstInBundle->SchedulingPriority = Idx++;
4592 if (SD->isSchedulingEntity()) {
4593 BS->calculateDependencies(SD, false, this);
4594 NumToSchedule++;
4595 }
4596 });
4597 }
4598 BS->initialFillReadyList(ReadyInsts);
4599
4600 Instruction *LastScheduledInst = BS->ScheduleEnd;
4601
4602 // Do the "real" scheduling.
4603 while (!ReadyInsts.empty()) {
4604 ScheduleData *picked = *ReadyInsts.begin();
4605 ReadyInsts.erase(ReadyInsts.begin());
4606
4607 // Move the scheduled instruction(s) to their dedicated places, if not
4608 // there yet.
4609 ScheduleData *BundleMember = picked;
4610 while (BundleMember) {
4611 Instruction *pickedInst = BundleMember->Inst;
4612 if (LastScheduledInst->getNextNode() != pickedInst) {
4613 BS->BB->getInstList().remove(pickedInst);
4614 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
4615 pickedInst);
4616 }
4617 LastScheduledInst = pickedInst;
4618 BundleMember = BundleMember->NextInBundle;
4619 }
4620
4621 BS->schedule(picked, ReadyInsts);
4622 NumToSchedule--;
4623 }
4624 assert(NumToSchedule == 0 && "could not schedule all instructions")((NumToSchedule == 0 && "could not schedule all instructions"
) ? static_cast<void> (0) : __assert_fail ("NumToSchedule == 0 && \"could not schedule all instructions\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4624, __PRETTY_FUNCTION__))
;
4625
4626 // Avoid duplicate scheduling of the block.
4627 BS->ScheduleStart = nullptr;
4628}
4629
4630unsigned BoUpSLP::getVectorElementSize(Value *V) const {
4631 // If V is a store, just return the width of the stored value without
4632 // traversing the expression tree. This is the common case.
4633 if (auto *Store = dyn_cast<StoreInst>(V))
4634 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
4635
4636 // If V is not a store, we can traverse the expression tree to find loads
4637 // that feed it. The type of the loaded value may indicate a more suitable
4638 // width than V's type. We want to base the vector element size on the width
4639 // of memory operations where possible.
4640 SmallVector<Instruction *, 16> Worklist;
4641 SmallPtrSet<Instruction *, 16> Visited;
4642 if (auto *I = dyn_cast<Instruction>(V))
4643 Worklist.push_back(I);
4644
4645 // Traverse the expression tree in bottom-up order looking for loads. If we
4646 // encounter an instruction we don't yet handle, we give up.
4647 auto MaxWidth = 0u;
4648 auto FoundUnknownInst = false;
4649 while (!Worklist.empty() && !FoundUnknownInst) {
4650 auto *I = Worklist.pop_back_val();
4651 Visited.insert(I);
4652
4653 // We should only be looking at scalar instructions here. If the current
4654 // instruction has a vector type, give up.
4655 auto *Ty = I->getType();
4656 if (isa<VectorType>(Ty))
4657 FoundUnknownInst = true;
4658
4659 // If the current instruction is a load, update MaxWidth to reflect the
4660 // width of the loaded value.
4661 else if (isa<LoadInst>(I))
4662 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
4663
4664 // Otherwise, we need to visit the operands of the instruction. We only
4665 // handle the interesting cases from buildTree here. If an operand is an
4666 // instruction we haven't yet visited, we add it to the worklist.
4667 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4668 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
4669 for (Use &U : I->operands())
4670 if (auto *J = dyn_cast<Instruction>(U.get()))
4671 if (!Visited.count(J))
4672 Worklist.push_back(J);
4673 }
4674
4675 // If we don't yet handle the instruction, give up.
4676 else
4677 FoundUnknownInst = true;
4678 }
4679
4680 // If we didn't encounter a memory access in the expression tree, or if we
4681 // gave up for some reason, just return the width of V.
4682 if (!MaxWidth || FoundUnknownInst)
4683 return DL->getTypeSizeInBits(V->getType());
4684
4685 // Otherwise, return the maximum width we found.
4686 return MaxWidth;
4687}
4688
4689// Determine if a value V in a vectorizable expression Expr can be demoted to a
4690// smaller type with a truncation. We collect the values that will be demoted
4691// in ToDemote and additional roots that require investigating in Roots.
4692static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
4693 SmallVectorImpl<Value *> &ToDemote,
4694 SmallVectorImpl<Value *> &Roots) {
4695 // We can always demote constants.
4696 if (isa<Constant>(V)) {
4697 ToDemote.push_back(V);
4698 return true;
4699 }
4700
4701 // If the value is not an instruction in the expression with only one use, it
4702 // cannot be demoted.
4703 auto *I = dyn_cast<Instruction>(V);
4704 if (!I || !I->hasOneUse() || !Expr.count(I))
4705 return false;
4706
4707 switch (I->getOpcode()) {
4708
4709 // We can always demote truncations and extensions. Since truncations can
4710 // seed additional demotion, we save the truncated value.
4711 case Instruction::Trunc:
4712 Roots.push_back(I->getOperand(0));
4713 break;
4714 case Instruction::ZExt:
4715 case Instruction::SExt:
4716 break;
4717
4718 // We can demote certain binary operations if we can demote both of their
4719 // operands.
4720 case Instruction::Add:
4721 case Instruction::Sub:
4722 case Instruction::Mul:
4723 case Instruction::And:
4724 case Instruction::Or:
4725 case Instruction::Xor:
4726 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
4727 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
4728 return false;
4729 break;
4730
4731 // We can demote selects if we can demote their true and false values.
4732 case Instruction::Select: {
4733 SelectInst *SI = cast<SelectInst>(I);
4734 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
4735 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
4736 return false;
4737 break;
4738 }
4739
4740 // We can demote phis if we can demote all their incoming operands. Note that
4741 // we don't need to worry about cycles since we ensure single use above.
4742 case Instruction::PHI: {
4743 PHINode *PN = cast<PHINode>(I);
4744 for (Value *IncValue : PN->incoming_values())
4745 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
4746 return false;
4747 break;
4748 }
4749
4750 // Otherwise, conservatively give up.
4751 default:
4752 return false;
4753 }
4754
4755 // Record the value that we can demote.
4756 ToDemote.push_back(V);
4757 return true;
4758}
4759
4760void BoUpSLP::computeMinimumValueSizes() {
4761 // If there are no external uses, the expression tree must be rooted by a
4762 // store. We can't demote in-memory values, so there is nothing to do here.
4763 if (ExternalUses.empty())
4764 return;
4765
4766 // We only attempt to truncate integer expressions.
4767 auto &TreeRoot = VectorizableTree[0]->Scalars;
4768 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
4769 if (!TreeRootIT)
4770 return;
4771
4772 // If the expression is not rooted by a store, these roots should have
4773 // external uses. We will rely on InstCombine to rewrite the expression in
4774 // the narrower type. However, InstCombine only rewrites single-use values.
4775 // This means that if a tree entry other than a root is used externally, it
4776 // must have multiple uses and InstCombine will not rewrite it. The code
4777 // below ensures that only the roots are used externally.
4778 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
4779 for (auto &EU : ExternalUses)
4780 if (!Expr.erase(EU.Scalar))
4781 return;
4782 if (!Expr.empty())
4783 return;
4784
4785 // Collect the scalar values of the vectorizable expression. We will use this
4786 // context to determine which values can be demoted. If we see a truncation,
4787 // we mark it as seeding another demotion.
4788 for (auto &EntryPtr : VectorizableTree)
4789 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
4790
4791 // Ensure the roots of the vectorizable tree don't form a cycle. They must
4792 // have a single external user that is not in the vectorizable tree.
4793 for (auto *Root : TreeRoot)
4794 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
4795 return;
4796
4797 // Conservatively determine if we can actually truncate the roots of the
4798 // expression. Collect the values that can be demoted in ToDemote and
4799 // additional roots that require investigating in Roots.
4800 SmallVector<Value *, 32> ToDemote;
4801 SmallVector<Value *, 4> Roots;
4802 for (auto *Root : TreeRoot)
4803 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
4804 return;
4805
4806 // The maximum bit width required to represent all the values that can be
4807 // demoted without loss of precision. It would be safe to truncate the roots
4808 // of the expression to this width.
4809 auto MaxBitWidth = 8u;
4810
4811 // We first check if all the bits of the roots are demanded. If they're not,
4812 // we can truncate the roots to this narrower type.
4813 for (auto *Root : TreeRoot) {
4814 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
4815 MaxBitWidth = std::max<unsigned>(
4816 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
4817 }
4818
4819 // True if the roots can be zero-extended back to their original type, rather
4820 // than sign-extended. We know that if the leading bits are not demanded, we
4821 // can safely zero-extend. So we initialize IsKnownPositive to True.
4822 bool IsKnownPositive = true;
4823
4824 // If all the bits of the roots are demanded, we can try a little harder to
4825 // compute a narrower type. This can happen, for example, if the roots are
4826 // getelementptr indices. InstCombine promotes these indices to the pointer
4827 // width. Thus, all their bits are technically demanded even though the
4828 // address computation might be vectorized in a smaller type.
4829 //
4830 // We start by looking at each entry that can be demoted. We compute the
4831 // maximum bit width required to store the scalar by using ValueTracking to
4832 // compute the number of high-order bits we can truncate.
4833 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
4834 llvm::all_of(TreeRoot, [](Value *R) {
4835 assert(R->hasOneUse() && "Root should have only one use!")((R->hasOneUse() && "Root should have only one use!"
) ? static_cast<void> (0) : __assert_fail ("R->hasOneUse() && \"Root should have only one use!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4835, __PRETTY_FUNCTION__))
;
4836 return isa<GetElementPtrInst>(R->user_back());
4837 })) {
4838 MaxBitWidth = 8u;
4839
4840 // Determine if the sign bit of all the roots is known to be zero. If not,
4841 // IsKnownPositive is set to False.
4842 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
4843 KnownBits Known = computeKnownBits(R, *DL);
4844 return Known.isNonNegative();
4845 });
4846
4847 // Determine the maximum number of bits required to store the scalar
4848 // values.
4849 for (auto *Scalar : ToDemote) {
4850 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
4851 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
4852 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
4853 }
4854
4855 // If we can't prove that the sign bit is zero, we must add one to the
4856 // maximum bit width to account for the unknown sign bit. This preserves
4857 // the existing sign bit so we can safely sign-extend the root back to the
4858 // original type. Otherwise, if we know the sign bit is zero, we will
4859 // zero-extend the root instead.
4860 //
4861 // FIXME: This is somewhat suboptimal, as there will be cases where adding
4862 // one to the maximum bit width will yield a larger-than-necessary
4863 // type. In general, we need to add an extra bit only if we can't
4864 // prove that the upper bit of the original type is equal to the
4865 // upper bit of the proposed smaller type. If these two bits are the
4866 // same (either zero or one) we know that sign-extending from the
4867 // smaller type will result in the same value. Here, since we can't
4868 // yet prove this, we are just making the proposed smaller type
4869 // larger to ensure correctness.
4870 if (!IsKnownPositive)
4871 ++MaxBitWidth;
4872 }
4873
4874 // Round MaxBitWidth up to the next power-of-two.
4875 if (!isPowerOf2_64(MaxBitWidth))
4876 MaxBitWidth = NextPowerOf2(MaxBitWidth);
4877
4878 // If the maximum bit width we compute is less than the with of the roots'
4879 // type, we can proceed with the narrowing. Otherwise, do nothing.
4880 if (MaxBitWidth >= TreeRootIT->getBitWidth())
4881 return;
4882
4883 // If we can truncate the root, we must collect additional values that might
4884 // be demoted as a result. That is, those seeded by truncations we will
4885 // modify.
4886 while (!Roots.empty())
4887 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
4888
4889 // Finally, map the values we can demote to the maximum bit with we computed.
4890 for (auto *Scalar : ToDemote)
4891 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
4892}
4893
4894namespace {
4895
4896/// The SLPVectorizer Pass.
4897struct SLPVectorizer : public FunctionPass {
4898 SLPVectorizerPass Impl;
4899
4900 /// Pass identification, replacement for typeid
4901 static char ID;
4902
4903 explicit SLPVectorizer() : FunctionPass(ID) {
4904 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
4905 }
4906
4907 bool doInitialization(Module &M) override {
4908 return false;
4909 }
4910
4911 bool runOnFunction(Function &F) override {
4912 if (skipFunction(F))
4913 return false;
4914
4915 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4916 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4917 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4918 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
4919 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4920 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4921 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4922 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4923 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
4924 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4925
4926 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4927 }
4928
4929 void getAnalysisUsage(AnalysisUsage &AU) const override {
4930 FunctionPass::getAnalysisUsage(AU);
4931 AU.addRequired<AssumptionCacheTracker>();
4932 AU.addRequired<ScalarEvolutionWrapperPass>();
4933 AU.addRequired<AAResultsWrapperPass>();
4934 AU.addRequired<TargetTransformInfoWrapperPass>();
4935 AU.addRequired<LoopInfoWrapperPass>();
4936 AU.addRequired<DominatorTreeWrapperPass>();
4937 AU.addRequired<DemandedBitsWrapperPass>();
4938 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4939 AU.addPreserved<LoopInfoWrapperPass>();
4940 AU.addPreserved<DominatorTreeWrapperPass>();
4941 AU.addPreserved<AAResultsWrapperPass>();
4942 AU.addPreserved<GlobalsAAWrapperPass>();
4943 AU.setPreservesCFG();
4944 }
4945};
4946
4947} // end anonymous namespace
4948
4949PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
4950 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
4951 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
4952 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
4953 auto *AA = &AM.getResult<AAManager>(F);
4954 auto *LI = &AM.getResult<LoopAnalysis>(F);
4955 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
4956 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
4957 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
4958 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4959
4960 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4961 if (!Changed)
4962 return PreservedAnalyses::all();
4963
4964 PreservedAnalyses PA;
4965 PA.preserveSet<CFGAnalyses>();
4966 PA.preserve<AAManager>();
4967 PA.preserve<GlobalsAA>();
4968 return PA;
4969}
4970
4971bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
4972 TargetTransformInfo *TTI_,
4973 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
4974 LoopInfo *LI_, DominatorTree *DT_,
4975 AssumptionCache *AC_, DemandedBits *DB_,
4976 OptimizationRemarkEmitter *ORE_) {
4977 SE = SE_;
4978 TTI = TTI_;
4979 TLI = TLI_;
4980 AA = AA_;
4981 LI = LI_;
4982 DT = DT_;
4983 AC = AC_;
4984 DB = DB_;
4985 DL = &F.getParent()->getDataLayout();
4986
4987 Stores.clear();
4988 GEPs.clear();
4989 bool Changed = false;
4990
4991 // If the target claims to have no vector registers don't attempt
4992 // vectorization.
4993 if (!TTI->getNumberOfRegisters(true))
4994 return false;
4995
4996 // Don't vectorize when the attribute NoImplicitFloat is used.
4997 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
4998 return false;
4999
5000 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
5001
5002 // Use the bottom up slp vectorizer to construct chains that start with
5003 // store instructions.
5004 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5005
5006 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5007 // delete instructions.
5008
5009 // Scan the blocks in the function in post order.
5010 for (auto BB : post_order(&F.getEntryBlock())) {
5011 collectSeedInstructions(BB);
5012
5013 // Vectorize trees that end at stores.
5014 if (!Stores.empty()) {
5015 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
5016 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
5017 Changed |= vectorizeStoreChains(R);
5018 }
5019
5020 // Vectorize trees that end at reductions.
5021 Changed |= vectorizeChainsInBlock(BB, R);
5022
5023 // Vectorize the index computations of getelementptr instructions. This
5024 // is primarily intended to catch gather-like idioms ending at
5025 // non-consecutive loads.
5026 if (!GEPs.empty()) {
5027 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
5028 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
5029 Changed |= vectorizeGEPIndices(BB, R);
5030 }
5031 }
5032
5033 if (Changed) {
5034 R.optimizeGatherSequence();
5035 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
5036 LLVM_DEBUG(verifyFunction(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { verifyFunction(F); } } while (false)
;
5037 }
5038 return Changed;
5039}
5040
5041/// Check that the Values in the slice in VL array are still existent in
5042/// the WeakTrackingVH array.
5043/// Vectorization of part of the VL array may cause later values in the VL array
5044/// to become invalid. We track when this has happened in the WeakTrackingVH
5045/// array.
5046static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
5047 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
5048 unsigned SliceSize) {
5049 VL = VL.slice(SliceBegin, SliceSize);
5050 VH = VH.slice(SliceBegin, SliceSize);
5051 return !std::equal(VL.begin(), VL.end(), VH.begin());
5052}
5053
5054bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5055 unsigned VecRegSize) {
5056 const unsigned ChainLen = Chain.size();
5057 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLendo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< ChainLen << "\n"; } } while (false)
5058 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< ChainLen << "\n"; } } while (false)
;
5059 const unsigned Sz = R.getVectorElementSize(Chain[0]);
5060 const unsigned VF = VecRegSize / Sz;
5061
5062 if (!isPowerOf2_32(Sz) || VF < 2)
5063 return false;
5064
5065 // Keep track of values that were deleted by vectorizing in the loop below.
5066 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
5067
5068 bool Changed = false;
5069 // Look for profitable vectorizable trees at all offsets, starting at zero.
5070 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
5071
5072 // Check that a previous iteration of this loop did not delete the Value.
5073 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
5074 continue;
5075
5076 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << i << "\n"; } } while (false
)
5077 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << i << "\n"; } } while (false
)
;
5078 ArrayRef<Value *> Operands = Chain.slice(i, VF);
5079
5080 R.buildTree(Operands);
5081 if (R.isTreeTinyAndNotFullyVectorizable())
5082 continue;
5083
5084 R.computeMinimumValueSizes();
5085
5086 int Cost = R.getTreeCost();
5087
5088 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost=" << Cost <<
" for VF=" << VF << "\n"; } } while (false)
5089 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost=" << Cost <<
" for VF=" << VF << "\n"; } } while (false)
;
5090 if (Cost < -SLPCostThreshold) {
5091 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost=" <<
Cost << "\n"; } } while (false)
;
5092
5093 using namespace ore;
5094
5095 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
5096 cast<StoreInst>(Chain[i]))
5097 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5098 << " and with tree size "
5099 << NV("TreeSize", R.getTreeSize()));
5100
5101 R.vectorizeTree();
5102
5103 // Move to the next bundle.
5104 i += VF - 1;
5105 Changed = true;
5106 }
5107 }
5108
5109 return Changed;
5110}
5111
5112bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5113 BoUpSLP &R) {
5114 SetVector<StoreInst *> Heads;
5115 SmallDenseSet<StoreInst *> Tails;
5116 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
5117
5118 // We may run into multiple chains that merge into a single chain. We mark the
5119 // stores that we vectorized so that we don't visit the same store twice.
5120 BoUpSLP::ValueSet VectorizedStores;
5121 bool Changed = false;
5122
5123 auto &&FindConsecutiveAccess =
5124 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
5125 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5126 return false;
5127
5128 Tails.insert(Stores[Idx]);
5129 Heads.insert(Stores[K]);
5130 ConsecutiveChain[Stores[K]] = Stores[Idx];
5131 return true;
5132 };
5133
5134 // Do a quadratic search on all of the given stores in reverse order and find
5135 // all of the pairs of stores that follow each other.
5136 int E = Stores.size();
5137 for (int Idx = E - 1; Idx >= 0; --Idx) {
5138 // If a store has multiple consecutive store candidates, search according
5139 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5140 // This is because usually pairing with immediate succeeding or preceding
5141 // candidate create the best chance to find slp vectorization opportunity.
5142 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
5143 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5144 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5145 break;
5146 }
5147
5148 // For stores that start but don't end a link in the chain:
5149 for (auto *SI : llvm::reverse(Heads)) {
5150 if (Tails.count(SI))
5151 continue;
5152
5153 // We found a store instr that starts a chain. Now follow the chain and try
5154 // to vectorize it.
5155 BoUpSLP::ValueList Operands;
5156 StoreInst *I = SI;
5157 // Collect the chain into a list.
5158 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
5159 Operands.push_back(I);
5160 // Move to the next value in the chain.
5161 I = ConsecutiveChain[I];
5162 }
5163
5164 // FIXME: Is division-by-2 the correct step? Should we assert that the
5165 // register size is a power-of-2?
5166 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
5167 Size /= 2) {
5168 if (vectorizeStoreChain(Operands, R, Size)) {
5169 // Mark the vectorized stores so that we don't vectorize them again.
5170 VectorizedStores.insert(Operands.begin(), Operands.end());
5171 Changed = true;
5172 break;
5173 }
5174 }
5175 }
5176
5177 return Changed;
5178}
5179
5180void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5181 // Initialize the collections. We will make a single pass over the block.
5182 Stores.clear();
5183 GEPs.clear();
5184
5185 // Visit the store and getelementptr instructions in BB and organize them in
5186 // Stores and GEPs according to the underlying objects of their pointer
5187 // operands.
5188 for (Instruction &I : *BB) {
5189 // Ignore store instructions that are volatile or have a pointer operand
5190 // that doesn't point to a scalar type.
5191 if (auto *SI = dyn_cast<StoreInst>(&I)) {
5192 if (!SI->isSimple())
5193 continue;
5194 if (!isValidElementType(SI->getValueOperand()->getType()))
5195 continue;
5196 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5197 }
5198
5199 // Ignore getelementptr instructions that have more than one index, a
5200 // constant index, or a pointer operand that doesn't point to a scalar
5201 // type.
5202 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5203 auto Idx = GEP->idx_begin()->get();
5204 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5205 continue;
5206 if (!isValidElementType(Idx->getType()))
5207 continue;
5208 if (GEP->getType()->isVectorTy())
5209 continue;
5210 GEPs[GEP->getPointerOperand()].push_back(GEP);
5211 }
5212 }
5213}
5214
5215bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5216 if (!A || !B)
5217 return false;
5218 Value *VL[] = { A, B };
5219 return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5220}
5221
5222bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5223 int UserCost, bool AllowReorder) {
5224 if (VL.size() < 2)
5225 return false;
5226
5227 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
5228 << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
5229
5230 // Check that all of the parts are scalar instructions of the same type,
5231 // we permit an alternate opcode via InstructionsState.
5232 InstructionsState S = getSameOpcode(VL);
5233 if (!S.getOpcode())
5234 return false;
5235
5236 Instruction *I0 = cast<Instruction>(S.OpValue);
5237 unsigned Sz = R.getVectorElementSize(I0);
5238 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5239 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5240 if (MaxVF < 2) {
5241 R.getORE()->emit([&]() {
5242 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "SmallVF", I0)
5243 << "Cannot SLP vectorize list: vectorization factor "
5244 << "less than 2 is not supported";
5245 });
5246 return false;
5247 }
5248
5249 for (Value *V : VL) {
5250 Type *Ty = V->getType();
5251 if (!isValidElementType(Ty)) {
5252 // NOTE: the following will give user internal llvm type name, which may
5253 // not be useful.
5254 R.getORE()->emit([&]() {
5255 std::string type_str;
5256 llvm::raw_string_ostream rso(type_str);
5257 Ty->print(rso);
5258 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "UnsupportedType", I0)
5259 << "Cannot SLP vectorize list: type "
5260 << rso.str() + " is unsupported by vectorizer";
5261 });
5262 return false;
5263 }
5264 }
5265
5266 bool Changed = false;
5267 bool CandidateFound = false;
5268 int MinCost = SLPCostThreshold;
5269
5270 // Keep track of values that were deleted by vectorizing in the loop below.
5271 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
5272
5273 unsigned NextInst = 0, MaxInst = VL.size();
5274 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
5275 VF /= 2) {
5276 // No actual vectorization should happen, if number of parts is the same as
5277 // provided vectorization factor (i.e. the scalar type is used for vector
5278 // code during codegen).
5279 auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5280 if (TTI->getNumberOfParts(VecTy) == VF)
5281 continue;
5282 for (unsigned I = NextInst; I < MaxInst; ++I) {
5283 unsigned OpsWidth = 0;
5284
5285 if (I + VF > MaxInst)
5286 OpsWidth = MaxInst - I;
5287 else
5288 OpsWidth = VF;
5289
5290 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5291 break;
5292
5293 // Check that a previous iteration of this loop did not delete the Value.
5294 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
5295 continue;
5296
5297 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
5298 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
5299 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5300
5301 R.buildTree(Ops);
5302 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5303 // TODO: check if we can allow reordering for more cases.
5304 if (AllowReorder && Order) {
5305 // TODO: reorder tree nodes without tree rebuilding.
5306 // Conceptually, there is nothing actually preventing us from trying to
5307 // reorder a larger list. In fact, we do exactly this when vectorizing
5308 // reductions. However, at this point, we only expect to get here when
5309 // there are exactly two operations.
5310 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5310, __PRETTY_FUNCTION__))
;
5311 Value *ReorderedOps[] = {Ops[1], Ops[0]};
5312 R.buildTree(ReorderedOps, None);
5313 }
5314 if (R.isTreeTinyAndNotFullyVectorizable())
5315 continue;
5316
5317 R.computeMinimumValueSizes();
5318 int Cost = R.getTreeCost() - UserCost;
5319 CandidateFound = true;
5320 MinCost = std::min(MinCost, Cost);
5321
5322 if (Cost < -SLPCostThreshold) {
5323 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
5324 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
5325 cast<Instruction>(Ops[0]))
5326 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
5327 << " and with tree size "
5328 << ore::NV("TreeSize", R.getTreeSize()));
5329
5330 R.vectorizeTree();
5331 // Move to the next bundle.
5332 I += VF - 1;
5333 NextInst = I + 1;
5334 Changed = true;
5335 }
5336 }
5337 }
5338
5339 if (!Changed && CandidateFound) {
5340 R.getORE()->emit([&]() {
5341 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotBeneficial", I0)
5342 << "List vectorization was possible but not beneficial with cost "
5343 << ore::NV("Cost", MinCost) << " >= "
5344 << ore::NV("Treshold", -SLPCostThreshold);
5345 });
5346 } else if (!Changed) {
5347 R.getORE()->emit([&]() {
5348 return OptimizationRemarkMissed(SV_NAME"slp-vectorizer", "NotPossible", I0)
5349 << "Cannot SLP vectorize list: vectorization was impossible"
5350 << " with available vectorization factors";
5351 });
5352 }
5353 return Changed;
5354}
5355
5356bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
5357 if (!I)
5358 return false;
5359
5360 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
5361 return false;
5362
5363 Value *P = I->getParent();
5364
5365 // Vectorize in current basic block only.
5366 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5367 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5368 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
5369 return false;
5370
5371 // Try to vectorize V.
5372 if (tryToVectorizePair(Op0, Op1, R))
5373 return true;
5374
5375 auto *A = dyn_cast<BinaryOperator>(Op0);
5376 auto *B = dyn_cast<BinaryOperator>(Op1);
5377 // Try to skip B.
5378 if (B && B->hasOneUse()) {
5379 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
5380 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
5381 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
5382 return true;
5383 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
5384 return true;
5385 }
5386
5387 // Try to skip A.
5388 if (A && A->hasOneUse()) {
5389 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
5390 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
5391 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
5392 return true;
5393 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
5394 return true;
5395 }
5396 return false;
5397}
5398
5399/// Generate a shuffle mask to be used in a reduction tree.
5400///
5401/// \param VecLen The length of the vector to be reduced.
5402/// \param NumEltsToRdx The number of elements that should be reduced in the
5403/// vector.
5404/// \param IsPairwise Whether the reduction is a pairwise or splitting
5405/// reduction. A pairwise reduction will generate a mask of
5406/// <0,2,...> or <1,3,..> while a splitting reduction will generate
5407/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
5408/// \param IsLeft True will generate a mask of even elements, odd otherwise.
5409static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
5410 bool IsPairwise, bool IsLeft,
5411 IRBuilder<> &Builder) {
5412 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask")(((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"
) ? static_cast<void> (0) : __assert_fail ("(IsPairwise || !IsLeft) && \"Don't support a <0,1,undef,...> mask\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5412, __PRETTY_FUNCTION__))
;
5413
5414 SmallVector<Constant *, 32> ShuffleMask(
5415 VecLen, UndefValue::get(Builder.getInt32Ty()));
5416
5417 if (IsPairwise)
5418 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
5419 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5420 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
5421 else
5422 // Move the upper half of the vector to the lower half.
5423 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5424 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
5425
5426 return ConstantVector::get(ShuffleMask);
5427}
5428
5429namespace {
5430
5431/// Model horizontal reductions.
5432///
5433/// A horizontal reduction is a tree of reduction operations (currently add and
5434/// fadd) that has operations that can be put into a vector as its leaf.
5435/// For example, this tree:
5436///
5437/// mul mul mul mul
5438/// \ / \ /
5439/// + +
5440/// \ /
5441/// +
5442/// This tree has "mul" as its reduced values and "+" as its reduction
5443/// operations. A reduction might be feeding into a store or a binary operation
5444/// feeding a phi.
5445/// ...
5446/// \ /
5447/// +
5448/// |
5449/// phi +=
5450///
5451/// Or:
5452/// ...
5453/// \ /
5454/// +
5455/// |
5456/// *p =
5457///
5458class HorizontalReduction {
5459 using ReductionOpsType = SmallVector<Value *, 16>;
5460 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
5461 ReductionOpsListType ReductionOps;
5462 SmallVector<Value *, 32> ReducedVals;
5463 // Use map vector to make stable output.
5464 MapVector<Instruction *, Value *> ExtraArgs;
5465
5466 /// Kind of the reduction data.
5467 enum ReductionKind {
5468 RK_None, /// Not a reduction.
5469 RK_Arithmetic, /// Binary reduction data.
5470 RK_Min, /// Minimum reduction data.
5471 RK_UMin, /// Unsigned minimum reduction data.
5472 RK_Max, /// Maximum reduction data.
5473 RK_UMax, /// Unsigned maximum reduction data.
5474 };
5475
5476 /// Contains info about operation, like its opcode, left and right operands.
5477 class OperationData {
5478 /// Opcode of the instruction.
5479 unsigned Opcode = 0;
5480
5481 /// Left operand of the reduction operation.
5482 Value *LHS = nullptr;
5483
5484 /// Right operand of the reduction operation.
5485 Value *RHS = nullptr;
5486
5487 /// Kind of the reduction operation.
5488 ReductionKind Kind = RK_None;
5489
5490 /// True if float point min/max reduction has no NaNs.
5491 bool NoNaN = false;
5492
5493 /// Checks if the reduction operation can be vectorized.
5494 bool isVectorizable() const {
5495 return LHS && RHS &&
5496 // We currently only support add/mul/logical && min/max reductions.
5497 ((Kind == RK_Arithmetic &&
5498 (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
5499 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
5500 Opcode == Instruction::And || Opcode == Instruction::Or ||
5501 Opcode == Instruction::Xor)) ||
5502 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
5503 (Kind == RK_Min || Kind == RK_Max)) ||
5504 (Opcode == Instruction::ICmp &&
5505 (Kind == RK_UMin || Kind == RK_UMax)));
5506 }
5507
5508 /// Creates reduction operation with the current opcode.
5509 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
5510 assert(isVectorizable() &&((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5511, __PRETTY_FUNCTION__))
5511 "Expected add|fadd or min/max reduction operation.")((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5511, __PRETTY_FUNCTION__))
;
5512 Value *Cmp;
5513 switch (Kind) {
5514 case RK_Arithmetic:
5515 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
5516 Name);
5517 case RK_Min:
5518 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
5519 : Builder.CreateFCmpOLT(LHS, RHS);
5520 break;
5521 case RK_Max:
5522 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
5523 : Builder.CreateFCmpOGT(LHS, RHS);
5524 break;
5525 case RK_UMin:
5526 assert(Opcode == Instruction::ICmp && "Expected integer types.")((Opcode == Instruction::ICmp && "Expected integer types."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Expected integer types.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5526, __PRETTY_FUNCTION__))
;
5527 Cmp = Builder.CreateICmpULT(LHS, RHS);
5528 break;
5529 case RK_UMax:
5530 assert(Opcode == Instruction::ICmp && "Expected integer types.")((Opcode == Instruction::ICmp && "Expected integer types."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Expected integer types.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5530, __PRETTY_FUNCTION__))
;
5531 Cmp = Builder.CreateICmpUGT(LHS, RHS);
5532 break;
5533 case RK_None:
5534 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5534)
;
5535 }
5536 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5537 }
5538
5539 public:
5540 explicit OperationData() = default;
5541
5542 /// Construction for reduced values. They are identified by opcode only and
5543 /// don't have associated LHS/RHS values.
5544 explicit OperationData(Value *V) {
5545 if (auto *I = dyn_cast<Instruction>(V))
5546 Opcode = I->getOpcode();
5547 }
5548
5549 /// Constructor for reduction operations with opcode and its left and
5550 /// right operands.
5551 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
5552 bool NoNaN = false)
5553 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
5554 assert(Kind != RK_None && "One of the reduction operations is expected.")((Kind != RK_None && "One of the reduction operations is expected."
) ? static_cast<void> (0) : __assert_fail ("Kind != RK_None && \"One of the reduction operations is expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5554, __PRETTY_FUNCTION__))
;
5555 }
5556
5557 explicit operator bool() const { return Opcode; }
5558
5559 /// Get the index of the first operand.
5560 unsigned getFirstOperandIndex() const {
5561 assert(!!*this && "The opcode is not set.")((!!*this && "The opcode is not set.") ? static_cast<
void> (0) : __assert_fail ("!!*this && \"The opcode is not set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5561, __PRETTY_FUNCTION__))
;
5562 switch (Kind) {
5563 case RK_Min:
5564 case RK_UMin:
5565 case RK_Max:
5566 case RK_UMax:
5567 return 1;
5568 case RK_Arithmetic:
5569 case RK_None:
5570 break;
5571 }
5572 return 0;
5573 }
5574
5575 /// Total number of operands in the reduction operation.
5576 unsigned getNumberOfOperands() const {
5577 assert(Kind != RK_None && !!*this && LHS && RHS &&((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5578, __PRETTY_FUNCTION__))
5578 "Expected reduction operation.")((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5578, __PRETTY_FUNCTION__))
;
5579 switch (Kind) {
5580 case RK_Arithmetic:
5581 return 2;
5582 case RK_Min:
5583 case RK_UMin:
5584 case RK_Max:
5585 case RK_UMax:
5586 return 3;
5587 case RK_None:
5588 break;
5589 }
5590 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5590)
;
5591 }
5592
5593 /// Checks if the operation has the same parent as \p P.
5594 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
5595 assert(Kind != RK_None && !!*this && LHS && RHS &&((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5596, __PRETTY_FUNCTION__))
5596 "Expected reduction operation.")((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5596, __PRETTY_FUNCTION__))
;
5597 if (!IsRedOp)
5598 return I->getParent() == P;
5599 switch (Kind) {
5600 case RK_Arithmetic:
5601 // Arithmetic reduction operation must be used once only.
5602 return I->getParent() == P;
5603 case RK_Min:
5604 case RK_UMin:
5605 case RK_Max:
5606 case RK_UMax: {
5607 // SelectInst must be used twice while the condition op must have single
5608 // use only.
5609 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
5610 return I->getParent() == P && Cmp && Cmp->getParent() == P;
5611 }
5612 case RK_None:
5613 break;
5614 }
5615 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5615)
;
5616 }
5617 /// Expected number of uses for reduction operations/reduced values.
5618 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
5619 assert(Kind != RK_None && !!*this && LHS && RHS &&((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5620, __PRETTY_FUNCTION__))
5620 "Expected reduction operation.")((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5620, __PRETTY_FUNCTION__))
;
5621 switch (Kind) {
5622 case RK_Arithmetic:
5623 return I->hasOneUse();
5624 case RK_Min:
5625 case RK_UMin:
5626 case RK_Max:
5627 case RK_UMax:
5628 return I->hasNUses(2) &&
5629 (!IsReductionOp ||
5630 cast<SelectInst>(I)->getCondition()->hasOneUse());
5631 case RK_None:
5632 break;
5633 }
5634 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5634)
;
5635 }
5636
5637 /// Initializes the list of reduction operations.
5638 void initReductionOps(ReductionOpsListType &ReductionOps) {
5639 assert(Kind != RK_None && !!*this && LHS && RHS &&((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5640, __PRETTY_FUNCTION__))
5640 "Expected reduction operation.")((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5640, __PRETTY_FUNCTION__))
;
5641 switch (Kind) {
5642 case RK_Arithmetic:
5643 ReductionOps.assign(1, ReductionOpsType());
5644 break;
5645 case RK_Min:
5646 case RK_UMin:
5647 case RK_Max:
5648 case RK_UMax:
5649 ReductionOps.assign(2, ReductionOpsType());
5650 break;
5651 case RK_None:
5652 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5652)
;
5653 }
5654 }
5655 /// Add all reduction operations for the reduction instruction \p I.
5656 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
5657 assert(Kind != RK_None && !!*this && LHS && RHS &&((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5658, __PRETTY_FUNCTION__))
5658 "Expected reduction operation.")((Kind != RK_None && !!*this && LHS &&
RHS && "Expected reduction operation.") ? static_cast
<void> (0) : __assert_fail ("Kind != RK_None && !!*this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5658, __PRETTY_FUNCTION__))
;
5659 switch (Kind) {
5660 case RK_Arithmetic:
5661 ReductionOps[0].emplace_back(I);
5662 break;
5663 case RK_Min:
5664 case RK_UMin:
5665 case RK_Max:
5666 case RK_UMax:
5667 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
5668 ReductionOps[1].emplace_back(I);
5669 break;
5670 case RK_None:
5671 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5671)
;
5672 }
5673 }
5674
5675 /// Checks if instruction is associative and can be vectorized.
5676 bool isAssociative(Instruction *I) const {
5677 assert(Kind != RK_None && *this && LHS && RHS &&((Kind != RK_None && *this && LHS && RHS
&& "Expected reduction operation.") ? static_cast<
void> (0) : __assert_fail ("Kind != RK_None && *this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5678, __PRETTY_FUNCTION__))
5678 "Expected reduction operation.")((Kind != RK_None && *this && LHS && RHS
&& "Expected reduction operation.") ? static_cast<
void> (0) : __assert_fail ("Kind != RK_None && *this && LHS && RHS && \"Expected reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5678, __PRETTY_FUNCTION__))
;
5679 switch (Kind) {
5680 case RK_Arithmetic:
5681 return I->isAssociative();
5682 case RK_Min:
5683 case RK_Max:
5684 return Opcode == Instruction::ICmp ||
5685 cast<Instruction>(I->getOperand(0))->isFast();
5686 case RK_UMin:
5687 case RK_UMax:
5688 assert(Opcode == Instruction::ICmp &&((Opcode == Instruction::ICmp && "Only integer compare operation is expected."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Only integer compare operation is expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5689, __PRETTY_FUNCTION__))
5689 "Only integer compare operation is expected.")((Opcode == Instruction::ICmp && "Only integer compare operation is expected."
) ? static_cast<void> (0) : __assert_fail ("Opcode == Instruction::ICmp && \"Only integer compare operation is expected.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5689, __PRETTY_FUNCTION__))
;
5690 return true;
5691 case RK_None:
5692 break;
5693 }
5694 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5694)
;
5695 }
5696
5697 /// Checks if the reduction operation can be vectorized.
5698 bool isVectorizable(Instruction *I) const {
5699 return isVectorizable() && isAssociative(I);
5700 }
5701
5702 /// Checks if two operation data are both a reduction op or both a reduced
5703 /// value.
5704 bool operator==(const OperationData &OD) {
5705 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&((((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS ==
!OD.RHS))) && "One of the comparing operations is incorrect."
) ? static_cast<void> (0) : __assert_fail ("((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && \"One of the comparing operations is incorrect.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5706, __PRETTY_FUNCTION__))
5706 "One of the comparing operations is incorrect.")((((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS ==
!OD.RHS))) && "One of the comparing operations is incorrect."
) ? static_cast<void> (0) : __assert_fail ("((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && \"One of the comparing operations is incorrect.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5706, __PRETTY_FUNCTION__))
;
5707 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
5708 }
5709 bool operator!=(const OperationData &OD) { return !(*this == OD); }
5710 void clear() {
5711 Opcode = 0;
5712 LHS = nullptr;
5713 RHS = nullptr;
5714 Kind = RK_None;
5715 NoNaN = false;
5716 }
5717
5718 /// Get the opcode of the reduction operation.
5719 unsigned getOpcode() const {
5720 assert(isVectorizable() && "Expected vectorizable operation.")((isVectorizable() && "Expected vectorizable operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected vectorizable operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5720, __PRETTY_FUNCTION__))
;
5721 return Opcode;
5722 }
5723
5724 /// Get kind of reduction data.
5725 ReductionKind getKind() const { return Kind; }
5726 Value *getLHS() const { return LHS; }
5727 Value *getRHS() const { return RHS; }
5728 Type *getConditionType() const {
5729 switch (Kind) {
5730 case RK_Arithmetic:
5731 return nullptr;
5732 case RK_Min:
5733 case RK_Max:
5734 case RK_UMin:
5735 case RK_UMax:
5736 return CmpInst::makeCmpResultType(LHS->getType());
5737 case RK_None:
5738 break;
5739 }
5740 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5740)
;
5741 }
5742
5743 /// Creates reduction operation with the current opcode with the IR flags
5744 /// from \p ReductionOps.
5745 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5746 const ReductionOpsListType &ReductionOps) const {
5747 assert(isVectorizable() &&((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5748, __PRETTY_FUNCTION__))
5748 "Expected add|fadd or min/max reduction operation.")((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5748, __PRETTY_FUNCTION__))
;
5749 auto *Op = createOp(Builder, Name);
5750 switch (Kind) {
5751 case RK_Arithmetic:
5752 propagateIRFlags(Op, ReductionOps[0]);
5753 return Op;
5754 case RK_Min:
5755 case RK_Max:
5756 case RK_UMin:
5757 case RK_UMax:
5758 if (auto *SI = dyn_cast<SelectInst>(Op))
5759 propagateIRFlags(SI->getCondition(), ReductionOps[0]);
5760 propagateIRFlags(Op, ReductionOps[1]);
5761 return Op;
5762 case RK_None:
5763 break;
5764 }
5765 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5765)
;
5766 }
5767 /// Creates reduction operation with the current opcode with the IR flags
5768 /// from \p I.
5769 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5770 Instruction *I) const {
5771 assert(isVectorizable() &&((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5772, __PRETTY_FUNCTION__))
5772 "Expected add|fadd or min/max reduction operation.")((isVectorizable() && "Expected add|fadd or min/max reduction operation."
) ? static_cast<void> (0) : __assert_fail ("isVectorizable() && \"Expected add|fadd or min/max reduction operation.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5772, __PRETTY_FUNCTION__))
;
5773 auto *Op = createOp(Builder, Name);
5774 switch (Kind) {
5775 case RK_Arithmetic:
5776 propagateIRFlags(Op, I);
5777 return Op;
5778 case RK_Min:
5779 case RK_Max:
5780 case RK_UMin:
5781 case RK_UMax:
5782 if (auto *SI = dyn_cast<SelectInst>(Op)) {
5783 propagateIRFlags(SI->getCondition(),
5784 cast<SelectInst>(I)->getCondition());
5785 }
5786 propagateIRFlags(Op, I);
5787 return Op;
5788 case RK_None:
5789 break;
5790 }
5791 llvm_unreachable("Unknown reduction operation.")::llvm::llvm_unreachable_internal("Unknown reduction operation."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5791)
;
5792 }
5793
5794 TargetTransformInfo::ReductionFlags getFlags() const {
5795 TargetTransformInfo::ReductionFlags Flags;
5796 Flags.NoNaN = NoNaN;
5797 switch (Kind) {
5798 case RK_Arithmetic:
5799 break;
5800 case RK_Min:
5801 Flags.IsSigned = Opcode == Instruction::ICmp;
5802 Flags.IsMaxOp = false;
5803 break;
5804 case RK_Max:
5805 Flags.IsSigned = Opcode == Instruction::ICmp;
5806 Flags.IsMaxOp = true;
5807 break;
5808 case RK_UMin:
5809 Flags.IsSigned = false;
5810 Flags.IsMaxOp = false;
5811 break;
5812 case RK_UMax:
5813 Flags.IsSigned = false;
5814 Flags.IsMaxOp = true;
5815 break;
5816 case RK_None:
5817 llvm_unreachable("Reduction kind is not set")::llvm::llvm_unreachable_internal("Reduction kind is not set"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5817)
;
5818 }
5819 return Flags;
5820 }
5821 };
5822
5823 WeakTrackingVH ReductionRoot;
5824
5825 /// The operation data of the reduction operation.
5826 OperationData ReductionData;
5827
5828 /// The operation data of the values we perform a reduction on.
5829 OperationData ReducedValueData;
5830
5831 /// Should we model this reduction as a pairwise reduction tree or a tree that
5832 /// splits the vector in halves and adds those halves.
5833 bool IsPairwiseReduction = false;
5834
5835 /// Checks if the ParentStackElem.first should be marked as a reduction
5836 /// operation with an extra argument or as extra argument itself.
5837 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
5838 Value *ExtraArg) {
5839 if (ExtraArgs.count(ParentStackElem.first)) {
5840 ExtraArgs[ParentStackElem.first] = nullptr;
5841 // We ran into something like:
5842 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
5843 // The whole ParentStackElem.first should be considered as an extra value
5844 // in this case.
5845 // Do not perform analysis of remaining operands of ParentStackElem.first
5846 // instruction, this whole instruction is an extra argument.
5847 ParentStackElem.second = ParentStackElem.first->getNumOperands();
5848 } else {
5849 // We ran into something like:
5850 // ParentStackElem.first += ... + ExtraArg + ...
5851 ExtraArgs[ParentStackElem.first] = ExtraArg;
5852 }
5853 }
5854
5855 static OperationData getOperationData(Value *V) {
5856 if (!V)
5857 return OperationData();
5858
5859 Value *LHS;
5860 Value *RHS;
5861 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
5862 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
5863 RK_Arithmetic);
5864 }
5865 if (auto *Select = dyn_cast<SelectInst>(V)) {
5866 // Look for a min/max pattern.
5867 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5868 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5869 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5870 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5871 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
5872 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5873 return OperationData(
5874 Instruction::FCmp, LHS, RHS, RK_Min,
5875 cast<Instruction>(Select->getCondition())->hasNoNaNs());
5876 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5877 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
5878 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5879 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
5880 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
5881 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5882 return OperationData(
5883 Instruction::FCmp, LHS, RHS, RK_Max,
5884 cast<Instruction>(Select->getCondition())->hasNoNaNs());
5885 } else {
5886 // Try harder: look for min/max pattern based on instructions producing
5887 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
5888 // During the intermediate stages of SLP, it's very common to have
5889 // pattern like this (since optimizeGatherSequence is run only once
5890 // at the end):
5891 // %1 = extractelement <2 x i32> %a, i32 0
5892 // %2 = extractelement <2 x i32> %a, i32 1
5893 // %cond = icmp sgt i32 %1, %2
5894 // %3 = extractelement <2 x i32> %a, i32 0
5895 // %4 = extractelement <2 x i32> %a, i32 1
5896 // %select = select i1 %cond, i32 %3, i32 %4
5897 CmpInst::Predicate Pred;
5898 Instruction *L1;
5899 Instruction *L2;
5900
5901 LHS = Select->getTrueValue();
5902 RHS = Select->getFalseValue();
5903 Value *Cond = Select->getCondition();
5904
5905 // TODO: Support inverse predicates.
5906 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
5907 if (!isa<ExtractElementInst>(RHS) ||
5908 !L2->isIdenticalTo(cast<Instruction>(RHS)))
5909 return OperationData(V);
5910 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
5911 if (!isa<ExtractElementInst>(LHS) ||
5912 !L1->isIdenticalTo(cast<Instruction>(LHS)))
5913 return OperationData(V);
5914 } else {
5915 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
5916 return OperationData(V);
5917 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
5918 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
5919 !L2->isIdenticalTo(cast<Instruction>(RHS)))
5920 return OperationData(V);
5921 }
5922 switch (Pred) {
5923 default:
5924 return OperationData(V);
5925
5926 case CmpInst::ICMP_ULT:
5927 case CmpInst::ICMP_ULE:
5928 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5929
5930 case CmpInst::ICMP_SLT:
5931 case CmpInst::ICMP_SLE:
5932 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5933
5934 case CmpInst::FCMP_OLT:
5935 case CmpInst::FCMP_OLE:
5936 case CmpInst::FCMP_ULT:
5937 case CmpInst::FCMP_ULE:
5938 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
5939 cast<Instruction>(Cond)->hasNoNaNs());
5940
5941 case CmpInst::ICMP_UGT:
5942 case CmpInst::ICMP_UGE:
5943 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
5944
5945 case CmpInst::ICMP_SGT:
5946 case CmpInst::ICMP_SGE:
5947 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
5948
5949 case CmpInst::FCMP_OGT:
5950 case CmpInst::FCMP_OGE:
5951 case CmpInst::FCMP_UGT:
5952 case CmpInst::FCMP_UGE:
5953 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
5954 cast<Instruction>(Cond)->hasNoNaNs());
5955 }
5956 }
5957 }
5958 return OperationData(V);
5959 }
5960
5961public:
5962 HorizontalReduction() = default;
5963
5964 /// Try to find a reduction tree.
5965 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
5966 assert((!Phi || is_contained(Phi->operands(), B)) &&(((!Phi || is_contained(Phi->operands(), B)) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Thi phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5967, __PRETTY_FUNCTION__))
5967 "Thi phi needs to use the binary operator")(((!Phi || is_contained(Phi->operands(), B)) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Thi phi needs to use the binary operator\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5967, __PRETTY_FUNCTION__))
;
5968
5969 ReductionData = getOperationData(B);
5970
5971 // We could have a initial reductions that is not an add.
5972 // r *= v1 + v2 + v3 + v4
5973 // In such a case start looking for a tree rooted in the first '+'.
5974 if (Phi) {
5975 if (ReductionData.getLHS() == Phi) {
5976 Phi = nullptr;
5977 B = dyn_cast<Instruction>(ReductionData.getRHS());
5978 ReductionData = getOperationData(B);
5979 } else if (ReductionData.getRHS() == Phi) {
5980 Phi = nullptr;
5981 B = dyn_cast<Instruction>(ReductionData.getLHS());
5982 ReductionData = getOperationData(B);
5983 }
5984 }
5985
5986 if (!ReductionData.isVectorizable(B))
5987 return false;
5988
5989 Type *Ty = B->getType();
5990 if (!isValidElementType(Ty))
5991 return false;
5992 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
5993 return false;
5994
5995 ReducedValueData.clear();
5996 ReductionRoot = B;
5997
5998 // Post order traverse the reduction tree starting at B. We only handle true
5999 // trees containing only binary operators.
6000 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6001 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6002 ReductionData.initReductionOps(ReductionOps);
6003 while (!Stack.empty()) {
6004 Instruction *TreeN = Stack.back().first;
6005 unsigned EdgeToVist = Stack.back().second++;
6006 OperationData OpData = getOperationData(TreeN);
6007 bool IsReducedValue = OpData != ReductionData;
6008
6009 // Postorder vist.
6010 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6011 if (IsReducedValue)
6012 ReducedVals.push_back(TreeN);
6013 else {
6014 auto I = ExtraArgs.find(TreeN);
6015 if (I != ExtraArgs.end() && !I->second) {
6016 // Check if TreeN is an extra argument of its parent operation.
6017 if (Stack.size() <= 1) {
6018 // TreeN can't be an extra argument as it is a root reduction
6019 // operation.
6020 return false;
6021 }
6022 // Yes, TreeN is an extra argument, do not add it to a list of
6023 // reduction operations.
6024 // Stack[Stack.size() - 2] always points to the parent operation.
6025 markExtraArg(Stack[Stack.size() - 2], TreeN);
6026 ExtraArgs.erase(TreeN);
6027 } else
6028 ReductionData.addReductionOps(TreeN, ReductionOps);
6029 }
6030 // Retract.
6031 Stack.pop_back();
6032 continue;
6033 }
6034
6035 // Visit left or right.
6036 Value *NextV = TreeN->getOperand(EdgeToVist);
6037 if (NextV != Phi) {
6038 auto *I = dyn_cast<Instruction>(NextV);
6039 OpData = getOperationData(I);
6040 // Continue analysis if the next operand is a reduction operation or
6041 // (possibly) a reduced value. If the reduced value opcode is not set,
6042 // the first met operation != reduction operation is considered as the
6043 // reduced value class.
6044 if (I && (!ReducedValueData || OpData == ReducedValueData ||
6045 OpData == ReductionData)) {
6046 const bool IsReductionOperation = OpData == ReductionData;
6047 // Only handle trees in the current basic block.
6048 if (!ReductionData.hasSameParent(I, B->getParent(),
6049 IsReductionOperation)) {
6050 // I is an extra argument for TreeN (its parent operation).
6051 markExtraArg(Stack.back(), I);
6052 continue;
6053 }
6054
6055 // Each tree node needs to have minimal number of users except for the
6056 // ultimate reduction.
6057 if (!ReductionData.hasRequiredNumberOfUses(I,
6058 OpData == ReductionData) &&
6059 I != B) {
6060 // I is an extra argument for TreeN (its parent operation).
6061 markExtraArg(Stack.back(), I);
6062 continue;
6063 }
6064
6065 if (IsReductionOperation) {
6066 // We need to be able to reassociate the reduction operations.
6067 if (!OpData.isAssociative(I)) {
6068 // I is an extra argument for TreeN (its parent operation).
6069 markExtraArg(Stack.back(), I);
6070 continue;
6071 }
6072 } else if (ReducedValueData &&
6073 ReducedValueData != OpData) {
6074 // Make sure that the opcodes of the operations that we are going to
6075 // reduce match.
6076 // I is an extra argument for TreeN (its parent operation).
6077 markExtraArg(Stack.back(), I);
6078 continue;
6079 } else if (!ReducedValueData)
6080 ReducedValueData = OpData;
6081
6082 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6083 continue;
6084 }
6085 }
6086 // NextV is an extra argument for TreeN (its parent operation).
6087 markExtraArg(Stack.back(), NextV);
6088 }
6089 return true;
6090 }
6091
6092 /// Attempt to vectorize the tree found by
6093 /// matchAssociativeReduction.
6094 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6095 if (ReducedVals.empty())
6096 return false;
6097
6098 // If there is a sufficient number of reduction values, reduce
6099 // to a nearby power-of-2. Can safely generate oversized
6100 // vectors and rely on the backend to split them to legal sizes.
6101 unsigned NumReducedVals = ReducedVals.size();
6102 if (NumReducedVals < 4)
6103 return false;
6104
6105 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6106
6107 Value *VectorizedTree = nullptr;
6108 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6109 FastMathFlags Unsafe;
6110 Unsafe.setFast();
6111 Builder.setFastMathFlags(Unsafe);
6112 unsigned i = 0;
6113
6114 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6115 // The same extra argument may be used several time, so log each attempt
6116 // to use it.
6117 for (auto &Pair : ExtraArgs) {
6118 assert(Pair.first && "DebugLoc must be set.")((Pair.first && "DebugLoc must be set.") ? static_cast
<void> (0) : __assert_fail ("Pair.first && \"DebugLoc must be set.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6118, __PRETTY_FUNCTION__))
;
6119 ExternallyUsedValues[Pair.second].push_back(Pair.first);
6120 }
6121 // The reduction root is used as the insertion point for new instructions,
6122 // so set it as externally used to prevent it from being deleted.
6123 ExternallyUsedValues[ReductionRoot];
6124 SmallVector<Value *, 16> IgnoreList;
6125 for (auto &V : ReductionOps)
6126 IgnoreList.append(V.begin(), V.end());
6127 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6128 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6129 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6130 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6131 // TODO: Handle orders of size less than number of elements in the vector.
6132 if (Order && Order->size() == VL.size()) {
6133 // TODO: reorder tree nodes without tree rebuilding.
6134 SmallVector<Value *, 4> ReorderedOps(VL.size());
6135 llvm::transform(*Order, ReorderedOps.begin(),
6136 [VL](const unsigned Idx) { return VL[Idx]; });
6137 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6138 }
6139 if (V.isTreeTinyAndNotFullyVectorizable())
6140 break;
6141
6142 V.computeMinimumValueSizes();
6143
6144 // Estimate cost.
6145 int TreeCost = V.getTreeCost();
6146 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6147 int Cost = TreeCost + ReductionCost;
6148 if (Cost >= -SLPCostThreshold) {
6149 V.getORE()->emit([&]() {
6150 return OptimizationRemarkMissed(
6151 SV_NAME"slp-vectorizer", "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6152 << "Vectorizing horizontal reduction is possible"
6153 << "but not beneficial with cost "
6154 << ore::NV("Cost", Cost) << " and threshold "
6155 << ore::NV("Threshold", -SLPCostThreshold);
6156 });
6157 break;
6158 }
6159
6160 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
6161 << Cost << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
6162 V.getORE()->emit([&]() {
6163 return OptimizationRemark(
6164 SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6165 << "Vectorized horizontal reduction with cost "
6166 << ore::NV("Cost", Cost) << " and with tree size "
6167 << ore::NV("TreeSize", V.getTreeSize());
6168 });
6169
6170 // Vectorize a tree.
6171 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6172 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6173
6174 // Emit a reduction.
6175 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
6176 Value *ReducedSubTree =
6177 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6178 if (VectorizedTree) {
6179 Builder.SetCurrentDebugLocation(Loc);
6180 OperationData VectReductionData(ReductionData.getOpcode(),
6181 VectorizedTree, ReducedSubTree,
6182 ReductionData.getKind());
6183 VectorizedTree =
6184 VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6185 } else
6186 VectorizedTree = ReducedSubTree;
6187 i += ReduxWidth;
6188 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6189 }
6190
6191 if (VectorizedTree) {
6192 // Finish the reduction.
6193 for (; i < NumReducedVals; ++i) {
6194 auto *I = cast<Instruction>(ReducedVals[i]);
6195 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6196 OperationData VectReductionData(ReductionData.getOpcode(),
6197 VectorizedTree, I,
6198 ReductionData.getKind());
6199 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6200 }
6201 for (auto &Pair : ExternallyUsedValues) {
6202 // Add each externally used value to the final reduction.
6203 for (auto *I : Pair.second) {
6204 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6205 OperationData VectReductionData(ReductionData.getOpcode(),
6206 VectorizedTree, Pair.first,
6207 ReductionData.getKind());
6208 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6209 }
6210 }
6211 // Update users.
6212 ReductionRoot->replaceAllUsesWith(VectorizedTree);
6213 }
6214 return VectorizedTree != nullptr;
6215 }
6216
6217 unsigned numReductionValues() const {
6218 return ReducedVals.size();
6219 }
6220
6221private:
6222 /// Calculate the cost of a reduction.
6223 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6224 unsigned ReduxWidth) {
6225 Type *ScalarTy = FirstReducedVal->getType();
6226 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6227
6228 int PairwiseRdxCost;
6229 int SplittingRdxCost;
6230 switch (ReductionData.getKind()) {
6231 case RK_Arithmetic:
6232 PairwiseRdxCost =
6233 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6234 /*IsPairwiseForm=*/true);
6235 SplittingRdxCost =
6236 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6237 /*IsPairwiseForm=*/false);
6238 break;
6239 case RK_Min:
6240 case RK_Max:
6241 case RK_UMin:
6242 case RK_UMax: {
6243 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6244 bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6245 ReductionData.getKind() == RK_UMax;
6246 PairwiseRdxCost =
6247 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6248 /*IsPairwiseForm=*/true, IsUnsigned);
6249 SplittingRdxCost =
6250 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6251 /*IsPairwiseForm=*/false, IsUnsigned);
6252 break;
6253 }
6254 case RK_None:
6255 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6255)
;
6256 }
6257
6258 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6259 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6260
6261 int ScalarReduxCost;
6262 switch (ReductionData.getKind()) {
6263 case RK_Arithmetic:
6264 ScalarReduxCost =
6265 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6266 break;
6267 case RK_Min:
6268 case RK_Max:
6269 case RK_UMin:
6270 case RK_UMax:
6271 ScalarReduxCost =
6272 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6273 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6274 CmpInst::makeCmpResultType(ScalarTy));
6275 break;
6276 case RK_None:
6277 llvm_unreachable("Expected arithmetic or min/max reduction operation")::llvm::llvm_unreachable_internal("Expected arithmetic or min/max reduction operation"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6277)
;
6278 }
6279 ScalarReduxCost *= (ReduxWidth - 1);
6280
6281 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
6282 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
6283 << " (It is a "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
6284 << (IsPairwiseReduction ? "pairwise" : "splitting")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
6285 << " reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
;
6286
6287 return VecReduxCost - ScalarReduxCost;
6288 }
6289
6290 /// Emit a horizontal reduction of the vectorized value.
6291 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6292 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6293 assert(VectorizedValue && "Need to have a vectorized tree node")((VectorizedValue && "Need to have a vectorized tree node"
) ? static_cast<void> (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6293, __PRETTY_FUNCTION__))
;
6294 assert(isPowerOf2_32(ReduxWidth) &&((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6295, __PRETTY_FUNCTION__))
6295 "We only handle power-of-two reductions for now")((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6295, __PRETTY_FUNCTION__))
;
6296
6297 if (!IsPairwiseReduction)
6298 return createSimpleTargetReduction(
6299 Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6300 ReductionData.getFlags(), FastMathFlags::getFast(),
6301 ReductionOps.back());
6302
6303 Value *TmpVec = VectorizedValue;
6304 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6305 Value *LeftMask =
6306 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6307 Value *RightMask =
6308 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6309
6310 Value *LeftShuf = Builder.CreateShuffleVector(
6311 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6312 Value *RightShuf = Builder.CreateShuffleVector(
6313 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6314 "rdx.shuf.r");
6315 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6316 RightShuf, ReductionData.getKind());
6317 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6318 }
6319
6320 // The result is in the first element of the vector.
6321 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6322 }
6323};
6324
6325} // end anonymous namespace
6326
6327/// Recognize construction of vectors like
6328/// %ra = insertelement <4 x float> undef, float %s0, i32 0
6329/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
6330/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
6331/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
6332/// starting from the last insertelement instruction.
6333///
6334/// Returns true if it matches
6335static bool findBuildVector(InsertElementInst *LastInsertElem,
6336 TargetTransformInfo *TTI,
6337 SmallVectorImpl<Value *> &BuildVectorOpds,
6338 int &UserCost) {
6339 UserCost = 0;
6340 Value *V = nullptr;
6341 do {
6342 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
6343 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
6344 LastInsertElem->getType(),
6345 CI->getZExtValue());
6346 }
6347 BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
6348 V = LastInsertElem->getOperand(0);
6349 if (isa<UndefValue>(V))
6350 break;
6351 LastInsertElem = dyn_cast<InsertElementInst>(V);
6352 if (!LastInsertElem || !LastInsertElem->hasOneUse())
6353 return false;
6354 } while (true);
6355 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6356 return true;
6357}
6358
6359/// Like findBuildVector, but looks for construction of aggregate.
6360///
6361/// \return true if it matches.
6362static bool findBuildAggregate(InsertValueInst *IV,
6363 SmallVectorImpl<Value *> &BuildVectorOpds) {
6364 Value *V;
6365 do {
6366 BuildVectorOpds.push_back(IV->getInsertedValueOperand());
6367 V = IV->getAggregateOperand();
6368 if (isa<UndefValue>(V))
6369 break;
6370 IV = dyn_cast<InsertValueInst>(V);
6371 if (!IV || !IV->hasOneUse())
6372 return false;
6373 } while (true);
6374 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6375 return true;
6376}
6377
6378static bool PhiTypeSorterFunc(Value *V, Value *V2) {
6379 return V->getType() < V2->getType();
6380}
6381
6382/// Try and get a reduction value from a phi node.
6383///
6384/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
6385/// if they come from either \p ParentBB or a containing loop latch.
6386///
6387/// \returns A candidate reduction value if possible, or \code nullptr \endcode
6388/// if not possible.
6389static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
6390 BasicBlock *ParentBB, LoopInfo *LI) {
6391 // There are situations where the reduction value is not dominated by the
6392 // reduction phi. Vectorizing such cases has been reported to cause
6393 // miscompiles. See PR25787.
6394 auto DominatedReduxValue = [&](Value *R) {
6395 return isa<Instruction>(R) &&
6396 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
6397 };
6398
6399 Value *Rdx = nullptr;
6400
6401 // Return the incoming value if it comes from the same BB as the phi node.
6402 if (P->getIncomingBlock(0) == ParentBB) {
6403 Rdx = P->getIncomingValue(0);
6404 } else if (P->getIncomingBlock(1) == ParentBB) {
6405 Rdx = P->getIncomingValue(1);
6406 }
6407
6408 if (Rdx && DominatedReduxValue(Rdx))
6409 return Rdx;
6410
6411 // Otherwise, check whether we have a loop latch to look at.
6412 Loop *BBL = LI->getLoopFor(ParentBB);
6413 if (!BBL)
6414 return nullptr;
6415 BasicBlock *BBLatch = BBL->getLoopLatch();
6416 if (!BBLatch)
6417 return nullptr;
6418
6419 // There is a loop latch, return the incoming value if it comes from
6420 // that. This reduction pattern occasionally turns up.
6421 if (P->getIncomingBlock(0) == BBLatch) {
6422 Rdx = P->getIncomingValue(0);
6423 } else if (P->getIncomingBlock(1) == BBLatch) {
6424 Rdx = P->getIncomingValue(1);
6425 }
6426
6427 if (Rdx && DominatedReduxValue(Rdx))
6428 return Rdx;
6429
6430 return nullptr;
6431}
6432
6433/// Attempt to reduce a horizontal reduction.
6434/// If it is legal to match a horizontal reduction feeding the phi node \a P
6435/// with reduction operators \a Root (or one of its operands) in a basic block
6436/// \a BB, then check if it can be done. If horizontal reduction is not found
6437/// and root instruction is a binary operation, vectorization of the operands is
6438/// attempted.
6439/// \returns true if a horizontal reduction was matched and reduced or operands
6440/// of one of the binary instruction were vectorized.
6441/// \returns false if a horizontal reduction was not matched (or not possible)
6442/// or no vectorization of any binary operation feeding \a Root instruction was
6443/// performed.
6444static bool tryToVectorizeHorReductionOrInstOperands(
6445 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
6446 TargetTransformInfo *TTI,
6447 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
6448 if (!ShouldVectorizeHor)
6449 return false;
6450
6451 if (!Root)
6452 return false;
6453
6454 if (Root->getParent() != BB || isa<PHINode>(Root))
6455 return false;
6456 // Start analysis starting from Root instruction. If horizontal reduction is
6457 // found, try to vectorize it. If it is not a horizontal reduction or
6458 // vectorization is not possible or not effective, and currently analyzed
6459 // instruction is a binary operation, try to vectorize the operands, using
6460 // pre-order DFS traversal order. If the operands were not vectorized, repeat
6461 // the same procedure considering each operand as a possible root of the
6462 // horizontal reduction.
6463 // Interrupt the process if the Root instruction itself was vectorized or all
6464 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
6465 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
6466 SmallPtrSet<Value *, 8> VisitedInstrs;
6467 bool Res = false;
6468 while (!Stack.empty()) {
6469 Value *V;
6470 unsigned Level;
6471 std::tie(V, Level) = Stack.pop_back_val();
6472 if (!V)
6473 continue;
6474 auto *Inst = dyn_cast<Instruction>(V);
6475 if (!Inst)
6476 continue;
6477 auto *BI = dyn_cast<BinaryOperator>(Inst);
6478 auto *SI = dyn_cast<SelectInst>(Inst);
6479 if (BI || SI) {
6480 HorizontalReduction HorRdx;
6481 if (HorRdx.matchAssociativeReduction(P, Inst)) {
6482 if (HorRdx.tryToReduce(R, TTI)) {
6483 Res = true;
6484 // Set P to nullptr to avoid re-analysis of phi node in
6485 // matchAssociativeReduction function unless this is the root node.
6486 P = nullptr;
6487 continue;
6488 }
6489 }
6490 if (P && BI) {
6491 Inst = dyn_cast<Instruction>(BI->getOperand(0));
6492 if (Inst == P)
6493 Inst = dyn_cast<Instruction>(BI->getOperand(1));
6494 if (!Inst) {
6495 // Set P to nullptr to avoid re-analysis of phi node in
6496 // matchAssociativeReduction function unless this is the root node.
6497 P = nullptr;
6498 continue;
6499 }
6500 }
6501 }
6502 // Set P to nullptr to avoid re-analysis of phi node in
6503 // matchAssociativeReduction function unless this is the root node.
6504 P = nullptr;
6505 if (Vectorize(Inst, R)) {
6506 Res = true;
6507 continue;
6508 }
6509
6510 // Try to vectorize operands.
6511 // Continue analysis for the instruction from the same basic block only to
6512 // save compile time.
6513 if (++Level < RecursionMaxDepth)
6514 for (auto *Op : Inst->operand_values())
6515 if (VisitedInstrs.insert(Op).second)
6516 if (auto *I = dyn_cast<Instruction>(Op))
6517 if (!isa<PHINode>(I) && I->getParent() == BB)
6518 Stack.emplace_back(Op, Level);
6519 }
6520 return Res;
6521}
6522
6523bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
6524 BasicBlock *BB, BoUpSLP &R,
6525 TargetTransformInfo *TTI) {
6526 if (!V)
6527 return false;
6528 auto *I = dyn_cast<Instruction>(V);
6529 if (!I)
6530 return false;
6531
6532 if (!isa<BinaryOperator>(I))
6533 P = nullptr;
6534 // Try to match and vectorize a horizontal reduction.
6535 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
6536 return tryToVectorize(I, R);
6537 };
6538 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
6539 ExtraVectorization);
6540}
6541
6542bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
6543 BasicBlock *BB, BoUpSLP &R) {
6544 const DataLayout &DL = BB->getModule()->getDataLayout();
6545 if (!R.canMapToVector(IVI->getType(), DL))
6546 return false;
6547
6548 SmallVector<Value *, 16> BuildVectorOpds;
6549 if (!findBuildAggregate(IVI, BuildVectorOpds))
6550 return false;
6551
6552 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: array mappable to vector: " <<
*IVI << "\n"; } } while (false)
;
6553 // Aggregate value is unlikely to be processed in vector register, we need to
6554 // extract scalars into scalar registers, so NeedExtraction is set true.
6555 return tryToVectorizeList(BuildVectorOpds, R);
6556}
6557
6558bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
6559 BasicBlock *BB, BoUpSLP &R) {
6560 int UserCost;
6561 SmallVector<Value *, 16> BuildVectorOpds;
6562 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
6563 (llvm::all_of(BuildVectorOpds,
6564 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
6565 isShuffle(BuildVectorOpds)))
6566 return false;
6567
6568 // Vectorize starting with the build vector operands ignoring the BuildVector
6569 // instructions for the purpose of scheduling and user extraction.
6570 return tryToVectorizeList(BuildVectorOpds, R, UserCost);
6571}
6572
6573bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
6574 BoUpSLP &R) {
6575 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
6576 return true;
6577
6578 bool OpsChanged = false;
6579 for (int Idx = 0; Idx < 2; ++Idx) {
6580 OpsChanged |=
6581 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
6582 }
6583 return OpsChanged;
6584}
6585
6586bool SLPVectorizerPass::vectorizeSimpleInstructions(
6587 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
6588 bool OpsChanged = false;
6589 for (auto &VH : reverse(Instructions)) {
6590 auto *I = dyn_cast_or_null<Instruction>(VH);
6591 if (!I)
6592 continue;
6593 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
6594 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
6595 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
6596 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
6597 else if (auto *CI = dyn_cast<CmpInst>(I))
6598 OpsChanged |= vectorizeCmpInst(CI, BB, R);
6599 }
6600 Instructions.clear();
6601 return OpsChanged;
6602}
6603
6604bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
6605 bool Changed = false;
6606 SmallVector<Value *, 4> Incoming;
6607 SmallPtrSet<Value *, 16> VisitedInstrs;
6608
6609 bool HaveVectorizedPhiNodes = true;
6610 while (HaveVectorizedPhiNodes) {
6611 HaveVectorizedPhiNodes = false;
6612
6613 // Collect the incoming values from the PHIs.
6614 Incoming.clear();
6615 for (Instruction &I : *BB) {
6616 PHINode *P = dyn_cast<PHINode>(&I);
6617 if (!P)
6618 break;
6619
6620 if (!VisitedInstrs.count(P))
6621 Incoming.push_back(P);
6622 }
6623
6624 // Sort by type.
6625 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
6626
6627 // Try to vectorize elements base on their type.
6628 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
6629 E = Incoming.end();
6630 IncIt != E;) {
6631
6632 // Look for the next elements with the same type.
6633 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
6634 while (SameTypeIt != E &&
6635 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
6636 VisitedInstrs.insert(*SameTypeIt);
6637 ++SameTypeIt;
6638 }
6639
6640 // Try to vectorize them.
6641 unsigned NumElts = (SameTypeIt - IncIt);
6642 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
6643 << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
;
6644 // The order in which the phi nodes appear in the program does not matter.
6645 // So allow tryToVectorizeList to reorder them if it is beneficial. This
6646 // is done when there are exactly two elements since tryToVectorizeList
6647 // asserts that there are only two values when AllowReorder is true.
6648 bool AllowReorder = NumElts == 2;
6649 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
6650 /*UserCost=*/0, AllowReorder)) {
6651 // Success start over because instructions might have been changed.
6652 HaveVectorizedPhiNodes = true;
6653 Changed = true;
6654 break;
6655 }
6656
6657 // Start over at the next instruction of a different type (or the end).
6658 IncIt = SameTypeIt;
6659 }
6660 }
6661
6662 VisitedInstrs.clear();
6663
6664 SmallVector<WeakVH, 8> PostProcessInstructions;
6665 SmallDenseSet<Instruction *, 4> KeyNodes;
6666 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
6667 // We may go through BB multiple times so skip the one we have checked.
6668 if (!VisitedInstrs.insert(&*it).second) {
6669 if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
6670 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
6671 // We would like to start over since some instructions are deleted
6672 // and the iterator may become invalid value.
6673 Changed = true;
6674 it = BB->begin();
6675 e = BB->end();
6676 }
6677 continue;
6678 }
6679
6680 if (isa<DbgInfoIntrinsic>(it))
6681 continue;
6682
6683 // Try to vectorize reductions that use PHINodes.
6684 if (PHINode *P = dyn_cast<PHINode>(it)) {
6685 // Check that the PHI is a reduction PHI.
6686 if (P->getNumIncomingValues() != 2)
6687 return Changed;
6688
6689 // Try to match and vectorize a horizontal reduction.
6690 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
6691 TTI)) {
6692 Changed = true;
6693 it = BB->begin();
6694 e = BB->end();
6695 continue;
6696 }
6697 continue;
6698 }
6699
6700 // Ran into an instruction without users, like terminator, or function call
6701 // with ignored return value, store. Ignore unused instructions (basing on
6702 // instruction type, except for CallInst and InvokeInst).
6703 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
6704 isa<InvokeInst>(it))) {
6705 KeyNodes.insert(&*it);
6706 bool OpsChanged = false;
6707 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
6708 for (auto *V : it->operand_values()) {
6709 // Try to match and vectorize a horizontal reduction.
6710 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
6711 }
6712 }
6713 // Start vectorization of post-process list of instructions from the
6714 // top-tree instructions to try to vectorize as many instructions as
6715 // possible.
6716 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
6717 if (OpsChanged) {
6718 // We would like to start over since some instructions are deleted
6719 // and the iterator may become invalid value.
6720 Changed = true;
6721 it = BB->begin();
6722 e = BB->end();
6723 continue;
6724 }
6725 }
6726
6727 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
6728 isa<InsertValueInst>(it))
6729 PostProcessInstructions.push_back(&*it);
6730 }
6731
6732 return Changed;
6733}
6734
6735bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
6736 auto Changed = false;
6737 for (auto &Entry : GEPs) {
6738 // If the getelementptr list has fewer than two elements, there's nothing
6739 // to do.
6740 if (Entry.second.size() < 2)
6741 continue;
6742
6743 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
6744 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
6745
6746 // We process the getelementptr list in chunks of 16 (like we do for
6747 // stores) to minimize compile-time.
6748 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
6749 auto Len = std::min<unsigned>(BE - BI, 16);
6750 auto GEPList = makeArrayRef(&Entry.second[BI], Len);
6751
6752 // Initialize a set a candidate getelementptrs. Note that we use a
6753 // SetVector here to preserve program order. If the index computations
6754 // are vectorizable and begin with loads, we want to minimize the chance
6755 // of having to reorder them later.
6756 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
6757
6758 // Some of the candidates may have already been vectorized after we
6759 // initially collected them. If so, the WeakTrackingVHs will have
6760 // nullified the
6761 // values, so remove them from the set of candidates.
6762 Candidates.remove(nullptr);
6763
6764 // Remove from the set of candidates all pairs of getelementptrs with
6765 // constant differences. Such getelementptrs are likely not good
6766 // candidates for vectorization in a bottom-up phase since one can be
6767 // computed from the other. We also ensure all candidate getelementptr
6768 // indices are unique.
6769 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
6770 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
6771 if (!Candidates.count(GEPI))
6772 continue;
6773 auto *SCEVI = SE->getSCEV(GEPList[I]);
6774 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
6775 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
6776 auto *SCEVJ = SE->getSCEV(GEPList[J]);
6777 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
6778 Candidates.remove(GEPList[I]);
6779 Candidates.remove(GEPList[J]);
6780 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
6781 Candidates.remove(GEPList[J]);
6782 }
6783 }
6784 }
6785
6786 // We break out of the above computation as soon as we know there are
6787 // fewer than two candidates remaining.
6788 if (Candidates.size() < 2)
6789 continue;
6790
6791 // Add the single, non-constant index of each candidate to the bundle. We
6792 // ensured the indices met these constraints when we originally collected
6793 // the getelementptrs.
6794 SmallVector<Value *, 16> Bundle(Candidates.size());
6795 auto BundleIndex = 0u;
6796 for (auto *V : Candidates) {
6797 auto *GEP = cast<GetElementPtrInst>(V);
6798 auto *GEPIdx = GEP->idx_begin()->get();
6799 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))((GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx
)) ? static_cast<void> (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 6799, __PRETTY_FUNCTION__))
;
6800 Bundle[BundleIndex++] = GEPIdx;
6801 }
6802
6803 // Try and vectorize the indices. We are currently only interested in
6804 // gather-like cases of the form:
6805 //
6806 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
6807 //
6808 // where the loads of "a", the loads of "b", and the subtractions can be
6809 // performed in parallel. It's likely that detecting this pattern in a
6810 // bottom-up phase will be simpler and less costly than building a
6811 // full-blown top-down phase beginning at the consecutive loads.
6812 Changed |= tryToVectorizeList(Bundle, R);
6813 }
6814 }
6815 return Changed;
6816}
6817
6818bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
6819 bool Changed = false;
6820 // Attempt to sort and vectorize each of the store-groups.
6821 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
6822 ++it) {
6823 if (it->second.size() < 2)
6824 continue;
6825
6826 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
6827 << it->second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
;
6828
6829 // Process the stores in chunks of 16.
6830 // TODO: The limit of 16 inhibits greater vectorization factors.
6831 // For example, AVX2 supports v32i8. Increasing this limit, however,
6832 // may cause a significant compile-time increase.
6833 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
6834 unsigned Len = std::min<unsigned>(CE - CI, 16);
6835 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
6836 }
6837 }
6838 return Changed;
6839}
6840
6841char SLPVectorizer::ID = 0;
6842
6843static const char lv_name[] = "SLP Vectorizer";
6844
6845INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
6846INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
6847INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
6848INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
6849INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
6850INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
6851INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
6852INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
6853INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
6854
6855Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }