Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Warning:line 8397, column 25
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp -faddrsig
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ExprObjC.h"
18#include "clang/AST/ExprOpenMP.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Initialization.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/SemaInternal.h"
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// Sema Initialization Checking
34//===----------------------------------------------------------------------===//
35
36/// Check whether T is compatible with a wide character type (wchar_t,
37/// char16_t or char32_t).
38static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
39 if (Context.typesAreCompatible(Context.getWideCharType(), T))
40 return true;
41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
42 return Context.typesAreCompatible(Context.Char16Ty, T) ||
43 Context.typesAreCompatible(Context.Char32Ty, T);
44 }
45 return false;
46}
47
48enum StringInitFailureKind {
49 SIF_None,
50 SIF_NarrowStringIntoWideChar,
51 SIF_WideStringIntoChar,
52 SIF_IncompatWideStringIntoWideChar,
53 SIF_UTF8StringIntoPlainChar,
54 SIF_PlainStringIntoUTF8Char,
55 SIF_Other
56};
57
58/// Check whether the array of type AT can be initialized by the Init
59/// expression by means of string initialization. Returns SIF_None if so,
60/// otherwise returns a StringInitFailureKind that describes why the
61/// initialization would not work.
62static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
63 ASTContext &Context) {
64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
65 return SIF_Other;
66
67 // See if this is a string literal or @encode.
68 Init = Init->IgnoreParens();
69
70 // Handle @encode, which is a narrow string.
71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
72 return SIF_None;
73
74 // Otherwise we can only handle string literals.
75 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
76 if (!SL)
77 return SIF_Other;
78
79 const QualType ElemTy =
80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
81
82 switch (SL->getKind()) {
83 case StringLiteral::UTF8:
84 // char8_t array can be initialized with a UTF-8 string.
85 if (ElemTy->isChar8Type())
86 return SIF_None;
87 LLVM_FALLTHROUGH[[clang::fallthrough]];
88 case StringLiteral::Ascii:
89 // char array can be initialized with a narrow string.
90 // Only allow char x[] = "foo"; not char x[] = L"foo";
91 if (ElemTy->isCharType())
92 return (SL->getKind() == StringLiteral::UTF8 &&
93 Context.getLangOpts().Char8)
94 ? SIF_UTF8StringIntoPlainChar
95 : SIF_None;
96 if (ElemTy->isChar8Type())
97 return SIF_PlainStringIntoUTF8Char;
98 if (IsWideCharCompatible(ElemTy, Context))
99 return SIF_NarrowStringIntoWideChar;
100 return SIF_Other;
101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
102 // "An array with element type compatible with a qualified or unqualified
103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
104 // string literal with the corresponding encoding prefix (L, u, or U,
105 // respectively), optionally enclosed in braces.
106 case StringLiteral::UTF16:
107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
108 return SIF_None;
109 if (ElemTy->isCharType() || ElemTy->isChar8Type())
110 return SIF_WideStringIntoChar;
111 if (IsWideCharCompatible(ElemTy, Context))
112 return SIF_IncompatWideStringIntoWideChar;
113 return SIF_Other;
114 case StringLiteral::UTF32:
115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
116 return SIF_None;
117 if (ElemTy->isCharType() || ElemTy->isChar8Type())
118 return SIF_WideStringIntoChar;
119 if (IsWideCharCompatible(ElemTy, Context))
120 return SIF_IncompatWideStringIntoWideChar;
121 return SIF_Other;
122 case StringLiteral::Wide:
123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
124 return SIF_None;
125 if (ElemTy->isCharType() || ElemTy->isChar8Type())
126 return SIF_WideStringIntoChar;
127 if (IsWideCharCompatible(ElemTy, Context))
128 return SIF_IncompatWideStringIntoWideChar;
129 return SIF_Other;
130 }
131
132 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 132)
;
133}
134
135static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
136 ASTContext &Context) {
137 const ArrayType *arrayType = Context.getAsArrayType(declType);
138 if (!arrayType)
139 return SIF_Other;
140 return IsStringInit(init, arrayType, Context);
141}
142
143/// Update the type of a string literal, including any surrounding parentheses,
144/// to match the type of the object which it is initializing.
145static void updateStringLiteralType(Expr *E, QualType Ty) {
146 while (true) {
147 E->setType(Ty);
148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
149 break;
150 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
151 E = PE->getSubExpr();
152 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
153 E = UO->getSubExpr();
154 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
155 E = GSE->getResultExpr();
156 else
157 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 157)
;
158 }
159}
160
161static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
162 Sema &S) {
163 // Get the length of the string as parsed.
164 auto *ConstantArrayTy =
165 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
166 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
167
168 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
169 // C99 6.7.8p14. We have an array of character type with unknown size
170 // being initialized to a string literal.
171 llvm::APInt ConstVal(32, StrLength);
172 // Return a new array type (C99 6.7.8p22).
173 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
174 ConstVal,
175 ArrayType::Normal, 0);
176 updateStringLiteralType(Str, DeclT);
177 return;
178 }
179
180 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
181
182 // We have an array of character type with known size. However,
183 // the size may be smaller or larger than the string we are initializing.
184 // FIXME: Avoid truncation for 64-bit length strings.
185 if (S.getLangOpts().CPlusPlus) {
186 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
187 // For Pascal strings it's OK to strip off the terminating null character,
188 // so the example below is valid:
189 //
190 // unsigned char a[2] = "\pa";
191 if (SL->isPascal())
192 StrLength--;
193 }
194
195 // [dcl.init.string]p2
196 if (StrLength > CAT->getSize().getZExtValue())
197 S.Diag(Str->getBeginLoc(),
198 diag::err_initializer_string_for_char_array_too_long)
199 << Str->getSourceRange();
200 } else {
201 // C99 6.7.8p14.
202 if (StrLength-1 > CAT->getSize().getZExtValue())
203 S.Diag(Str->getBeginLoc(),
204 diag::ext_initializer_string_for_char_array_too_long)
205 << Str->getSourceRange();
206 }
207
208 // Set the type to the actual size that we are initializing. If we have
209 // something like:
210 // char x[1] = "foo";
211 // then this will set the string literal's type to char[1].
212 updateStringLiteralType(Str, DeclT);
213}
214
215//===----------------------------------------------------------------------===//
216// Semantic checking for initializer lists.
217//===----------------------------------------------------------------------===//
218
219namespace {
220
221/// Semantic checking for initializer lists.
222///
223/// The InitListChecker class contains a set of routines that each
224/// handle the initialization of a certain kind of entity, e.g.,
225/// arrays, vectors, struct/union types, scalars, etc. The
226/// InitListChecker itself performs a recursive walk of the subobject
227/// structure of the type to be initialized, while stepping through
228/// the initializer list one element at a time. The IList and Index
229/// parameters to each of the Check* routines contain the active
230/// (syntactic) initializer list and the index into that initializer
231/// list that represents the current initializer. Each routine is
232/// responsible for moving that Index forward as it consumes elements.
233///
234/// Each Check* routine also has a StructuredList/StructuredIndex
235/// arguments, which contains the current "structured" (semantic)
236/// initializer list and the index into that initializer list where we
237/// are copying initializers as we map them over to the semantic
238/// list. Once we have completed our recursive walk of the subobject
239/// structure, we will have constructed a full semantic initializer
240/// list.
241///
242/// C99 designators cause changes in the initializer list traversal,
243/// because they make the initialization "jump" into a specific
244/// subobject and then continue the initialization from that
245/// point. CheckDesignatedInitializer() recursively steps into the
246/// designated subobject and manages backing out the recursion to
247/// initialize the subobjects after the one designated.
248class InitListChecker {
249 Sema &SemaRef;
250 bool hadError;
251 bool VerifyOnly; // no diagnostics, no structure building
252 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
253 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
254 InitListExpr *FullyStructuredList;
255
256 void CheckImplicitInitList(const InitializedEntity &Entity,
257 InitListExpr *ParentIList, QualType T,
258 unsigned &Index, InitListExpr *StructuredList,
259 unsigned &StructuredIndex);
260 void CheckExplicitInitList(const InitializedEntity &Entity,
261 InitListExpr *IList, QualType &T,
262 InitListExpr *StructuredList,
263 bool TopLevelObject = false);
264 void CheckListElementTypes(const InitializedEntity &Entity,
265 InitListExpr *IList, QualType &DeclType,
266 bool SubobjectIsDesignatorContext,
267 unsigned &Index,
268 InitListExpr *StructuredList,
269 unsigned &StructuredIndex,
270 bool TopLevelObject = false);
271 void CheckSubElementType(const InitializedEntity &Entity,
272 InitListExpr *IList, QualType ElemType,
273 unsigned &Index,
274 InitListExpr *StructuredList,
275 unsigned &StructuredIndex);
276 void CheckComplexType(const InitializedEntity &Entity,
277 InitListExpr *IList, QualType DeclType,
278 unsigned &Index,
279 InitListExpr *StructuredList,
280 unsigned &StructuredIndex);
281 void CheckScalarType(const InitializedEntity &Entity,
282 InitListExpr *IList, QualType DeclType,
283 unsigned &Index,
284 InitListExpr *StructuredList,
285 unsigned &StructuredIndex);
286 void CheckReferenceType(const InitializedEntity &Entity,
287 InitListExpr *IList, QualType DeclType,
288 unsigned &Index,
289 InitListExpr *StructuredList,
290 unsigned &StructuredIndex);
291 void CheckVectorType(const InitializedEntity &Entity,
292 InitListExpr *IList, QualType DeclType, unsigned &Index,
293 InitListExpr *StructuredList,
294 unsigned &StructuredIndex);
295 void CheckStructUnionTypes(const InitializedEntity &Entity,
296 InitListExpr *IList, QualType DeclType,
297 CXXRecordDecl::base_class_range Bases,
298 RecordDecl::field_iterator Field,
299 bool SubobjectIsDesignatorContext, unsigned &Index,
300 InitListExpr *StructuredList,
301 unsigned &StructuredIndex,
302 bool TopLevelObject = false);
303 void CheckArrayType(const InitializedEntity &Entity,
304 InitListExpr *IList, QualType &DeclType,
305 llvm::APSInt elementIndex,
306 bool SubobjectIsDesignatorContext, unsigned &Index,
307 InitListExpr *StructuredList,
308 unsigned &StructuredIndex);
309 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
310 InitListExpr *IList, DesignatedInitExpr *DIE,
311 unsigned DesigIdx,
312 QualType &CurrentObjectType,
313 RecordDecl::field_iterator *NextField,
314 llvm::APSInt *NextElementIndex,
315 unsigned &Index,
316 InitListExpr *StructuredList,
317 unsigned &StructuredIndex,
318 bool FinishSubobjectInit,
319 bool TopLevelObject);
320 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
321 QualType CurrentObjectType,
322 InitListExpr *StructuredList,
323 unsigned StructuredIndex,
324 SourceRange InitRange,
325 bool IsFullyOverwritten = false);
326 void UpdateStructuredListElement(InitListExpr *StructuredList,
327 unsigned &StructuredIndex,
328 Expr *expr);
329 int numArrayElements(QualType DeclType);
330 int numStructUnionElements(QualType DeclType);
331
332 static ExprResult PerformEmptyInit(Sema &SemaRef,
333 SourceLocation Loc,
334 const InitializedEntity &Entity,
335 bool VerifyOnly,
336 bool TreatUnavailableAsInvalid);
337
338 // Explanation on the "FillWithNoInit" mode:
339 //
340 // Assume we have the following definitions (Case#1):
341 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
342 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
343 //
344 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
345 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
346 //
347 // But if we have (Case#2):
348 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
349 //
350 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
351 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
352 //
353 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
354 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
355 // initializers but with special "NoInitExpr" place holders, which tells the
356 // CodeGen not to generate any initializers for these parts.
357 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
358 const InitializedEntity &ParentEntity,
359 InitListExpr *ILE, bool &RequiresSecondPass,
360 bool FillWithNoInit);
361 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
362 const InitializedEntity &ParentEntity,
363 InitListExpr *ILE, bool &RequiresSecondPass,
364 bool FillWithNoInit = false);
365 void FillInEmptyInitializations(const InitializedEntity &Entity,
366 InitListExpr *ILE, bool &RequiresSecondPass,
367 InitListExpr *OuterILE, unsigned OuterIndex,
368 bool FillWithNoInit = false);
369 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
370 Expr *InitExpr, FieldDecl *Field,
371 bool TopLevelObject);
372 void CheckEmptyInitializable(const InitializedEntity &Entity,
373 SourceLocation Loc);
374
375public:
376 InitListChecker(Sema &S, const InitializedEntity &Entity,
377 InitListExpr *IL, QualType &T, bool VerifyOnly,
378 bool TreatUnavailableAsInvalid);
379 bool HadError() { return hadError; }
380
381 // Retrieves the fully-structured initializer list used for
382 // semantic analysis and code generation.
383 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
384};
385
386} // end anonymous namespace
387
388ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
389 SourceLocation Loc,
390 const InitializedEntity &Entity,
391 bool VerifyOnly,
392 bool TreatUnavailableAsInvalid) {
393 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
394 true);
395 MultiExprArg SubInit;
396 Expr *InitExpr;
397 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
398
399 // C++ [dcl.init.aggr]p7:
400 // If there are fewer initializer-clauses in the list than there are
401 // members in the aggregate, then each member not explicitly initialized
402 // ...
403 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
404 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
405 if (EmptyInitList) {
406 // C++1y / DR1070:
407 // shall be initialized [...] from an empty initializer list.
408 //
409 // We apply the resolution of this DR to C++11 but not C++98, since C++98
410 // does not have useful semantics for initialization from an init list.
411 // We treat this as copy-initialization, because aggregate initialization
412 // always performs copy-initialization on its elements.
413 //
414 // Only do this if we're initializing a class type, to avoid filling in
415 // the initializer list where possible.
416 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
417 InitListExpr(SemaRef.Context, Loc, None, Loc);
418 InitExpr->setType(SemaRef.Context.VoidTy);
419 SubInit = InitExpr;
420 Kind = InitializationKind::CreateCopy(Loc, Loc);
421 } else {
422 // C++03:
423 // shall be value-initialized.
424 }
425
426 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
427 // libstdc++4.6 marks the vector default constructor as explicit in
428 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
429 // stlport does so too. Look for std::__debug for libstdc++, and for
430 // std:: for stlport. This is effectively a compiler-side implementation of
431 // LWG2193.
432 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
433 InitializationSequence::FK_ExplicitConstructor) {
434 OverloadCandidateSet::iterator Best;
435 OverloadingResult O =
436 InitSeq.getFailedCandidateSet()
437 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
438 (void)O;
439 assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 439, __PRETTY_FUNCTION__))
;
440 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
441 CXXRecordDecl *R = CtorDecl->getParent();
442
443 if (CtorDecl->getMinRequiredArguments() == 0 &&
444 CtorDecl->isExplicit() && R->getDeclName() &&
445 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
446 bool IsInStd = false;
447 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
448 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
449 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
450 IsInStd = true;
451 }
452
453 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
454 .Cases("basic_string", "deque", "forward_list", true)
455 .Cases("list", "map", "multimap", "multiset", true)
456 .Cases("priority_queue", "queue", "set", "stack", true)
457 .Cases("unordered_map", "unordered_set", "vector", true)
458 .Default(false)) {
459 InitSeq.InitializeFrom(
460 SemaRef, Entity,
461 InitializationKind::CreateValue(Loc, Loc, Loc, true),
462 MultiExprArg(), /*TopLevelOfInitList=*/false,
463 TreatUnavailableAsInvalid);
464 // Emit a warning for this. System header warnings aren't shown
465 // by default, but people working on system headers should see it.
466 if (!VerifyOnly) {
467 SemaRef.Diag(CtorDecl->getLocation(),
468 diag::warn_invalid_initializer_from_system_header);
469 if (Entity.getKind() == InitializedEntity::EK_Member)
470 SemaRef.Diag(Entity.getDecl()->getLocation(),
471 diag::note_used_in_initialization_here);
472 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
473 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
474 }
475 }
476 }
477 }
478 if (!InitSeq) {
479 if (!VerifyOnly) {
480 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
481 if (Entity.getKind() == InitializedEntity::EK_Member)
482 SemaRef.Diag(Entity.getDecl()->getLocation(),
483 diag::note_in_omitted_aggregate_initializer)
484 << /*field*/1 << Entity.getDecl();
485 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
486 bool IsTrailingArrayNewMember =
487 Entity.getParent() &&
488 Entity.getParent()->isVariableLengthArrayNew();
489 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
490 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
491 << Entity.getElementIndex();
492 }
493 }
494 return ExprError();
495 }
496
497 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
498 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
499}
500
501void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
502 SourceLocation Loc) {
503 assert(VerifyOnly &&((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 504, __PRETTY_FUNCTION__))
504 "CheckEmptyInitializable is only inteded for verification mode.")((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 504, __PRETTY_FUNCTION__))
;
505 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
506 TreatUnavailableAsInvalid).isInvalid())
507 hadError = true;
508}
509
510void InitListChecker::FillInEmptyInitForBase(
511 unsigned Init, const CXXBaseSpecifier &Base,
512 const InitializedEntity &ParentEntity, InitListExpr *ILE,
513 bool &RequiresSecondPass, bool FillWithNoInit) {
514 assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 514, __PRETTY_FUNCTION__))
;
515
516 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
517 SemaRef.Context, &Base, false, &ParentEntity);
518
519 if (!ILE->getInit(Init)) {
520 ExprResult BaseInit =
521 FillWithNoInit
522 ? new (SemaRef.Context) NoInitExpr(Base.getType())
523 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
524 /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
525 if (BaseInit.isInvalid()) {
526 hadError = true;
527 return;
528 }
529
530 ILE->setInit(Init, BaseInit.getAs<Expr>());
531 } else if (InitListExpr *InnerILE =
532 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
533 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
534 ILE, Init, FillWithNoInit);
535 } else if (DesignatedInitUpdateExpr *InnerDIUE =
536 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
537 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
538 RequiresSecondPass, ILE, Init,
539 /*FillWithNoInit =*/true);
540 }
541}
542
543void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
544 const InitializedEntity &ParentEntity,
545 InitListExpr *ILE,
546 bool &RequiresSecondPass,
547 bool FillWithNoInit) {
548 SourceLocation Loc = ILE->getEndLoc();
549 unsigned NumInits = ILE->getNumInits();
550 InitializedEntity MemberEntity
551 = InitializedEntity::InitializeMember(Field, &ParentEntity);
552
553 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
554 if (!RType->getDecl()->isUnion())
555 assert(Init < NumInits && "This ILE should have been expanded")((Init < NumInits && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 555, __PRETTY_FUNCTION__))
;
556
557 if (Init >= NumInits || !ILE->getInit(Init)) {
558 if (FillWithNoInit) {
559 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
560 if (Init < NumInits)
561 ILE->setInit(Init, Filler);
562 else
563 ILE->updateInit(SemaRef.Context, Init, Filler);
564 return;
565 }
566 // C++1y [dcl.init.aggr]p7:
567 // If there are fewer initializer-clauses in the list than there are
568 // members in the aggregate, then each member not explicitly initialized
569 // shall be initialized from its brace-or-equal-initializer [...]
570 if (Field->hasInClassInitializer()) {
571 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
572 if (DIE.isInvalid()) {
573 hadError = true;
574 return;
575 }
576 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
577 if (Init < NumInits)
578 ILE->setInit(Init, DIE.get());
579 else {
580 ILE->updateInit(SemaRef.Context, Init, DIE.get());
581 RequiresSecondPass = true;
582 }
583 return;
584 }
585
586 if (Field->getType()->isReferenceType()) {
587 // C++ [dcl.init.aggr]p9:
588 // If an incomplete or empty initializer-list leaves a
589 // member of reference type uninitialized, the program is
590 // ill-formed.
591 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
592 << Field->getType()
593 << ILE->getSyntacticForm()->getSourceRange();
594 SemaRef.Diag(Field->getLocation(),
595 diag::note_uninit_reference_member);
596 hadError = true;
597 return;
598 }
599
600 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
601 /*VerifyOnly*/false,
602 TreatUnavailableAsInvalid);
603 if (MemberInit.isInvalid()) {
604 hadError = true;
605 return;
606 }
607
608 if (hadError) {
609 // Do nothing
610 } else if (Init < NumInits) {
611 ILE->setInit(Init, MemberInit.getAs<Expr>());
612 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
613 // Empty initialization requires a constructor call, so
614 // extend the initializer list to include the constructor
615 // call and make a note that we'll need to take another pass
616 // through the initializer list.
617 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
618 RequiresSecondPass = true;
619 }
620 } else if (InitListExpr *InnerILE
621 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
622 FillInEmptyInitializations(MemberEntity, InnerILE,
623 RequiresSecondPass, ILE, Init, FillWithNoInit);
624 else if (DesignatedInitUpdateExpr *InnerDIUE
625 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
626 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
627 RequiresSecondPass, ILE, Init,
628 /*FillWithNoInit =*/true);
629}
630
631/// Recursively replaces NULL values within the given initializer list
632/// with expressions that perform value-initialization of the
633/// appropriate type, and finish off the InitListExpr formation.
634void
635InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
636 InitListExpr *ILE,
637 bool &RequiresSecondPass,
638 InitListExpr *OuterILE,
639 unsigned OuterIndex,
640 bool FillWithNoInit) {
641 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 642, __PRETTY_FUNCTION__))
642 "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 642, __PRETTY_FUNCTION__))
;
643
644 // If this is a nested initializer list, we might have changed its contents
645 // (and therefore some of its properties, such as instantiation-dependence)
646 // while filling it in. Inform the outer initializer list so that its state
647 // can be updated to match.
648 // FIXME: We should fully build the inner initializers before constructing
649 // the outer InitListExpr instead of mutating AST nodes after they have
650 // been used as subexpressions of other nodes.
651 struct UpdateOuterILEWithUpdatedInit {
652 InitListExpr *Outer;
653 unsigned OuterIndex;
654 ~UpdateOuterILEWithUpdatedInit() {
655 if (Outer)
656 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
657 }
658 } UpdateOuterRAII = {OuterILE, OuterIndex};
659
660 // A transparent ILE is not performing aggregate initialization and should
661 // not be filled in.
662 if (ILE->isTransparent())
663 return;
664
665 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
666 const RecordDecl *RDecl = RType->getDecl();
667 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
668 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
669 Entity, ILE, RequiresSecondPass, FillWithNoInit);
670 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
671 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
672 for (auto *Field : RDecl->fields()) {
673 if (Field->hasInClassInitializer()) {
674 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
675 FillWithNoInit);
676 break;
677 }
678 }
679 } else {
680 // The fields beyond ILE->getNumInits() are default initialized, so in
681 // order to leave them uninitialized, the ILE is expanded and the extra
682 // fields are then filled with NoInitExpr.
683 unsigned NumElems = numStructUnionElements(ILE->getType());
684 if (RDecl->hasFlexibleArrayMember())
685 ++NumElems;
686 if (ILE->getNumInits() < NumElems)
687 ILE->resizeInits(SemaRef.Context, NumElems);
688
689 unsigned Init = 0;
690
691 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
692 for (auto &Base : CXXRD->bases()) {
693 if (hadError)
694 return;
695
696 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
697 FillWithNoInit);
698 ++Init;
699 }
700 }
701
702 for (auto *Field : RDecl->fields()) {
703 if (Field->isUnnamedBitfield())
704 continue;
705
706 if (hadError)
707 return;
708
709 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
710 FillWithNoInit);
711 if (hadError)
712 return;
713
714 ++Init;
715
716 // Only look at the first initialization of a union.
717 if (RDecl->isUnion())
718 break;
719 }
720 }
721
722 return;
723 }
724
725 QualType ElementType;
726
727 InitializedEntity ElementEntity = Entity;
728 unsigned NumInits = ILE->getNumInits();
729 unsigned NumElements = NumInits;
730 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
731 ElementType = AType->getElementType();
732 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
733 NumElements = CAType->getSize().getZExtValue();
734 // For an array new with an unknown bound, ask for one additional element
735 // in order to populate the array filler.
736 if (Entity.isVariableLengthArrayNew())
737 ++NumElements;
738 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
739 0, Entity);
740 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
741 ElementType = VType->getElementType();
742 NumElements = VType->getNumElements();
743 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
744 0, Entity);
745 } else
746 ElementType = ILE->getType();
747
748 for (unsigned Init = 0; Init != NumElements; ++Init) {
749 if (hadError)
750 return;
751
752 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
753 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
754 ElementEntity.setElementIndex(Init);
755
756 if (Init >= NumInits && ILE->hasArrayFiller())
757 return;
758
759 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
760 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
761 ILE->setInit(Init, ILE->getArrayFiller());
762 else if (!InitExpr && !ILE->hasArrayFiller()) {
763 Expr *Filler = nullptr;
764
765 if (FillWithNoInit)
766 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
767 else {
768 ExprResult ElementInit =
769 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
770 /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
771 if (ElementInit.isInvalid()) {
772 hadError = true;
773 return;
774 }
775
776 Filler = ElementInit.getAs<Expr>();
777 }
778
779 if (hadError) {
780 // Do nothing
781 } else if (Init < NumInits) {
782 // For arrays, just set the expression used for value-initialization
783 // of the "holes" in the array.
784 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
785 ILE->setArrayFiller(Filler);
786 else
787 ILE->setInit(Init, Filler);
788 } else {
789 // For arrays, just set the expression used for value-initialization
790 // of the rest of elements and exit.
791 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
792 ILE->setArrayFiller(Filler);
793 return;
794 }
795
796 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
797 // Empty initialization requires a constructor call, so
798 // extend the initializer list to include the constructor
799 // call and make a note that we'll need to take another pass
800 // through the initializer list.
801 ILE->updateInit(SemaRef.Context, Init, Filler);
802 RequiresSecondPass = true;
803 }
804 }
805 } else if (InitListExpr *InnerILE
806 = dyn_cast_or_null<InitListExpr>(InitExpr))
807 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
808 ILE, Init, FillWithNoInit);
809 else if (DesignatedInitUpdateExpr *InnerDIUE
810 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
811 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
812 RequiresSecondPass, ILE, Init,
813 /*FillWithNoInit =*/true);
814 }
815}
816
817InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
818 InitListExpr *IL, QualType &T,
819 bool VerifyOnly,
820 bool TreatUnavailableAsInvalid)
821 : SemaRef(S), VerifyOnly(VerifyOnly),
822 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
823 // FIXME: Check that IL isn't already the semantic form of some other
824 // InitListExpr. If it is, we'd create a broken AST.
825
826 hadError = false;
827
828 FullyStructuredList =
829 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
830 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
831 /*TopLevelObject=*/true);
832
833 if (!hadError && !VerifyOnly) {
834 bool RequiresSecondPass = false;
835 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
836 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
837 if (RequiresSecondPass && !hadError)
838 FillInEmptyInitializations(Entity, FullyStructuredList,
839 RequiresSecondPass, nullptr, 0);
840 }
841}
842
843int InitListChecker::numArrayElements(QualType DeclType) {
844 // FIXME: use a proper constant
845 int maxElements = 0x7FFFFFFF;
846 if (const ConstantArrayType *CAT =
847 SemaRef.Context.getAsConstantArrayType(DeclType)) {
848 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
849 }
850 return maxElements;
851}
852
853int InitListChecker::numStructUnionElements(QualType DeclType) {
854 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
855 int InitializableMembers = 0;
856 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
857 InitializableMembers += CXXRD->getNumBases();
858 for (const auto *Field : structDecl->fields())
859 if (!Field->isUnnamedBitfield())
860 ++InitializableMembers;
861
862 if (structDecl->isUnion())
863 return std::min(InitializableMembers, 1);
864 return InitializableMembers - structDecl->hasFlexibleArrayMember();
865}
866
867/// Determine whether Entity is an entity for which it is idiomatic to elide
868/// the braces in aggregate initialization.
869static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
870 // Recursive initialization of the one and only field within an aggregate
871 // class is considered idiomatic. This case arises in particular for
872 // initialization of std::array, where the C++ standard suggests the idiom of
873 //
874 // std::array<T, N> arr = {1, 2, 3};
875 //
876 // (where std::array is an aggregate struct containing a single array field.
877
878 // FIXME: Should aggregate initialization of a struct with a single
879 // base class and no members also suppress the warning?
880 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
881 return false;
882
883 auto *ParentRD =
884 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
885 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
886 if (CXXRD->getNumBases())
887 return false;
888
889 auto FieldIt = ParentRD->field_begin();
890 assert(FieldIt != ParentRD->field_end() &&((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?"
) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 891, __PRETTY_FUNCTION__))
891 "no fields but have initializer for member?")((FieldIt != ParentRD->field_end() && "no fields but have initializer for member?"
) ? static_cast<void> (0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 891, __PRETTY_FUNCTION__))
;
892 return ++FieldIt == ParentRD->field_end();
893}
894
895/// Check whether the range of the initializer \p ParentIList from element
896/// \p Index onwards can be used to initialize an object of type \p T. Update
897/// \p Index to indicate how many elements of the list were consumed.
898///
899/// This also fills in \p StructuredList, from element \p StructuredIndex
900/// onwards, with the fully-braced, desugared form of the initialization.
901void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
902 InitListExpr *ParentIList,
903 QualType T, unsigned &Index,
904 InitListExpr *StructuredList,
905 unsigned &StructuredIndex) {
906 int maxElements = 0;
907
908 if (T->isArrayType())
909 maxElements = numArrayElements(T);
910 else if (T->isRecordType())
911 maxElements = numStructUnionElements(T);
912 else if (T->isVectorType())
913 maxElements = T->getAs<VectorType>()->getNumElements();
914 else
915 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 915)
;
916
917 if (maxElements == 0) {
918 if (!VerifyOnly)
919 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
920 diag::err_implicit_empty_initializer);
921 ++Index;
922 hadError = true;
923 return;
924 }
925
926 // Build a structured initializer list corresponding to this subobject.
927 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
928 ParentIList, Index, T, StructuredList, StructuredIndex,
929 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
930 ParentIList->getSourceRange().getEnd()));
931 unsigned StructuredSubobjectInitIndex = 0;
932
933 // Check the element types and build the structural subobject.
934 unsigned StartIndex = Index;
935 CheckListElementTypes(Entity, ParentIList, T,
936 /*SubobjectIsDesignatorContext=*/false, Index,
937 StructuredSubobjectInitList,
938 StructuredSubobjectInitIndex);
939
940 if (!VerifyOnly) {
941 StructuredSubobjectInitList->setType(T);
942
943 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
944 // Update the structured sub-object initializer so that it's ending
945 // range corresponds with the end of the last initializer it used.
946 if (EndIndex < ParentIList->getNumInits() &&
947 ParentIList->getInit(EndIndex)) {
948 SourceLocation EndLoc
949 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
950 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
951 }
952
953 // Complain about missing braces.
954 if ((T->isArrayType() || T->isRecordType()) &&
955 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
956 !isIdiomaticBraceElisionEntity(Entity)) {
957 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
958 diag::warn_missing_braces)
959 << StructuredSubobjectInitList->getSourceRange()
960 << FixItHint::CreateInsertion(
961 StructuredSubobjectInitList->getBeginLoc(), "{")
962 << FixItHint::CreateInsertion(
963 SemaRef.getLocForEndOfToken(
964 StructuredSubobjectInitList->getEndLoc()),
965 "}");
966 }
967
968 // Warn if this type won't be an aggregate in future versions of C++.
969 auto *CXXRD = T->getAsCXXRecordDecl();
970 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
971 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
972 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
973 << StructuredSubobjectInitList->getSourceRange() << T;
974 }
975 }
976}
977
978/// Warn that \p Entity was of scalar type and was initialized by a
979/// single-element braced initializer list.
980static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
981 SourceRange Braces) {
982 // Don't warn during template instantiation. If the initialization was
983 // non-dependent, we warned during the initial parse; otherwise, the
984 // type might not be scalar in some uses of the template.
985 if (S.inTemplateInstantiation())
986 return;
987
988 unsigned DiagID = 0;
989
990 switch (Entity.getKind()) {
991 case InitializedEntity::EK_VectorElement:
992 case InitializedEntity::EK_ComplexElement:
993 case InitializedEntity::EK_ArrayElement:
994 case InitializedEntity::EK_Parameter:
995 case InitializedEntity::EK_Parameter_CF_Audited:
996 case InitializedEntity::EK_Result:
997 // Extra braces here are suspicious.
998 DiagID = diag::warn_braces_around_scalar_init;
999 break;
1000
1001 case InitializedEntity::EK_Member:
1002 // Warn on aggregate initialization but not on ctor init list or
1003 // default member initializer.
1004 if (Entity.getParent())
1005 DiagID = diag::warn_braces_around_scalar_init;
1006 break;
1007
1008 case InitializedEntity::EK_Variable:
1009 case InitializedEntity::EK_LambdaCapture:
1010 // No warning, might be direct-list-initialization.
1011 // FIXME: Should we warn for copy-list-initialization in these cases?
1012 break;
1013
1014 case InitializedEntity::EK_New:
1015 case InitializedEntity::EK_Temporary:
1016 case InitializedEntity::EK_CompoundLiteralInit:
1017 // No warning, braces are part of the syntax of the underlying construct.
1018 break;
1019
1020 case InitializedEntity::EK_RelatedResult:
1021 // No warning, we already warned when initializing the result.
1022 break;
1023
1024 case InitializedEntity::EK_Exception:
1025 case InitializedEntity::EK_Base:
1026 case InitializedEntity::EK_Delegating:
1027 case InitializedEntity::EK_BlockElement:
1028 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1029 case InitializedEntity::EK_Binding:
1030 case InitializedEntity::EK_StmtExprResult:
1031 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1031)
;
1032 }
1033
1034 if (DiagID) {
1035 S.Diag(Braces.getBegin(), DiagID)
1036 << Braces
1037 << FixItHint::CreateRemoval(Braces.getBegin())
1038 << FixItHint::CreateRemoval(Braces.getEnd());
1039 }
1040}
1041
1042/// Check whether the initializer \p IList (that was written with explicit
1043/// braces) can be used to initialize an object of type \p T.
1044///
1045/// This also fills in \p StructuredList with the fully-braced, desugared
1046/// form of the initialization.
1047void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1048 InitListExpr *IList, QualType &T,
1049 InitListExpr *StructuredList,
1050 bool TopLevelObject) {
1051 if (!VerifyOnly) {
1052 SyntacticToSemantic[IList] = StructuredList;
1053 StructuredList->setSyntacticForm(IList);
1054 }
1055
1056 unsigned Index = 0, StructuredIndex = 0;
1057 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1058 Index, StructuredList, StructuredIndex, TopLevelObject);
1059 if (!VerifyOnly) {
1060 QualType ExprTy = T;
1061 if (!ExprTy->isArrayType())
1062 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1063 IList->setType(ExprTy);
1064 StructuredList->setType(ExprTy);
1065 }
1066 if (hadError)
1067 return;
1068
1069 if (Index < IList->getNumInits()) {
1070 // We have leftover initializers
1071 if (VerifyOnly) {
1072 if (SemaRef.getLangOpts().CPlusPlus ||
1073 (SemaRef.getLangOpts().OpenCL &&
1074 IList->getType()->isVectorType())) {
1075 hadError = true;
1076 }
1077 return;
1078 }
1079
1080 if (StructuredIndex == 1 &&
1081 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1082 SIF_None) {
1083 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1084 if (SemaRef.getLangOpts().CPlusPlus) {
1085 DK = diag::err_excess_initializers_in_char_array_initializer;
1086 hadError = true;
1087 }
1088 // Special-case
1089 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1090 << IList->getInit(Index)->getSourceRange();
1091 } else if (!T->isIncompleteType()) {
1092 // Don't complain for incomplete types, since we'll get an error
1093 // elsewhere
1094 QualType CurrentObjectType = StructuredList->getType();
1095 int initKind =
1096 CurrentObjectType->isArrayType()? 0 :
1097 CurrentObjectType->isVectorType()? 1 :
1098 CurrentObjectType->isScalarType()? 2 :
1099 CurrentObjectType->isUnionType()? 3 :
1100 4;
1101
1102 unsigned DK = diag::ext_excess_initializers;
1103 if (SemaRef.getLangOpts().CPlusPlus) {
1104 DK = diag::err_excess_initializers;
1105 hadError = true;
1106 }
1107 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1108 DK = diag::err_excess_initializers;
1109 hadError = true;
1110 }
1111
1112 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1113 << initKind << IList->getInit(Index)->getSourceRange();
1114 }
1115 }
1116
1117 if (!VerifyOnly) {
1118 if (T->isScalarType() && IList->getNumInits() == 1 &&
1119 !isa<InitListExpr>(IList->getInit(0)))
1120 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1121
1122 // Warn if this is a class type that won't be an aggregate in future
1123 // versions of C++.
1124 auto *CXXRD = T->getAsCXXRecordDecl();
1125 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1126 // Don't warn if there's an equivalent default constructor that would be
1127 // used instead.
1128 bool HasEquivCtor = false;
1129 if (IList->getNumInits() == 0) {
1130 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1131 HasEquivCtor = CD && !CD->isDeleted();
1132 }
1133
1134 if (!HasEquivCtor) {
1135 SemaRef.Diag(IList->getBeginLoc(),
1136 diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1137 << IList->getSourceRange() << T;
1138 }
1139 }
1140 }
1141}
1142
1143void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1144 InitListExpr *IList,
1145 QualType &DeclType,
1146 bool SubobjectIsDesignatorContext,
1147 unsigned &Index,
1148 InitListExpr *StructuredList,
1149 unsigned &StructuredIndex,
1150 bool TopLevelObject) {
1151 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1152 // Explicitly braced initializer for complex type can be real+imaginary
1153 // parts.
1154 CheckComplexType(Entity, IList, DeclType, Index,
1155 StructuredList, StructuredIndex);
1156 } else if (DeclType->isScalarType()) {
1157 CheckScalarType(Entity, IList, DeclType, Index,
1158 StructuredList, StructuredIndex);
1159 } else if (DeclType->isVectorType()) {
1160 CheckVectorType(Entity, IList, DeclType, Index,
1161 StructuredList, StructuredIndex);
1162 } else if (DeclType->isRecordType()) {
1163 assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1164, __PRETTY_FUNCTION__))
1164 "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1164, __PRETTY_FUNCTION__))
;
1165 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1166 auto Bases =
1167 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1168 CXXRecordDecl::base_class_iterator());
1169 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1170 Bases = CXXRD->bases();
1171 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1172 SubobjectIsDesignatorContext, Index, StructuredList,
1173 StructuredIndex, TopLevelObject);
1174 } else if (DeclType->isArrayType()) {
1175 llvm::APSInt Zero(
1176 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1177 false);
1178 CheckArrayType(Entity, IList, DeclType, Zero,
1179 SubobjectIsDesignatorContext, Index,
1180 StructuredList, StructuredIndex);
1181 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1182 // This type is invalid, issue a diagnostic.
1183 ++Index;
1184 if (!VerifyOnly)
1185 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1186 << DeclType;
1187 hadError = true;
1188 } else if (DeclType->isReferenceType()) {
1189 CheckReferenceType(Entity, IList, DeclType, Index,
1190 StructuredList, StructuredIndex);
1191 } else if (DeclType->isObjCObjectType()) {
1192 if (!VerifyOnly)
1193 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1194 hadError = true;
1195 } else {
1196 if (!VerifyOnly)
1197 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1198 << DeclType;
1199 hadError = true;
1200 }
1201}
1202
1203void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1204 InitListExpr *IList,
1205 QualType ElemType,
1206 unsigned &Index,
1207 InitListExpr *StructuredList,
1208 unsigned &StructuredIndex) {
1209 Expr *expr = IList->getInit(Index);
1210
1211 if (ElemType->isReferenceType())
1212 return CheckReferenceType(Entity, IList, ElemType, Index,
1213 StructuredList, StructuredIndex);
1214
1215 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1216 if (SubInitList->getNumInits() == 1 &&
1217 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1218 SIF_None) {
1219 expr = SubInitList->getInit(0);
1220 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1221 InitListExpr *InnerStructuredList
1222 = getStructuredSubobjectInit(IList, Index, ElemType,
1223 StructuredList, StructuredIndex,
1224 SubInitList->getSourceRange(), true);
1225 CheckExplicitInitList(Entity, SubInitList, ElemType,
1226 InnerStructuredList);
1227
1228 if (!hadError && !VerifyOnly) {
1229 bool RequiresSecondPass = false;
1230 FillInEmptyInitializations(Entity, InnerStructuredList,
1231 RequiresSecondPass, StructuredList,
1232 StructuredIndex);
1233 if (RequiresSecondPass && !hadError)
1234 FillInEmptyInitializations(Entity, InnerStructuredList,
1235 RequiresSecondPass, StructuredList,
1236 StructuredIndex);
1237 }
1238 ++StructuredIndex;
1239 ++Index;
1240 return;
1241 }
1242 // C++ initialization is handled later.
1243 } else if (isa<ImplicitValueInitExpr>(expr)) {
1244 // This happens during template instantiation when we see an InitListExpr
1245 // that we've already checked once.
1246 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1247, __PRETTY_FUNCTION__))
1247 "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1247, __PRETTY_FUNCTION__))
;
1248 if (!VerifyOnly)
1249 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1250 ++Index;
1251 return;
1252 }
1253
1254 if (SemaRef.getLangOpts().CPlusPlus) {
1255 // C++ [dcl.init.aggr]p2:
1256 // Each member is copy-initialized from the corresponding
1257 // initializer-clause.
1258
1259 // FIXME: Better EqualLoc?
1260 InitializationKind Kind =
1261 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1262 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1263 /*TopLevelOfInitList*/ true);
1264
1265 // C++14 [dcl.init.aggr]p13:
1266 // If the assignment-expression can initialize a member, the member is
1267 // initialized. Otherwise [...] brace elision is assumed
1268 //
1269 // Brace elision is never performed if the element is not an
1270 // assignment-expression.
1271 if (Seq || isa<InitListExpr>(expr)) {
1272 if (!VerifyOnly) {
1273 ExprResult Result =
1274 Seq.Perform(SemaRef, Entity, Kind, expr);
1275 if (Result.isInvalid())
1276 hadError = true;
1277
1278 UpdateStructuredListElement(StructuredList, StructuredIndex,
1279 Result.getAs<Expr>());
1280 } else if (!Seq)
1281 hadError = true;
1282 ++Index;
1283 return;
1284 }
1285
1286 // Fall through for subaggregate initialization
1287 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1288 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1289 return CheckScalarType(Entity, IList, ElemType, Index,
1290 StructuredList, StructuredIndex);
1291 } else if (const ArrayType *arrayType =
1292 SemaRef.Context.getAsArrayType(ElemType)) {
1293 // arrayType can be incomplete if we're initializing a flexible
1294 // array member. There's nothing we can do with the completed
1295 // type here, though.
1296
1297 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1298 if (!VerifyOnly) {
1299 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1300 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1301 }
1302 ++Index;
1303 return;
1304 }
1305
1306 // Fall through for subaggregate initialization.
1307
1308 } else {
1309 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1310, __PRETTY_FUNCTION__))
1310 ElemType->isOpenCLSpecificType()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1310, __PRETTY_FUNCTION__))
;
1311
1312 // C99 6.7.8p13:
1313 //
1314 // The initializer for a structure or union object that has
1315 // automatic storage duration shall be either an initializer
1316 // list as described below, or a single expression that has
1317 // compatible structure or union type. In the latter case, the
1318 // initial value of the object, including unnamed members, is
1319 // that of the expression.
1320 ExprResult ExprRes = expr;
1321 if (SemaRef.CheckSingleAssignmentConstraints(
1322 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1323 if (ExprRes.isInvalid())
1324 hadError = true;
1325 else {
1326 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1327 if (ExprRes.isInvalid())
1328 hadError = true;
1329 }
1330 UpdateStructuredListElement(StructuredList, StructuredIndex,
1331 ExprRes.getAs<Expr>());
1332 ++Index;
1333 return;
1334 }
1335 ExprRes.get();
1336 // Fall through for subaggregate initialization
1337 }
1338
1339 // C++ [dcl.init.aggr]p12:
1340 //
1341 // [...] Otherwise, if the member is itself a non-empty
1342 // subaggregate, brace elision is assumed and the initializer is
1343 // considered for the initialization of the first member of
1344 // the subaggregate.
1345 // OpenCL vector initializer is handled elsewhere.
1346 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1347 ElemType->isAggregateType()) {
1348 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1349 StructuredIndex);
1350 ++StructuredIndex;
1351 } else {
1352 if (!VerifyOnly) {
1353 // We cannot initialize this element, so let
1354 // PerformCopyInitialization produce the appropriate diagnostic.
1355 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1356 /*TopLevelOfInitList=*/true);
1357 }
1358 hadError = true;
1359 ++Index;
1360 ++StructuredIndex;
1361 }
1362}
1363
1364void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1365 InitListExpr *IList, QualType DeclType,
1366 unsigned &Index,
1367 InitListExpr *StructuredList,
1368 unsigned &StructuredIndex) {
1369 assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero"
) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1369, __PRETTY_FUNCTION__))
;
1370
1371 // As an extension, clang supports complex initializers, which initialize
1372 // a complex number component-wise. When an explicit initializer list for
1373 // a complex number contains two two initializers, this extension kicks in:
1374 // it exepcts the initializer list to contain two elements convertible to
1375 // the element type of the complex type. The first element initializes
1376 // the real part, and the second element intitializes the imaginary part.
1377
1378 if (IList->getNumInits() != 2)
1379 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1380 StructuredIndex);
1381
1382 // This is an extension in C. (The builtin _Complex type does not exist
1383 // in the C++ standard.)
1384 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1385 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1386 << IList->getSourceRange();
1387
1388 // Initialize the complex number.
1389 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1390 InitializedEntity ElementEntity =
1391 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1392
1393 for (unsigned i = 0; i < 2; ++i) {
1394 ElementEntity.setElementIndex(Index);
1395 CheckSubElementType(ElementEntity, IList, elementType, Index,
1396 StructuredList, StructuredIndex);
1397 }
1398}
1399
1400void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1401 InitListExpr *IList, QualType DeclType,
1402 unsigned &Index,
1403 InitListExpr *StructuredList,
1404 unsigned &StructuredIndex) {
1405 if (Index >= IList->getNumInits()) {
1406 if (!VerifyOnly)
1407 SemaRef.Diag(IList->getBeginLoc(),
1408 SemaRef.getLangOpts().CPlusPlus11
1409 ? diag::warn_cxx98_compat_empty_scalar_initializer
1410 : diag::err_empty_scalar_initializer)
1411 << IList->getSourceRange();
1412 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1413 ++Index;
1414 ++StructuredIndex;
1415 return;
1416 }
1417
1418 Expr *expr = IList->getInit(Index);
1419 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1420 // FIXME: This is invalid, and accepting it causes overload resolution
1421 // to pick the wrong overload in some corner cases.
1422 if (!VerifyOnly)
1423 SemaRef.Diag(SubIList->getBeginLoc(),
1424 diag::ext_many_braces_around_scalar_init)
1425 << SubIList->getSourceRange();
1426
1427 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1428 StructuredIndex);
1429 return;
1430 } else if (isa<DesignatedInitExpr>(expr)) {
1431 if (!VerifyOnly)
1432 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1433 << DeclType << expr->getSourceRange();
1434 hadError = true;
1435 ++Index;
1436 ++StructuredIndex;
1437 return;
1438 }
1439
1440 if (VerifyOnly) {
1441 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1442 hadError = true;
1443 ++Index;
1444 return;
1445 }
1446
1447 ExprResult Result =
1448 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1449 /*TopLevelOfInitList=*/true);
1450
1451 Expr *ResultExpr = nullptr;
1452
1453 if (Result.isInvalid())
1454 hadError = true; // types weren't compatible.
1455 else {
1456 ResultExpr = Result.getAs<Expr>();
1457
1458 if (ResultExpr != expr) {
1459 // The type was promoted, update initializer list.
1460 IList->setInit(Index, ResultExpr);
1461 }
1462 }
1463 if (hadError)
1464 ++StructuredIndex;
1465 else
1466 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1467 ++Index;
1468}
1469
1470void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1471 InitListExpr *IList, QualType DeclType,
1472 unsigned &Index,
1473 InitListExpr *StructuredList,
1474 unsigned &StructuredIndex) {
1475 if (Index >= IList->getNumInits()) {
1476 // FIXME: It would be wonderful if we could point at the actual member. In
1477 // general, it would be useful to pass location information down the stack,
1478 // so that we know the location (or decl) of the "current object" being
1479 // initialized.
1480 if (!VerifyOnly)
1481 SemaRef.Diag(IList->getBeginLoc(),
1482 diag::err_init_reference_member_uninitialized)
1483 << DeclType << IList->getSourceRange();
1484 hadError = true;
1485 ++Index;
1486 ++StructuredIndex;
1487 return;
1488 }
1489
1490 Expr *expr = IList->getInit(Index);
1491 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1492 if (!VerifyOnly)
1493 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1494 << DeclType << IList->getSourceRange();
1495 hadError = true;
1496 ++Index;
1497 ++StructuredIndex;
1498 return;
1499 }
1500
1501 if (VerifyOnly) {
1502 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1503 hadError = true;
1504 ++Index;
1505 return;
1506 }
1507
1508 ExprResult Result =
1509 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1510 /*TopLevelOfInitList=*/true);
1511
1512 if (Result.isInvalid())
1513 hadError = true;
1514
1515 expr = Result.getAs<Expr>();
1516 IList->setInit(Index, expr);
1517
1518 if (hadError)
1519 ++StructuredIndex;
1520 else
1521 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1522 ++Index;
1523}
1524
1525void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1526 InitListExpr *IList, QualType DeclType,
1527 unsigned &Index,
1528 InitListExpr *StructuredList,
1529 unsigned &StructuredIndex) {
1530 const VectorType *VT = DeclType->getAs<VectorType>();
1531 unsigned maxElements = VT->getNumElements();
1532 unsigned numEltsInit = 0;
1533 QualType elementType = VT->getElementType();
1534
1535 if (Index >= IList->getNumInits()) {
1536 // Make sure the element type can be value-initialized.
1537 if (VerifyOnly)
1538 CheckEmptyInitializable(
1539 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1540 IList->getEndLoc());
1541 return;
1542 }
1543
1544 if (!SemaRef.getLangOpts().OpenCL) {
1545 // If the initializing element is a vector, try to copy-initialize
1546 // instead of breaking it apart (which is doomed to failure anyway).
1547 Expr *Init = IList->getInit(Index);
1548 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1549 if (VerifyOnly) {
1550 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1551 hadError = true;
1552 ++Index;
1553 return;
1554 }
1555
1556 ExprResult Result =
1557 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1558 /*TopLevelOfInitList=*/true);
1559
1560 Expr *ResultExpr = nullptr;
1561 if (Result.isInvalid())
1562 hadError = true; // types weren't compatible.
1563 else {
1564 ResultExpr = Result.getAs<Expr>();
1565
1566 if (ResultExpr != Init) {
1567 // The type was promoted, update initializer list.
1568 IList->setInit(Index, ResultExpr);
1569 }
1570 }
1571 if (hadError)
1572 ++StructuredIndex;
1573 else
1574 UpdateStructuredListElement(StructuredList, StructuredIndex,
1575 ResultExpr);
1576 ++Index;
1577 return;
1578 }
1579
1580 InitializedEntity ElementEntity =
1581 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1582
1583 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1584 // Don't attempt to go past the end of the init list
1585 if (Index >= IList->getNumInits()) {
1586 if (VerifyOnly)
1587 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1588 break;
1589 }
1590
1591 ElementEntity.setElementIndex(Index);
1592 CheckSubElementType(ElementEntity, IList, elementType, Index,
1593 StructuredList, StructuredIndex);
1594 }
1595
1596 if (VerifyOnly)
1597 return;
1598
1599 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1600 const VectorType *T = Entity.getType()->getAs<VectorType>();
1601 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1602 T->getVectorKind() == VectorType::NeonPolyVector)) {
1603 // The ability to use vector initializer lists is a GNU vector extension
1604 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1605 // endian machines it works fine, however on big endian machines it
1606 // exhibits surprising behaviour:
1607 //
1608 // uint32x2_t x = {42, 64};
1609 // return vget_lane_u32(x, 0); // Will return 64.
1610 //
1611 // Because of this, explicitly call out that it is non-portable.
1612 //
1613 SemaRef.Diag(IList->getBeginLoc(),
1614 diag::warn_neon_vector_initializer_non_portable);
1615
1616 const char *typeCode;
1617 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1618
1619 if (elementType->isFloatingType())
1620 typeCode = "f";
1621 else if (elementType->isSignedIntegerType())
1622 typeCode = "s";
1623 else if (elementType->isUnsignedIntegerType())
1624 typeCode = "u";
1625 else
1626 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 1626)
;
1627
1628 SemaRef.Diag(IList->getBeginLoc(),
1629 SemaRef.Context.getTypeSize(VT) > 64
1630 ? diag::note_neon_vector_initializer_non_portable_q
1631 : diag::note_neon_vector_initializer_non_portable)
1632 << typeCode << typeSize;
1633 }
1634
1635 return;
1636 }
1637
1638 InitializedEntity ElementEntity =
1639 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1640
1641 // OpenCL initializers allows vectors to be constructed from vectors.
1642 for (unsigned i = 0; i < maxElements; ++i) {
1643 // Don't attempt to go past the end of the init list
1644 if (Index >= IList->getNumInits())
1645 break;
1646
1647 ElementEntity.setElementIndex(Index);
1648
1649 QualType IType = IList->getInit(Index)->getType();
1650 if (!IType->isVectorType()) {
1651 CheckSubElementType(ElementEntity, IList, elementType, Index,
1652 StructuredList, StructuredIndex);
1653 ++numEltsInit;
1654 } else {
1655 QualType VecType;
1656 const VectorType *IVT = IType->getAs<VectorType>();
1657 unsigned numIElts = IVT->getNumElements();
1658
1659 if (IType->isExtVectorType())
1660 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1661 else
1662 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1663 IVT->getVectorKind());
1664 CheckSubElementType(ElementEntity, IList, VecType, Index,
1665 StructuredList, StructuredIndex);
1666 numEltsInit += numIElts;
1667 }
1668 }
1669
1670 // OpenCL requires all elements to be initialized.
1671 if (numEltsInit != maxElements) {
1672 if (!VerifyOnly)
1673 SemaRef.Diag(IList->getBeginLoc(),
1674 diag::err_vector_incorrect_num_initializers)
1675 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1676 hadError = true;
1677 }
1678}
1679
1680void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1681 InitListExpr *IList, QualType &DeclType,
1682 llvm::APSInt elementIndex,
1683 bool SubobjectIsDesignatorContext,
1684 unsigned &Index,
1685 InitListExpr *StructuredList,
1686 unsigned &StructuredIndex) {
1687 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1688
1689 // Check for the special-case of initializing an array with a string.
1690 if (Index < IList->getNumInits()) {
1691 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1692 SIF_None) {
1693 // We place the string literal directly into the resulting
1694 // initializer list. This is the only place where the structure
1695 // of the structured initializer list doesn't match exactly,
1696 // because doing so would involve allocating one character
1697 // constant for each string.
1698 if (!VerifyOnly) {
1699 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1700 UpdateStructuredListElement(StructuredList, StructuredIndex,
1701 IList->getInit(Index));
1702 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1703 }
1704 ++Index;
1705 return;
1706 }
1707 }
1708 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1709 // Check for VLAs; in standard C it would be possible to check this
1710 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1711 // them in all sorts of strange places).
1712 if (!VerifyOnly)
1713 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1714 diag::err_variable_object_no_init)
1715 << VAT->getSizeExpr()->getSourceRange();
1716 hadError = true;
1717 ++Index;
1718 ++StructuredIndex;
1719 return;
1720 }
1721
1722 // We might know the maximum number of elements in advance.
1723 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1724 elementIndex.isUnsigned());
1725 bool maxElementsKnown = false;
1726 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1727 maxElements = CAT->getSize();
1728 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1729 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1730 maxElementsKnown = true;
1731 }
1732
1733 QualType elementType = arrayType->getElementType();
1734 while (Index < IList->getNumInits()) {
1735 Expr *Init = IList->getInit(Index);
1736 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1737 // If we're not the subobject that matches up with the '{' for
1738 // the designator, we shouldn't be handling the
1739 // designator. Return immediately.
1740 if (!SubobjectIsDesignatorContext)
1741 return;
1742
1743 // Handle this designated initializer. elementIndex will be
1744 // updated to be the next array element we'll initialize.
1745 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1746 DeclType, nullptr, &elementIndex, Index,
1747 StructuredList, StructuredIndex, true,
1748 false)) {
1749 hadError = true;
1750 continue;
1751 }
1752
1753 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1754 maxElements = maxElements.extend(elementIndex.getBitWidth());
1755 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1756 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1757 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1758
1759 // If the array is of incomplete type, keep track of the number of
1760 // elements in the initializer.
1761 if (!maxElementsKnown && elementIndex > maxElements)
1762 maxElements = elementIndex;
1763
1764 continue;
1765 }
1766
1767 // If we know the maximum number of elements, and we've already
1768 // hit it, stop consuming elements in the initializer list.
1769 if (maxElementsKnown && elementIndex == maxElements)
1770 break;
1771
1772 InitializedEntity ElementEntity =
1773 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1774 Entity);
1775 // Check this element.
1776 CheckSubElementType(ElementEntity, IList, elementType, Index,
1777 StructuredList, StructuredIndex);
1778 ++elementIndex;
1779
1780 // If the array is of incomplete type, keep track of the number of
1781 // elements in the initializer.
1782 if (!maxElementsKnown && elementIndex > maxElements)
1783 maxElements = elementIndex;
1784 }
1785 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1786 // If this is an incomplete array type, the actual type needs to
1787 // be calculated here.
1788 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1789 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1790 // Sizing an array implicitly to zero is not allowed by ISO C,
1791 // but is supported by GNU.
1792 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1793 }
1794
1795 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1796 ArrayType::Normal, 0);
1797 }
1798 if (!hadError && VerifyOnly) {
1799 // If there are any members of the array that get value-initialized, check
1800 // that is possible. That happens if we know the bound and don't have
1801 // enough elements, or if we're performing an array new with an unknown
1802 // bound.
1803 // FIXME: This needs to detect holes left by designated initializers too.
1804 if ((maxElementsKnown && elementIndex < maxElements) ||
1805 Entity.isVariableLengthArrayNew())
1806 CheckEmptyInitializable(
1807 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1808 IList->getEndLoc());
1809 }
1810}
1811
1812bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1813 Expr *InitExpr,
1814 FieldDecl *Field,
1815 bool TopLevelObject) {
1816 // Handle GNU flexible array initializers.
1817 unsigned FlexArrayDiag;
1818 if (isa<InitListExpr>(InitExpr) &&
1819 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1820 // Empty flexible array init always allowed as an extension
1821 FlexArrayDiag = diag::ext_flexible_array_init;
1822 } else if (SemaRef.getLangOpts().CPlusPlus) {
1823 // Disallow flexible array init in C++; it is not required for gcc
1824 // compatibility, and it needs work to IRGen correctly in general.
1825 FlexArrayDiag = diag::err_flexible_array_init;
1826 } else if (!TopLevelObject) {
1827 // Disallow flexible array init on non-top-level object
1828 FlexArrayDiag = diag::err_flexible_array_init;
1829 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1830 // Disallow flexible array init on anything which is not a variable.
1831 FlexArrayDiag = diag::err_flexible_array_init;
1832 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1833 // Disallow flexible array init on local variables.
1834 FlexArrayDiag = diag::err_flexible_array_init;
1835 } else {
1836 // Allow other cases.
1837 FlexArrayDiag = diag::ext_flexible_array_init;
1838 }
1839
1840 if (!VerifyOnly) {
1841 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1842 << InitExpr->getBeginLoc();
1843 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1844 << Field;
1845 }
1846
1847 return FlexArrayDiag != diag::ext_flexible_array_init;
1848}
1849
1850/// Check if the type of a class element has an accessible destructor.
1851///
1852/// Aggregate initialization requires a class element's destructor be
1853/// accessible per 11.6.1 [dcl.init.aggr]:
1854///
1855/// The destructor for each element of class type is potentially invoked
1856/// (15.4 [class.dtor]) from the context where the aggregate initialization
1857/// occurs.
1858static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1859 Sema &SemaRef) {
1860 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1861 if (!CXXRD)
1862 return false;
1863
1864 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1865 SemaRef.CheckDestructorAccess(Loc, Destructor,
1866 SemaRef.PDiag(diag::err_access_dtor_temp)
1867 << ElementType);
1868 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1869 if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1870 return true;
1871 return false;
1872}
1873
1874void InitListChecker::CheckStructUnionTypes(
1875 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1876 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1877 bool SubobjectIsDesignatorContext, unsigned &Index,
1878 InitListExpr *StructuredList, unsigned &StructuredIndex,
1879 bool TopLevelObject) {
1880 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1881
1882 // If the record is invalid, some of it's members are invalid. To avoid
1883 // confusion, we forgo checking the intializer for the entire record.
1884 if (structDecl->isInvalidDecl()) {
1885 // Assume it was supposed to consume a single initializer.
1886 ++Index;
1887 hadError = true;
1888 return;
1889 }
1890
1891 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1892 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1893
1894 if (!VerifyOnly)
1895 for (FieldDecl *FD : RD->fields()) {
1896 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1897 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1898 hadError = true;
1899 return;
1900 }
1901 }
1902
1903 // If there's a default initializer, use it.
1904 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1905 if (VerifyOnly)
1906 return;
1907 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1908 Field != FieldEnd; ++Field) {
1909 if (Field->hasInClassInitializer()) {
1910 StructuredList->setInitializedFieldInUnion(*Field);
1911 // FIXME: Actually build a CXXDefaultInitExpr?
1912 return;
1913 }
1914 }
1915 }
1916
1917 // Value-initialize the first member of the union that isn't an unnamed
1918 // bitfield.
1919 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1920 Field != FieldEnd; ++Field) {
1921 if (!Field->isUnnamedBitfield()) {
1922 if (VerifyOnly)
1923 CheckEmptyInitializable(
1924 InitializedEntity::InitializeMember(*Field, &Entity),
1925 IList->getEndLoc());
1926 else
1927 StructuredList->setInitializedFieldInUnion(*Field);
1928 break;
1929 }
1930 }
1931 return;
1932 }
1933
1934 bool InitializedSomething = false;
1935
1936 // If we have any base classes, they are initialized prior to the fields.
1937 for (auto &Base : Bases) {
1938 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1939
1940 // Designated inits always initialize fields, so if we see one, all
1941 // remaining base classes have no explicit initializer.
1942 if (Init && isa<DesignatedInitExpr>(Init))
1943 Init = nullptr;
1944
1945 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1946 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1947 SemaRef.Context, &Base, false, &Entity);
1948 if (Init) {
1949 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1950 StructuredList, StructuredIndex);
1951 InitializedSomething = true;
1952 } else if (VerifyOnly) {
1953 CheckEmptyInitializable(BaseEntity, InitLoc);
1954 }
1955
1956 if (!VerifyOnly)
1957 if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1958 hadError = true;
1959 return;
1960 }
1961 }
1962
1963 // If structDecl is a forward declaration, this loop won't do
1964 // anything except look at designated initializers; That's okay,
1965 // because an error should get printed out elsewhere. It might be
1966 // worthwhile to skip over the rest of the initializer, though.
1967 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1968 RecordDecl::field_iterator FieldEnd = RD->field_end();
1969 bool CheckForMissingFields =
1970 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
1971 bool HasDesignatedInit = false;
1972
1973 while (Index < IList->getNumInits()) {
1974 Expr *Init = IList->getInit(Index);
1975 SourceLocation InitLoc = Init->getBeginLoc();
1976
1977 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1978 // If we're not the subobject that matches up with the '{' for
1979 // the designator, we shouldn't be handling the
1980 // designator. Return immediately.
1981 if (!SubobjectIsDesignatorContext)
1982 return;
1983
1984 HasDesignatedInit = true;
1985
1986 // Handle this designated initializer. Field will be updated to
1987 // the next field that we'll be initializing.
1988 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1989 DeclType, &Field, nullptr, Index,
1990 StructuredList, StructuredIndex,
1991 true, TopLevelObject))
1992 hadError = true;
1993 else if (!VerifyOnly) {
1994 // Find the field named by the designated initializer.
1995 RecordDecl::field_iterator F = RD->field_begin();
1996 while (std::next(F) != Field)
1997 ++F;
1998 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
1999 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2000 hadError = true;
2001 return;
2002 }
2003 }
2004
2005 InitializedSomething = true;
2006
2007 // Disable check for missing fields when designators are used.
2008 // This matches gcc behaviour.
2009 CheckForMissingFields = false;
2010 continue;
2011 }
2012
2013 if (Field == FieldEnd) {
2014 // We've run out of fields. We're done.
2015 break;
2016 }
2017
2018 // We've already initialized a member of a union. We're done.
2019 if (InitializedSomething && DeclType->isUnionType())
2020 break;
2021
2022 // If we've hit the flexible array member at the end, we're done.
2023 if (Field->getType()->isIncompleteArrayType())
2024 break;
2025
2026 if (Field->isUnnamedBitfield()) {
2027 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2028 ++Field;
2029 continue;
2030 }
2031
2032 // Make sure we can use this declaration.
2033 bool InvalidUse;
2034 if (VerifyOnly)
2035 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2036 else
2037 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2038 *Field, IList->getInit(Index)->getBeginLoc());
2039 if (InvalidUse) {
2040 ++Index;
2041 ++Field;
2042 hadError = true;
2043 continue;
2044 }
2045
2046 if (!VerifyOnly) {
2047 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2048 if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2049 hadError = true;
2050 return;
2051 }
2052 }
2053
2054 InitializedEntity MemberEntity =
2055 InitializedEntity::InitializeMember(*Field, &Entity);
2056 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2057 StructuredList, StructuredIndex);
2058 InitializedSomething = true;
2059
2060 if (DeclType->isUnionType() && !VerifyOnly) {
2061 // Initialize the first field within the union.
2062 StructuredList->setInitializedFieldInUnion(*Field);
2063 }
2064
2065 ++Field;
2066 }
2067
2068 // Emit warnings for missing struct field initializers.
2069 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2070 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2071 !DeclType->isUnionType()) {
2072 // It is possible we have one or more unnamed bitfields remaining.
2073 // Find first (if any) named field and emit warning.
2074 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2075 it != end; ++it) {
2076 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2077 SemaRef.Diag(IList->getSourceRange().getEnd(),
2078 diag::warn_missing_field_initializers) << *it;
2079 break;
2080 }
2081 }
2082 }
2083
2084 // Check that any remaining fields can be value-initialized.
2085 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2086 !Field->getType()->isIncompleteArrayType()) {
2087 // FIXME: Should check for holes left by designated initializers too.
2088 for (; Field != FieldEnd && !hadError; ++Field) {
2089 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2090 CheckEmptyInitializable(
2091 InitializedEntity::InitializeMember(*Field, &Entity),
2092 IList->getEndLoc());
2093 }
2094 }
2095
2096 // Check that the types of the remaining fields have accessible destructors.
2097 if (!VerifyOnly) {
2098 // If the initializer expression has a designated initializer, check the
2099 // elements for which a designated initializer is not provided too.
2100 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2101 : Field;
2102 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2103 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2104 if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2105 hadError = true;
2106 return;
2107 }
2108 }
2109 }
2110
2111 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2112 Index >= IList->getNumInits())
2113 return;
2114
2115 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2116 TopLevelObject)) {
2117 hadError = true;
2118 ++Index;
2119 return;
2120 }
2121
2122 InitializedEntity MemberEntity =
2123 InitializedEntity::InitializeMember(*Field, &Entity);
2124
2125 if (isa<InitListExpr>(IList->getInit(Index)))
2126 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2127 StructuredList, StructuredIndex);
2128 else
2129 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2130 StructuredList, StructuredIndex);
2131}
2132
2133/// Expand a field designator that refers to a member of an
2134/// anonymous struct or union into a series of field designators that
2135/// refers to the field within the appropriate subobject.
2136///
2137static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2138 DesignatedInitExpr *DIE,
2139 unsigned DesigIdx,
2140 IndirectFieldDecl *IndirectField) {
2141 typedef DesignatedInitExpr::Designator Designator;
2142
2143 // Build the replacement designators.
2144 SmallVector<Designator, 4> Replacements;
2145 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2146 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2147 if (PI + 1 == PE)
2148 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2149 DIE->getDesignator(DesigIdx)->getDotLoc(),
2150 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2151 else
2152 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2153 SourceLocation(), SourceLocation()));
2154 assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 2154, __PRETTY_FUNCTION__))
;
2155 Replacements.back().setField(cast<FieldDecl>(*PI));
2156 }
2157
2158 // Expand the current designator into the set of replacement
2159 // designators, so we have a full subobject path down to where the
2160 // member of the anonymous struct/union is actually stored.
2161 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2162 &Replacements[0] + Replacements.size());
2163}
2164
2165static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2166 DesignatedInitExpr *DIE) {
2167 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2168 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2169 for (unsigned I = 0; I < NumIndexExprs; ++I)
2170 IndexExprs[I] = DIE->getSubExpr(I + 1);
2171 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2172 IndexExprs,
2173 DIE->getEqualOrColonLoc(),
2174 DIE->usesGNUSyntax(), DIE->getInit());
2175}
2176
2177namespace {
2178
2179// Callback to only accept typo corrections that are for field members of
2180// the given struct or union.
2181class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2182 public:
2183 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2184 : Record(RD) {}
2185
2186 bool ValidateCandidate(const TypoCorrection &candidate) override {
2187 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2188 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2189 }
2190
2191 private:
2192 RecordDecl *Record;
2193};
2194
2195} // end anonymous namespace
2196
2197/// Check the well-formedness of a C99 designated initializer.
2198///
2199/// Determines whether the designated initializer @p DIE, which
2200/// resides at the given @p Index within the initializer list @p
2201/// IList, is well-formed for a current object of type @p DeclType
2202/// (C99 6.7.8). The actual subobject that this designator refers to
2203/// within the current subobject is returned in either
2204/// @p NextField or @p NextElementIndex (whichever is appropriate).
2205///
2206/// @param IList The initializer list in which this designated
2207/// initializer occurs.
2208///
2209/// @param DIE The designated initializer expression.
2210///
2211/// @param DesigIdx The index of the current designator.
2212///
2213/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2214/// into which the designation in @p DIE should refer.
2215///
2216/// @param NextField If non-NULL and the first designator in @p DIE is
2217/// a field, this will be set to the field declaration corresponding
2218/// to the field named by the designator.
2219///
2220/// @param NextElementIndex If non-NULL and the first designator in @p
2221/// DIE is an array designator or GNU array-range designator, this
2222/// will be set to the last index initialized by this designator.
2223///
2224/// @param Index Index into @p IList where the designated initializer
2225/// @p DIE occurs.
2226///
2227/// @param StructuredList The initializer list expression that
2228/// describes all of the subobject initializers in the order they'll
2229/// actually be initialized.
2230///
2231/// @returns true if there was an error, false otherwise.
2232bool
2233InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2234 InitListExpr *IList,
2235 DesignatedInitExpr *DIE,
2236 unsigned DesigIdx,
2237 QualType &CurrentObjectType,
2238 RecordDecl::field_iterator *NextField,
2239 llvm::APSInt *NextElementIndex,
2240 unsigned &Index,
2241 InitListExpr *StructuredList,
2242 unsigned &StructuredIndex,
2243 bool FinishSubobjectInit,
2244 bool TopLevelObject) {
2245 if (DesigIdx == DIE->size()) {
2246 // Check the actual initialization for the designated object type.
2247 bool prevHadError = hadError;
2248
2249 // Temporarily remove the designator expression from the
2250 // initializer list that the child calls see, so that we don't try
2251 // to re-process the designator.
2252 unsigned OldIndex = Index;
2253 IList->setInit(OldIndex, DIE->getInit());
2254
2255 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2256 StructuredList, StructuredIndex);
2257
2258 // Restore the designated initializer expression in the syntactic
2259 // form of the initializer list.
2260 if (IList->getInit(OldIndex) != DIE->getInit())
2261 DIE->setInit(IList->getInit(OldIndex));
2262 IList->setInit(OldIndex, DIE);
2263
2264 return hadError && !prevHadError;
2265 }
2266
2267 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2268 bool IsFirstDesignator = (DesigIdx == 0);
2269 if (!VerifyOnly) {
2270 assert((IsFirstDesignator || StructuredList) &&(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 2271, __PRETTY_FUNCTION__))
2271 "Need a non-designated initializer list to start from")(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 2271, __PRETTY_FUNCTION__))
;
2272
2273 // Determine the structural initializer list that corresponds to the
2274 // current subobject.
2275 if (IsFirstDesignator)
2276 StructuredList = SyntacticToSemantic.lookup(IList);
2277 else {
2278 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2279 StructuredList->getInit(StructuredIndex) : nullptr;
2280 if (!ExistingInit && StructuredList->hasArrayFiller())
2281 ExistingInit = StructuredList->getArrayFiller();
2282
2283 if (!ExistingInit)
2284 StructuredList = getStructuredSubobjectInit(
2285 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2286 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2287 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2288 StructuredList = Result;
2289 else {
2290 if (DesignatedInitUpdateExpr *E =
2291 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2292 StructuredList = E->getUpdater();
2293 else {
2294 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2295 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2296 ExistingInit, DIE->getEndLoc());
2297 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2298 StructuredList = DIUE->getUpdater();
2299 }
2300
2301 // We need to check on source range validity because the previous
2302 // initializer does not have to be an explicit initializer. e.g.,
2303 //
2304 // struct P { int a, b; };
2305 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2306 //
2307 // There is an overwrite taking place because the first braced initializer
2308 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2309 if (ExistingInit->getSourceRange().isValid()) {
2310 // We are creating an initializer list that initializes the
2311 // subobjects of the current object, but there was already an
2312 // initialization that completely initialized the current
2313 // subobject, e.g., by a compound literal:
2314 //
2315 // struct X { int a, b; };
2316 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2317 //
2318 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2319 // designated initializer re-initializes the whole
2320 // subobject [0], overwriting previous initializers.
2321 SemaRef.Diag(D->getBeginLoc(),
2322 diag::warn_subobject_initializer_overrides)
2323 << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2324
2325 SemaRef.Diag(ExistingInit->getBeginLoc(),
2326 diag::note_previous_initializer)
2327 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2328 }
2329 }
2330 }
2331 assert(StructuredList && "Expected a structured initializer list")((StructuredList && "Expected a structured initializer list"
) ? static_cast<void> (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 2331, __PRETTY_FUNCTION__))
;
2332 }
2333
2334 if (D->isFieldDesignator()) {
2335 // C99 6.7.8p7:
2336 //
2337 // If a designator has the form
2338 //
2339 // . identifier
2340 //
2341 // then the current object (defined below) shall have
2342 // structure or union type and the identifier shall be the
2343 // name of a member of that type.
2344 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2345 if (!RT) {
2346 SourceLocation Loc = D->getDotLoc();
2347 if (Loc.isInvalid())
2348 Loc = D->getFieldLoc();
2349 if (!VerifyOnly)
2350 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2351 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2352 ++Index;
2353 return true;
2354 }
2355
2356 FieldDecl *KnownField = D->getField();
2357 if (!KnownField) {
2358 IdentifierInfo *FieldName = D->getFieldName();
2359 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2360 for (NamedDecl *ND : Lookup) {
2361 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2362 KnownField = FD;
2363 break;
2364 }
2365 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2366 // In verify mode, don't modify the original.
2367 if (VerifyOnly)
2368 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2369 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2370 D = DIE->getDesignator(DesigIdx);
2371 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2372 break;
2373 }
2374 }
2375 if (!KnownField) {
2376 if (VerifyOnly) {
2377 ++Index;
2378 return true; // No typo correction when just trying this out.
2379 }
2380
2381 // Name lookup found something, but it wasn't a field.
2382 if (!Lookup.empty()) {
2383 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2384 << FieldName;
2385 SemaRef.Diag(Lookup.front()->getLocation(),
2386 diag::note_field_designator_found);
2387 ++Index;
2388 return true;
2389 }
2390
2391 // Name lookup didn't find anything.
2392 // Determine whether this was a typo for another field name.
2393 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2394 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2395 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2396 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2397 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2398 SemaRef.diagnoseTypo(
2399 Corrected,
2400 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2401 << FieldName << CurrentObjectType);
2402 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2403 hadError = true;
2404 } else {
2405 // Typo correction didn't find anything.
2406 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2407 << FieldName << CurrentObjectType;
2408 ++Index;
2409 return true;
2410 }
2411 }
2412 }
2413
2414 unsigned FieldIndex = 0;
2415
2416 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2417 FieldIndex = CXXRD->getNumBases();
2418
2419 for (auto *FI : RT->getDecl()->fields()) {
2420 if (FI->isUnnamedBitfield())
2421 continue;
2422 if (declaresSameEntity(KnownField, FI)) {
2423 KnownField = FI;
2424 break;
2425 }
2426 ++FieldIndex;
2427 }
2428
2429 RecordDecl::field_iterator Field =
2430 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2431
2432 // All of the fields of a union are located at the same place in
2433 // the initializer list.
2434 if (RT->getDecl()->isUnion()) {
2435 FieldIndex = 0;
2436 if (!VerifyOnly) {
2437 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2438 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2439 assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 2440, __PRETTY_FUNCTION__))
2440 && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 2440, __PRETTY_FUNCTION__))
;
2441
2442 Expr *ExistingInit = StructuredList->getInit(0);
2443 if (ExistingInit) {
2444 // We're about to throw away an initializer, emit warning.
2445 SemaRef.Diag(D->getFieldLoc(),
2446 diag::warn_initializer_overrides)
2447 << D->getSourceRange();
2448 SemaRef.Diag(ExistingInit->getBeginLoc(),
2449 diag::note_previous_initializer)
2450 << /*FIXME:has side effects=*/0
2451 << ExistingInit->getSourceRange();
2452 }
2453
2454 // remove existing initializer
2455 StructuredList->resizeInits(SemaRef.Context, 0);
2456 StructuredList->setInitializedFieldInUnion(nullptr);
2457 }
2458
2459 StructuredList->setInitializedFieldInUnion(*Field);
2460 }
2461 }
2462
2463 // Make sure we can use this declaration.
2464 bool InvalidUse;
2465 if (VerifyOnly)
2466 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2467 else
2468 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2469 if (InvalidUse) {
2470 ++Index;
2471 return true;
2472 }
2473
2474 if (!VerifyOnly) {
2475 // Update the designator with the field declaration.
2476 D->setField(*Field);
2477
2478 // Make sure that our non-designated initializer list has space
2479 // for a subobject corresponding to this field.
2480 if (FieldIndex >= StructuredList->getNumInits())
2481 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2482 }
2483
2484 // This designator names a flexible array member.
2485 if (Field->getType()->isIncompleteArrayType()) {
2486 bool Invalid = false;
2487 if ((DesigIdx + 1) != DIE->size()) {
2488 // We can't designate an object within the flexible array
2489 // member (because GCC doesn't allow it).
2490 if (!VerifyOnly) {
2491 DesignatedInitExpr::Designator *NextD
2492 = DIE->getDesignator(DesigIdx + 1);
2493 SemaRef.Diag(NextD->getBeginLoc(),
2494 diag::err_designator_into_flexible_array_member)
2495 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2496 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2497 << *Field;
2498 }
2499 Invalid = true;
2500 }
2501
2502 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2503 !isa<StringLiteral>(DIE->getInit())) {
2504 // The initializer is not an initializer list.
2505 if (!VerifyOnly) {
2506 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2507 diag::err_flexible_array_init_needs_braces)
2508 << DIE->getInit()->getSourceRange();
2509 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2510 << *Field;
2511 }
2512 Invalid = true;
2513 }
2514
2515 // Check GNU flexible array initializer.
2516 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2517 TopLevelObject))
2518 Invalid = true;
2519
2520 if (Invalid) {
2521 ++Index;
2522 return true;
2523 }
2524
2525 // Initialize the array.
2526 bool prevHadError = hadError;
2527 unsigned newStructuredIndex = FieldIndex;
2528 unsigned OldIndex = Index;
2529 IList->setInit(Index, DIE->getInit());
2530
2531 InitializedEntity MemberEntity =
2532 InitializedEntity::InitializeMember(*Field, &Entity);
2533 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2534 StructuredList, newStructuredIndex);
2535
2536 IList->setInit(OldIndex, DIE);
2537 if (hadError && !prevHadError) {
2538 ++Field;
2539 ++FieldIndex;
2540 if (NextField)
2541 *NextField = Field;
2542 StructuredIndex = FieldIndex;
2543 return true;
2544 }
2545 } else {
2546 // Recurse to check later designated subobjects.
2547 QualType FieldType = Field->getType();
2548 unsigned newStructuredIndex = FieldIndex;
2549
2550 InitializedEntity MemberEntity =
2551 InitializedEntity::InitializeMember(*Field, &Entity);
2552 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2553 FieldType, nullptr, nullptr, Index,
2554 StructuredList, newStructuredIndex,
2555 FinishSubobjectInit, false))
2556 return true;
2557 }
2558
2559 // Find the position of the next field to be initialized in this
2560 // subobject.
2561 ++Field;
2562 ++FieldIndex;
2563
2564 // If this the first designator, our caller will continue checking
2565 // the rest of this struct/class/union subobject.
2566 if (IsFirstDesignator) {
2567 if (NextField)
2568 *NextField = Field;
2569 StructuredIndex = FieldIndex;
2570 return false;
2571 }
2572
2573 if (!FinishSubobjectInit)
2574 return false;
2575
2576 // We've already initialized something in the union; we're done.
2577 if (RT->getDecl()->isUnion())
2578 return hadError;
2579
2580 // Check the remaining fields within this class/struct/union subobject.
2581 bool prevHadError = hadError;
2582
2583 auto NoBases =
2584 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2585 CXXRecordDecl::base_class_iterator());
2586 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2587 false, Index, StructuredList, FieldIndex);
2588 return hadError && !prevHadError;
2589 }
2590
2591 // C99 6.7.8p6:
2592 //
2593 // If a designator has the form
2594 //
2595 // [ constant-expression ]
2596 //
2597 // then the current object (defined below) shall have array
2598 // type and the expression shall be an integer constant
2599 // expression. If the array is of unknown size, any
2600 // nonnegative value is valid.
2601 //
2602 // Additionally, cope with the GNU extension that permits
2603 // designators of the form
2604 //
2605 // [ constant-expression ... constant-expression ]
2606 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2607 if (!AT) {
2608 if (!VerifyOnly)
2609 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2610 << CurrentObjectType;
2611 ++Index;
2612 return true;
2613 }
2614
2615 Expr *IndexExpr = nullptr;
2616 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2617 if (D->isArrayDesignator()) {
2618 IndexExpr = DIE->getArrayIndex(*D);
2619 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2620 DesignatedEndIndex = DesignatedStartIndex;
2621 } else {
2622 assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator"
) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 2622, __PRETTY_FUNCTION__))
;
2623
2624 DesignatedStartIndex =
2625 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2626 DesignatedEndIndex =
2627 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2628 IndexExpr = DIE->getArrayRangeEnd(*D);
2629
2630 // Codegen can't handle evaluating array range designators that have side
2631 // effects, because we replicate the AST value for each initialized element.
2632 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2633 // elements with something that has a side effect, so codegen can emit an
2634 // "error unsupported" error instead of miscompiling the app.
2635 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2636 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2637 FullyStructuredList->sawArrayRangeDesignator();
2638 }
2639
2640 if (isa<ConstantArrayType>(AT)) {
2641 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2642 DesignatedStartIndex
2643 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2644 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2645 DesignatedEndIndex
2646 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2647 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2648 if (DesignatedEndIndex >= MaxElements) {
2649 if (!VerifyOnly)
2650 SemaRef.Diag(IndexExpr->getBeginLoc(),
2651 diag::err_array_designator_too_large)
2652 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2653 << IndexExpr->getSourceRange();
2654 ++Index;
2655 return true;
2656 }
2657 } else {
2658 unsigned DesignatedIndexBitWidth =
2659 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2660 DesignatedStartIndex =
2661 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2662 DesignatedEndIndex =
2663 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2664 DesignatedStartIndex.setIsUnsigned(true);
2665 DesignatedEndIndex.setIsUnsigned(true);
2666 }
2667
2668 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2669 // We're modifying a string literal init; we have to decompose the string
2670 // so we can modify the individual characters.
2671 ASTContext &Context = SemaRef.Context;
2672 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2673
2674 // Compute the character type
2675 QualType CharTy = AT->getElementType();
2676
2677 // Compute the type of the integer literals.
2678 QualType PromotedCharTy = CharTy;
2679 if (CharTy->isPromotableIntegerType())
2680 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2681 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2682
2683 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2684 // Get the length of the string.
2685 uint64_t StrLen = SL->getLength();
2686 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2687 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2688 StructuredList->resizeInits(Context, StrLen);
2689
2690 // Build a literal for each character in the string, and put them into
2691 // the init list.
2692 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2693 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2694 Expr *Init = new (Context) IntegerLiteral(
2695 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2696 if (CharTy != PromotedCharTy)
2697 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2698 Init, nullptr, VK_RValue);
2699 StructuredList->updateInit(Context, i, Init);
2700 }
2701 } else {
2702 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2703 std::string Str;
2704 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2705
2706 // Get the length of the string.
2707 uint64_t StrLen = Str.size();
2708 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2709 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2710 StructuredList->resizeInits(Context, StrLen);
2711
2712 // Build a literal for each character in the string, and put them into
2713 // the init list.
2714 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2715 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2716 Expr *Init = new (Context) IntegerLiteral(
2717 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2718 if (CharTy != PromotedCharTy)
2719 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2720 Init, nullptr, VK_RValue);
2721 StructuredList->updateInit(Context, i, Init);
2722 }
2723 }
2724 }
2725
2726 // Make sure that our non-designated initializer list has space
2727 // for a subobject corresponding to this array element.
2728 if (!VerifyOnly &&
2729 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2730 StructuredList->resizeInits(SemaRef.Context,
2731 DesignatedEndIndex.getZExtValue() + 1);
2732
2733 // Repeatedly perform subobject initializations in the range
2734 // [DesignatedStartIndex, DesignatedEndIndex].
2735
2736 // Move to the next designator
2737 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2738 unsigned OldIndex = Index;
2739
2740 InitializedEntity ElementEntity =
2741 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2742
2743 while (DesignatedStartIndex <= DesignatedEndIndex) {
2744 // Recurse to check later designated subobjects.
2745 QualType ElementType = AT->getElementType();
2746 Index = OldIndex;
2747
2748 ElementEntity.setElementIndex(ElementIndex);
2749 if (CheckDesignatedInitializer(
2750 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2751 nullptr, Index, StructuredList, ElementIndex,
2752 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2753 false))
2754 return true;
2755
2756 // Move to the next index in the array that we'll be initializing.
2757 ++DesignatedStartIndex;
2758 ElementIndex = DesignatedStartIndex.getZExtValue();
2759 }
2760
2761 // If this the first designator, our caller will continue checking
2762 // the rest of this array subobject.
2763 if (IsFirstDesignator) {
2764 if (NextElementIndex)
2765 *NextElementIndex = DesignatedStartIndex;
2766 StructuredIndex = ElementIndex;
2767 return false;
2768 }
2769
2770 if (!FinishSubobjectInit)
2771 return false;
2772
2773 // Check the remaining elements within this array subobject.
2774 bool prevHadError = hadError;
2775 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2776 /*SubobjectIsDesignatorContext=*/false, Index,
2777 StructuredList, ElementIndex);
2778 return hadError && !prevHadError;
2779}
2780
2781// Get the structured initializer list for a subobject of type
2782// @p CurrentObjectType.
2783InitListExpr *
2784InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2785 QualType CurrentObjectType,
2786 InitListExpr *StructuredList,
2787 unsigned StructuredIndex,
2788 SourceRange InitRange,
2789 bool IsFullyOverwritten) {
2790 if (VerifyOnly)
2791 return nullptr; // No structured list in verification-only mode.
2792 Expr *ExistingInit = nullptr;
2793 if (!StructuredList)
2794 ExistingInit = SyntacticToSemantic.lookup(IList);
2795 else if (StructuredIndex < StructuredList->getNumInits())
2796 ExistingInit = StructuredList->getInit(StructuredIndex);
2797
2798 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2799 // There might have already been initializers for subobjects of the current
2800 // object, but a subsequent initializer list will overwrite the entirety
2801 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2802 //
2803 // struct P { char x[6]; };
2804 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2805 //
2806 // The first designated initializer is ignored, and l.x is just "f".
2807 if (!IsFullyOverwritten)
2808 return Result;
2809
2810 if (ExistingInit) {
2811 // We are creating an initializer list that initializes the
2812 // subobjects of the current object, but there was already an
2813 // initialization that completely initialized the current
2814 // subobject, e.g., by a compound literal:
2815 //
2816 // struct X { int a, b; };
2817 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2818 //
2819 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2820 // designated initializer re-initializes the whole
2821 // subobject [0], overwriting previous initializers.
2822 SemaRef.Diag(InitRange.getBegin(),
2823 diag::warn_subobject_initializer_overrides)
2824 << InitRange;
2825 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2826 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2827 }
2828
2829 InitListExpr *Result
2830 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2831 InitRange.getBegin(), None,
2832 InitRange.getEnd());
2833
2834 QualType ResultType = CurrentObjectType;
2835 if (!ResultType->isArrayType())
2836 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2837 Result->setType(ResultType);
2838
2839 // Pre-allocate storage for the structured initializer list.
2840 unsigned NumElements = 0;
2841 unsigned NumInits = 0;
2842 bool GotNumInits = false;
2843 if (!StructuredList) {
2844 NumInits = IList->getNumInits();
2845 GotNumInits = true;
2846 } else if (Index < IList->getNumInits()) {
2847 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2848 NumInits = SubList->getNumInits();
2849 GotNumInits = true;
2850 }
2851 }
2852
2853 if (const ArrayType *AType
2854 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2855 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2856 NumElements = CAType->getSize().getZExtValue();
2857 // Simple heuristic so that we don't allocate a very large
2858 // initializer with many empty entries at the end.
2859 if (GotNumInits && NumElements > NumInits)
2860 NumElements = 0;
2861 }
2862 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2863 NumElements = VType->getNumElements();
2864 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2865 RecordDecl *RDecl = RType->getDecl();
2866 if (RDecl->isUnion())
2867 NumElements = 1;
2868 else
2869 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2870 }
2871
2872 Result->reserveInits(SemaRef.Context, NumElements);
2873
2874 // Link this new initializer list into the structured initializer
2875 // lists.
2876 if (StructuredList)
2877 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2878 else {
2879 Result->setSyntacticForm(IList);
2880 SyntacticToSemantic[IList] = Result;
2881 }
2882
2883 return Result;
2884}
2885
2886/// Update the initializer at index @p StructuredIndex within the
2887/// structured initializer list to the value @p expr.
2888void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2889 unsigned &StructuredIndex,
2890 Expr *expr) {
2891 // No structured initializer list to update
2892 if (!StructuredList)
2893 return;
2894
2895 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2896 StructuredIndex, expr)) {
2897 // This initializer overwrites a previous initializer. Warn.
2898 // We need to check on source range validity because the previous
2899 // initializer does not have to be an explicit initializer.
2900 // struct P { int a, b; };
2901 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2902 // There is an overwrite taking place because the first braced initializer
2903 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2904 if (PrevInit->getSourceRange().isValid()) {
2905 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2906 << expr->getSourceRange();
2907
2908 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2909 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2910 }
2911 }
2912
2913 ++StructuredIndex;
2914}
2915
2916/// Check that the given Index expression is a valid array designator
2917/// value. This is essentially just a wrapper around
2918/// VerifyIntegerConstantExpression that also checks for negative values
2919/// and produces a reasonable diagnostic if there is a
2920/// failure. Returns the index expression, possibly with an implicit cast
2921/// added, on success. If everything went okay, Value will receive the
2922/// value of the constant expression.
2923static ExprResult
2924CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2925 SourceLocation Loc = Index->getBeginLoc();
2926
2927 // Make sure this is an integer constant expression.
2928 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2929 if (Result.isInvalid())
2930 return Result;
2931
2932 if (Value.isSigned() && Value.isNegative())
2933 return S.Diag(Loc, diag::err_array_designator_negative)
2934 << Value.toString(10) << Index->getSourceRange();
2935
2936 Value.setIsUnsigned(true);
2937 return Result;
2938}
2939
2940ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2941 SourceLocation Loc,
2942 bool GNUSyntax,
2943 ExprResult Init) {
2944 typedef DesignatedInitExpr::Designator ASTDesignator;
2945
2946 bool Invalid = false;
2947 SmallVector<ASTDesignator, 32> Designators;
2948 SmallVector<Expr *, 32> InitExpressions;
2949
2950 // Build designators and check array designator expressions.
2951 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2952 const Designator &D = Desig.getDesignator(Idx);
2953 switch (D.getKind()) {
2954 case Designator::FieldDesignator:
2955 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2956 D.getFieldLoc()));
2957 break;
2958
2959 case Designator::ArrayDesignator: {
2960 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2961 llvm::APSInt IndexValue;
2962 if (!Index->isTypeDependent() && !Index->isValueDependent())
2963 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2964 if (!Index)
2965 Invalid = true;
2966 else {
2967 Designators.push_back(ASTDesignator(InitExpressions.size(),
2968 D.getLBracketLoc(),
2969 D.getRBracketLoc()));
2970 InitExpressions.push_back(Index);
2971 }
2972 break;
2973 }
2974
2975 case Designator::ArrayRangeDesignator: {
2976 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2977 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2978 llvm::APSInt StartValue;
2979 llvm::APSInt EndValue;
2980 bool StartDependent = StartIndex->isTypeDependent() ||
2981 StartIndex->isValueDependent();
2982 bool EndDependent = EndIndex->isTypeDependent() ||
2983 EndIndex->isValueDependent();
2984 if (!StartDependent)
2985 StartIndex =
2986 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2987 if (!EndDependent)
2988 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2989
2990 if (!StartIndex || !EndIndex)
2991 Invalid = true;
2992 else {
2993 // Make sure we're comparing values with the same bit width.
2994 if (StartDependent || EndDependent) {
2995 // Nothing to compute.
2996 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2997 EndValue = EndValue.extend(StartValue.getBitWidth());
2998 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2999 StartValue = StartValue.extend(EndValue.getBitWidth());
3000
3001 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3002 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3003 << StartValue.toString(10) << EndValue.toString(10)
3004 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3005 Invalid = true;
3006 } else {
3007 Designators.push_back(ASTDesignator(InitExpressions.size(),
3008 D.getLBracketLoc(),
3009 D.getEllipsisLoc(),
3010 D.getRBracketLoc()));
3011 InitExpressions.push_back(StartIndex);
3012 InitExpressions.push_back(EndIndex);
3013 }
3014 }
3015 break;
3016 }
3017 }
3018 }
3019
3020 if (Invalid || Init.isInvalid())
3021 return ExprError();
3022
3023 // Clear out the expressions within the designation.
3024 Desig.ClearExprs(*this);
3025
3026 DesignatedInitExpr *DIE
3027 = DesignatedInitExpr::Create(Context,
3028 Designators,
3029 InitExpressions, Loc, GNUSyntax,
3030 Init.getAs<Expr>());
3031
3032 if (!getLangOpts().C99)
3033 Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3034 << DIE->getSourceRange();
3035
3036 return DIE;
3037}
3038
3039//===----------------------------------------------------------------------===//
3040// Initialization entity
3041//===----------------------------------------------------------------------===//
3042
3043InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3044 const InitializedEntity &Parent)
3045 : Parent(&Parent), Index(Index)
3046{
3047 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3048 Kind = EK_ArrayElement;
3049 Type = AT->getElementType();
3050 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3051 Kind = EK_VectorElement;
3052 Type = VT->getElementType();
3053 } else {
3054 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3055 assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> (
0) : __assert_fail ("CT && \"Unexpected type\"", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3055, __PRETTY_FUNCTION__))
;
3056 Kind = EK_ComplexElement;
3057 Type = CT->getElementType();
3058 }
3059}
3060
3061InitializedEntity
3062InitializedEntity::InitializeBase(ASTContext &Context,
3063 const CXXBaseSpecifier *Base,
3064 bool IsInheritedVirtualBase,
3065 const InitializedEntity *Parent) {
3066 InitializedEntity Result;
3067 Result.Kind = EK_Base;
3068 Result.Parent = Parent;
3069 Result.Base = reinterpret_cast<uintptr_t>(Base);
3070 if (IsInheritedVirtualBase)
3071 Result.Base |= 0x01;
3072
3073 Result.Type = Base->getType();
3074 return Result;
3075}
3076
3077DeclarationName InitializedEntity::getName() const {
3078 switch (getKind()) {
3079 case EK_Parameter:
3080 case EK_Parameter_CF_Audited: {
3081 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3082 return (D ? D->getDeclName() : DeclarationName());
3083 }
3084
3085 case EK_Variable:
3086 case EK_Member:
3087 case EK_Binding:
3088 return Variable.VariableOrMember->getDeclName();
3089
3090 case EK_LambdaCapture:
3091 return DeclarationName(Capture.VarID);
3092
3093 case EK_Result:
3094 case EK_StmtExprResult:
3095 case EK_Exception:
3096 case EK_New:
3097 case EK_Temporary:
3098 case EK_Base:
3099 case EK_Delegating:
3100 case EK_ArrayElement:
3101 case EK_VectorElement:
3102 case EK_ComplexElement:
3103 case EK_BlockElement:
3104 case EK_LambdaToBlockConversionBlockElement:
3105 case EK_CompoundLiteralInit:
3106 case EK_RelatedResult:
3107 return DeclarationName();
3108 }
3109
3110 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3110)
;
3111}
3112
3113ValueDecl *InitializedEntity::getDecl() const {
3114 switch (getKind()) {
3115 case EK_Variable:
3116 case EK_Member:
3117 case EK_Binding:
3118 return Variable.VariableOrMember;
3119
3120 case EK_Parameter:
3121 case EK_Parameter_CF_Audited:
3122 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3123
3124 case EK_Result:
3125 case EK_StmtExprResult:
3126 case EK_Exception:
3127 case EK_New:
3128 case EK_Temporary:
3129 case EK_Base:
3130 case EK_Delegating:
3131 case EK_ArrayElement:
3132 case EK_VectorElement:
3133 case EK_ComplexElement:
3134 case EK_BlockElement:
3135 case EK_LambdaToBlockConversionBlockElement:
3136 case EK_LambdaCapture:
3137 case EK_CompoundLiteralInit:
3138 case EK_RelatedResult:
3139 return nullptr;
3140 }
3141
3142 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3142)
;
3143}
3144
3145bool InitializedEntity::allowsNRVO() const {
3146 switch (getKind()) {
3147 case EK_Result:
3148 case EK_Exception:
3149 return LocAndNRVO.NRVO;
3150
3151 case EK_StmtExprResult:
3152 case EK_Variable:
3153 case EK_Parameter:
3154 case EK_Parameter_CF_Audited:
3155 case EK_Member:
3156 case EK_Binding:
3157 case EK_New:
3158 case EK_Temporary:
3159 case EK_CompoundLiteralInit:
3160 case EK_Base:
3161 case EK_Delegating:
3162 case EK_ArrayElement:
3163 case EK_VectorElement:
3164 case EK_ComplexElement:
3165 case EK_BlockElement:
3166 case EK_LambdaToBlockConversionBlockElement:
3167 case EK_LambdaCapture:
3168 case EK_RelatedResult:
3169 break;
3170 }
3171
3172 return false;
3173}
3174
3175unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3176 assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail
("getParent() != this", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3176, __PRETTY_FUNCTION__))
;
3177 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3178 for (unsigned I = 0; I != Depth; ++I)
3179 OS << "`-";
3180
3181 switch (getKind()) {
3182 case EK_Variable: OS << "Variable"; break;
3183 case EK_Parameter: OS << "Parameter"; break;
3184 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3185 break;
3186 case EK_Result: OS << "Result"; break;
3187 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3188 case EK_Exception: OS << "Exception"; break;
3189 case EK_Member: OS << "Member"; break;
3190 case EK_Binding: OS << "Binding"; break;
3191 case EK_New: OS << "New"; break;
3192 case EK_Temporary: OS << "Temporary"; break;
3193 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3194 case EK_RelatedResult: OS << "RelatedResult"; break;
3195 case EK_Base: OS << "Base"; break;
3196 case EK_Delegating: OS << "Delegating"; break;
3197 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3198 case EK_VectorElement: OS << "VectorElement " << Index; break;
3199 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3200 case EK_BlockElement: OS << "Block"; break;
3201 case EK_LambdaToBlockConversionBlockElement:
3202 OS << "Block (lambda)";
3203 break;
3204 case EK_LambdaCapture:
3205 OS << "LambdaCapture ";
3206 OS << DeclarationName(Capture.VarID);
3207 break;
3208 }
3209
3210 if (auto *D = getDecl()) {
3211 OS << " ";
3212 D->printQualifiedName(OS);
3213 }
3214
3215 OS << " '" << getType().getAsString() << "'\n";
3216
3217 return Depth + 1;
3218}
3219
3220LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3221 dumpImpl(llvm::errs());
3222}
3223
3224//===----------------------------------------------------------------------===//
3225// Initialization sequence
3226//===----------------------------------------------------------------------===//
3227
3228void InitializationSequence::Step::Destroy() {
3229 switch (Kind) {
3230 case SK_ResolveAddressOfOverloadedFunction:
3231 case SK_CastDerivedToBaseRValue:
3232 case SK_CastDerivedToBaseXValue:
3233 case SK_CastDerivedToBaseLValue:
3234 case SK_BindReference:
3235 case SK_BindReferenceToTemporary:
3236 case SK_FinalCopy:
3237 case SK_ExtraneousCopyToTemporary:
3238 case SK_UserConversion:
3239 case SK_QualificationConversionRValue:
3240 case SK_QualificationConversionXValue:
3241 case SK_QualificationConversionLValue:
3242 case SK_AtomicConversion:
3243 case SK_LValueToRValue:
3244 case SK_ListInitialization:
3245 case SK_UnwrapInitList:
3246 case SK_RewrapInitList:
3247 case SK_ConstructorInitialization:
3248 case SK_ConstructorInitializationFromList:
3249 case SK_ZeroInitialization:
3250 case SK_CAssignment:
3251 case SK_StringInit:
3252 case SK_ObjCObjectConversion:
3253 case SK_ArrayLoopIndex:
3254 case SK_ArrayLoopInit:
3255 case SK_ArrayInit:
3256 case SK_GNUArrayInit:
3257 case SK_ParenthesizedArrayInit:
3258 case SK_PassByIndirectCopyRestore:
3259 case SK_PassByIndirectRestore:
3260 case SK_ProduceObjCObject:
3261 case SK_StdInitializerList:
3262 case SK_StdInitializerListConstructorCall:
3263 case SK_OCLSamplerInit:
3264 case SK_OCLZeroOpaqueType:
3265 break;
3266
3267 case SK_ConversionSequence:
3268 case SK_ConversionSequenceNoNarrowing:
3269 delete ICS;
3270 }
3271}
3272
3273bool InitializationSequence::isDirectReferenceBinding() const {
3274 // There can be some lvalue adjustments after the SK_BindReference step.
3275 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3276 if (I->Kind == SK_BindReference)
3277 return true;
3278 if (I->Kind == SK_BindReferenceToTemporary)
3279 return false;
3280 }
3281 return false;
3282}
3283
3284bool InitializationSequence::isAmbiguous() const {
3285 if (!Failed())
3286 return false;
3287
3288 switch (getFailureKind()) {
3289 case FK_TooManyInitsForReference:
3290 case FK_ParenthesizedListInitForReference:
3291 case FK_ArrayNeedsInitList:
3292 case FK_ArrayNeedsInitListOrStringLiteral:
3293 case FK_ArrayNeedsInitListOrWideStringLiteral:
3294 case FK_NarrowStringIntoWideCharArray:
3295 case FK_WideStringIntoCharArray:
3296 case FK_IncompatWideStringIntoWideChar:
3297 case FK_PlainStringIntoUTF8Char:
3298 case FK_UTF8StringIntoPlainChar:
3299 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3300 case FK_NonConstLValueReferenceBindingToTemporary:
3301 case FK_NonConstLValueReferenceBindingToBitfield:
3302 case FK_NonConstLValueReferenceBindingToVectorElement:
3303 case FK_NonConstLValueReferenceBindingToUnrelated:
3304 case FK_RValueReferenceBindingToLValue:
3305 case FK_ReferenceInitDropsQualifiers:
3306 case FK_ReferenceInitFailed:
3307 case FK_ConversionFailed:
3308 case FK_ConversionFromPropertyFailed:
3309 case FK_TooManyInitsForScalar:
3310 case FK_ParenthesizedListInitForScalar:
3311 case FK_ReferenceBindingToInitList:
3312 case FK_InitListBadDestinationType:
3313 case FK_DefaultInitOfConst:
3314 case FK_Incomplete:
3315 case FK_ArrayTypeMismatch:
3316 case FK_NonConstantArrayInit:
3317 case FK_ListInitializationFailed:
3318 case FK_VariableLengthArrayHasInitializer:
3319 case FK_PlaceholderType:
3320 case FK_ExplicitConstructor:
3321 case FK_AddressOfUnaddressableFunction:
3322 return false;
3323
3324 case FK_ReferenceInitOverloadFailed:
3325 case FK_UserConversionOverloadFailed:
3326 case FK_ConstructorOverloadFailed:
3327 case FK_ListConstructorOverloadFailed:
3328 return FailedOverloadResult == OR_Ambiguous;
3329 }
3330
3331 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3331)
;
3332}
3333
3334bool InitializationSequence::isConstructorInitialization() const {
3335 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3336}
3337
3338void
3339InitializationSequence
3340::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3341 DeclAccessPair Found,
3342 bool HadMultipleCandidates) {
3343 Step S;
3344 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3345 S.Type = Function->getType();
3346 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3347 S.Function.Function = Function;
3348 S.Function.FoundDecl = Found;
3349 Steps.push_back(S);
3350}
3351
3352void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3353 ExprValueKind VK) {
3354 Step S;
3355 switch (VK) {
3356 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3357 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3358 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3359 }
3360 S.Type = BaseType;
3361 Steps.push_back(S);
3362}
3363
3364void InitializationSequence::AddReferenceBindingStep(QualType T,
3365 bool BindingTemporary) {
3366 Step S;
3367 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3368 S.Type = T;
3369 Steps.push_back(S);
3370}
3371
3372void InitializationSequence::AddFinalCopy(QualType T) {
3373 Step S;
3374 S.Kind = SK_FinalCopy;
3375 S.Type = T;
3376 Steps.push_back(S);
3377}
3378
3379void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3380 Step S;
3381 S.Kind = SK_ExtraneousCopyToTemporary;
3382 S.Type = T;
3383 Steps.push_back(S);
3384}
3385
3386void
3387InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3388 DeclAccessPair FoundDecl,
3389 QualType T,
3390 bool HadMultipleCandidates) {
3391 Step S;
3392 S.Kind = SK_UserConversion;
3393 S.Type = T;
3394 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3395 S.Function.Function = Function;
3396 S.Function.FoundDecl = FoundDecl;
3397 Steps.push_back(S);
3398}
3399
3400void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3401 ExprValueKind VK) {
3402 Step S;
3403 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3404 switch (VK) {
3405 case VK_RValue:
3406 S.Kind = SK_QualificationConversionRValue;
3407 break;
3408 case VK_XValue:
3409 S.Kind = SK_QualificationConversionXValue;
3410 break;
3411 case VK_LValue:
3412 S.Kind = SK_QualificationConversionLValue;
3413 break;
3414 }
3415 S.Type = Ty;
3416 Steps.push_back(S);
3417}
3418
3419void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3420 Step S;
3421 S.Kind = SK_AtomicConversion;
3422 S.Type = Ty;
3423 Steps.push_back(S);
3424}
3425
3426void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3427 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")((!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3427, __PRETTY_FUNCTION__))
;
3428
3429 Step S;
3430 S.Kind = SK_LValueToRValue;
3431 S.Type = Ty;
3432 Steps.push_back(S);
3433}
3434
3435void InitializationSequence::AddConversionSequenceStep(
3436 const ImplicitConversionSequence &ICS, QualType T,
3437 bool TopLevelOfInitList) {
3438 Step S;
3439 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3440 : SK_ConversionSequence;
3441 S.Type = T;
3442 S.ICS = new ImplicitConversionSequence(ICS);
3443 Steps.push_back(S);
3444}
3445
3446void InitializationSequence::AddListInitializationStep(QualType T) {
3447 Step S;
3448 S.Kind = SK_ListInitialization;
3449 S.Type = T;
3450 Steps.push_back(S);
3451}
3452
3453void InitializationSequence::AddConstructorInitializationStep(
3454 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3455 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3456 Step S;
3457 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3458 : SK_ConstructorInitializationFromList
3459 : SK_ConstructorInitialization;
3460 S.Type = T;
3461 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3462 S.Function.Function = Constructor;
3463 S.Function.FoundDecl = FoundDecl;
3464 Steps.push_back(S);
3465}
3466
3467void InitializationSequence::AddZeroInitializationStep(QualType T) {
3468 Step S;
3469 S.Kind = SK_ZeroInitialization;
3470 S.Type = T;
3471 Steps.push_back(S);
3472}
3473
3474void InitializationSequence::AddCAssignmentStep(QualType T) {
3475 Step S;
3476 S.Kind = SK_CAssignment;
3477 S.Type = T;
3478 Steps.push_back(S);
3479}
3480
3481void InitializationSequence::AddStringInitStep(QualType T) {
3482 Step S;
3483 S.Kind = SK_StringInit;
3484 S.Type = T;
3485 Steps.push_back(S);
3486}
3487
3488void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3489 Step S;
3490 S.Kind = SK_ObjCObjectConversion;
3491 S.Type = T;
3492 Steps.push_back(S);
3493}
3494
3495void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3496 Step S;
3497 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3498 S.Type = T;
3499 Steps.push_back(S);
3500}
3501
3502void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3503 Step S;
3504 S.Kind = SK_ArrayLoopIndex;
3505 S.Type = EltT;
3506 Steps.insert(Steps.begin(), S);
3507
3508 S.Kind = SK_ArrayLoopInit;
3509 S.Type = T;
3510 Steps.push_back(S);
3511}
3512
3513void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3514 Step S;
3515 S.Kind = SK_ParenthesizedArrayInit;
3516 S.Type = T;
3517 Steps.push_back(S);
3518}
3519
3520void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3521 bool shouldCopy) {
3522 Step s;
3523 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3524 : SK_PassByIndirectRestore);
3525 s.Type = type;
3526 Steps.push_back(s);
3527}
3528
3529void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3530 Step S;
3531 S.Kind = SK_ProduceObjCObject;
3532 S.Type = T;
3533 Steps.push_back(S);
3534}
3535
3536void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3537 Step S;
3538 S.Kind = SK_StdInitializerList;
3539 S.Type = T;
3540 Steps.push_back(S);
3541}
3542
3543void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3544 Step S;
3545 S.Kind = SK_OCLSamplerInit;
3546 S.Type = T;
3547 Steps.push_back(S);
3548}
3549
3550void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3551 Step S;
3552 S.Kind = SK_OCLZeroOpaqueType;
3553 S.Type = T;
3554 Steps.push_back(S);
3555}
3556
3557void InitializationSequence::RewrapReferenceInitList(QualType T,
3558 InitListExpr *Syntactic) {
3559 assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3560, __PRETTY_FUNCTION__))
3560 "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3560, __PRETTY_FUNCTION__))
;
3561 Step S;
3562 S.Kind = SK_UnwrapInitList;
3563 S.Type = Syntactic->getInit(0)->getType();
3564 Steps.insert(Steps.begin(), S);
3565
3566 S.Kind = SK_RewrapInitList;
3567 S.Type = T;
3568 S.WrappingSyntacticList = Syntactic;
3569 Steps.push_back(S);
3570}
3571
3572void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3573 OverloadingResult Result) {
3574 setSequenceKind(FailedSequence);
3575 this->Failure = Failure;
3576 this->FailedOverloadResult = Result;
3577}
3578
3579//===----------------------------------------------------------------------===//
3580// Attempt initialization
3581//===----------------------------------------------------------------------===//
3582
3583/// Tries to add a zero initializer. Returns true if that worked.
3584static bool
3585maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3586 const InitializedEntity &Entity) {
3587 if (Entity.getKind() != InitializedEntity::EK_Variable)
3588 return false;
3589
3590 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3591 if (VD->getInit() || VD->getEndLoc().isMacroID())
3592 return false;
3593
3594 QualType VariableTy = VD->getType().getCanonicalType();
3595 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3596 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3597 if (!Init.empty()) {
3598 Sequence.AddZeroInitializationStep(Entity.getType());
3599 Sequence.SetZeroInitializationFixit(Init, Loc);
3600 return true;
3601 }
3602 return false;
3603}
3604
3605static void MaybeProduceObjCObject(Sema &S,
3606 InitializationSequence &Sequence,
3607 const InitializedEntity &Entity) {
3608 if (!S.getLangOpts().ObjCAutoRefCount) return;
3609
3610 /// When initializing a parameter, produce the value if it's marked
3611 /// __attribute__((ns_consumed)).
3612 if (Entity.isParameterKind()) {
3613 if (!Entity.isParameterConsumed())
3614 return;
3615
3616 assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3617, __PRETTY_FUNCTION__))
3617 "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3617, __PRETTY_FUNCTION__))
;
3618 Sequence.AddProduceObjCObjectStep(Entity.getType());
3619
3620 /// When initializing a return value, if the return type is a
3621 /// retainable type, then returns need to immediately retain the
3622 /// object. If an autorelease is required, it will be done at the
3623 /// last instant.
3624 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3625 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3626 if (!Entity.getType()->isObjCRetainableType())
3627 return;
3628
3629 Sequence.AddProduceObjCObjectStep(Entity.getType());
3630 }
3631}
3632
3633static void TryListInitialization(Sema &S,
3634 const InitializedEntity &Entity,
3635 const InitializationKind &Kind,
3636 InitListExpr *InitList,
3637 InitializationSequence &Sequence,
3638 bool TreatUnavailableAsInvalid);
3639
3640/// When initializing from init list via constructor, handle
3641/// initialization of an object of type std::initializer_list<T>.
3642///
3643/// \return true if we have handled initialization of an object of type
3644/// std::initializer_list<T>, false otherwise.
3645static bool TryInitializerListConstruction(Sema &S,
3646 InitListExpr *List,
3647 QualType DestType,
3648 InitializationSequence &Sequence,
3649 bool TreatUnavailableAsInvalid) {
3650 QualType E;
3651 if (!S.isStdInitializerList(DestType, &E))
3652 return false;
3653
3654 if (!S.isCompleteType(List->getExprLoc(), E)) {
3655 Sequence.setIncompleteTypeFailure(E);
3656 return true;
3657 }
3658
3659 // Try initializing a temporary array from the init list.
3660 QualType ArrayType = S.Context.getConstantArrayType(
3661 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3662 List->getNumInits()),
3663 clang::ArrayType::Normal, 0);
3664 InitializedEntity HiddenArray =
3665 InitializedEntity::InitializeTemporary(ArrayType);
3666 InitializationKind Kind = InitializationKind::CreateDirectList(
3667 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3668 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3669 TreatUnavailableAsInvalid);
3670 if (Sequence)
3671 Sequence.AddStdInitializerListConstructionStep(DestType);
3672 return true;
3673}
3674
3675/// Determine if the constructor has the signature of a copy or move
3676/// constructor for the type T of the class in which it was found. That is,
3677/// determine if its first parameter is of type T or reference to (possibly
3678/// cv-qualified) T.
3679static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3680 const ConstructorInfo &Info) {
3681 if (Info.Constructor->getNumParams() == 0)
3682 return false;
3683
3684 QualType ParmT =
3685 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3686 QualType ClassT =
3687 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3688
3689 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3690}
3691
3692static OverloadingResult
3693ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3694 MultiExprArg Args,
3695 OverloadCandidateSet &CandidateSet,
3696 QualType DestType,
3697 DeclContext::lookup_result Ctors,
3698 OverloadCandidateSet::iterator &Best,
3699 bool CopyInitializing, bool AllowExplicit,
3700 bool OnlyListConstructors, bool IsListInit,
3701 bool SecondStepOfCopyInit = false) {
3702 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3703
3704 for (NamedDecl *D : Ctors) {
3705 auto Info = getConstructorInfo(D);
3706 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3707 continue;
3708
3709 if (!AllowExplicit && Info.Constructor->isExplicit())
3710 continue;
3711
3712 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3713 continue;
3714
3715 // C++11 [over.best.ics]p4:
3716 // ... and the constructor or user-defined conversion function is a
3717 // candidate by
3718 // - 13.3.1.3, when the argument is the temporary in the second step
3719 // of a class copy-initialization, or
3720 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3721 // - the second phase of 13.3.1.7 when the initializer list has exactly
3722 // one element that is itself an initializer list, and the target is
3723 // the first parameter of a constructor of class X, and the conversion
3724 // is to X or reference to (possibly cv-qualified X),
3725 // user-defined conversion sequences are not considered.
3726 bool SuppressUserConversions =
3727 SecondStepOfCopyInit ||
3728 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3729 hasCopyOrMoveCtorParam(S.Context, Info));
3730
3731 if (Info.ConstructorTmpl)
3732 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3733 /*ExplicitArgs*/ nullptr, Args,
3734 CandidateSet, SuppressUserConversions);
3735 else {
3736 // C++ [over.match.copy]p1:
3737 // - When initializing a temporary to be bound to the first parameter
3738 // of a constructor [for type T] that takes a reference to possibly
3739 // cv-qualified T as its first argument, called with a single
3740 // argument in the context of direct-initialization, explicit
3741 // conversion functions are also considered.
3742 // FIXME: What if a constructor template instantiates to such a signature?
3743 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3744 Args.size() == 1 &&
3745 hasCopyOrMoveCtorParam(S.Context, Info);
3746 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3747 CandidateSet, SuppressUserConversions,
3748 /*PartialOverloading=*/false,
3749 /*AllowExplicit=*/AllowExplicitConv);
3750 }
3751 }
3752
3753 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3754 //
3755 // When initializing an object of class type T by constructor
3756 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3757 // from a single expression of class type U, conversion functions of
3758 // U that convert to the non-reference type cv T are candidates.
3759 // Explicit conversion functions are only candidates during
3760 // direct-initialization.
3761 //
3762 // Note: SecondStepOfCopyInit is only ever true in this case when
3763 // evaluating whether to produce a C++98 compatibility warning.
3764 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3765 !SecondStepOfCopyInit) {
3766 Expr *Initializer = Args[0];
3767 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3768 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3769 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3770 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3771 NamedDecl *D = *I;
3772 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3773 D = D->getUnderlyingDecl();
3774
3775 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3776 CXXConversionDecl *Conv;
3777 if (ConvTemplate)
3778 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3779 else
3780 Conv = cast<CXXConversionDecl>(D);
3781
3782 if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3783 if (ConvTemplate)
3784 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3785 ActingDC, Initializer, DestType,
3786 CandidateSet, AllowExplicit,
3787 /*AllowResultConversion*/false);
3788 else
3789 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3790 DestType, CandidateSet, AllowExplicit,
3791 /*AllowResultConversion*/false);
3792 }
3793 }
3794 }
3795 }
3796
3797 // Perform overload resolution and return the result.
3798 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3799}
3800
3801/// Attempt initialization by constructor (C++ [dcl.init]), which
3802/// enumerates the constructors of the initialized entity and performs overload
3803/// resolution to select the best.
3804/// \param DestType The destination class type.
3805/// \param DestArrayType The destination type, which is either DestType or
3806/// a (possibly multidimensional) array of DestType.
3807/// \param IsListInit Is this list-initialization?
3808/// \param IsInitListCopy Is this non-list-initialization resulting from a
3809/// list-initialization from {x} where x is the same
3810/// type as the entity?
3811static void TryConstructorInitialization(Sema &S,
3812 const InitializedEntity &Entity,
3813 const InitializationKind &Kind,
3814 MultiExprArg Args, QualType DestType,
3815 QualType DestArrayType,
3816 InitializationSequence &Sequence,
3817 bool IsListInit = false,
3818 bool IsInitListCopy = false) {
3819 assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3822, __PRETTY_FUNCTION__))
3820 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3822, __PRETTY_FUNCTION__))
3821 "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3822, __PRETTY_FUNCTION__))
3822 "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3822, __PRETTY_FUNCTION__))
;
3823 InitListExpr *ILE =
3824 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3825 MultiExprArg UnwrappedArgs =
3826 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3827
3828 // The type we're constructing needs to be complete.
3829 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3830 Sequence.setIncompleteTypeFailure(DestType);
3831 return;
3832 }
3833
3834 // C++17 [dcl.init]p17:
3835 // - If the initializer expression is a prvalue and the cv-unqualified
3836 // version of the source type is the same class as the class of the
3837 // destination, the initializer expression is used to initialize the
3838 // destination object.
3839 // Per DR (no number yet), this does not apply when initializing a base
3840 // class or delegating to another constructor from a mem-initializer.
3841 // ObjC++: Lambda captured by the block in the lambda to block conversion
3842 // should avoid copy elision.
3843 if (S.getLangOpts().CPlusPlus17 &&
3844 Entity.getKind() != InitializedEntity::EK_Base &&
3845 Entity.getKind() != InitializedEntity::EK_Delegating &&
3846 Entity.getKind() !=
3847 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3848 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3849 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3850 // Convert qualifications if necessary.
3851 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3852 if (ILE)
3853 Sequence.RewrapReferenceInitList(DestType, ILE);
3854 return;
3855 }
3856
3857 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3858 assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type"
) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3858, __PRETTY_FUNCTION__))
;
3859 CXXRecordDecl *DestRecordDecl
3860 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3861
3862 // Build the candidate set directly in the initialization sequence
3863 // structure, so that it will persist if we fail.
3864 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3865
3866 // Determine whether we are allowed to call explicit constructors or
3867 // explicit conversion operators.
3868 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3869 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3870
3871 // - Otherwise, if T is a class type, constructors are considered. The
3872 // applicable constructors are enumerated, and the best one is chosen
3873 // through overload resolution.
3874 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3875
3876 OverloadingResult Result = OR_No_Viable_Function;
3877 OverloadCandidateSet::iterator Best;
3878 bool AsInitializerList = false;
3879
3880 // C++11 [over.match.list]p1, per DR1467:
3881 // When objects of non-aggregate type T are list-initialized, such that
3882 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3883 // according to the rules in this section, overload resolution selects
3884 // the constructor in two phases:
3885 //
3886 // - Initially, the candidate functions are the initializer-list
3887 // constructors of the class T and the argument list consists of the
3888 // initializer list as a single argument.
3889 if (IsListInit) {
3890 AsInitializerList = true;
3891
3892 // If the initializer list has no elements and T has a default constructor,
3893 // the first phase is omitted.
3894 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3895 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3896 CandidateSet, DestType, Ctors, Best,
3897 CopyInitialization, AllowExplicit,
3898 /*OnlyListConstructor=*/true,
3899 IsListInit);
3900 }
3901
3902 // C++11 [over.match.list]p1:
3903 // - If no viable initializer-list constructor is found, overload resolution
3904 // is performed again, where the candidate functions are all the
3905 // constructors of the class T and the argument list consists of the
3906 // elements of the initializer list.
3907 if (Result == OR_No_Viable_Function) {
3908 AsInitializerList = false;
3909 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3910 CandidateSet, DestType, Ctors, Best,
3911 CopyInitialization, AllowExplicit,
3912 /*OnlyListConstructors=*/false,
3913 IsListInit);
3914 }
3915 if (Result) {
3916 Sequence.SetOverloadFailure(IsListInit ?
3917 InitializationSequence::FK_ListConstructorOverloadFailed :
3918 InitializationSequence::FK_ConstructorOverloadFailed,
3919 Result);
3920 return;
3921 }
3922
3923 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3924
3925 // In C++17, ResolveConstructorOverload can select a conversion function
3926 // instead of a constructor.
3927 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3928 // Add the user-defined conversion step that calls the conversion function.
3929 QualType ConvType = CD->getConversionType();
3930 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&((S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
"should not have selected this conversion function") ? static_cast
<void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3931, __PRETTY_FUNCTION__))
3931 "should not have selected this conversion function")((S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
"should not have selected this conversion function") ? static_cast
<void> (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 3931, __PRETTY_FUNCTION__))
;
3932 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3933 HadMultipleCandidates);
3934 if (!S.Context.hasSameType(ConvType, DestType))
3935 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3936 if (IsListInit)
3937 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3938 return;
3939 }
3940
3941 // C++11 [dcl.init]p6:
3942 // If a program calls for the default initialization of an object
3943 // of a const-qualified type T, T shall be a class type with a
3944 // user-provided default constructor.
3945 // C++ core issue 253 proposal:
3946 // If the implicit default constructor initializes all subobjects, no
3947 // initializer should be required.
3948 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3949 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3950 if (Kind.getKind() == InitializationKind::IK_Default &&
3951 Entity.getType().isConstQualified()) {
3952 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3953 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3954 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3955 return;
3956 }
3957 }
3958
3959 // C++11 [over.match.list]p1:
3960 // In copy-list-initialization, if an explicit constructor is chosen, the
3961 // initializer is ill-formed.
3962 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3963 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3964 return;
3965 }
3966
3967 // Add the constructor initialization step. Any cv-qualification conversion is
3968 // subsumed by the initialization.
3969 Sequence.AddConstructorInitializationStep(
3970 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3971 IsListInit | IsInitListCopy, AsInitializerList);
3972}
3973
3974static bool
3975ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3976 Expr *Initializer,
3977 QualType &SourceType,
3978 QualType &UnqualifiedSourceType,
3979 QualType UnqualifiedTargetType,
3980 InitializationSequence &Sequence) {
3981 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3982 S.Context.OverloadTy) {
3983 DeclAccessPair Found;
3984 bool HadMultipleCandidates = false;
3985 if (FunctionDecl *Fn
3986 = S.ResolveAddressOfOverloadedFunction(Initializer,
3987 UnqualifiedTargetType,
3988 false, Found,
3989 &HadMultipleCandidates)) {
3990 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3991 HadMultipleCandidates);
3992 SourceType = Fn->getType();
3993 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3994 } else if (!UnqualifiedTargetType->isRecordType()) {
3995 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3996 return true;
3997 }
3998 }
3999 return false;
4000}
4001
4002static void TryReferenceInitializationCore(Sema &S,
4003 const InitializedEntity &Entity,
4004 const InitializationKind &Kind,
4005 Expr *Initializer,
4006 QualType cv1T1, QualType T1,
4007 Qualifiers T1Quals,
4008 QualType cv2T2, QualType T2,
4009 Qualifiers T2Quals,
4010 InitializationSequence &Sequence);
4011
4012static void TryValueInitialization(Sema &S,
4013 const InitializedEntity &Entity,
4014 const InitializationKind &Kind,
4015 InitializationSequence &Sequence,
4016 InitListExpr *InitList = nullptr);
4017
4018/// Attempt list initialization of a reference.
4019static void TryReferenceListInitialization(Sema &S,
4020 const InitializedEntity &Entity,
4021 const InitializationKind &Kind,
4022 InitListExpr *InitList,
4023 InitializationSequence &Sequence,
4024 bool TreatUnavailableAsInvalid) {
4025 // First, catch C++03 where this isn't possible.
4026 if (!S.getLangOpts().CPlusPlus11) {
4027 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4028 return;
4029 }
4030 // Can't reference initialize a compound literal.
4031 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4032 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4033 return;
4034 }
4035
4036 QualType DestType = Entity.getType();
4037 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4038 Qualifiers T1Quals;
4039 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4040
4041 // Reference initialization via an initializer list works thus:
4042 // If the initializer list consists of a single element that is
4043 // reference-related to the referenced type, bind directly to that element
4044 // (possibly creating temporaries).
4045 // Otherwise, initialize a temporary with the initializer list and
4046 // bind to that.
4047 if (InitList->getNumInits() == 1) {
4048 Expr *Initializer = InitList->getInit(0);
4049 QualType cv2T2 = Initializer->getType();
4050 Qualifiers T2Quals;
4051 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4052
4053 // If this fails, creating a temporary wouldn't work either.
4054 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4055 T1, Sequence))
4056 return;
4057
4058 SourceLocation DeclLoc = Initializer->getBeginLoc();
4059 bool dummy1, dummy2, dummy3;
4060 Sema::ReferenceCompareResult RefRelationship
4061 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4062 dummy2, dummy3);
4063 if (RefRelationship >= Sema::Ref_Related) {
4064 // Try to bind the reference here.
4065 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4066 T1Quals, cv2T2, T2, T2Quals, Sequence);
4067 if (Sequence)
4068 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4069 return;
4070 }
4071
4072 // Update the initializer if we've resolved an overloaded function.
4073 if (Sequence.step_begin() != Sequence.step_end())
4074 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4075 }
4076
4077 // Not reference-related. Create a temporary and bind to that.
4078 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4079
4080 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4081 TreatUnavailableAsInvalid);
4082 if (Sequence) {
4083 if (DestType->isRValueReferenceType() ||
4084 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4085 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4086 else
4087 Sequence.SetFailed(
4088 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4089 }
4090}
4091
4092/// Attempt list initialization (C++0x [dcl.init.list])
4093static void TryListInitialization(Sema &S,
4094 const InitializedEntity &Entity,
4095 const InitializationKind &Kind,
4096 InitListExpr *InitList,
4097 InitializationSequence &Sequence,
4098 bool TreatUnavailableAsInvalid) {
4099 QualType DestType = Entity.getType();
4100
4101 // C++ doesn't allow scalar initialization with more than one argument.
4102 // But C99 complex numbers are scalars and it makes sense there.
4103 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4104 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4105 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4106 return;
4107 }
4108 if (DestType->isReferenceType()) {
4109 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4110 TreatUnavailableAsInvalid);
4111 return;
4112 }
4113
4114 if (DestType->isRecordType() &&
4115 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4116 Sequence.setIncompleteTypeFailure(DestType);
4117 return;
4118 }
4119
4120 // C++11 [dcl.init.list]p3, per DR1467:
4121 // - If T is a class type and the initializer list has a single element of
4122 // type cv U, where U is T or a class derived from T, the object is
4123 // initialized from that element (by copy-initialization for
4124 // copy-list-initialization, or by direct-initialization for
4125 // direct-list-initialization).
4126 // - Otherwise, if T is a character array and the initializer list has a
4127 // single element that is an appropriately-typed string literal
4128 // (8.5.2 [dcl.init.string]), initialization is performed as described
4129 // in that section.
4130 // - Otherwise, if T is an aggregate, [...] (continue below).
4131 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4132 if (DestType->isRecordType()) {
4133 QualType InitType = InitList->getInit(0)->getType();
4134 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4135 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4136 Expr *InitListAsExpr = InitList;
4137 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4138 DestType, Sequence,
4139 /*InitListSyntax*/false,
4140 /*IsInitListCopy*/true);
4141 return;
4142 }
4143 }
4144 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4145 Expr *SubInit[1] = {InitList->getInit(0)};
4146 if (!isa<VariableArrayType>(DestAT) &&
4147 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4148 InitializationKind SubKind =
4149 Kind.getKind() == InitializationKind::IK_DirectList
4150 ? InitializationKind::CreateDirect(Kind.getLocation(),
4151 InitList->getLBraceLoc(),
4152 InitList->getRBraceLoc())
4153 : Kind;
4154 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4155 /*TopLevelOfInitList*/ true,
4156 TreatUnavailableAsInvalid);
4157
4158 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4159 // the element is not an appropriately-typed string literal, in which
4160 // case we should proceed as in C++11 (below).
4161 if (Sequence) {
4162 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4163 return;
4164 }
4165 }
4166 }
4167 }
4168
4169 // C++11 [dcl.init.list]p3:
4170 // - If T is an aggregate, aggregate initialization is performed.
4171 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4172 (S.getLangOpts().CPlusPlus11 &&
4173 S.isStdInitializerList(DestType, nullptr))) {
4174 if (S.getLangOpts().CPlusPlus11) {
4175 // - Otherwise, if the initializer list has no elements and T is a
4176 // class type with a default constructor, the object is
4177 // value-initialized.
4178 if (InitList->getNumInits() == 0) {
4179 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4180 if (RD->hasDefaultConstructor()) {
4181 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4182 return;
4183 }
4184 }
4185
4186 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4187 // an initializer_list object constructed [...]
4188 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4189 TreatUnavailableAsInvalid))
4190 return;
4191
4192 // - Otherwise, if T is a class type, constructors are considered.
4193 Expr *InitListAsExpr = InitList;
4194 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4195 DestType, Sequence, /*InitListSyntax*/true);
4196 } else
4197 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4198 return;
4199 }
4200
4201 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4202 InitList->getNumInits() == 1) {
4203 Expr *E = InitList->getInit(0);
4204
4205 // - Otherwise, if T is an enumeration with a fixed underlying type,
4206 // the initializer-list has a single element v, and the initialization
4207 // is direct-list-initialization, the object is initialized with the
4208 // value T(v); if a narrowing conversion is required to convert v to
4209 // the underlying type of T, the program is ill-formed.
4210 auto *ET = DestType->getAs<EnumType>();
4211 if (S.getLangOpts().CPlusPlus17 &&
4212 Kind.getKind() == InitializationKind::IK_DirectList &&
4213 ET && ET->getDecl()->isFixed() &&
4214 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4215 (E->getType()->isIntegralOrEnumerationType() ||
4216 E->getType()->isFloatingType())) {
4217 // There are two ways that T(v) can work when T is an enumeration type.
4218 // If there is either an implicit conversion sequence from v to T or
4219 // a conversion function that can convert from v to T, then we use that.
4220 // Otherwise, if v is of integral, enumeration, or floating-point type,
4221 // it is converted to the enumeration type via its underlying type.
4222 // There is no overlap possible between these two cases (except when the
4223 // source value is already of the destination type), and the first
4224 // case is handled by the general case for single-element lists below.
4225 ImplicitConversionSequence ICS;
4226 ICS.setStandard();
4227 ICS.Standard.setAsIdentityConversion();
4228 if (!E->isRValue())
4229 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4230 // If E is of a floating-point type, then the conversion is ill-formed
4231 // due to narrowing, but go through the motions in order to produce the
4232 // right diagnostic.
4233 ICS.Standard.Second = E->getType()->isFloatingType()
4234 ? ICK_Floating_Integral
4235 : ICK_Integral_Conversion;
4236 ICS.Standard.setFromType(E->getType());
4237 ICS.Standard.setToType(0, E->getType());
4238 ICS.Standard.setToType(1, DestType);
4239 ICS.Standard.setToType(2, DestType);
4240 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4241 /*TopLevelOfInitList*/true);
4242 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4243 return;
4244 }
4245
4246 // - Otherwise, if the initializer list has a single element of type E
4247 // [...references are handled above...], the object or reference is
4248 // initialized from that element (by copy-initialization for
4249 // copy-list-initialization, or by direct-initialization for
4250 // direct-list-initialization); if a narrowing conversion is required
4251 // to convert the element to T, the program is ill-formed.
4252 //
4253 // Per core-24034, this is direct-initialization if we were performing
4254 // direct-list-initialization and copy-initialization otherwise.
4255 // We can't use InitListChecker for this, because it always performs
4256 // copy-initialization. This only matters if we might use an 'explicit'
4257 // conversion operator, so we only need to handle the cases where the source
4258 // is of record type.
4259 if (InitList->getInit(0)->getType()->isRecordType()) {
4260 InitializationKind SubKind =
4261 Kind.getKind() == InitializationKind::IK_DirectList
4262 ? InitializationKind::CreateDirect(Kind.getLocation(),
4263 InitList->getLBraceLoc(),
4264 InitList->getRBraceLoc())
4265 : Kind;
4266 Expr *SubInit[1] = { InitList->getInit(0) };
4267 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4268 /*TopLevelOfInitList*/true,
4269 TreatUnavailableAsInvalid);
4270 if (Sequence)
4271 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4272 return;
4273 }
4274 }
4275
4276 InitListChecker CheckInitList(S, Entity, InitList,
4277 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4278 if (CheckInitList.HadError()) {
4279 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4280 return;
4281 }
4282
4283 // Add the list initialization step with the built init list.
4284 Sequence.AddListInitializationStep(DestType);
4285}
4286
4287/// Try a reference initialization that involves calling a conversion
4288/// function.
4289static OverloadingResult TryRefInitWithConversionFunction(
4290 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4291 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4292 InitializationSequence &Sequence) {
4293 QualType DestType = Entity.getType();
4294 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4295 QualType T1 = cv1T1.getUnqualifiedType();
4296 QualType cv2T2 = Initializer->getType();
4297 QualType T2 = cv2T2.getUnqualifiedType();
4298
4299 bool DerivedToBase;
4300 bool ObjCConversion;
4301 bool ObjCLifetimeConversion;
4302 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4305, __PRETTY_FUNCTION__))
4303 DerivedToBase, ObjCConversion,((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4305, __PRETTY_FUNCTION__))
4304 ObjCLifetimeConversion) &&((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4305, __PRETTY_FUNCTION__))
4305 "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getBeginLoc
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4305, __PRETTY_FUNCTION__))
;
4306 (void)DerivedToBase;
4307 (void)ObjCConversion;
4308 (void)ObjCLifetimeConversion;
4309
4310 // Build the candidate set directly in the initialization sequence
4311 // structure, so that it will persist if we fail.
4312 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4313 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4314
4315 // Determine whether we are allowed to call explicit conversion operators.
4316 // Note that none of [over.match.copy], [over.match.conv], nor
4317 // [over.match.ref] permit an explicit constructor to be chosen when
4318 // initializing a reference, not even for direct-initialization.
4319 bool AllowExplicitCtors = false;
4320 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4321
4322 const RecordType *T1RecordType = nullptr;
4323 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4324 S.isCompleteType(Kind.getLocation(), T1)) {
4325 // The type we're converting to is a class type. Enumerate its constructors
4326 // to see if there is a suitable conversion.
4327 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4328
4329 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4330 auto Info = getConstructorInfo(D);
4331 if (!Info.Constructor)
4332 continue;
4333
4334 if (!Info.Constructor->isInvalidDecl() &&
4335 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4336 if (Info.ConstructorTmpl)
4337 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4338 /*ExplicitArgs*/ nullptr,
4339 Initializer, CandidateSet,
4340 /*SuppressUserConversions=*/true);
4341 else
4342 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4343 Initializer, CandidateSet,
4344 /*SuppressUserConversions=*/true);
4345 }
4346 }
4347 }
4348 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4349 return OR_No_Viable_Function;
4350
4351 const RecordType *T2RecordType = nullptr;
4352 if ((T2RecordType = T2->getAs<RecordType>()) &&
4353 S.isCompleteType(Kind.getLocation(), T2)) {
4354 // The type we're converting from is a class type, enumerate its conversion
4355 // functions.
4356 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4357
4358 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4359 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4360 NamedDecl *D = *I;
4361 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4362 if (isa<UsingShadowDecl>(D))
4363 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4364
4365 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4366 CXXConversionDecl *Conv;
4367 if (ConvTemplate)
4368 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4369 else
4370 Conv = cast<CXXConversionDecl>(D);
4371
4372 // If the conversion function doesn't return a reference type,
4373 // it can't be considered for this conversion unless we're allowed to
4374 // consider rvalues.
4375 // FIXME: Do we need to make sure that we only consider conversion
4376 // candidates with reference-compatible results? That might be needed to
4377 // break recursion.
4378 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4379 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4380 if (ConvTemplate)
4381 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4382 ActingDC, Initializer,
4383 DestType, CandidateSet,
4384 /*AllowObjCConversionOnExplicit=*/
4385 false);
4386 else
4387 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4388 Initializer, DestType, CandidateSet,
4389 /*AllowObjCConversionOnExplicit=*/false);
4390 }
4391 }
4392 }
4393 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4394 return OR_No_Viable_Function;
4395
4396 SourceLocation DeclLoc = Initializer->getBeginLoc();
4397
4398 // Perform overload resolution. If it fails, return the failed result.
4399 OverloadCandidateSet::iterator Best;
4400 if (OverloadingResult Result
4401 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4402 return Result;
4403
4404 FunctionDecl *Function = Best->Function;
4405 // This is the overload that will be used for this initialization step if we
4406 // use this initialization. Mark it as referenced.
4407 Function->setReferenced();
4408
4409 // Compute the returned type and value kind of the conversion.
4410 QualType cv3T3;
4411 if (isa<CXXConversionDecl>(Function))
4412 cv3T3 = Function->getReturnType();
4413 else
4414 cv3T3 = T1;
4415
4416 ExprValueKind VK = VK_RValue;
4417 if (cv3T3->isLValueReferenceType())
4418 VK = VK_LValue;
4419 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4420 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4421 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4422
4423 // Add the user-defined conversion step.
4424 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4425 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4426 HadMultipleCandidates);
4427
4428 // Determine whether we'll need to perform derived-to-base adjustments or
4429 // other conversions.
4430 bool NewDerivedToBase = false;
4431 bool NewObjCConversion = false;
4432 bool NewObjCLifetimeConversion = false;
4433 Sema::ReferenceCompareResult NewRefRelationship
4434 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4435 NewDerivedToBase, NewObjCConversion,
4436 NewObjCLifetimeConversion);
4437
4438 // Add the final conversion sequence, if necessary.
4439 if (NewRefRelationship == Sema::Ref_Incompatible) {
4440 assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4441, __PRETTY_FUNCTION__))
4441 "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4441, __PRETTY_FUNCTION__))
;
4442
4443 ImplicitConversionSequence ICS;
4444 ICS.setStandard();
4445 ICS.Standard = Best->FinalConversion;
4446 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4447
4448 // Every implicit conversion results in a prvalue, except for a glvalue
4449 // derived-to-base conversion, which we handle below.
4450 cv3T3 = ICS.Standard.getToType(2);
4451 VK = VK_RValue;
4452 }
4453
4454 // If the converted initializer is a prvalue, its type T4 is adjusted to
4455 // type "cv1 T4" and the temporary materialization conversion is applied.
4456 //
4457 // We adjust the cv-qualifications to match the reference regardless of
4458 // whether we have a prvalue so that the AST records the change. In this
4459 // case, T4 is "cv3 T3".
4460 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4461 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4462 Sequence.AddQualificationConversionStep(cv1T4, VK);
4463 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4464 VK = IsLValueRef ? VK_LValue : VK_XValue;
4465
4466 if (NewDerivedToBase)
4467 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4468 else if (NewObjCConversion)
4469 Sequence.AddObjCObjectConversionStep(cv1T1);
4470
4471 return OR_Success;
4472}
4473
4474static void CheckCXX98CompatAccessibleCopy(Sema &S,
4475 const InitializedEntity &Entity,
4476 Expr *CurInitExpr);
4477
4478/// Attempt reference initialization (C++0x [dcl.init.ref])
4479static void TryReferenceInitialization(Sema &S,
4480 const InitializedEntity &Entity,
4481 const InitializationKind &Kind,
4482 Expr *Initializer,
4483 InitializationSequence &Sequence) {
4484 QualType DestType = Entity.getType();
4485 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4486 Qualifiers T1Quals;
4487 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4488 QualType cv2T2 = Initializer->getType();
4489 Qualifiers T2Quals;
4490 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4491
4492 // If the initializer is the address of an overloaded function, try
4493 // to resolve the overloaded function. If all goes well, T2 is the
4494 // type of the resulting function.
4495 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4496 T1, Sequence))
4497 return;
4498
4499 // Delegate everything else to a subfunction.
4500 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4501 T1Quals, cv2T2, T2, T2Quals, Sequence);
4502}
4503
4504/// Determine whether an expression is a non-referenceable glvalue (one to
4505/// which a reference can never bind). Attempting to bind a reference to
4506/// such a glvalue will always create a temporary.
4507static bool isNonReferenceableGLValue(Expr *E) {
4508 return E->refersToBitField() || E->refersToVectorElement();
4509}
4510
4511/// Reference initialization without resolving overloaded functions.
4512static void TryReferenceInitializationCore(Sema &S,
4513 const InitializedEntity &Entity,
4514 const InitializationKind &Kind,
4515 Expr *Initializer,
4516 QualType cv1T1, QualType T1,
4517 Qualifiers T1Quals,
4518 QualType cv2T2, QualType T2,
4519 Qualifiers T2Quals,
4520 InitializationSequence &Sequence) {
4521 QualType DestType = Entity.getType();
4522 SourceLocation DeclLoc = Initializer->getBeginLoc();
4523 // Compute some basic properties of the types and the initializer.
4524 bool isLValueRef = DestType->isLValueReferenceType();
4525 bool isRValueRef = !isLValueRef;
4526 bool DerivedToBase = false;
4527 bool ObjCConversion = false;
4528 bool ObjCLifetimeConversion = false;
4529 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4530 Sema::ReferenceCompareResult RefRelationship
4531 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4532 ObjCConversion, ObjCLifetimeConversion);
4533
4534 // C++0x [dcl.init.ref]p5:
4535 // A reference to type "cv1 T1" is initialized by an expression of type
4536 // "cv2 T2" as follows:
4537 //
4538 // - If the reference is an lvalue reference and the initializer
4539 // expression
4540 // Note the analogous bullet points for rvalue refs to functions. Because
4541 // there are no function rvalues in C++, rvalue refs to functions are treated
4542 // like lvalue refs.
4543 OverloadingResult ConvOvlResult = OR_Success;
4544 bool T1Function = T1->isFunctionType();
4545 if (isLValueRef || T1Function) {
4546 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4547 (RefRelationship == Sema::Ref_Compatible ||
4548 (Kind.isCStyleOrFunctionalCast() &&
4549 RefRelationship == Sema::Ref_Related))) {
4550 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4551 // reference-compatible with "cv2 T2," or
4552 if (T1Quals != T2Quals)
4553 // Convert to cv1 T2. This should only add qualifiers unless this is a
4554 // c-style cast. The removal of qualifiers in that case notionally
4555 // happens after the reference binding, but that doesn't matter.
4556 Sequence.AddQualificationConversionStep(
4557 S.Context.getQualifiedType(T2, T1Quals),
4558 Initializer->getValueKind());
4559 if (DerivedToBase)
4560 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4561 else if (ObjCConversion)
4562 Sequence.AddObjCObjectConversionStep(cv1T1);
4563
4564 // We only create a temporary here when binding a reference to a
4565 // bit-field or vector element. Those cases are't supposed to be
4566 // handled by this bullet, but the outcome is the same either way.
4567 Sequence.AddReferenceBindingStep(cv1T1, false);
4568 return;
4569 }
4570
4571 // - has a class type (i.e., T2 is a class type), where T1 is not
4572 // reference-related to T2, and can be implicitly converted to an
4573 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4574 // with "cv3 T3" (this conversion is selected by enumerating the
4575 // applicable conversion functions (13.3.1.6) and choosing the best
4576 // one through overload resolution (13.3)),
4577 // If we have an rvalue ref to function type here, the rhs must be
4578 // an rvalue. DR1287 removed the "implicitly" here.
4579 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4580 (isLValueRef || InitCategory.isRValue())) {
4581 ConvOvlResult = TryRefInitWithConversionFunction(
4582 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4583 /*IsLValueRef*/ isLValueRef, Sequence);
4584 if (ConvOvlResult == OR_Success)
4585 return;
4586 if (ConvOvlResult != OR_No_Viable_Function)
4587 Sequence.SetOverloadFailure(
4588 InitializationSequence::FK_ReferenceInitOverloadFailed,
4589 ConvOvlResult);
4590 }
4591 }
4592
4593 // - Otherwise, the reference shall be an lvalue reference to a
4594 // non-volatile const type (i.e., cv1 shall be const), or the reference
4595 // shall be an rvalue reference.
4596 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4597 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4598 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4599 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4600 Sequence.SetOverloadFailure(
4601 InitializationSequence::FK_ReferenceInitOverloadFailed,
4602 ConvOvlResult);
4603 else if (!InitCategory.isLValue())
4604 Sequence.SetFailed(
4605 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4606 else {
4607 InitializationSequence::FailureKind FK;
4608 switch (RefRelationship) {
4609 case Sema::Ref_Compatible:
4610 if (Initializer->refersToBitField())
4611 FK = InitializationSequence::
4612 FK_NonConstLValueReferenceBindingToBitfield;
4613 else if (Initializer->refersToVectorElement())
4614 FK = InitializationSequence::
4615 FK_NonConstLValueReferenceBindingToVectorElement;
4616 else
4617 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4617)
;
4618 break;
4619 case Sema::Ref_Related:
4620 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4621 break;
4622 case Sema::Ref_Incompatible:
4623 FK = InitializationSequence::
4624 FK_NonConstLValueReferenceBindingToUnrelated;
4625 break;
4626 }
4627 Sequence.SetFailed(FK);
4628 }
4629 return;
4630 }
4631
4632 // - If the initializer expression
4633 // - is an
4634 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4635 // [1z] rvalue (but not a bit-field) or
4636 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4637 //
4638 // Note: functions are handled above and below rather than here...
4639 if (!T1Function &&
4640 (RefRelationship == Sema::Ref_Compatible ||
4641 (Kind.isCStyleOrFunctionalCast() &&
4642 RefRelationship == Sema::Ref_Related)) &&
4643 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4644 (InitCategory.isPRValue() &&
4645 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4646 T2->isArrayType())))) {
4647 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4648 if (InitCategory.isPRValue() && T2->isRecordType()) {
4649 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4650 // compiler the freedom to perform a copy here or bind to the
4651 // object, while C++0x requires that we bind directly to the
4652 // object. Hence, we always bind to the object without making an
4653 // extra copy. However, in C++03 requires that we check for the
4654 // presence of a suitable copy constructor:
4655 //
4656 // The constructor that would be used to make the copy shall
4657 // be callable whether or not the copy is actually done.
4658 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4659 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4660 else if (S.getLangOpts().CPlusPlus11)
4661 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4662 }
4663
4664 // C++1z [dcl.init.ref]/5.2.1.2:
4665 // If the converted initializer is a prvalue, its type T4 is adjusted
4666 // to type "cv1 T4" and the temporary materialization conversion is
4667 // applied.
4668 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4669 if (T1Quals != T2Quals)
4670 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4671 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4672 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4673
4674 // In any case, the reference is bound to the resulting glvalue (or to
4675 // an appropriate base class subobject).
4676 if (DerivedToBase)
4677 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4678 else if (ObjCConversion)
4679 Sequence.AddObjCObjectConversionStep(cv1T1);
4680 return;
4681 }
4682
4683 // - has a class type (i.e., T2 is a class type), where T1 is not
4684 // reference-related to T2, and can be implicitly converted to an
4685 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4686 // where "cv1 T1" is reference-compatible with "cv3 T3",
4687 //
4688 // DR1287 removes the "implicitly" here.
4689 if (T2->isRecordType()) {
4690 if (RefRelationship == Sema::Ref_Incompatible) {
4691 ConvOvlResult = TryRefInitWithConversionFunction(
4692 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4693 /*IsLValueRef*/ isLValueRef, Sequence);
4694 if (ConvOvlResult)
4695 Sequence.SetOverloadFailure(
4696 InitializationSequence::FK_ReferenceInitOverloadFailed,
4697 ConvOvlResult);
4698
4699 return;
4700 }
4701
4702 if (RefRelationship == Sema::Ref_Compatible &&
4703 isRValueRef && InitCategory.isLValue()) {
4704 Sequence.SetFailed(
4705 InitializationSequence::FK_RValueReferenceBindingToLValue);
4706 return;
4707 }
4708
4709 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4710 return;
4711 }
4712
4713 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4714 // from the initializer expression using the rules for a non-reference
4715 // copy-initialization (8.5). The reference is then bound to the
4716 // temporary. [...]
4717
4718 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4719
4720 // FIXME: Why do we use an implicit conversion here rather than trying
4721 // copy-initialization?
4722 ImplicitConversionSequence ICS
4723 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4724 /*SuppressUserConversions=*/false,
4725 /*AllowExplicit=*/false,
4726 /*FIXME:InOverloadResolution=*/false,
4727 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4728 /*AllowObjCWritebackConversion=*/false);
4729
4730 if (ICS.isBad()) {
4731 // FIXME: Use the conversion function set stored in ICS to turn
4732 // this into an overloading ambiguity diagnostic. However, we need
4733 // to keep that set as an OverloadCandidateSet rather than as some
4734 // other kind of set.
4735 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4736 Sequence.SetOverloadFailure(
4737 InitializationSequence::FK_ReferenceInitOverloadFailed,
4738 ConvOvlResult);
4739 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4740 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4741 else
4742 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4743 return;
4744 } else {
4745 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4746 }
4747
4748 // [...] If T1 is reference-related to T2, cv1 must be the
4749 // same cv-qualification as, or greater cv-qualification
4750 // than, cv2; otherwise, the program is ill-formed.
4751 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4752 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4753 if (RefRelationship == Sema::Ref_Related &&
4754 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4755 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4756 return;
4757 }
4758
4759 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4760 // reference, the initializer expression shall not be an lvalue.
4761 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4762 InitCategory.isLValue()) {
4763 Sequence.SetFailed(
4764 InitializationSequence::FK_RValueReferenceBindingToLValue);
4765 return;
4766 }
4767
4768 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4769}
4770
4771/// Attempt character array initialization from a string literal
4772/// (C++ [dcl.init.string], C99 6.7.8).
4773static void TryStringLiteralInitialization(Sema &S,
4774 const InitializedEntity &Entity,
4775 const InitializationKind &Kind,
4776 Expr *Initializer,
4777 InitializationSequence &Sequence) {
4778 Sequence.AddStringInitStep(Entity.getType());
4779}
4780
4781/// Attempt value initialization (C++ [dcl.init]p7).
4782static void TryValueInitialization(Sema &S,
4783 const InitializedEntity &Entity,
4784 const InitializationKind &Kind,
4785 InitializationSequence &Sequence,
4786 InitListExpr *InitList) {
4787 assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4788, __PRETTY_FUNCTION__))
4788 "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4788, __PRETTY_FUNCTION__))
;
4789
4790 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4791 //
4792 // To value-initialize an object of type T means:
4793 QualType T = Entity.getType();
4794
4795 // -- if T is an array type, then each element is value-initialized;
4796 T = S.Context.getBaseElementType(T);
4797
4798 if (const RecordType *RT = T->getAs<RecordType>()) {
4799 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4800 bool NeedZeroInitialization = true;
4801 // C++98:
4802 // -- if T is a class type (clause 9) with a user-declared constructor
4803 // (12.1), then the default constructor for T is called (and the
4804 // initialization is ill-formed if T has no accessible default
4805 // constructor);
4806 // C++11:
4807 // -- if T is a class type (clause 9) with either no default constructor
4808 // (12.1 [class.ctor]) or a default constructor that is user-provided
4809 // or deleted, then the object is default-initialized;
4810 //
4811 // Note that the C++11 rule is the same as the C++98 rule if there are no
4812 // defaulted or deleted constructors, so we just use it unconditionally.
4813 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4814 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4815 NeedZeroInitialization = false;
4816
4817 // -- if T is a (possibly cv-qualified) non-union class type without a
4818 // user-provided or deleted default constructor, then the object is
4819 // zero-initialized and, if T has a non-trivial default constructor,
4820 // default-initialized;
4821 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4822 // constructor' part was removed by DR1507.
4823 if (NeedZeroInitialization)
4824 Sequence.AddZeroInitializationStep(Entity.getType());
4825
4826 // C++03:
4827 // -- if T is a non-union class type without a user-declared constructor,
4828 // then every non-static data member and base class component of T is
4829 // value-initialized;
4830 // [...] A program that calls for [...] value-initialization of an
4831 // entity of reference type is ill-formed.
4832 //
4833 // C++11 doesn't need this handling, because value-initialization does not
4834 // occur recursively there, and the implicit default constructor is
4835 // defined as deleted in the problematic cases.
4836 if (!S.getLangOpts().CPlusPlus11 &&
4837 ClassDecl->hasUninitializedReferenceMember()) {
4838 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4839 return;
4840 }
4841
4842 // If this is list-value-initialization, pass the empty init list on when
4843 // building the constructor call. This affects the semantics of a few
4844 // things (such as whether an explicit default constructor can be called).
4845 Expr *InitListAsExpr = InitList;
4846 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4847 bool InitListSyntax = InitList;
4848
4849 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4850 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4851 return TryConstructorInitialization(
4852 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4853 }
4854 }
4855
4856 Sequence.AddZeroInitializationStep(Entity.getType());
4857}
4858
4859/// Attempt default initialization (C++ [dcl.init]p6).
4860static void TryDefaultInitialization(Sema &S,
4861 const InitializedEntity &Entity,
4862 const InitializationKind &Kind,
4863 InitializationSequence &Sequence) {
4864 assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4864, __PRETTY_FUNCTION__))
;
4865
4866 // C++ [dcl.init]p6:
4867 // To default-initialize an object of type T means:
4868 // - if T is an array type, each element is default-initialized;
4869 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4870
4871 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4872 // constructor for T is called (and the initialization is ill-formed if
4873 // T has no accessible default constructor);
4874 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4875 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4876 Entity.getType(), Sequence);
4877 return;
4878 }
4879
4880 // - otherwise, no initialization is performed.
4881
4882 // If a program calls for the default initialization of an object of
4883 // a const-qualified type T, T shall be a class type with a user-provided
4884 // default constructor.
4885 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4886 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4887 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4888 return;
4889 }
4890
4891 // If the destination type has a lifetime property, zero-initialize it.
4892 if (DestType.getQualifiers().hasObjCLifetime()) {
4893 Sequence.AddZeroInitializationStep(Entity.getType());
4894 return;
4895 }
4896}
4897
4898/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4899/// which enumerates all conversion functions and performs overload resolution
4900/// to select the best.
4901static void TryUserDefinedConversion(Sema &S,
4902 QualType DestType,
4903 const InitializationKind &Kind,
4904 Expr *Initializer,
4905 InitializationSequence &Sequence,
4906 bool TopLevelOfInitList) {
4907 assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4907, __PRETTY_FUNCTION__))
;
4908 QualType SourceType = Initializer->getType();
4909 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4910, __PRETTY_FUNCTION__))
4910 "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 4910, __PRETTY_FUNCTION__))
;
4911
4912 // Build the candidate set directly in the initialization sequence
4913 // structure, so that it will persist if we fail.
4914 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4915 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4916
4917 // Determine whether we are allowed to call explicit constructors or
4918 // explicit conversion operators.
4919 bool AllowExplicit = Kind.AllowExplicit();
4920
4921 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4922 // The type we're converting to is a class type. Enumerate its constructors
4923 // to see if there is a suitable conversion.
4924 CXXRecordDecl *DestRecordDecl
4925 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4926
4927 // Try to complete the type we're converting to.
4928 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4929 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4930 auto Info = getConstructorInfo(D);
4931 if (!Info.Constructor)
4932 continue;
4933
4934 if (!Info.Constructor->isInvalidDecl() &&
4935 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4936 if (Info.ConstructorTmpl)
4937 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4938 /*ExplicitArgs*/ nullptr,
4939 Initializer, CandidateSet,
4940 /*SuppressUserConversions=*/true);
4941 else
4942 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4943 Initializer, CandidateSet,
4944 /*SuppressUserConversions=*/true);
4945 }
4946 }
4947 }
4948 }
4949
4950 SourceLocation DeclLoc = Initializer->getBeginLoc();
4951
4952 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4953 // The type we're converting from is a class type, enumerate its conversion
4954 // functions.
4955
4956 // We can only enumerate the conversion functions for a complete type; if
4957 // the type isn't complete, simply skip this step.
4958 if (S.isCompleteType(DeclLoc, SourceType)) {
4959 CXXRecordDecl *SourceRecordDecl
4960 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4961
4962 const auto &Conversions =
4963 SourceRecordDecl->getVisibleConversionFunctions();
4964 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4965 NamedDecl *D = *I;
4966 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4967 if (isa<UsingShadowDecl>(D))
4968 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4969
4970 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4971 CXXConversionDecl *Conv;
4972 if (ConvTemplate)
4973 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4974 else
4975 Conv = cast<CXXConversionDecl>(D);
4976
4977 if (AllowExplicit || !Conv->isExplicit()) {
4978 if (ConvTemplate)
4979 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4980 ActingDC, Initializer, DestType,
4981 CandidateSet, AllowExplicit);
4982 else
4983 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4984 Initializer, DestType, CandidateSet,
4985 AllowExplicit);
4986 }
4987 }
4988 }
4989 }
4990
4991 // Perform overload resolution. If it fails, return the failed result.
4992 OverloadCandidateSet::iterator Best;
4993 if (OverloadingResult Result
4994 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4995 Sequence.SetOverloadFailure(
4996 InitializationSequence::FK_UserConversionOverloadFailed,
4997 Result);
4998 return;
4999 }
5000
5001 FunctionDecl *Function = Best->Function;
5002 Function->setReferenced();
5003 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5004
5005 if (isa<CXXConstructorDecl>(Function)) {
5006 // Add the user-defined conversion step. Any cv-qualification conversion is
5007 // subsumed by the initialization. Per DR5, the created temporary is of the
5008 // cv-unqualified type of the destination.
5009 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5010 DestType.getUnqualifiedType(),
5011 HadMultipleCandidates);
5012
5013 // C++14 and before:
5014 // - if the function is a constructor, the call initializes a temporary
5015 // of the cv-unqualified version of the destination type. The [...]
5016 // temporary [...] is then used to direct-initialize, according to the
5017 // rules above, the object that is the destination of the
5018 // copy-initialization.
5019 // Note that this just performs a simple object copy from the temporary.
5020 //
5021 // C++17:
5022 // - if the function is a constructor, the call is a prvalue of the
5023 // cv-unqualified version of the destination type whose return object
5024 // is initialized by the constructor. The call is used to
5025 // direct-initialize, according to the rules above, the object that
5026 // is the destination of the copy-initialization.
5027 // Therefore we need to do nothing further.
5028 //
5029 // FIXME: Mark this copy as extraneous.
5030 if (!S.getLangOpts().CPlusPlus17)
5031 Sequence.AddFinalCopy(DestType);
5032 else if (DestType.hasQualifiers())
5033 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5034 return;
5035 }
5036
5037 // Add the user-defined conversion step that calls the conversion function.
5038 QualType ConvType = Function->getCallResultType();
5039 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5040 HadMultipleCandidates);
5041
5042 if (ConvType->getAs<RecordType>()) {
5043 // The call is used to direct-initialize [...] the object that is the
5044 // destination of the copy-initialization.
5045 //
5046 // In C++17, this does not call a constructor if we enter /17.6.1:
5047 // - If the initializer expression is a prvalue and the cv-unqualified
5048 // version of the source type is the same as the class of the
5049 // destination [... do not make an extra copy]
5050 //
5051 // FIXME: Mark this copy as extraneous.
5052 if (!S.getLangOpts().CPlusPlus17 ||
5053 Function->getReturnType()->isReferenceType() ||
5054 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5055 Sequence.AddFinalCopy(DestType);
5056 else if (!S.Context.hasSameType(ConvType, DestType))
5057 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5058 return;
5059 }
5060
5061 // If the conversion following the call to the conversion function
5062 // is interesting, add it as a separate step.
5063 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5064 Best->FinalConversion.Third) {
5065 ImplicitConversionSequence ICS;
5066 ICS.setStandard();
5067 ICS.Standard = Best->FinalConversion;
5068 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5069 }
5070}
5071
5072/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5073/// a function with a pointer return type contains a 'return false;' statement.
5074/// In C++11, 'false' is not a null pointer, so this breaks the build of any
5075/// code using that header.
5076///
5077/// Work around this by treating 'return false;' as zero-initializing the result
5078/// if it's used in a pointer-returning function in a system header.
5079static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5080 const InitializedEntity &Entity,
5081 const Expr *Init) {
5082 return S.getLangOpts().CPlusPlus11 &&
5083 Entity.getKind() == InitializedEntity::EK_Result &&
5084 Entity.getType()->isPointerType() &&
5085 isa<CXXBoolLiteralExpr>(Init) &&
5086 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5087 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5088}
5089
5090/// The non-zero enum values here are indexes into diagnostic alternatives.
5091enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5092
5093/// Determines whether this expression is an acceptable ICR source.
5094static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5095 bool isAddressOf, bool &isWeakAccess) {
5096 // Skip parens.
5097 e = e->IgnoreParens();
5098
5099 // Skip address-of nodes.
5100 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5101 if (op->getOpcode() == UO_AddrOf)
5102 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5103 isWeakAccess);
5104
5105 // Skip certain casts.
5106 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5107 switch (ce->getCastKind()) {
5108 case CK_Dependent:
5109 case CK_BitCast:
5110 case CK_LValueBitCast:
5111 case CK_NoOp:
5112 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5113
5114 case CK_ArrayToPointerDecay:
5115 return IIK_nonscalar;
5116
5117 case CK_NullToPointer:
5118 return IIK_okay;
5119
5120 default:
5121 break;
5122 }
5123
5124 // If we have a declaration reference, it had better be a local variable.
5125 } else if (isa<DeclRefExpr>(e)) {
5126 // set isWeakAccess to true, to mean that there will be an implicit
5127 // load which requires a cleanup.
5128 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5129 isWeakAccess = true;
5130
5131 if (!isAddressOf) return IIK_nonlocal;
5132
5133 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5134 if (!var) return IIK_nonlocal;
5135
5136 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5137
5138 // If we have a conditional operator, check both sides.
5139 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5140 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5141 isWeakAccess))
5142 return iik;
5143
5144 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5145
5146 // These are never scalar.
5147 } else if (isa<ArraySubscriptExpr>(e)) {
5148 return IIK_nonscalar;
5149
5150 // Otherwise, it needs to be a null pointer constant.
5151 } else {
5152 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5153 ? IIK_okay : IIK_nonlocal);
5154 }
5155
5156 return IIK_nonlocal;
5157}
5158
5159/// Check whether the given expression is a valid operand for an
5160/// indirect copy/restore.
5161static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5162 assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail
("src->isRValue()", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 5162, __PRETTY_FUNCTION__))
;
5163 bool isWeakAccess = false;
5164 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5165 // If isWeakAccess to true, there will be an implicit
5166 // load which requires a cleanup.
5167 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5168 S.Cleanup.setExprNeedsCleanups(true);
5169
5170 if (iik == IIK_okay) return;
5171
5172 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5173 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5174 << src->getSourceRange();
5175}
5176
5177/// Determine whether we have compatible array types for the
5178/// purposes of GNU by-copy array initialization.
5179static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5180 const ArrayType *Source) {
5181 // If the source and destination array types are equivalent, we're
5182 // done.
5183 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5184 return true;
5185
5186 // Make sure that the element types are the same.
5187 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5188 return false;
5189
5190 // The only mismatch we allow is when the destination is an
5191 // incomplete array type and the source is a constant array type.
5192 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5193}
5194
5195static bool tryObjCWritebackConversion(Sema &S,
5196 InitializationSequence &Sequence,
5197 const InitializedEntity &Entity,
5198 Expr *Initializer) {
5199 bool ArrayDecay = false;
5200 QualType ArgType = Initializer->getType();
5201 QualType ArgPointee;
5202 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5203 ArrayDecay = true;
5204 ArgPointee = ArgArrayType->getElementType();
5205 ArgType = S.Context.getPointerType(ArgPointee);
5206 }
5207
5208 // Handle write-back conversion.
5209 QualType ConvertedArgType;
5210 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5211 ConvertedArgType))
5212 return false;
5213
5214 // We should copy unless we're passing to an argument explicitly
5215 // marked 'out'.
5216 bool ShouldCopy = true;
5217 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5218 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5219
5220 // Do we need an lvalue conversion?
5221 if (ArrayDecay || Initializer->isGLValue()) {
5222 ImplicitConversionSequence ICS;
5223 ICS.setStandard();
5224 ICS.Standard.setAsIdentityConversion();
5225
5226 QualType ResultType;
5227 if (ArrayDecay) {
5228 ICS.Standard.First = ICK_Array_To_Pointer;
5229 ResultType = S.Context.getPointerType(ArgPointee);
5230 } else {
5231 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5232 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5233 }
5234
5235 Sequence.AddConversionSequenceStep(ICS, ResultType);
5236 }
5237
5238 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5239 return true;
5240}
5241
5242static bool TryOCLSamplerInitialization(Sema &S,
5243 InitializationSequence &Sequence,
5244 QualType DestType,
5245 Expr *Initializer) {
5246 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5247 (!Initializer->isIntegerConstantExpr(S.Context) &&
5248 !Initializer->getType()->isSamplerT()))
5249 return false;
5250
5251 Sequence.AddOCLSamplerInitStep(DestType);
5252 return true;
5253}
5254
5255static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5256 InitializationSequence &Sequence,
5257 QualType DestType,
5258 Expr *Initializer) {
5259 if (!S.getLangOpts().OpenCL)
5260 return false;
5261
5262 //
5263 // OpenCL 1.2 spec, s6.12.10
5264 //
5265 // The event argument can also be used to associate the
5266 // async_work_group_copy with a previous async copy allowing
5267 // an event to be shared by multiple async copies; otherwise
5268 // event should be zero.
5269 //
5270 if (DestType->isEventT() || DestType->isQueueT()) {
5271 if (!Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5272 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5273 return false;
5274
5275 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5276 return true;
5277 }
5278
5279 return false;
5280}
5281
5282InitializationSequence::InitializationSequence(Sema &S,
5283 const InitializedEntity &Entity,
5284 const InitializationKind &Kind,
5285 MultiExprArg Args,
5286 bool TopLevelOfInitList,
5287 bool TreatUnavailableAsInvalid)
5288 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5289 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5290 TreatUnavailableAsInvalid);
5291}
5292
5293/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5294/// address of that function, this returns true. Otherwise, it returns false.
5295static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5296 auto *DRE = dyn_cast<DeclRefExpr>(E);
5297 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5298 return false;
5299
5300 return !S.checkAddressOfFunctionIsAvailable(
5301 cast<FunctionDecl>(DRE->getDecl()));
5302}
5303
5304/// Determine whether we can perform an elementwise array copy for this kind
5305/// of entity.
5306static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5307 switch (Entity.getKind()) {
5308 case InitializedEntity::EK_LambdaCapture:
5309 // C++ [expr.prim.lambda]p24:
5310 // For array members, the array elements are direct-initialized in
5311 // increasing subscript order.
5312 return true;
5313
5314 case InitializedEntity::EK_Variable:
5315 // C++ [dcl.decomp]p1:
5316 // [...] each element is copy-initialized or direct-initialized from the
5317 // corresponding element of the assignment-expression [...]
5318 return isa<DecompositionDecl>(Entity.getDecl());
5319
5320 case InitializedEntity::EK_Member:
5321 // C++ [class.copy.ctor]p14:
5322 // - if the member is an array, each element is direct-initialized with
5323 // the corresponding subobject of x
5324 return Entity.isImplicitMemberInitializer();
5325
5326 case InitializedEntity::EK_ArrayElement:
5327 // All the above cases are intended to apply recursively, even though none
5328 // of them actually say that.
5329 if (auto *E = Entity.getParent())
5330 return canPerformArrayCopy(*E);
5331 break;
5332
5333 default:
5334 break;
5335 }
5336
5337 return false;
5338}
5339
5340void InitializationSequence::InitializeFrom(Sema &S,
5341 const InitializedEntity &Entity,
5342 const InitializationKind &Kind,
5343 MultiExprArg Args,
5344 bool TopLevelOfInitList,
5345 bool TreatUnavailableAsInvalid) {
5346 ASTContext &Context = S.Context;
5347
5348 // Eliminate non-overload placeholder types in the arguments. We
5349 // need to do this before checking whether types are dependent
5350 // because lowering a pseudo-object expression might well give us
5351 // something of dependent type.
5352 for (unsigned I = 0, E = Args.size(); I != E; ++I)
5353 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5354 // FIXME: should we be doing this here?
5355 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5356 if (result.isInvalid()) {
5357 SetFailed(FK_PlaceholderType);
5358 return;
5359 }
5360 Args[I] = result.get();
5361 }
5362
5363 // C++0x [dcl.init]p16:
5364 // The semantics of initializers are as follows. The destination type is
5365 // the type of the object or reference being initialized and the source
5366 // type is the type of the initializer expression. The source type is not
5367 // defined when the initializer is a braced-init-list or when it is a
5368 // parenthesized list of expressions.
5369 QualType DestType = Entity.getType();
5370
5371 if (DestType->isDependentType() ||
5372 Expr::hasAnyTypeDependentArguments(Args)) {
5373 SequenceKind = DependentSequence;
5374 return;
5375 }
5376
5377 // Almost everything is a normal sequence.
5378 setSequenceKind(NormalSequence);
5379
5380 QualType SourceType;
5381 Expr *Initializer = nullptr;
5382 if (Args.size() == 1) {
5383 Initializer = Args[0];
5384 if (S.getLangOpts().ObjC1) {
5385 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5386 DestType, Initializer->getType(),
5387 Initializer) ||
5388 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5389 Args[0] = Initializer;
5390 }
5391 if (!isa<InitListExpr>(Initializer))
5392 SourceType = Initializer->getType();
5393 }
5394
5395 // - If the initializer is a (non-parenthesized) braced-init-list, the
5396 // object is list-initialized (8.5.4).
5397 if (Kind.getKind() != InitializationKind::IK_Direct) {
5398 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5399 TryListInitialization(S, Entity, Kind, InitList, *this,
5400 TreatUnavailableAsInvalid);
5401 return;
5402 }
5403 }
5404
5405 // - If the destination type is a reference type, see 8.5.3.
5406 if (DestType->isReferenceType()) {
5407 // C++0x [dcl.init.ref]p1:
5408 // A variable declared to be a T& or T&&, that is, "reference to type T"
5409 // (8.3.2), shall be initialized by an object, or function, of type T or
5410 // by an object that can be converted into a T.
5411 // (Therefore, multiple arguments are not permitted.)
5412 if (Args.size() != 1)
5413 SetFailed(FK_TooManyInitsForReference);
5414 // C++17 [dcl.init.ref]p5:
5415 // A reference [...] is initialized by an expression [...] as follows:
5416 // If the initializer is not an expression, presumably we should reject,
5417 // but the standard fails to actually say so.
5418 else if (isa<InitListExpr>(Args[0]))
5419 SetFailed(FK_ParenthesizedListInitForReference);
5420 else
5421 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5422 return;
5423 }
5424
5425 // - If the initializer is (), the object is value-initialized.
5426 if (Kind.getKind() == InitializationKind::IK_Value ||
5427 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5428 TryValueInitialization(S, Entity, Kind, *this);
5429 return;
5430 }
5431
5432 // Handle default initialization.
5433 if (Kind.getKind() == InitializationKind::IK_Default) {
5434 TryDefaultInitialization(S, Entity, Kind, *this);
5435 return;
5436 }
5437
5438 // - If the destination type is an array of characters, an array of
5439 // char16_t, an array of char32_t, or an array of wchar_t, and the
5440 // initializer is a string literal, see 8.5.2.
5441 // - Otherwise, if the destination type is an array, the program is
5442 // ill-formed.
5443 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5444 if (Initializer && isa<VariableArrayType>(DestAT)) {
5445 SetFailed(FK_VariableLengthArrayHasInitializer);
5446 return;
5447 }
5448
5449 if (Initializer) {
5450 switch (IsStringInit(Initializer, DestAT, Context)) {
5451 case SIF_None:
5452 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5453 return;
5454 case SIF_NarrowStringIntoWideChar:
5455 SetFailed(FK_NarrowStringIntoWideCharArray);
5456 return;
5457 case SIF_WideStringIntoChar:
5458 SetFailed(FK_WideStringIntoCharArray);
5459 return;
5460 case SIF_IncompatWideStringIntoWideChar:
5461 SetFailed(FK_IncompatWideStringIntoWideChar);
5462 return;
5463 case SIF_PlainStringIntoUTF8Char:
5464 SetFailed(FK_PlainStringIntoUTF8Char);
5465 return;
5466 case SIF_UTF8StringIntoPlainChar:
5467 SetFailed(FK_UTF8StringIntoPlainChar);
5468 return;
5469 case SIF_Other:
5470 break;
5471 }
5472 }
5473
5474 // Some kinds of initialization permit an array to be initialized from
5475 // another array of the same type, and perform elementwise initialization.
5476 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5477 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5478 Entity.getType()) &&
5479 canPerformArrayCopy(Entity)) {
5480 // If source is a prvalue, use it directly.
5481 if (Initializer->getValueKind() == VK_RValue) {
5482 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5483 return;
5484 }
5485
5486 // Emit element-at-a-time copy loop.
5487 InitializedEntity Element =
5488 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5489 QualType InitEltT =
5490 Context.getAsArrayType(Initializer->getType())->getElementType();
5491 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5492 Initializer->getValueKind(),
5493 Initializer->getObjectKind());
5494 Expr *OVEAsExpr = &OVE;
5495 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5496 TreatUnavailableAsInvalid);
5497 if (!Failed())
5498 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5499 return;
5500 }
5501
5502 // Note: as an GNU C extension, we allow initialization of an
5503 // array from a compound literal that creates an array of the same
5504 // type, so long as the initializer has no side effects.
5505 if (!S.getLangOpts().CPlusPlus && Initializer &&
5506 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5507 Initializer->getType()->isArrayType()) {
5508 const ArrayType *SourceAT
5509 = Context.getAsArrayType(Initializer->getType());
5510 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5511 SetFailed(FK_ArrayTypeMismatch);
5512 else if (Initializer->HasSideEffects(S.Context))
5513 SetFailed(FK_NonConstantArrayInit);
5514 else {
5515 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5516 }
5517 }
5518 // Note: as a GNU C++ extension, we allow list-initialization of a
5519 // class member of array type from a parenthesized initializer list.
5520 else if (S.getLangOpts().CPlusPlus &&
5521 Entity.getKind() == InitializedEntity::EK_Member &&
5522 Initializer && isa<InitListExpr>(Initializer)) {
5523 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5524 *this, TreatUnavailableAsInvalid);
5525 AddParenthesizedArrayInitStep(DestType);
5526 } else if (DestAT->getElementType()->isCharType())
5527 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5528 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5529 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5530 else
5531 SetFailed(FK_ArrayNeedsInitList);
5532
5533 return;
5534 }
5535
5536 // Determine whether we should consider writeback conversions for
5537 // Objective-C ARC.
5538 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5539 Entity.isParameterKind();
5540
5541 // We're at the end of the line for C: it's either a write-back conversion
5542 // or it's a C assignment. There's no need to check anything else.
5543 if (!S.getLangOpts().CPlusPlus) {
5544 // If allowed, check whether this is an Objective-C writeback conversion.
5545 if (allowObjCWritebackConversion &&
5546 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5547 return;
5548 }
5549
5550 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5551 return;
5552
5553 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5554 return;
5555
5556 // Handle initialization in C
5557 AddCAssignmentStep(DestType);
5558 MaybeProduceObjCObject(S, *this, Entity);
5559 return;
5560 }
5561
5562 assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 5562, __PRETTY_FUNCTION__))
;
5563
5564 // - If the destination type is a (possibly cv-qualified) class type:
5565 if (DestType->isRecordType()) {
5566 // - If the initialization is direct-initialization, or if it is
5567 // copy-initialization where the cv-unqualified version of the
5568 // source type is the same class as, or a derived class of, the
5569 // class of the destination, constructors are considered. [...]
5570 if (Kind.getKind() == InitializationKind::IK_Direct ||
5571 (Kind.getKind() == InitializationKind::IK_Copy &&
5572 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5573 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5574 TryConstructorInitialization(S, Entity, Kind, Args,
5575 DestType, DestType, *this);
5576 // - Otherwise (i.e., for the remaining copy-initialization cases),
5577 // user-defined conversion sequences that can convert from the source
5578 // type to the destination type or (when a conversion function is
5579 // used) to a derived class thereof are enumerated as described in
5580 // 13.3.1.4, and the best one is chosen through overload resolution
5581 // (13.3).
5582 else
5583 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5584 TopLevelOfInitList);
5585 return;
5586 }
5587
5588 assert(Args.size() >= 1 && "Zero-argument case handled above")((Args.size() >= 1 && "Zero-argument case handled above"
) ? static_cast<void> (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 5588, __PRETTY_FUNCTION__))
;
5589
5590 // The remaining cases all need a source type.
5591 if (Args.size() > 1) {
5592 SetFailed(FK_TooManyInitsForScalar);
5593 return;
5594 } else if (isa<InitListExpr>(Args[0])) {
5595 SetFailed(FK_ParenthesizedListInitForScalar);
5596 return;
5597 }
5598
5599 // - Otherwise, if the source type is a (possibly cv-qualified) class
5600 // type, conversion functions are considered.
5601 if (!SourceType.isNull() && SourceType->isRecordType()) {
5602 // For a conversion to _Atomic(T) from either T or a class type derived
5603 // from T, initialize the T object then convert to _Atomic type.
5604 bool NeedAtomicConversion = false;
5605 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5606 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5607 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5608 Atomic->getValueType())) {
5609 DestType = Atomic->getValueType();
5610 NeedAtomicConversion = true;
5611 }
5612 }
5613
5614 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5615 TopLevelOfInitList);
5616 MaybeProduceObjCObject(S, *this, Entity);
5617 if (!Failed() && NeedAtomicConversion)
5618 AddAtomicConversionStep(Entity.getType());
5619 return;
5620 }
5621
5622 // - Otherwise, the initial value of the object being initialized is the
5623 // (possibly converted) value of the initializer expression. Standard
5624 // conversions (Clause 4) will be used, if necessary, to convert the
5625 // initializer expression to the cv-unqualified version of the
5626 // destination type; no user-defined conversions are considered.
5627
5628 ImplicitConversionSequence ICS
5629 = S.TryImplicitConversion(Initializer, DestType,
5630 /*SuppressUserConversions*/true,
5631 /*AllowExplicitConversions*/ false,
5632 /*InOverloadResolution*/ false,
5633 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5634 allowObjCWritebackConversion);
5635
5636 if (ICS.isStandard() &&
5637 ICS.Standard.Second == ICK_Writeback_Conversion) {
5638 // Objective-C ARC writeback conversion.
5639
5640 // We should copy unless we're passing to an argument explicitly
5641 // marked 'out'.
5642 bool ShouldCopy = true;
5643 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5644 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5645
5646 // If there was an lvalue adjustment, add it as a separate conversion.
5647 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5648 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5649 ImplicitConversionSequence LvalueICS;
5650 LvalueICS.setStandard();
5651 LvalueICS.Standard.setAsIdentityConversion();
5652 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5653 LvalueICS.Standard.First = ICS.Standard.First;
5654 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5655 }
5656
5657 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5658 } else if (ICS.isBad()) {
5659 DeclAccessPair dap;
5660 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5661 AddZeroInitializationStep(Entity.getType());
5662 } else if (Initializer->getType() == Context.OverloadTy &&
5663 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5664 false, dap))
5665 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5666 else if (Initializer->getType()->isFunctionType() &&
5667 isExprAnUnaddressableFunction(S, Initializer))
5668 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5669 else
5670 SetFailed(InitializationSequence::FK_ConversionFailed);
5671 } else {
5672 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5673
5674 MaybeProduceObjCObject(S, *this, Entity);
5675 }
5676}
5677
5678InitializationSequence::~InitializationSequence() {
5679 for (auto &S : Steps)
5680 S.Destroy();
5681}
5682
5683//===----------------------------------------------------------------------===//
5684// Perform initialization
5685//===----------------------------------------------------------------------===//
5686static Sema::AssignmentAction
5687getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5688 switch(Entity.getKind()) {
5689 case InitializedEntity::EK_Variable:
5690 case InitializedEntity::EK_New:
5691 case InitializedEntity::EK_Exception:
5692 case InitializedEntity::EK_Base:
5693 case InitializedEntity::EK_Delegating:
5694 return Sema::AA_Initializing;
5695
5696 case InitializedEntity::EK_Parameter:
5697 if (Entity.getDecl() &&
5698 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5699 return Sema::AA_Sending;
5700
5701 return Sema::AA_Passing;
5702
5703 case InitializedEntity::EK_Parameter_CF_Audited:
5704 if (Entity.getDecl() &&
5705 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5706 return Sema::AA_Sending;
5707
5708 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5709
5710 case InitializedEntity::EK_Result:
5711 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5712 return Sema::AA_Returning;
5713
5714 case InitializedEntity::EK_Temporary:
5715 case InitializedEntity::EK_RelatedResult:
5716 // FIXME: Can we tell apart casting vs. converting?
5717 return Sema::AA_Casting;
5718
5719 case InitializedEntity::EK_Member:
5720 case InitializedEntity::EK_Binding:
5721 case InitializedEntity::EK_ArrayElement:
5722 case InitializedEntity::EK_VectorElement:
5723 case InitializedEntity::EK_ComplexElement:
5724 case InitializedEntity::EK_BlockElement:
5725 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5726 case InitializedEntity::EK_LambdaCapture:
5727 case InitializedEntity::EK_CompoundLiteralInit:
5728 return Sema::AA_Initializing;
5729 }
5730
5731 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 5731)
;
5732}
5733
5734/// Whether we should bind a created object as a temporary when
5735/// initializing the given entity.
5736static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5737 switch (Entity.getKind()) {
5738 case InitializedEntity::EK_ArrayElement:
5739 case InitializedEntity::EK_Member:
5740 case InitializedEntity::EK_Result:
5741 case InitializedEntity::EK_StmtExprResult:
5742 case InitializedEntity::EK_New:
5743 case InitializedEntity::EK_Variable:
5744 case InitializedEntity::EK_Base:
5745 case InitializedEntity::EK_Delegating:
5746 case InitializedEntity::EK_VectorElement:
5747 case InitializedEntity::EK_ComplexElement:
5748 case InitializedEntity::EK_Exception:
5749 case InitializedEntity::EK_BlockElement:
5750 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5751 case InitializedEntity::EK_LambdaCapture:
5752 case InitializedEntity::EK_CompoundLiteralInit:
5753 return false;
5754
5755 case InitializedEntity::EK_Parameter:
5756 case InitializedEntity::EK_Parameter_CF_Audited:
5757 case InitializedEntity::EK_Temporary:
5758 case InitializedEntity::EK_RelatedResult:
5759 case InitializedEntity::EK_Binding:
5760 return true;
5761 }
5762
5763 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 5763)
;
5764}
5765
5766/// Whether the given entity, when initialized with an object
5767/// created for that initialization, requires destruction.
5768static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5769 switch (Entity.getKind()) {
5770 case InitializedEntity::EK_Result:
5771 case InitializedEntity::EK_StmtExprResult:
5772 case InitializedEntity::EK_New:
5773 case InitializedEntity::EK_Base:
5774 case InitializedEntity::EK_Delegating:
5775 case InitializedEntity::EK_VectorElement:
5776 case InitializedEntity::EK_ComplexElement:
5777 case InitializedEntity::EK_BlockElement:
5778 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5779 case InitializedEntity::EK_LambdaCapture:
5780 return false;
5781
5782 case InitializedEntity::EK_Member:
5783 case InitializedEntity::EK_Binding:
5784 case InitializedEntity::EK_Variable:
5785 case InitializedEntity::EK_Parameter:
5786 case InitializedEntity::EK_Parameter_CF_Audited:
5787 case InitializedEntity::EK_Temporary:
5788 case InitializedEntity::EK_ArrayElement:
5789 case InitializedEntity::EK_Exception:
5790 case InitializedEntity::EK_CompoundLiteralInit:
5791 case InitializedEntity::EK_RelatedResult:
5792 return true;
5793 }
5794
5795 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 5795)
;
5796}
5797
5798/// Get the location at which initialization diagnostics should appear.
5799static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5800 Expr *Initializer) {
5801 switch (Entity.getKind()) {
5802 case InitializedEntity::EK_Result:
5803 case InitializedEntity::EK_StmtExprResult:
5804 return Entity.getReturnLoc();
5805
5806 case InitializedEntity::EK_Exception:
5807 return Entity.getThrowLoc();
5808
5809 case InitializedEntity::EK_Variable:
5810 case InitializedEntity::EK_Binding:
5811 return Entity.getDecl()->getLocation();
5812
5813 case InitializedEntity::EK_LambdaCapture:
5814 return Entity.getCaptureLoc();
5815
5816 case InitializedEntity::EK_ArrayElement:
5817 case InitializedEntity::EK_Member:
5818 case InitializedEntity::EK_Parameter:
5819 case InitializedEntity::EK_Parameter_CF_Audited:
5820 case InitializedEntity::EK_Temporary:
5821 case InitializedEntity::EK_New:
5822 case InitializedEntity::EK_Base:
5823 case InitializedEntity::EK_Delegating:
5824 case InitializedEntity::EK_VectorElement:
5825 case InitializedEntity::EK_ComplexElement:
5826 case InitializedEntity::EK_BlockElement:
5827 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5828 case InitializedEntity::EK_CompoundLiteralInit:
5829 case InitializedEntity::EK_RelatedResult:
5830 return Initializer->getBeginLoc();
5831 }
5832 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 5832)
;
5833}
5834
5835/// Make a (potentially elidable) temporary copy of the object
5836/// provided by the given initializer by calling the appropriate copy
5837/// constructor.
5838///
5839/// \param S The Sema object used for type-checking.
5840///
5841/// \param T The type of the temporary object, which must either be
5842/// the type of the initializer expression or a superclass thereof.
5843///
5844/// \param Entity The entity being initialized.
5845///
5846/// \param CurInit The initializer expression.
5847///
5848/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5849/// is permitted in C++03 (but not C++0x) when binding a reference to
5850/// an rvalue.
5851///
5852/// \returns An expression that copies the initializer expression into
5853/// a temporary object, or an error expression if a copy could not be
5854/// created.
5855static ExprResult CopyObject(Sema &S,
5856 QualType T,
5857 const InitializedEntity &Entity,
5858 ExprResult CurInit,
5859 bool IsExtraneousCopy) {
5860 if (CurInit.isInvalid())
5861 return CurInit;
5862 // Determine which class type we're copying to.
5863 Expr *CurInitExpr = (Expr *)CurInit.get();
5864 CXXRecordDecl *Class = nullptr;
5865 if (const RecordType *Record = T->getAs<RecordType>())
5866 Class = cast<CXXRecordDecl>(Record->getDecl());
5867 if (!Class)
5868 return CurInit;
5869
5870 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5871
5872 // Make sure that the type we are copying is complete.
5873 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5874 return CurInit;
5875
5876 // Perform overload resolution using the class's constructors. Per
5877 // C++11 [dcl.init]p16, second bullet for class types, this initialization
5878 // is direct-initialization.
5879 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5880 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5881
5882 OverloadCandidateSet::iterator Best;
5883 switch (ResolveConstructorOverload(
5884 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5885 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5886 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5887 /*SecondStepOfCopyInit=*/true)) {
5888 case OR_Success:
5889 break;
5890
5891 case OR_No_Viable_Function:
5892 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5893 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5894 : diag::err_temp_copy_no_viable)
5895 << (int)Entity.getKind() << CurInitExpr->getType()
5896 << CurInitExpr->getSourceRange();
5897 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5898 if (!IsExtraneousCopy || S.isSFINAEContext())
5899 return ExprError();
5900 return CurInit;
5901
5902 case OR_Ambiguous:
5903 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5904 << (int)Entity.getKind() << CurInitExpr->getType()
5905 << CurInitExpr->getSourceRange();
5906 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5907 return ExprError();
5908
5909 case OR_Deleted:
5910 S.Diag(Loc, diag::err_temp_copy_deleted)
5911 << (int)Entity.getKind() << CurInitExpr->getType()
5912 << CurInitExpr->getSourceRange();
5913 S.NoteDeletedFunction(Best->Function);
5914 return ExprError();
5915 }
5916
5917 bool HadMultipleCandidates = CandidateSet.size() > 1;
5918
5919 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5920 SmallVector<Expr*, 8> ConstructorArgs;
5921 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5922
5923 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5924 IsExtraneousCopy);
5925
5926 if (IsExtraneousCopy) {
5927 // If this is a totally extraneous copy for C++03 reference
5928 // binding purposes, just return the original initialization
5929 // expression. We don't generate an (elided) copy operation here
5930 // because doing so would require us to pass down a flag to avoid
5931 // infinite recursion, where each step adds another extraneous,
5932 // elidable copy.
5933
5934 // Instantiate the default arguments of any extra parameters in
5935 // the selected copy constructor, as if we were going to create a
5936 // proper call to the copy constructor.
5937 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5938 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5939 if (S.RequireCompleteType(Loc, Parm->getType(),
5940 diag::err_call_incomplete_argument))
5941 break;
5942
5943 // Build the default argument expression; we don't actually care
5944 // if this succeeds or not, because this routine will complain
5945 // if there was a problem.
5946 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5947 }
5948
5949 return CurInitExpr;
5950 }
5951
5952 // Determine the arguments required to actually perform the
5953 // constructor call (we might have derived-to-base conversions, or
5954 // the copy constructor may have default arguments).
5955 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5956 return ExprError();
5957
5958 // C++0x [class.copy]p32:
5959 // When certain criteria are met, an implementation is allowed to
5960 // omit the copy/move construction of a class object, even if the
5961 // copy/move constructor and/or destructor for the object have
5962 // side effects. [...]
5963 // - when a temporary class object that has not been bound to a
5964 // reference (12.2) would be copied/moved to a class object
5965 // with the same cv-unqualified type, the copy/move operation
5966 // can be omitted by constructing the temporary object
5967 // directly into the target of the omitted copy/move
5968 //
5969 // Note that the other three bullets are handled elsewhere. Copy
5970 // elision for return statements and throw expressions are handled as part
5971 // of constructor initialization, while copy elision for exception handlers
5972 // is handled by the run-time.
5973 //
5974 // FIXME: If the function parameter is not the same type as the temporary, we
5975 // should still be able to elide the copy, but we don't have a way to
5976 // represent in the AST how much should be elided in this case.
5977 bool Elidable =
5978 CurInitExpr->isTemporaryObject(S.Context, Class) &&
5979 S.Context.hasSameUnqualifiedType(
5980 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5981 CurInitExpr->getType());
5982
5983 // Actually perform the constructor call.
5984 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5985 Elidable,
5986 ConstructorArgs,
5987 HadMultipleCandidates,
5988 /*ListInit*/ false,
5989 /*StdInitListInit*/ false,
5990 /*ZeroInit*/ false,
5991 CXXConstructExpr::CK_Complete,
5992 SourceRange());
5993
5994 // If we're supposed to bind temporaries, do so.
5995 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5996 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5997 return CurInit;
5998}
5999
6000/// Check whether elidable copy construction for binding a reference to
6001/// a temporary would have succeeded if we were building in C++98 mode, for
6002/// -Wc++98-compat.
6003static void CheckCXX98CompatAccessibleCopy(Sema &S,
6004 const InitializedEntity &Entity,
6005 Expr *CurInitExpr) {
6006 assert(S.getLangOpts().CPlusPlus11)((S.getLangOpts().CPlusPlus11) ? static_cast<void> (0) :
__assert_fail ("S.getLangOpts().CPlusPlus11", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 6006, __PRETTY_FUNCTION__))
;
6007
6008 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6009 if (!Record)
6010 return;
6011
6012 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6013 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6014 return;
6015
6016 // Find constructors which would have been considered.
6017 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6018 DeclContext::lookup_result Ctors =
6019 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6020
6021 // Perform overload resolution.
6022 OverloadCandidateSet::iterator Best;
6023 OverloadingResult OR = ResolveConstructorOverload(
6024 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6025 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6026 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6027 /*SecondStepOfCopyInit=*/true);
6028
6029 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6030 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6031 << CurInitExpr->getSourceRange();
6032
6033 switch (OR) {
6034 case OR_Success:
6035 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6036 Best->FoundDecl, Entity, Diag);
6037 // FIXME: Check default arguments as far as that's possible.
6038 break;
6039
6040 case OR_No_Viable_Function:
6041 S.Diag(Loc, Diag);
6042 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
6043 break;
6044
6045 case OR_Ambiguous:
6046 S.Diag(Loc, Diag);
6047 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
6048 break;
6049
6050 case OR_Deleted:
6051 S.Diag(Loc, Diag);
6052 S.NoteDeletedFunction(Best->Function);
6053 break;
6054 }
6055}
6056
6057void InitializationSequence::PrintInitLocationNote(Sema &S,
6058 const InitializedEntity &Entity) {
6059 if (Entity.isParameterKind() && Entity.getDecl()) {
6060 if (Entity.getDecl()->getLocation().isInvalid())
6061 return;
6062
6063 if (Entity.getDecl()->getDeclName())
6064 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6065 << Entity.getDecl()->getDeclName();
6066 else
6067 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6068 }
6069 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6070 Entity.getMethodDecl())
6071 S.Diag(Entity.getMethodDecl()->getLocation(),
6072 diag::note_method_return_type_change)
6073 << Entity.getMethodDecl()->getDeclName();
6074}
6075
6076/// Returns true if the parameters describe a constructor initialization of
6077/// an explicit temporary object, e.g. "Point(x, y)".
6078static bool isExplicitTemporary(const InitializedEntity &Entity,
6079 const InitializationKind &Kind,
6080 unsigned NumArgs) {
6081 switch (Entity.getKind()) {
6082 case InitializedEntity::EK_Temporary:
6083 case InitializedEntity::EK_CompoundLiteralInit:
6084 case InitializedEntity::EK_RelatedResult:
6085 break;
6086 default:
6087 return false;
6088 }
6089
6090 switch (Kind.getKind()) {
6091 case InitializationKind::IK_DirectList:
6092 return true;
6093 // FIXME: Hack to work around cast weirdness.
6094 case InitializationKind::IK_Direct:
6095 case InitializationKind::IK_Value:
6096 return NumArgs != 1;
6097 default:
6098 return false;
6099 }
6100}
6101
6102static ExprResult
6103PerformConstructorInitialization(Sema &S,
6104 const InitializedEntity &Entity,
6105 const InitializationKind &Kind,
6106 MultiExprArg Args,
6107 const InitializationSequence::Step& Step,
6108 bool &ConstructorInitRequiresZeroInit,
6109 bool IsListInitialization,
6110 bool IsStdInitListInitialization,
6111 SourceLocation LBraceLoc,
6112 SourceLocation RBraceLoc) {
6113 unsigned NumArgs = Args.size();
6114 CXXConstructorDecl *Constructor
6115 = cast<CXXConstructorDecl>(Step.Function.Function);
6116 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6117
6118 // Build a call to the selected constructor.
6119 SmallVector<Expr*, 8> ConstructorArgs;
6120 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6121 ? Kind.getEqualLoc()
6122 : Kind.getLocation();
6123
6124 if (Kind.getKind() == InitializationKind::IK_Default) {
6125 // Force even a trivial, implicit default constructor to be
6126 // semantically checked. We do this explicitly because we don't build
6127 // the definition for completely trivial constructors.
6128 assert(Constructor->getParent() && "No parent class for constructor.")((Constructor->getParent() && "No parent class for constructor."
) ? static_cast<void> (0) : __assert_fail ("Constructor->getParent() && \"No parent class for constructor.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 6128, __PRETTY_FUNCTION__))
;
6129 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6130 Constructor->isTrivial() && !Constructor->isUsed(false))
6131 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6132 }
6133
6134 ExprResult CurInit((Expr *)nullptr);
6135
6136 // C++ [over.match.copy]p1:
6137 // - When initializing a temporary to be bound to the first parameter
6138 // of a constructor that takes a reference to possibly cv-qualified
6139 // T as its first argument, called with a single argument in the
6140 // context of direct-initialization, explicit conversion functions
6141 // are also considered.
6142 bool AllowExplicitConv =
6143 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6144 hasCopyOrMoveCtorParam(S.Context,
6145 getConstructorInfo(Step.Function.FoundDecl));
6146
6147 // Determine the arguments required to actually perform the constructor
6148 // call.
6149 if (S.CompleteConstructorCall(Constructor, Args,
6150 Loc, ConstructorArgs,
6151 AllowExplicitConv,
6152 IsListInitialization))
6153 return ExprError();
6154
6155
6156 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6157 // An explicitly-constructed temporary, e.g., X(1, 2).
6158 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6159 return ExprError();
6160
6161 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6162 if (!TSInfo)
6163 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6164 SourceRange ParenOrBraceRange = Kind.getParenOrBraceRange();
6165
6166 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6167 Step.Function.FoundDecl.getDecl())) {
6168 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6169 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6170 return ExprError();
6171 }
6172 S.MarkFunctionReferenced(Loc, Constructor);
6173
6174 CurInit = new (S.Context) CXXTemporaryObjectExpr(
6175 S.Context, Constructor,
6176 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6177 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6178 IsListInitialization, IsStdInitListInitialization,
6179 ConstructorInitRequiresZeroInit);
6180 } else {
6181 CXXConstructExpr::ConstructionKind ConstructKind =
6182 CXXConstructExpr::CK_Complete;
6183
6184 if (Entity.getKind() == InitializedEntity::EK_Base) {
6185 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6186 CXXConstructExpr::CK_VirtualBase :
6187 CXXConstructExpr::CK_NonVirtualBase;
6188 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6189 ConstructKind = CXXConstructExpr::CK_Delegating;
6190 }
6191
6192 // Only get the parenthesis or brace range if it is a list initialization or
6193 // direct construction.
6194 SourceRange ParenOrBraceRange;
6195 if (IsListInitialization)
6196 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6197 else if (Kind.getKind() == InitializationKind::IK_Direct)
6198 ParenOrBraceRange = Kind.getParenOrBraceRange();
6199
6200 // If the entity allows NRVO, mark the construction as elidable
6201 // unconditionally.
6202 if (Entity.allowsNRVO())
6203 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6204 Step.Function.FoundDecl,
6205 Constructor, /*Elidable=*/true,
6206 ConstructorArgs,
6207 HadMultipleCandidates,
6208 IsListInitialization,
6209 IsStdInitListInitialization,
6210 ConstructorInitRequiresZeroInit,
6211 ConstructKind,
6212 ParenOrBraceRange);
6213 else
6214 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6215 Step.Function.FoundDecl,
6216 Constructor,
6217 ConstructorArgs,
6218 HadMultipleCandidates,
6219 IsListInitialization,
6220 IsStdInitListInitialization,
6221 ConstructorInitRequiresZeroInit,
6222 ConstructKind,
6223 ParenOrBraceRange);
6224 }
6225 if (CurInit.isInvalid())
6226 return ExprError();
6227
6228 // Only check access if all of that succeeded.
6229 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6230 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6231 return ExprError();
6232
6233 if (shouldBindAsTemporary(Entity))
6234 CurInit = S.MaybeBindToTemporary(CurInit.get());
6235
6236 return CurInit;
6237}
6238
6239namespace {
6240enum LifetimeKind {
6241 /// The lifetime of a temporary bound to this entity ends at the end of the
6242 /// full-expression, and that's (probably) fine.
6243 LK_FullExpression,
6244
6245 /// The lifetime of a temporary bound to this entity is extended to the
6246 /// lifeitme of the entity itself.
6247 LK_Extended,
6248
6249 /// The lifetime of a temporary bound to this entity probably ends too soon,
6250 /// because the entity is allocated in a new-expression.
6251 LK_New,
6252
6253 /// The lifetime of a temporary bound to this entity ends too soon, because
6254 /// the entity is a return object.
6255 LK_Return,
6256
6257 /// The lifetime of a temporary bound to this entity ends too soon, because
6258 /// the entity is the result of a statement expression.
6259 LK_StmtExprResult,
6260
6261 /// This is a mem-initializer: if it would extend a temporary (other than via
6262 /// a default member initializer), the program is ill-formed.
6263 LK_MemInitializer,
6264};
6265using LifetimeResult =
6266 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6267}
6268
6269/// Determine the declaration which an initialized entity ultimately refers to,
6270/// for the purpose of lifetime-extending a temporary bound to a reference in
6271/// the initialization of \p Entity.
6272static LifetimeResult getEntityLifetime(
6273 const InitializedEntity *Entity,
6274 const InitializedEntity *InitField = nullptr) {
6275 // C++11 [class.temporary]p5:
6276 switch (Entity->getKind()) {
6277 case InitializedEntity::EK_Variable:
6278 // The temporary [...] persists for the lifetime of the reference
6279 return {Entity, LK_Extended};
6280
6281 case InitializedEntity::EK_Member:
6282 // For subobjects, we look at the complete object.
6283 if (Entity->getParent())
6284 return getEntityLifetime(Entity->getParent(), Entity);
6285
6286 // except:
6287 // C++17 [class.base.init]p8:
6288 // A temporary expression bound to a reference member in a
6289 // mem-initializer is ill-formed.
6290 // C++17 [class.base.init]p11:
6291 // A temporary expression bound to a reference member from a
6292 // default member initializer is ill-formed.
6293 //
6294 // The context of p11 and its example suggest that it's only the use of a
6295 // default member initializer from a constructor that makes the program
6296 // ill-formed, not its mere existence, and that it can even be used by
6297 // aggregate initialization.
6298 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6299 : LK_MemInitializer};
6300
6301 case InitializedEntity::EK_Binding:
6302 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6303 // type.
6304 return {Entity, LK_Extended};
6305
6306 case InitializedEntity::EK_Parameter:
6307 case InitializedEntity::EK_Parameter_CF_Audited:
6308 // -- A temporary bound to a reference parameter in a function call
6309 // persists until the completion of the full-expression containing
6310 // the call.
6311 return {nullptr, LK_FullExpression};
6312
6313 case InitializedEntity::EK_Result:
6314 // -- The lifetime of a temporary bound to the returned value in a
6315 // function return statement is not extended; the temporary is
6316 // destroyed at the end of the full-expression in the return statement.
6317 return {nullptr, LK_Return};
6318
6319 case InitializedEntity::EK_StmtExprResult:
6320 // FIXME: Should we lifetime-extend through the result of a statement
6321 // expression?
6322 return {nullptr, LK_StmtExprResult};
6323
6324 case InitializedEntity::EK_New:
6325 // -- A temporary bound to a reference in a new-initializer persists
6326 // until the completion of the full-expression containing the
6327 // new-initializer.
6328 return {nullptr, LK_New};
6329
6330 case InitializedEntity::EK_Temporary:
6331 case InitializedEntity::EK_CompoundLiteralInit:
6332 case InitializedEntity::EK_RelatedResult:
6333 // We don't yet know the storage duration of the surrounding temporary.
6334 // Assume it's got full-expression duration for now, it will patch up our
6335 // storage duration if that's not correct.
6336 return {nullptr, LK_FullExpression};
6337
6338 case InitializedEntity::EK_ArrayElement:
6339 // For subobjects, we look at the complete object.
6340 return getEntityLifetime(Entity->getParent(), InitField);
6341
6342 case InitializedEntity::EK_Base:
6343 // For subobjects, we look at the complete object.
6344 if (Entity->getParent())
6345 return getEntityLifetime(Entity->getParent(), InitField);
6346 return {InitField, LK_MemInitializer};
6347
6348 case InitializedEntity::EK_Delegating:
6349 // We can reach this case for aggregate initialization in a constructor:
6350 // struct A { int &&r; };
6351 // struct B : A { B() : A{0} {} };
6352 // In this case, use the outermost field decl as the context.
6353 return {InitField, LK_MemInitializer};
6354
6355 case InitializedEntity::EK_BlockElement:
6356 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6357 case InitializedEntity::EK_LambdaCapture:
6358 case InitializedEntity::EK_VectorElement:
6359 case InitializedEntity::EK_ComplexElement:
6360 return {nullptr, LK_FullExpression};
6361
6362 case InitializedEntity::EK_Exception:
6363 // FIXME: Can we diagnose lifetime problems with exceptions?
6364 return {nullptr, LK_FullExpression};
6365 }
6366 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 6366)
;
6367}
6368
6369namespace {
6370enum ReferenceKind {
6371 /// Lifetime would be extended by a reference binding to a temporary.
6372 RK_ReferenceBinding,
6373 /// Lifetime would be extended by a std::initializer_list object binding to
6374 /// its backing array.
6375 RK_StdInitializerList,
6376};
6377
6378/// A temporary or local variable. This will be one of:
6379/// * A MaterializeTemporaryExpr.
6380/// * A DeclRefExpr whose declaration is a local.
6381/// * An AddrLabelExpr.
6382/// * A BlockExpr for a block with captures.
6383using Local = Expr*;
6384
6385/// Expressions we stepped over when looking for the local state. Any steps
6386/// that would inhibit lifetime extension or take us out of subexpressions of
6387/// the initializer are included.
6388struct IndirectLocalPathEntry {
6389 enum EntryKind {
6390 DefaultInit,
6391 AddressOf,
6392 VarInit,
6393 LValToRVal,
6394 LifetimeBoundCall,
6395 } Kind;
6396 Expr *E;
6397 const Decl *D = nullptr;
6398 IndirectLocalPathEntry() {}
6399 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6400 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6401 : Kind(K), E(E), D(D) {}
6402};
6403
6404using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6405
6406struct RevertToOldSizeRAII {
6407 IndirectLocalPath &Path;
6408 unsigned OldSize = Path.size();
6409 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6410 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6411};
6412
6413using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6414 ReferenceKind RK)>;
6415}
6416
6417static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6418 for (auto E : Path)
6419 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6420 return true;
6421 return false;
6422}
6423
6424static bool pathContainsInit(IndirectLocalPath &Path) {
6425 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6426 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6427 E.Kind == IndirectLocalPathEntry::VarInit;
6428 });
6429}
6430
6431static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6432 Expr *Init, LocalVisitor Visit,
6433 bool RevisitSubinits);
6434
6435static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6436 Expr *Init, ReferenceKind RK,
6437 LocalVisitor Visit);
6438
6439static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6440 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6441 if (!TSI)
6442 return false;
6443 // Don't declare this variable in the second operand of the for-statement;
6444 // GCC miscompiles that by ending its lifetime before evaluating the
6445 // third operand. See gcc.gnu.org/PR86769.
6446 AttributedTypeLoc ATL;
6447 for (TypeLoc TL = TSI->getTypeLoc();
6448 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6449 TL = ATL.getModifiedLoc()) {
6450 if (ATL.getAttrAs<LifetimeBoundAttr>())
6451 return true;
6452 }
6453 return false;
6454}
6455
6456static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6457 LocalVisitor Visit) {
6458 const FunctionDecl *Callee;
6459 ArrayRef<Expr*> Args;
6460
6461 if (auto *CE = dyn_cast<CallExpr>(Call)) {
6462 Callee = CE->getDirectCallee();
6463 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6464 } else {
6465 auto *CCE = cast<CXXConstructExpr>(Call);
6466 Callee = CCE->getConstructor();
6467 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6468 }
6469 if (!Callee)
6470 return;
6471
6472 Expr *ObjectArg = nullptr;
6473 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6474 ObjectArg = Args[0];
6475 Args = Args.slice(1);
6476 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6477 ObjectArg = MCE->getImplicitObjectArgument();
6478 }
6479
6480 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6481 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6482 if (Arg->isGLValue())
6483 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6484 Visit);
6485 else
6486 visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6487 Path.pop_back();
6488 };
6489
6490 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6491 VisitLifetimeBoundArg(Callee, ObjectArg);
6492
6493 for (unsigned I = 0,
6494 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6495 I != N; ++I) {
6496 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6497 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6498 }
6499}
6500
6501/// Visit the locals that would be reachable through a reference bound to the
6502/// glvalue expression \c Init.
6503static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6504 Expr *Init, ReferenceKind RK,
6505 LocalVisitor Visit) {
6506 RevertToOldSizeRAII RAII(Path);
6507
6508 // Walk past any constructs which we can lifetime-extend across.
6509 Expr *Old;
6510 do {
6511 Old = Init;
6512
6513 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
6514 Init = EWC->getSubExpr();
6515
6516 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6517 // If this is just redundant braces around an initializer, step over it.
6518 if (ILE->isTransparent())
6519 Init = ILE->getInit(0);
6520 }
6521
6522 // Step over any subobject adjustments; we may have a materialized
6523 // temporary inside them.
6524 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6525
6526 // Per current approach for DR1376, look through casts to reference type
6527 // when performing lifetime extension.
6528 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6529 if (CE->getSubExpr()->isGLValue())
6530 Init = CE->getSubExpr();
6531
6532 // Per the current approach for DR1299, look through array element access
6533 // on array glvalues when performing lifetime extension.
6534 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6535 Init = ASE->getBase();
6536 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6537 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6538 Init = ICE->getSubExpr();
6539 else
6540 // We can't lifetime extend through this but we might still find some
6541 // retained temporaries.
6542 return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6543 }
6544
6545 // Step into CXXDefaultInitExprs so we can diagnose cases where a
6546 // constructor inherits one as an implicit mem-initializer.
6547 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6548 Path.push_back(
6549 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6550 Init = DIE->getExpr();
6551 }
6552 } while (Init != Old);
6553
6554 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6555 if (Visit(Path, Local(MTE), RK))
6556 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6557 true);
6558 }
6559
6560 if (isa<CallExpr>(Init))
6561 return visitLifetimeBoundArguments(Path, Init, Visit);
6562
6563 switch (Init->getStmtClass()) {
6564 case Stmt::DeclRefExprClass: {
6565 // If we find the name of a local non-reference parameter, we could have a
6566 // lifetime problem.
6567 auto *DRE = cast<DeclRefExpr>(Init);
6568 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6569 if (VD && VD->hasLocalStorage() &&
6570 !DRE->refersToEnclosingVariableOrCapture()) {
6571 if (!VD->getType()->isReferenceType()) {
6572 Visit(Path, Local(DRE), RK);
6573 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6574 // The lifetime of a reference parameter is unknown; assume it's OK
6575 // for now.
6576 break;
6577 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6578 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6579 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6580 RK_ReferenceBinding, Visit);
6581 }
6582 }
6583 break;
6584 }
6585
6586 case Stmt::UnaryOperatorClass: {
6587 // The only unary operator that make sense to handle here
6588 // is Deref. All others don't resolve to a "name." This includes
6589 // handling all sorts of rvalues passed to a unary operator.
6590 const UnaryOperator *U = cast<UnaryOperator>(Init);
6591 if (U->getOpcode() == UO_Deref)
6592 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6593 break;
6594 }
6595
6596 case Stmt::OMPArraySectionExprClass: {
6597 visitLocalsRetainedByInitializer(
6598 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6599 break;
6600 }
6601
6602 case Stmt::ConditionalOperatorClass:
6603 case Stmt::BinaryConditionalOperatorClass: {
6604 auto *C = cast<AbstractConditionalOperator>(Init);
6605 if (!C->getTrueExpr()->getType()->isVoidType())
6606 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6607 if (!C->getFalseExpr()->getType()->isVoidType())
6608 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6609 break;
6610 }
6611
6612 // FIXME: Visit the left-hand side of an -> or ->*.
6613
6614 default:
6615 break;
6616 }
6617}
6618
6619/// Visit the locals that would be reachable through an object initialized by
6620/// the prvalue expression \c Init.
6621static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6622 Expr *Init, LocalVisitor Visit,
6623 bool RevisitSubinits) {
6624 RevertToOldSizeRAII RAII(Path);
6625
6626 Expr *Old;
6627 do {
6628 Old = Init;
6629
6630 // Step into CXXDefaultInitExprs so we can diagnose cases where a
6631 // constructor inherits one as an implicit mem-initializer.
6632 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6633 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6634 Init = DIE->getExpr();
6635 }
6636
6637 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
6638 Init = EWC->getSubExpr();
6639
6640 // Dig out the expression which constructs the extended temporary.
6641 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6642
6643 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6644 Init = BTE->getSubExpr();
6645
6646 Init = Init->IgnoreParens();
6647
6648 // Step over value-preserving rvalue casts.
6649 if (auto *CE = dyn_cast<CastExpr>(Init)) {
6650 switch (CE->getCastKind()) {
6651 case CK_LValueToRValue:
6652 // If we can match the lvalue to a const object, we can look at its
6653 // initializer.
6654 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6655 return visitLocalsRetainedByReferenceBinding(
6656 Path, Init, RK_ReferenceBinding,
6657 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6658 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6659 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6660 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6661 !isVarOnPath(Path, VD)) {
6662 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6663 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6664 }
6665 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6666 if (MTE->getType().isConstQualified())
6667 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6668 Visit, true);
6669 }
6670 return false;
6671 });
6672
6673 // We assume that objects can be retained by pointers cast to integers,
6674 // but not if the integer is cast to floating-point type or to _Complex.
6675 // We assume that casts to 'bool' do not preserve enough information to
6676 // retain a local object.
6677 case CK_NoOp:
6678 case CK_BitCast:
6679 case CK_BaseToDerived:
6680 case CK_DerivedToBase:
6681 case CK_UncheckedDerivedToBase:
6682 case CK_Dynamic:
6683 case CK_ToUnion:
6684 case CK_UserDefinedConversion:
6685 case CK_ConstructorConversion:
6686 case CK_IntegralToPointer:
6687 case CK_PointerToIntegral:
6688 case CK_VectorSplat:
6689 case CK_IntegralCast:
6690 case CK_CPointerToObjCPointerCast:
6691 case CK_BlockPointerToObjCPointerCast:
6692 case CK_AnyPointerToBlockPointerCast:
6693 case CK_AddressSpaceConversion:
6694 break;
6695
6696 case CK_ArrayToPointerDecay:
6697 // Model array-to-pointer decay as taking the address of the array
6698 // lvalue.
6699 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6700 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6701 RK_ReferenceBinding, Visit);
6702
6703 default:
6704 return;
6705 }
6706
6707 Init = CE->getSubExpr();
6708 }
6709 } while (Old != Init);
6710
6711 // C++17 [dcl.init.list]p6:
6712 // initializing an initializer_list object from the array extends the
6713 // lifetime of the array exactly like binding a reference to a temporary.
6714 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6715 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6716 RK_StdInitializerList, Visit);
6717
6718 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6719 // We already visited the elements of this initializer list while
6720 // performing the initialization. Don't visit them again unless we've
6721 // changed the lifetime of the initialized entity.
6722 if (!RevisitSubinits)
6723 return;
6724
6725 if (ILE->isTransparent())
6726 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6727 RevisitSubinits);
6728
6729 if (ILE->getType()->isArrayType()) {
6730 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6731 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6732 RevisitSubinits);
6733 return;
6734 }
6735
6736 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6737 assert(RD->isAggregate() && "aggregate init on non-aggregate")((RD->isAggregate() && "aggregate init on non-aggregate"
) ? static_cast<void> (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 6737, __PRETTY_FUNCTION__))
;
6738
6739 // If we lifetime-extend a braced initializer which is initializing an
6740 // aggregate, and that aggregate contains reference members which are
6741 // bound to temporaries, those temporaries are also lifetime-extended.
6742 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6743 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6744 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6745 RK_ReferenceBinding, Visit);
6746 else {
6747 unsigned Index = 0;
6748 for (const auto *I : RD->fields()) {
6749 if (Index >= ILE->getNumInits())
6750 break;
6751 if (I->isUnnamedBitfield())
6752 continue;
6753 Expr *SubInit = ILE->getInit(Index);
6754 if (I->getType()->isReferenceType())
6755 visitLocalsRetainedByReferenceBinding(Path, SubInit,
6756 RK_ReferenceBinding, Visit);
6757 else
6758 // This might be either aggregate-initialization of a member or
6759 // initialization of a std::initializer_list object. Regardless,
6760 // we should recursively lifetime-extend that initializer.
6761 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6762 RevisitSubinits);
6763 ++Index;
6764 }
6765 }
6766 }
6767 return;
6768 }
6769
6770 // The lifetime of an init-capture is that of the closure object constructed
6771 // by a lambda-expression.
6772 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6773 for (Expr *E : LE->capture_inits()) {
6774 if (!E)
6775 continue;
6776 if (E->isGLValue())
6777 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6778 Visit);
6779 else
6780 visitLocalsRetainedByInitializer(Path, E, Visit, true);
6781 }
6782 }
6783
6784 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6785 return visitLifetimeBoundArguments(Path, Init, Visit);
6786
6787 switch (Init->getStmtClass()) {
6788 case Stmt::UnaryOperatorClass: {
6789 auto *UO = cast<UnaryOperator>(Init);
6790 // If the initializer is the address of a local, we could have a lifetime
6791 // problem.
6792 if (UO->getOpcode() == UO_AddrOf) {
6793 // If this is &rvalue, then it's ill-formed and we have already diagnosed
6794 // it. Don't produce a redundant warning about the lifetime of the
6795 // temporary.
6796 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6797 return;
6798
6799 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6800 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6801 RK_ReferenceBinding, Visit);
6802 }
6803 break;
6804 }
6805
6806 case Stmt::BinaryOperatorClass: {
6807 // Handle pointer arithmetic.
6808 auto *BO = cast<BinaryOperator>(Init);
6809 BinaryOperatorKind BOK = BO->getOpcode();
6810 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6811 break;
6812
6813 if (BO->getLHS()->getType()->isPointerType())
6814 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6815 else if (BO->getRHS()->getType()->isPointerType())
6816 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6817 break;
6818 }
6819
6820 case Stmt::ConditionalOperatorClass:
6821 case Stmt::BinaryConditionalOperatorClass: {
6822 auto *C = cast<AbstractConditionalOperator>(Init);
6823 // In C++, we can have a throw-expression operand, which has 'void' type
6824 // and isn't interesting from a lifetime perspective.
6825 if (!C->getTrueExpr()->getType()->isVoidType())
6826 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6827 if (!C->getFalseExpr()->getType()->isVoidType())
6828 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6829 break;
6830 }
6831
6832 case Stmt::BlockExprClass:
6833 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6834 // This is a local block, whose lifetime is that of the function.
6835 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6836 }
6837 break;
6838
6839 case Stmt::AddrLabelExprClass:
6840 // We want to warn if the address of a label would escape the function.
6841 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6842 break;
6843
6844 default:
6845 break;
6846 }
6847}
6848
6849/// Determine whether this is an indirect path to a temporary that we are
6850/// supposed to lifetime-extend along (but don't).
6851static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6852 for (auto Elem : Path) {
6853 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6854 return false;
6855 }
6856 return true;
6857}
6858
6859/// Find the range for the first interesting entry in the path at or after I.
6860static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6861 Expr *E) {
6862 for (unsigned N = Path.size(); I != N; ++I) {
6863 switch (Path[I].Kind) {
6864 case IndirectLocalPathEntry::AddressOf:
6865 case IndirectLocalPathEntry::LValToRVal:
6866 case IndirectLocalPathEntry::LifetimeBoundCall:
6867 // These exist primarily to mark the path as not permitting or
6868 // supporting lifetime extension.
6869 break;
6870
6871 case IndirectLocalPathEntry::DefaultInit:
6872 case IndirectLocalPathEntry::VarInit:
6873 return Path[I].E->getSourceRange();
6874 }
6875 }
6876 return E->getSourceRange();
6877}
6878
6879void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6880 Expr *Init) {
6881 LifetimeResult LR = getEntityLifetime(&Entity);
6882 LifetimeKind LK = LR.getInt();
6883 const InitializedEntity *ExtendingEntity = LR.getPointer();
6884
6885 // If this entity doesn't have an interesting lifetime, don't bother looking
6886 // for temporaries within its initializer.
6887 if (LK == LK_FullExpression)
6888 return;
6889
6890 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6891 ReferenceKind RK) -> bool {
6892 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6893 SourceLocation DiagLoc = DiagRange.getBegin();
6894
6895 switch (LK) {
6896 case LK_FullExpression:
6897 llvm_unreachable("already handled this")::llvm::llvm_unreachable_internal("already handled this", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 6897)
;
6898
6899 case LK_Extended: {
6900 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6901 if (!MTE) {
6902 // The initialized entity has lifetime beyond the full-expression,
6903 // and the local entity does too, so don't warn.
6904 //
6905 // FIXME: We should consider warning if a static / thread storage
6906 // duration variable retains an automatic storage duration local.
6907 return false;
6908 }
6909
6910 // Lifetime-extend the temporary.
6911 if (Path.empty()) {
6912 // Update the storage duration of the materialized temporary.
6913 // FIXME: Rebuild the expression instead of mutating it.
6914 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
6915 ExtendingEntity->allocateManglingNumber());
6916 // Also visit the temporaries lifetime-extended by this initializer.
6917 return true;
6918 }
6919
6920 if (shouldLifetimeExtendThroughPath(Path)) {
6921 // We're supposed to lifetime-extend the temporary along this path (per
6922 // the resolution of DR1815), but we don't support that yet.
6923 //
6924 // FIXME: Properly handle this situation. Perhaps the easiest approach
6925 // would be to clone the initializer expression on each use that would
6926 // lifetime extend its temporaries.
6927 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
6928 << RK << DiagRange;
6929 } else {
6930 // If the path goes through the initialization of a variable or field,
6931 // it can't possibly reach a temporary created in this full-expression.
6932 // We will have already diagnosed any problems with the initializer.
6933 if (pathContainsInit(Path))
6934 return false;
6935
6936 Diag(DiagLoc, diag::warn_dangling_variable)
6937 << RK << !Entity.getParent()
6938 << ExtendingEntity->getDecl()->isImplicit()
6939 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
6940 }
6941 break;
6942 }
6943
6944 case LK_MemInitializer: {
6945 if (isa<MaterializeTemporaryExpr>(L)) {
6946 // Under C++ DR1696, if a mem-initializer (or a default member
6947 // initializer used by the absence of one) would lifetime-extend a
6948 // temporary, the program is ill-formed.
6949 if (auto *ExtendingDecl =
6950 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
6951 bool IsSubobjectMember = ExtendingEntity != &Entity;
6952 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
6953 ? diag::err_dangling_member
6954 : diag::warn_dangling_member)
6955 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
6956 // Don't bother adding a note pointing to the field if we're inside
6957 // its default member initializer; our primary diagnostic points to
6958 // the same place in that case.
6959 if (Path.empty() ||
6960 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
6961 Diag(ExtendingDecl->getLocation(),
6962 diag::note_lifetime_extending_member_declared_here)
6963 << RK << IsSubobjectMember;
6964 }
6965 } else {
6966 // We have a mem-initializer but no particular field within it; this
6967 // is either a base class or a delegating initializer directly
6968 // initializing the base-class from something that doesn't live long
6969 // enough.
6970 //
6971 // FIXME: Warn on this.
6972 return false;
6973 }
6974 } else {
6975 // Paths via a default initializer can only occur during error recovery
6976 // (there's no other way that a default initializer can refer to a
6977 // local). Don't produce a bogus warning on those cases.
6978 if (pathContainsInit(Path))
6979 return false;
6980
6981 auto *DRE = dyn_cast<DeclRefExpr>(L);
6982 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
6983 if (!VD) {
6984 // A member was initialized to a local block.
6985 // FIXME: Warn on this.
6986 return false;
6987 }
6988
6989 if (auto *Member =
6990 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
6991 bool IsPointer = Member->getType()->isAnyPointerType();
6992 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
6993 : diag::warn_bind_ref_member_to_parameter)
6994 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
6995 Diag(Member->getLocation(),
6996 diag::note_ref_or_ptr_member_declared_here)
6997 << (unsigned)IsPointer;
6998 }
6999 }
7000 break;
7001 }
7002
7003 case LK_New:
7004 if (isa<MaterializeTemporaryExpr>(L)) {
7005 Diag(DiagLoc, RK == RK_ReferenceBinding
7006 ? diag::warn_new_dangling_reference
7007 : diag::warn_new_dangling_initializer_list)
7008 << !Entity.getParent() << DiagRange;
7009 } else {
7010 // We can't determine if the allocation outlives the local declaration.
7011 return false;
7012 }
7013 break;
7014
7015 case LK_Return:
7016 case LK_StmtExprResult:
7017 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7018 // We can't determine if the local variable outlives the statement
7019 // expression.
7020 if (LK == LK_StmtExprResult)
7021 return false;
7022 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7023 << Entity.getType()->isReferenceType() << DRE->getDecl()
7024 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7025 } else if (isa<BlockExpr>(L)) {
7026 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7027 } else if (isa<AddrLabelExpr>(L)) {
7028 // Don't warn when returning a label from a statement expression.
7029 // Leaving the scope doesn't end its lifetime.
7030 if (LK == LK_StmtExprResult)
7031 return false;
7032 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7033 } else {
7034 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7035 << Entity.getType()->isReferenceType() << DiagRange;
7036 }
7037 break;
7038 }
7039
7040 for (unsigned I = 0; I != Path.size(); ++I) {
7041 auto Elem = Path[I];
7042
7043 switch (Elem.Kind) {
7044 case IndirectLocalPathEntry::AddressOf:
7045 case IndirectLocalPathEntry::LValToRVal:
7046 // These exist primarily to mark the path as not permitting or
7047 // supporting lifetime extension.
7048 break;
7049
7050 case IndirectLocalPathEntry::LifetimeBoundCall:
7051 // FIXME: Consider adding a note for this.
7052 break;
7053
7054 case IndirectLocalPathEntry::DefaultInit: {
7055 auto *FD = cast<FieldDecl>(Elem.D);
7056 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7057 << FD << nextPathEntryRange(Path, I + 1, L);
7058 break;
7059 }
7060
7061 case IndirectLocalPathEntry::VarInit:
7062 const VarDecl *VD = cast<VarDecl>(Elem.D);
7063 Diag(VD->getLocation(), diag::note_local_var_initializer)
7064 << VD->getType()->isReferenceType()
7065 << VD->isImplicit() << VD->getDeclName()
7066 << nextPathEntryRange(Path, I + 1, L);
7067 break;
7068 }
7069 }
7070
7071 // We didn't lifetime-extend, so don't go any further; we don't need more
7072 // warnings or errors on inner temporaries within this one's initializer.
7073 return false;
7074 };
7075
7076 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7077 if (Init->isGLValue())
7078 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7079 TemporaryVisitor);
7080 else
7081 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7082}
7083
7084static void DiagnoseNarrowingInInitList(Sema &S,
7085 const ImplicitConversionSequence &ICS,
7086 QualType PreNarrowingType,
7087 QualType EntityType,
7088 const Expr *PostInit);
7089
7090/// Provide warnings when std::move is used on construction.
7091static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7092 bool IsReturnStmt) {
7093 if (!InitExpr)
7094 return;
7095
7096 if (S.inTemplateInstantiation())
7097 return;
7098
7099 QualType DestType = InitExpr->getType();
7100 if (!DestType->isRecordType())
7101 return;
7102
7103 unsigned DiagID = 0;
7104 if (IsReturnStmt) {
7105 const CXXConstructExpr *CCE =
7106 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7107 if (!CCE || CCE->getNumArgs() != 1)
7108 return;
7109
7110 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7111 return;
7112
7113 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7114 }
7115
7116 // Find the std::move call and get the argument.
7117 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7118 if (!CE || !CE->isCallToStdMove())
7119 return;
7120
7121 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7122
7123 if (IsReturnStmt) {
7124 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7125 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7126 return;
7127
7128 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7129 if (!VD || !VD->hasLocalStorage())
7130 return;
7131
7132 // __block variables are not moved implicitly.
7133 if (VD->hasAttr<BlocksAttr>())
7134 return;
7135
7136 QualType SourceType = VD->getType();
7137 if (!SourceType->isRecordType())
7138 return;
7139
7140 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7141 return;
7142 }
7143
7144 // If we're returning a function parameter, copy elision
7145 // is not possible.
7146 if (isa<ParmVarDecl>(VD))
7147 DiagID = diag::warn_redundant_move_on_return;
7148 else
7149 DiagID = diag::warn_pessimizing_move_on_return;
7150 } else {
7151 DiagID = diag::warn_pessimizing_move_on_initialization;
7152 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7153 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7154 return;
7155 }
7156
7157 S.Diag(CE->getBeginLoc(), DiagID);
7158
7159 // Get all the locations for a fix-it. Don't emit the fix-it if any location
7160 // is within a macro.
7161 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7162 if (CallBegin.isMacroID())
7163 return;
7164 SourceLocation RParen = CE->getRParenLoc();
7165 if (RParen.isMacroID())
7166 return;
7167 SourceLocation LParen;
7168 SourceLocation ArgLoc = Arg->getBeginLoc();
7169
7170 // Special testing for the argument location. Since the fix-it needs the
7171 // location right before the argument, the argument location can be in a
7172 // macro only if it is at the beginning of the macro.
7173 while (ArgLoc.isMacroID() &&
7174 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7175 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7176 }
7177
7178 if (LParen.isMacroID())
7179 return;
7180
7181 LParen = ArgLoc.getLocWithOffset(-1);
7182
7183 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7184 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7185 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7186}
7187
7188static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7189 // Check to see if we are dereferencing a null pointer. If so, this is
7190 // undefined behavior, so warn about it. This only handles the pattern
7191 // "*null", which is a very syntactic check.
7192 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7193 if (UO->getOpcode() == UO_Deref &&
7194 UO->getSubExpr()->IgnoreParenCasts()->
7195 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7196 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7197 S.PDiag(diag::warn_binding_null_to_reference)
7198 << UO->getSubExpr()->getSourceRange());
7199 }
7200}
7201
7202MaterializeTemporaryExpr *
7203Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7204 bool BoundToLvalueReference) {
7205 auto MTE = new (Context)
7206 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7207
7208 // Order an ExprWithCleanups for lifetime marks.
7209 //
7210 // TODO: It'll be good to have a single place to check the access of the
7211 // destructor and generate ExprWithCleanups for various uses. Currently these
7212 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7213 // but there may be a chance to merge them.
7214 Cleanup.setExprNeedsCleanups(false);
7215 return MTE;
7216}
7217
7218ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7219 // In C++98, we don't want to implicitly create an xvalue.
7220 // FIXME: This means that AST consumers need to deal with "prvalues" that
7221 // denote materialized temporaries. Maybe we should add another ValueKind
7222 // for "xvalue pretending to be a prvalue" for C++98 support.
7223 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7224 return E;
7225
7226 // C++1z [conv.rval]/1: T shall be a complete type.
7227 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7228 // If so, we should check for a non-abstract class type here too.
7229 QualType T = E->getType();
7230 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7231 return ExprError();
7232
7233 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7234}
7235
7236ExprResult
7237InitializationSequence::Perform(Sema &S,
7238 const InitializedEntity &Entity,
7239 const InitializationKind &Kind,
7240 MultiExprArg Args,
7241 QualType *ResultType) {
7242 if (Failed()) {
7243 Diagnose(S, Entity, Kind, Args);
7244 return ExprError();
7245 }
7246 if (!ZeroInitializationFixit.empty()) {
7247 unsigned DiagID = diag::err_default_init_const;
7248 if (Decl *D = Entity.getDecl())
7249 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7250 DiagID = diag::ext_default_init_const;
7251
7252 // The initialization would have succeeded with this fixit. Since the fixit
7253 // is on the error, we need to build a valid AST in this case, so this isn't
7254 // handled in the Failed() branch above.
7255 QualType DestType = Entity.getType();
7256 S.Diag(Kind.getLocation(), DiagID)
7257 << DestType << (bool)DestType->getAs<RecordType>()
7258 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7259 ZeroInitializationFixit);
7260 }
7261
7262 if (getKind() == DependentSequence) {
7263 // If the declaration is a non-dependent, incomplete array type
7264 // that has an initializer, then its type will be completed once
7265 // the initializer is instantiated.
7266 if (ResultType && !Entity.getType()->isDependentType() &&
7267 Args.size() == 1) {
7268 QualType DeclType = Entity.getType();
7269 if (const IncompleteArrayType *ArrayT
7270 = S.Context.getAsIncompleteArrayType(DeclType)) {
7271 // FIXME: We don't currently have the ability to accurately
7272 // compute the length of an initializer list without
7273 // performing full type-checking of the initializer list
7274 // (since we have to determine where braces are implicitly
7275 // introduced and such). So, we fall back to making the array
7276 // type a dependently-sized array type with no specified
7277 // bound.
7278 if (isa<InitListExpr>((Expr *)Args[0])) {
7279 SourceRange Brackets;
7280
7281 // Scavange the location of the brackets from the entity, if we can.
7282 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7283 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7284 TypeLoc TL = TInfo->getTypeLoc();
7285 if (IncompleteArrayTypeLoc ArrayLoc =
7286 TL.getAs<IncompleteArrayTypeLoc>())
7287 Brackets = ArrayLoc.getBracketsRange();
7288 }
7289 }
7290
7291 *ResultType
7292 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7293 /*NumElts=*/nullptr,
7294 ArrayT->getSizeModifier(),
7295 ArrayT->getIndexTypeCVRQualifiers(),
7296 Brackets);
7297 }
7298
7299 }
7300 }
7301 if (Kind.getKind() == InitializationKind::IK_Direct &&
7302 !Kind.isExplicitCast()) {
7303 // Rebuild the ParenListExpr.
7304 SourceRange ParenRange = Kind.getParenOrBraceRange();
7305 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7306 Args);
7307 }
7308 assert(Kind.getKind() == InitializationKind::IK_Copy ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7310, __PRETTY_FUNCTION__))
7309 Kind.isExplicitCast() ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7310, __PRETTY_FUNCTION__))
7310 Kind.getKind() == InitializationKind::IK_DirectList)((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7310, __PRETTY_FUNCTION__))
;
7311 return ExprResult(Args[0]);
7312 }
7313
7314 // No steps means no initialization.
7315 if (Steps.empty())
7316 return ExprResult((Expr *)nullptr);
7317
7318 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7319 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7320 !Entity.isParameterKind()) {
7321 // Produce a C++98 compatibility warning if we are initializing a reference
7322 // from an initializer list. For parameters, we produce a better warning
7323 // elsewhere.
7324 Expr *Init = Args[0];
7325 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7326 << Init->getSourceRange();
7327 }
7328
7329 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7330 QualType ETy = Entity.getType();
7331 Qualifiers TyQualifiers = ETy.getQualifiers();
7332 bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7333 TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7334
7335 if (S.getLangOpts().OpenCLVersion >= 200 &&
7336 ETy->isAtomicType() && !HasGlobalAS &&
7337 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7338 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7339 << 1
7340 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7341 return ExprError();
7342 }
7343
7344 QualType DestType = Entity.getType().getNonReferenceType();
7345 // FIXME: Ugly hack around the fact that Entity.getType() is not
7346 // the same as Entity.getDecl()->getType() in cases involving type merging,
7347 // and we want latter when it makes sense.
7348 if (ResultType)
7349 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7350 Entity.getType();
7351
7352 ExprResult CurInit((Expr *)nullptr);
7353 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7354
7355 // For initialization steps that start with a single initializer,
7356 // grab the only argument out the Args and place it into the "current"
7357 // initializer.
7358 switch (Steps.front().Kind) {
7359 case SK_ResolveAddressOfOverloadedFunction:
7360 case SK_CastDerivedToBaseRValue:
7361 case SK_CastDerivedToBaseXValue:
7362 case SK_CastDerivedToBaseLValue:
7363 case SK_BindReference:
7364 case SK_BindReferenceToTemporary:
7365 case SK_FinalCopy:
7366 case SK_ExtraneousCopyToTemporary:
7367 case SK_UserConversion:
7368 case SK_QualificationConversionLValue:
7369 case SK_QualificationConversionXValue:
7370 case SK_QualificationConversionRValue:
7371 case SK_AtomicConversion:
7372 case SK_LValueToRValue:
7373 case SK_ConversionSequence:
7374 case SK_ConversionSequenceNoNarrowing:
7375 case SK_ListInitialization:
7376 case SK_UnwrapInitList:
7377 case SK_RewrapInitList:
7378 case SK_CAssignment:
7379 case SK_StringInit:
7380 case SK_ObjCObjectConversion:
7381 case SK_ArrayLoopIndex:
7382 case SK_ArrayLoopInit:
7383 case SK_ArrayInit:
7384 case SK_GNUArrayInit:
7385 case SK_ParenthesizedArrayInit:
7386 case SK_PassByIndirectCopyRestore:
7387 case SK_PassByIndirectRestore:
7388 case SK_ProduceObjCObject:
7389 case SK_StdInitializerList:
7390 case SK_OCLSamplerInit:
7391 case SK_OCLZeroOpaqueType: {
7392 assert(Args.size() == 1)((Args.size() == 1) ? static_cast<void> (0) : __assert_fail
("Args.size() == 1", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7392, __PRETTY_FUNCTION__))
;
7393 CurInit = Args[0];
7394 if (!CurInit.get()) return ExprError();
7395 break;
7396 }
7397
7398 case SK_ConstructorInitialization:
7399 case SK_ConstructorInitializationFromList:
7400 case SK_StdInitializerListConstructorCall:
7401 case SK_ZeroInitialization:
7402 break;
7403 }
7404
7405 // Promote from an unevaluated context to an unevaluated list context in
7406 // C++11 list-initialization; we need to instantiate entities usable in
7407 // constant expressions here in order to perform narrowing checks =(
7408 EnterExpressionEvaluationContext Evaluated(
7409 S, EnterExpressionEvaluationContext::InitList,
7410 CurInit.get() && isa<InitListExpr>(CurInit.get()));
7411
7412 // C++ [class.abstract]p2:
7413 // no objects of an abstract class can be created except as subobjects
7414 // of a class derived from it
7415 auto checkAbstractType = [&](QualType T) -> bool {
7416 if (Entity.getKind() == InitializedEntity::EK_Base ||
7417 Entity.getKind() == InitializedEntity::EK_Delegating)
7418 return false;
7419 return S.RequireNonAbstractType(Kind.getLocation(), T,
7420 diag::err_allocation_of_abstract_type);
7421 };
7422
7423 // Walk through the computed steps for the initialization sequence,
7424 // performing the specified conversions along the way.
7425 bool ConstructorInitRequiresZeroInit = false;
7426 for (step_iterator Step = step_begin(), StepEnd = step_end();
7427 Step != StepEnd; ++Step) {
7428 if (CurInit.isInvalid())
7429 return ExprError();
7430
7431 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7432
7433 switch (Step->Kind) {
7434 case SK_ResolveAddressOfOverloadedFunction:
7435 // Overload resolution determined which function invoke; update the
7436 // initializer to reflect that choice.
7437 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7438 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7439 return ExprError();
7440 CurInit = S.FixOverloadedFunctionReference(CurInit,
7441 Step->Function.FoundDecl,
7442 Step->Function.Function);
7443 break;
7444
7445 case SK_CastDerivedToBaseRValue:
7446 case SK_CastDerivedToBaseXValue:
7447 case SK_CastDerivedToBaseLValue: {
7448 // We have a derived-to-base cast that produces either an rvalue or an
7449 // lvalue. Perform that cast.
7450
7451 CXXCastPath BasePath;
7452
7453 // Casts to inaccessible base classes are allowed with C-style casts.
7454 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7455 if (S.CheckDerivedToBaseConversion(
7456 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7457 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7458 return ExprError();
7459
7460 ExprValueKind VK =
7461 Step->Kind == SK_CastDerivedToBaseLValue ?
7462 VK_LValue :
7463 (Step->Kind == SK_CastDerivedToBaseXValue ?
7464 VK_XValue :
7465 VK_RValue);
7466 CurInit =
7467 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7468 CurInit.get(), &BasePath, VK);
7469 break;
7470 }
7471
7472 case SK_BindReference:
7473 // Reference binding does not have any corresponding ASTs.
7474
7475 // Check exception specifications
7476 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7477 return ExprError();
7478
7479 // We don't check for e.g. function pointers here, since address
7480 // availability checks should only occur when the function first decays
7481 // into a pointer or reference.
7482 if (CurInit.get()->getType()->isFunctionProtoType()) {
7483 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7484 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7485 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7486 DRE->getBeginLoc()))
7487 return ExprError();
7488 }
7489 }
7490 }
7491
7492 CheckForNullPointerDereference(S, CurInit.get());
7493 break;
7494
7495 case SK_BindReferenceToTemporary: {
7496 // Make sure the "temporary" is actually an rvalue.
7497 assert(CurInit.get()->isRValue() && "not a temporary")((CurInit.get()->isRValue() && "not a temporary") ?
static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7497, __PRETTY_FUNCTION__))
;
7498
7499 // Check exception specifications
7500 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7501 return ExprError();
7502
7503 // Materialize the temporary into memory.
7504 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7505 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7506 CurInit = MTE;
7507
7508 // If we're extending this temporary to automatic storage duration -- we
7509 // need to register its cleanup during the full-expression's cleanups.
7510 if (MTE->getStorageDuration() == SD_Automatic &&
7511 MTE->getType().isDestructedType())
7512 S.Cleanup.setExprNeedsCleanups(true);
7513 break;
7514 }
7515
7516 case SK_FinalCopy:
7517 if (checkAbstractType(Step->Type))
7518 return ExprError();
7519
7520 // If the overall initialization is initializing a temporary, we already
7521 // bound our argument if it was necessary to do so. If not (if we're
7522 // ultimately initializing a non-temporary), our argument needs to be
7523 // bound since it's initializing a function parameter.
7524 // FIXME: This is a mess. Rationalize temporary destruction.
7525 if (!shouldBindAsTemporary(Entity))
7526 CurInit = S.MaybeBindToTemporary(CurInit.get());
7527 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7528 /*IsExtraneousCopy=*/false);
7529 break;
7530
7531 case SK_ExtraneousCopyToTemporary:
7532 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7533 /*IsExtraneousCopy=*/true);
7534 break;
7535
7536 case SK_UserConversion: {
7537 // We have a user-defined conversion that invokes either a constructor
7538 // or a conversion function.
7539 CastKind CastKind;
7540 FunctionDecl *Fn = Step->Function.Function;
7541 DeclAccessPair FoundFn = Step->Function.FoundDecl;
7542 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7543 bool CreatedObject = false;
7544 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7545 // Build a call to the selected constructor.
7546 SmallVector<Expr*, 8> ConstructorArgs;
7547 SourceLocation Loc = CurInit.get()->getBeginLoc();
7548
7549 // Determine the arguments required to actually perform the constructor
7550 // call.
7551 Expr *Arg = CurInit.get();
7552 if (S.CompleteConstructorCall(Constructor,
7553 MultiExprArg(&Arg, 1),
7554 Loc, ConstructorArgs))
7555 return ExprError();
7556
7557 // Build an expression that constructs a temporary.
7558 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7559 FoundFn, Constructor,
7560 ConstructorArgs,
7561 HadMultipleCandidates,
7562 /*ListInit*/ false,
7563 /*StdInitListInit*/ false,
7564 /*ZeroInit*/ false,
7565 CXXConstructExpr::CK_Complete,
7566 SourceRange());
7567 if (CurInit.isInvalid())
7568 return ExprError();
7569
7570 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7571 Entity);
7572 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7573 return ExprError();
7574
7575 CastKind = CK_ConstructorConversion;
7576 CreatedObject = true;
7577 } else {
7578 // Build a call to the conversion function.
7579 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7580 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7581 FoundFn);
7582 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7583 return ExprError();
7584
7585 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7586 HadMultipleCandidates);
7587 if (CurInit.isInvalid())
7588 return ExprError();
7589
7590 CastKind = CK_UserDefinedConversion;
7591 CreatedObject = Conversion->getReturnType()->isRecordType();
7592 }
7593
7594 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7595 return ExprError();
7596
7597 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7598 CastKind, CurInit.get(), nullptr,
7599 CurInit.get()->getValueKind());
7600
7601 if (shouldBindAsTemporary(Entity))
7602 // The overall entity is temporary, so this expression should be
7603 // destroyed at the end of its full-expression.
7604 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7605 else if (CreatedObject && shouldDestroyEntity(Entity)) {
7606 // The object outlasts the full-expression, but we need to prepare for
7607 // a destructor being run on it.
7608 // FIXME: It makes no sense to do this here. This should happen
7609 // regardless of how we initialized the entity.
7610 QualType T = CurInit.get()->getType();
7611 if (const RecordType *Record = T->getAs<RecordType>()) {
7612 CXXDestructorDecl *Destructor
7613 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7614 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7615 S.PDiag(diag::err_access_dtor_temp) << T);
7616 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7617 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7618 return ExprError();
7619 }
7620 }
7621 break;
7622 }
7623
7624 case SK_QualificationConversionLValue:
7625 case SK_QualificationConversionXValue:
7626 case SK_QualificationConversionRValue: {
7627 // Perform a qualification conversion; these can never go wrong.
7628 ExprValueKind VK =
7629 Step->Kind == SK_QualificationConversionLValue ?
7630 VK_LValue :
7631 (Step->Kind == SK_QualificationConversionXValue ?
7632 VK_XValue :
7633 VK_RValue);
7634 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
7635 break;
7636 }
7637
7638 case SK_AtomicConversion: {
7639 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")((CurInit.get()->isRValue() && "cannot convert glvalue to atomic"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7639, __PRETTY_FUNCTION__))
;
7640 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7641 CK_NonAtomicToAtomic, VK_RValue);
7642 break;
7643 }
7644
7645 case SK_LValueToRValue: {
7646 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue")((CurInit.get()->isGLValue() && "cannot load from a prvalue"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isGLValue() && \"cannot load from a prvalue\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7646, __PRETTY_FUNCTION__))
;
7647 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7648 CK_LValueToRValue, CurInit.get(),
7649 /*BasePath=*/nullptr, VK_RValue);
7650 break;
7651 }
7652
7653 case SK_ConversionSequence:
7654 case SK_ConversionSequenceNoNarrowing: {
7655 Sema::CheckedConversionKind CCK
7656 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7657 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7658 : Kind.isExplicitCast()? Sema::CCK_OtherCast
7659 : Sema::CCK_ImplicitConversion;
7660 ExprResult CurInitExprRes =
7661 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7662 getAssignmentAction(Entity), CCK);
7663 if (CurInitExprRes.isInvalid())
7664 return ExprError();
7665
7666 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7667
7668 CurInit = CurInitExprRes;
7669
7670 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7671 S.getLangOpts().CPlusPlus)
7672 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7673 CurInit.get());
7674
7675 break;
7676 }
7677
7678 case SK_ListInitialization: {
7679 if (checkAbstractType(Step->Type))
7680 return ExprError();
7681
7682 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7683 // If we're not initializing the top-level entity, we need to create an
7684 // InitializeTemporary entity for our target type.
7685 QualType Ty = Step->Type;
7686 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7687 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7688 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7689 InitListChecker PerformInitList(S, InitEntity,
7690 InitList, Ty, /*VerifyOnly=*/false,
7691 /*TreatUnavailableAsInvalid=*/false);
7692 if (PerformInitList.HadError())
7693 return ExprError();
7694
7695 // Hack: We must update *ResultType if available in order to set the
7696 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7697 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7698 if (ResultType &&
7699 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7700 if ((*ResultType)->isRValueReferenceType())
7701 Ty = S.Context.getRValueReferenceType(Ty);
7702 else if ((*ResultType)->isLValueReferenceType())
7703 Ty = S.Context.getLValueReferenceType(Ty,
7704 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7705 *ResultType = Ty;
7706 }
7707
7708 InitListExpr *StructuredInitList =
7709 PerformInitList.getFullyStructuredList();
7710 CurInit.get();
7711 CurInit = shouldBindAsTemporary(InitEntity)
7712 ? S.MaybeBindToTemporary(StructuredInitList)
7713 : StructuredInitList;
7714 break;
7715 }
7716
7717 case SK_ConstructorInitializationFromList: {
7718 if (checkAbstractType(Step->Type))
7719 return ExprError();
7720
7721 // When an initializer list is passed for a parameter of type "reference
7722 // to object", we don't get an EK_Temporary entity, but instead an
7723 // EK_Parameter entity with reference type.
7724 // FIXME: This is a hack. What we really should do is create a user
7725 // conversion step for this case, but this makes it considerably more
7726 // complicated. For now, this will do.
7727 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7728 Entity.getType().getNonReferenceType());
7729 bool UseTemporary = Entity.getType()->isReferenceType();
7730 assert(Args.size() == 1 && "expected a single argument for list init")((Args.size() == 1 && "expected a single argument for list init"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7730, __PRETTY_FUNCTION__))
;
7731 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7732 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7733 << InitList->getSourceRange();
7734 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7735 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7736 Entity,
7737 Kind, Arg, *Step,
7738 ConstructorInitRequiresZeroInit,
7739 /*IsListInitialization*/true,
7740 /*IsStdInitListInit*/false,
7741 InitList->getLBraceLoc(),
7742 InitList->getRBraceLoc());
7743 break;
7744 }
7745
7746 case SK_UnwrapInitList:
7747 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7748 break;
7749
7750 case SK_RewrapInitList: {
7751 Expr *E = CurInit.get();
7752 InitListExpr *Syntactic = Step->WrappingSyntacticList;
7753 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7754 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7755 ILE->setSyntacticForm(Syntactic);
7756 ILE->setType(E->getType());
7757 ILE->setValueKind(E->getValueKind());
7758 CurInit = ILE;
7759 break;
7760 }
7761
7762 case SK_ConstructorInitialization:
7763 case SK_StdInitializerListConstructorCall: {
7764 if (checkAbstractType(Step->Type))
7765 return ExprError();
7766
7767 // When an initializer list is passed for a parameter of type "reference
7768 // to object", we don't get an EK_Temporary entity, but instead an
7769 // EK_Parameter entity with reference type.
7770 // FIXME: This is a hack. What we really should do is create a user
7771 // conversion step for this case, but this makes it considerably more
7772 // complicated. For now, this will do.
7773 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7774 Entity.getType().getNonReferenceType());
7775 bool UseTemporary = Entity.getType()->isReferenceType();
7776 bool IsStdInitListInit =
7777 Step->Kind == SK_StdInitializerListConstructorCall;
7778 Expr *Source = CurInit.get();
7779 SourceRange Range = Kind.hasParenOrBraceRange()
7780 ? Kind.getParenOrBraceRange()
7781 : SourceRange();
7782 CurInit = PerformConstructorInitialization(
7783 S, UseTemporary ? TempEntity : Entity, Kind,
7784 Source ? MultiExprArg(Source) : Args, *Step,
7785 ConstructorInitRequiresZeroInit,
7786 /*IsListInitialization*/ IsStdInitListInit,
7787 /*IsStdInitListInitialization*/ IsStdInitListInit,
7788 /*LBraceLoc*/ Range.getBegin(),
7789 /*RBraceLoc*/ Range.getEnd());
7790 break;
7791 }
7792
7793 case SK_ZeroInitialization: {
7794 step_iterator NextStep = Step;
7795 ++NextStep;
7796 if (NextStep != StepEnd &&
7797 (NextStep->Kind == SK_ConstructorInitialization ||
7798 NextStep->Kind == SK_ConstructorInitializationFromList)) {
7799 // The need for zero-initialization is recorded directly into
7800 // the call to the object's constructor within the next step.
7801 ConstructorInitRequiresZeroInit = true;
7802 } else if (Kind.getKind() == InitializationKind::IK_Value &&
7803 S.getLangOpts().CPlusPlus &&
7804 !Kind.isImplicitValueInit()) {
7805 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7806 if (!TSInfo)
7807 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7808 Kind.getRange().getBegin());
7809
7810 CurInit = new (S.Context) CXXScalarValueInitExpr(
7811 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7812 Kind.getRange().getEnd());
7813 } else {
7814 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7815 }
7816 break;
7817 }
7818
7819 case SK_CAssignment: {
7820 QualType SourceType = CurInit.get()->getType();
7821 // Save off the initial CurInit in case we need to emit a diagnostic
7822 ExprResult InitialCurInit = CurInit;
7823 ExprResult Result = CurInit;
7824 Sema::AssignConvertType ConvTy =
7825 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7826 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7827 if (Result.isInvalid())
7828 return ExprError();
7829 CurInit = Result;
7830
7831 // If this is a call, allow conversion to a transparent union.
7832 ExprResult CurInitExprRes = CurInit;
7833 if (ConvTy != Sema::Compatible &&
7834 Entity.isParameterKind() &&
7835 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7836 == Sema::Compatible)
7837 ConvTy = Sema::Compatible;
7838 if (CurInitExprRes.isInvalid())
7839 return ExprError();
7840 CurInit = CurInitExprRes;
7841
7842 bool Complained;
7843 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7844 Step->Type, SourceType,
7845 InitialCurInit.get(),
7846 getAssignmentAction(Entity, true),
7847 &Complained)) {
7848 PrintInitLocationNote(S, Entity);
7849 return ExprError();
7850 } else if (Complained)
7851 PrintInitLocationNote(S, Entity);
7852 break;
7853 }
7854
7855 case SK_StringInit: {
7856 QualType Ty = Step->Type;
7857 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7858 S.Context.getAsArrayType(Ty), S);
7859 break;
7860 }
7861
7862 case SK_ObjCObjectConversion:
7863 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7864 CK_ObjCObjectLValueCast,
7865 CurInit.get()->getValueKind());
7866 break;
7867
7868 case SK_ArrayLoopIndex: {
7869 Expr *Cur = CurInit.get();
7870 Expr *BaseExpr = new (S.Context)
7871 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7872 Cur->getValueKind(), Cur->getObjectKind(), Cur);
7873 Expr *IndexExpr =
7874 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7875 CurInit = S.CreateBuiltinArraySubscriptExpr(
7876 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7877 ArrayLoopCommonExprs.push_back(BaseExpr);
7878 break;
7879 }
7880
7881 case SK_ArrayLoopInit: {
7882 assert(!ArrayLoopCommonExprs.empty() &&((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7883, __PRETTY_FUNCTION__))
7883 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7883, __PRETTY_FUNCTION__))
;
7884 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7885 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7886 CurInit.get());
7887 break;
7888 }
7889
7890 case SK_GNUArrayInit:
7891 // Okay: we checked everything before creating this step. Note that
7892 // this is a GNU extension.
7893 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7894 << Step->Type << CurInit.get()->getType()
7895 << CurInit.get()->getSourceRange();
7896 LLVM_FALLTHROUGH[[clang::fallthrough]];
7897 case SK_ArrayInit:
7898 // If the destination type is an incomplete array type, update the
7899 // type accordingly.
7900 if (ResultType) {
7901 if (const IncompleteArrayType *IncompleteDest
7902 = S.Context.getAsIncompleteArrayType(Step->Type)) {
7903 if (const ConstantArrayType *ConstantSource
7904 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7905 *ResultType = S.Context.getConstantArrayType(
7906 IncompleteDest->getElementType(),
7907 ConstantSource->getSize(),
7908 ArrayType::Normal, 0);
7909 }
7910 }
7911 }
7912 break;
7913
7914 case SK_ParenthesizedArrayInit:
7915 // Okay: we checked everything before creating this step. Note that
7916 // this is a GNU extension.
7917 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7918 << CurInit.get()->getSourceRange();
7919 break;
7920
7921 case SK_PassByIndirectCopyRestore:
7922 case SK_PassByIndirectRestore:
7923 checkIndirectCopyRestoreSource(S, CurInit.get());
7924 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7925 CurInit.get(), Step->Type,
7926 Step->Kind == SK_PassByIndirectCopyRestore);
7927 break;
7928
7929 case SK_ProduceObjCObject:
7930 CurInit =
7931 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7932 CurInit.get(), nullptr, VK_RValue);
7933 break;
7934
7935 case SK_StdInitializerList: {
7936 S.Diag(CurInit.get()->getExprLoc(),
7937 diag::warn_cxx98_compat_initializer_list_init)
7938 << CurInit.get()->getSourceRange();
7939
7940 // Materialize the temporary into memory.
7941 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7942 CurInit.get()->getType(), CurInit.get(),
7943 /*BoundToLvalueReference=*/false);
7944
7945 // Wrap it in a construction of a std::initializer_list<T>.
7946 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7947
7948 // Bind the result, in case the library has given initializer_list a
7949 // non-trivial destructor.
7950 if (shouldBindAsTemporary(Entity))
7951 CurInit = S.MaybeBindToTemporary(CurInit.get());
7952 break;
7953 }
7954
7955 case SK_OCLSamplerInit: {
7956 // Sampler initialzation have 5 cases:
7957 // 1. function argument passing
7958 // 1a. argument is a file-scope variable
7959 // 1b. argument is a function-scope variable
7960 // 1c. argument is one of caller function's parameters
7961 // 2. variable initialization
7962 // 2a. initializing a file-scope variable
7963 // 2b. initializing a function-scope variable
7964 //
7965 // For file-scope variables, since they cannot be initialized by function
7966 // call of __translate_sampler_initializer in LLVM IR, their references
7967 // need to be replaced by a cast from their literal initializers to
7968 // sampler type. Since sampler variables can only be used in function
7969 // calls as arguments, we only need to replace them when handling the
7970 // argument passing.
7971 assert(Step->Type->isSamplerT() &&((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7972, __PRETTY_FUNCTION__))
7972 "Sampler initialization on non-sampler type.")((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 7972, __PRETTY_FUNCTION__))
;
7973 Expr *Init = CurInit.get();
7974 QualType SourceType = Init->getType();
7975 // Case 1
7976 if (Entity.isParameterKind()) {
7977 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
7978 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7979 << SourceType;
7980 break;
7981 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7982 auto Var = cast<VarDecl>(DRE->getDecl());
7983 // Case 1b and 1c
7984 // No cast from integer to sampler is needed.
7985 if (!Var->hasGlobalStorage()) {
7986 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7987 CK_LValueToRValue, Init,
7988 /*BasePath=*/nullptr, VK_RValue);
7989 break;
7990 }
7991 // Case 1a
7992 // For function call with a file-scope sampler variable as argument,
7993 // get the integer literal.
7994 // Do not diagnose if the file-scope variable does not have initializer
7995 // since this has already been diagnosed when parsing the variable
7996 // declaration.
7997 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7998 break;
7999 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8000 Var->getInit()))->getSubExpr();
8001 SourceType = Init->getType();
8002 }
8003 } else {
8004 // Case 2
8005 // Check initializer is 32 bit integer constant.
8006 // If the initializer is taken from global variable, do not diagnose since
8007 // this has already been done when parsing the variable declaration.
8008 if (!Init->isConstantInitializer(S.Context, false))
8009 break;
8010
8011 if (!SourceType->isIntegerType() ||
8012 32 != S.Context.getIntWidth(SourceType)) {
8013 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8014 << SourceType;
8015 break;
8016 }
8017
8018 llvm::APSInt Result;
8019 Init->EvaluateAsInt(Result, S.Context);
8020 const uint64_t SamplerValue = Result.getLimitedValue();
8021 // 32-bit value of sampler's initializer is interpreted as
8022 // bit-field with the following structure:
8023 // |unspecified|Filter|Addressing Mode| Normalized Coords|
8024 // |31 6|5 4|3 1| 0|
8025 // This structure corresponds to enum values of sampler properties
8026 // defined in SPIR spec v1.2 and also opencl-c.h
8027 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
8028 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
8029 if (FilterMode != 1 && FilterMode != 2)
8030 S.Diag(Kind.getLocation(),
8031 diag::warn_sampler_initializer_invalid_bits)
8032 << "Filter Mode";
8033 if (AddressingMode > 4)
8034 S.Diag(Kind.getLocation(),
8035 diag::warn_sampler_initializer_invalid_bits)
8036 << "Addressing Mode";
8037 }
8038
8039 // Cases 1a, 2a and 2b
8040 // Insert cast from integer to sampler.
8041 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8042 CK_IntToOCLSampler);
8043 break;
8044 }
8045 case SK_OCLZeroOpaqueType: {
8046 assert((Step->Type->isEventT() || Step->Type->isQueueT()) &&(((Step->Type->isEventT() || Step->Type->isQueueT
()) && "Wrong type for initialization of OpenCL opaque type."
) ? static_cast<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8047, __PRETTY_FUNCTION__))
8047 "Wrong type for initialization of OpenCL opaque type.")(((Step->Type->isEventT() || Step->Type->isQueueT
()) && "Wrong type for initialization of OpenCL opaque type."
) ? static_cast<void> (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8047, __PRETTY_FUNCTION__))
;
8048
8049 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8050 CK_ZeroToOCLOpaqueType,
8051 CurInit.get()->getValueKind());
8052 break;
8053 }
8054 }
8055 }
8056
8057 // Check whether the initializer has a shorter lifetime than the initialized
8058 // entity, and if not, either lifetime-extend or warn as appropriate.
8059 if (auto *Init = CurInit.get())
8060 S.checkInitializerLifetime(Entity, Init);
8061
8062 // Diagnose non-fatal problems with the completed initialization.
8063 if (Entity.getKind() == InitializedEntity::EK_Member &&
8064 cast<FieldDecl>(Entity.getDecl())->isBitField())
8065 S.CheckBitFieldInitialization(Kind.getLocation(),
8066 cast<FieldDecl>(Entity.getDecl()),
8067 CurInit.get());
8068
8069 // Check for std::move on construction.
8070 if (const Expr *E = CurInit.get()) {
8071 CheckMoveOnConstruction(S, E,
8072 Entity.getKind() == InitializedEntity::EK_Result);
8073 }
8074
8075 return CurInit;
8076}
8077
8078/// Somewhere within T there is an uninitialized reference subobject.
8079/// Dig it out and diagnose it.
8080static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8081 QualType T) {
8082 if (T->isReferenceType()) {
8083 S.Diag(Loc, diag::err_reference_without_init)
8084 << T.getNonReferenceType();
8085 return true;
8086 }
8087
8088 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8089 if (!RD || !RD->hasUninitializedReferenceMember())
8090 return false;
8091
8092 for (const auto *FI : RD->fields()) {
8093 if (FI->isUnnamedBitfield())
8094 continue;
8095
8096 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8097 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8098 return true;
8099 }
8100 }
8101
8102 for (const auto &BI : RD->bases()) {
8103 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8104 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8105 return true;
8106 }
8107 }
8108
8109 return false;
8110}
8111
8112
8113//===----------------------------------------------------------------------===//
8114// Diagnose initialization failures
8115//===----------------------------------------------------------------------===//
8116
8117/// Emit notes associated with an initialization that failed due to a
8118/// "simple" conversion failure.
8119static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8120 Expr *op) {
8121 QualType destType = entity.getType();
8122 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8123 op->getType()->isObjCObjectPointerType()) {
8124
8125 // Emit a possible note about the conversion failing because the
8126 // operand is a message send with a related result type.
8127 S.EmitRelatedResultTypeNote(op);
8128
8129 // Emit a possible note about a return failing because we're
8130 // expecting a related result type.
8131 if (entity.getKind() == InitializedEntity::EK_Result)
8132 S.EmitRelatedResultTypeNoteForReturn(destType);
8133 }
8134}
8135
8136static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8137 InitListExpr *InitList) {
8138 QualType DestType = Entity.getType();
8139
8140 QualType E;
8141 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8142 QualType ArrayType = S.Context.getConstantArrayType(
8143 E.withConst(),
8144 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8145 InitList->getNumInits()),
8146 clang::ArrayType::Normal, 0);
8147 InitializedEntity HiddenArray =
8148 InitializedEntity::InitializeTemporary(ArrayType);
8149 return diagnoseListInit(S, HiddenArray, InitList);
8150 }
8151
8152 if (DestType->isReferenceType()) {
8153 // A list-initialization failure for a reference means that we tried to
8154 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8155 // inner initialization failed.
8156 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8157 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8158 SourceLocation Loc = InitList->getBeginLoc();
8159 if (auto *D = Entity.getDecl())
8160 Loc = D->getLocation();
8161 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8162 return;
8163 }
8164
8165 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8166 /*VerifyOnly=*/false,
8167 /*TreatUnavailableAsInvalid=*/false);
8168 assert(DiagnoseInitList.HadError() &&((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8169, __PRETTY_FUNCTION__))
8169 "Inconsistent init list check result.")((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8169, __PRETTY_FUNCTION__))
;
8170}
8171
8172bool InitializationSequence::Diagnose(Sema &S,
8173 const InitializedEntity &Entity,
8174 const InitializationKind &Kind,
8175 ArrayRef<Expr *> Args) {
8176 if (!Failed())
1
Taking false branch
8177 return false;
8178
8179 // When we want to diagnose only one element of a braced-init-list,
8180 // we need to factor it out.
8181 Expr *OnlyArg;
8182 if (Args.size() == 1) {
2
Assuming the condition is false
3
Taking false branch
8183 auto *List = dyn_cast<InitListExpr>(Args[0]);
8184 if (List && List->getNumInits() == 1)
8185 OnlyArg = List->getInit(0);
8186 else
8187 OnlyArg = Args[0];
8188 }
8189 else
8190 OnlyArg = nullptr;
4
Null pointer value stored to 'OnlyArg'
8191
8192 QualType DestType = Entity.getType();
8193 switch (Failure) {
5
Control jumps to 'case FK_ConversionFailed:' at line 8396
8194 case FK_TooManyInitsForReference:
8195 // FIXME: Customize for the initialized entity?
8196 if (Args.empty()) {
8197 // Dig out the reference subobject which is uninitialized and diagnose it.
8198 // If this is value-initialization, this could be nested some way within
8199 // the target type.
8200 assert(Kind.getKind() == InitializationKind::IK_Value ||((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8201, __PRETTY_FUNCTION__))
8201 DestType->isReferenceType())((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8201, __PRETTY_FUNCTION__))
;
8202 bool Diagnosed =
8203 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8204 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8204, __PRETTY_FUNCTION__))
;
8205 (void)Diagnosed;
8206 } else // FIXME: diagnostic below could be better!
8207 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8208 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8209 break;
8210 case FK_ParenthesizedListInitForReference:
8211 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8212 << 1 << Entity.getType() << Args[0]->getSourceRange();
8213 break;
8214
8215 case FK_ArrayNeedsInitList:
8216 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8217 break;
8218 case FK_ArrayNeedsInitListOrStringLiteral:
8219 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8220 break;
8221 case FK_ArrayNeedsInitListOrWideStringLiteral:
8222 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8223 break;
8224 case FK_NarrowStringIntoWideCharArray:
8225 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8226 break;
8227 case FK_WideStringIntoCharArray:
8228 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8229 break;
8230 case FK_IncompatWideStringIntoWideChar:
8231 S.Diag(Kind.getLocation(),
8232 diag::err_array_init_incompat_wide_string_into_wchar);
8233 break;
8234 case FK_PlainStringIntoUTF8Char:
8235 S.Diag(Kind.getLocation(),
8236 diag::err_array_init_plain_string_into_char8_t);
8237 S.Diag(Args.front()->getBeginLoc(),
8238 diag::note_array_init_plain_string_into_char8_t)
8239 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8240 break;
8241 case FK_UTF8StringIntoPlainChar:
8242 S.Diag(Kind.getLocation(),
8243 diag::err_array_init_utf8_string_into_char);
8244 break;
8245 case FK_ArrayTypeMismatch:
8246 case FK_NonConstantArrayInit:
8247 S.Diag(Kind.getLocation(),
8248 (Failure == FK_ArrayTypeMismatch
8249 ? diag::err_array_init_different_type
8250 : diag::err_array_init_non_constant_array))
8251 << DestType.getNonReferenceType()
8252 << OnlyArg->getType()
8253 << Args[0]->getSourceRange();
8254 break;
8255
8256 case FK_VariableLengthArrayHasInitializer:
8257 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8258 << Args[0]->getSourceRange();
8259 break;
8260
8261 case FK_AddressOfOverloadFailed: {
8262 DeclAccessPair Found;
8263 S.ResolveAddressOfOverloadedFunction(OnlyArg,
8264 DestType.getNonReferenceType(),
8265 true,
8266 Found);
8267 break;
8268 }
8269
8270 case FK_AddressOfUnaddressableFunction: {
8271 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8272 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8273 OnlyArg->getBeginLoc());
8274 break;
8275 }
8276
8277 case FK_ReferenceInitOverloadFailed:
8278 case FK_UserConversionOverloadFailed:
8279 switch (FailedOverloadResult) {
8280 case OR_Ambiguous:
8281 if (Failure == FK_UserConversionOverloadFailed)
8282 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8283 << OnlyArg->getType() << DestType
8284 << Args[0]->getSourceRange();
8285 else
8286 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8287 << DestType << OnlyArg->getType()
8288 << Args[0]->getSourceRange();
8289
8290 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8291 break;
8292
8293 case OR_No_Viable_Function:
8294 if (!S.RequireCompleteType(Kind.getLocation(),
8295 DestType.getNonReferenceType(),
8296 diag::err_typecheck_nonviable_condition_incomplete,
8297 OnlyArg->getType(), Args[0]->getSourceRange()))
8298 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8299 << (Entity.getKind() == InitializedEntity::EK_Result)
8300 << OnlyArg->getType() << Args[0]->getSourceRange()
8301 << DestType.getNonReferenceType();
8302
8303 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8304 break;
8305
8306 case OR_Deleted: {
8307 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8308 << OnlyArg->getType() << DestType.getNonReferenceType()
8309 << Args[0]->getSourceRange();
8310 OverloadCandidateSet::iterator Best;
8311 OverloadingResult Ovl
8312 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8313 if (Ovl == OR_Deleted) {
8314 S.NoteDeletedFunction(Best->Function);
8315 } else {
8316 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8316)
;
8317 }
8318 break;
8319 }
8320
8321 case OR_Success:
8322 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8322)
;
8323 }
8324 break;
8325
8326 case FK_NonConstLValueReferenceBindingToTemporary:
8327 if (isa<InitListExpr>(Args[0])) {
8328 S.Diag(Kind.getLocation(),
8329 diag::err_lvalue_reference_bind_to_initlist)
8330 << DestType.getNonReferenceType().isVolatileQualified()
8331 << DestType.getNonReferenceType()
8332 << Args[0]->getSourceRange();
8333 break;
8334 }
8335 LLVM_FALLTHROUGH[[clang::fallthrough]];
8336
8337 case FK_NonConstLValueReferenceBindingToUnrelated:
8338 S.Diag(Kind.getLocation(),
8339 Failure == FK_NonConstLValueReferenceBindingToTemporary
8340 ? diag::err_lvalue_reference_bind_to_temporary
8341 : diag::err_lvalue_reference_bind_to_unrelated)
8342 << DestType.getNonReferenceType().isVolatileQualified()
8343 << DestType.getNonReferenceType()
8344 << OnlyArg->getType()
8345 << Args[0]->getSourceRange();
8346 break;
8347
8348 case FK_NonConstLValueReferenceBindingToBitfield: {
8349 // We don't necessarily have an unambiguous source bit-field.
8350 FieldDecl *BitField = Args[0]->getSourceBitField();
8351 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8352 << DestType.isVolatileQualified()
8353 << (BitField ? BitField->getDeclName() : DeclarationName())
8354 << (BitField != nullptr)
8355 << Args[0]->getSourceRange();
8356 if (BitField)
8357 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8358 break;
8359 }
8360
8361 case FK_NonConstLValueReferenceBindingToVectorElement:
8362 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8363 << DestType.isVolatileQualified()
8364 << Args[0]->getSourceRange();
8365 break;
8366
8367 case FK_RValueReferenceBindingToLValue:
8368 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8369 << DestType.getNonReferenceType() << OnlyArg->getType()
8370 << Args[0]->getSourceRange();
8371 break;
8372
8373 case FK_ReferenceInitDropsQualifiers: {
8374 QualType SourceType = OnlyArg->getType();
8375 QualType NonRefType = DestType.getNonReferenceType();
8376 Qualifiers DroppedQualifiers =
8377 SourceType.getQualifiers() - NonRefType.getQualifiers();
8378
8379 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8380 << SourceType
8381 << NonRefType
8382 << DroppedQualifiers.getCVRQualifiers()
8383 << Args[0]->getSourceRange();
8384 break;
8385 }
8386
8387 case FK_ReferenceInitFailed:
8388 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8389 << DestType.getNonReferenceType()
8390 << OnlyArg->isLValue()
8391 << OnlyArg->getType()
8392 << Args[0]->getSourceRange();
8393 emitBadConversionNotes(S, Entity, Args[0]);
8394 break;
8395
8396 case FK_ConversionFailed: {
8397 QualType FromType = OnlyArg->getType();
6
Called C++ object pointer is null
8398 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8399 << (int)Entity.getKind()
8400 << DestType
8401 << OnlyArg->isLValue()
8402 << FromType
8403 << Args[0]->getSourceRange();
8404 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8405 S.Diag(Kind.getLocation(), PDiag);
8406 emitBadConversionNotes(S, Entity, Args[0]);
8407 break;
8408 }
8409
8410 case FK_ConversionFromPropertyFailed:
8411 // No-op. This error has already been reported.
8412 break;
8413
8414 case FK_TooManyInitsForScalar: {
8415 SourceRange R;
8416
8417 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8418 if (InitList && InitList->getNumInits() >= 1) {
8419 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8420 } else {
8421 assert(Args.size() > 1 && "Expected multiple initializers!")((Args.size() > 1 && "Expected multiple initializers!"
) ? static_cast<void> (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8421, __PRETTY_FUNCTION__))
;
8422 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8423 }
8424
8425 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8426 if (Kind.isCStyleOrFunctionalCast())
8427 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8428 << R;
8429 else
8430 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8431 << /*scalar=*/2 << R;
8432 break;
8433 }
8434
8435 case FK_ParenthesizedListInitForScalar:
8436 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8437 << 0 << Entity.getType() << Args[0]->getSourceRange();
8438 break;
8439
8440 case FK_ReferenceBindingToInitList:
8441 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8442 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8443 break;
8444
8445 case FK_InitListBadDestinationType:
8446 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8447 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8448 break;
8449
8450 case FK_ListConstructorOverloadFailed:
8451 case FK_ConstructorOverloadFailed: {
8452 SourceRange ArgsRange;
8453 if (Args.size())
8454 ArgsRange =
8455 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8456
8457 if (Failure == FK_ListConstructorOverloadFailed) {
8458 assert(Args.size() == 1 &&((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8459, __PRETTY_FUNCTION__))
8459 "List construction from other than 1 argument.")((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8459, __PRETTY_FUNCTION__))
;
8460 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8461 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8462 }
8463
8464 // FIXME: Using "DestType" for the entity we're printing is probably
8465 // bad.
8466 switch (FailedOverloadResult) {
8467 case OR_Ambiguous:
8468 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8469 << DestType << ArgsRange;
8470 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8471 break;
8472
8473 case OR_No_Viable_Function:
8474 if (Kind.getKind() == InitializationKind::IK_Default &&
8475 (Entity.getKind() == InitializedEntity::EK_Base ||
8476 Entity.getKind() == InitializedEntity::EK_Member) &&
8477 isa<CXXConstructorDecl>(S.CurContext)) {
8478 // This is implicit default initialization of a member or
8479 // base within a constructor. If no viable function was
8480 // found, notify the user that they need to explicitly
8481 // initialize this base/member.
8482 CXXConstructorDecl *Constructor
8483 = cast<CXXConstructorDecl>(S.CurContext);
8484 const CXXRecordDecl *InheritedFrom = nullptr;
8485 if (auto Inherited = Constructor->getInheritedConstructor())
8486 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8487 if (Entity.getKind() == InitializedEntity::EK_Base) {
8488 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8489 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8490 << S.Context.getTypeDeclType(Constructor->getParent())
8491 << /*base=*/0
8492 << Entity.getType()
8493 << InheritedFrom;
8494
8495 RecordDecl *BaseDecl
8496 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8497 ->getDecl();
8498 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8499 << S.Context.getTagDeclType(BaseDecl);
8500 } else {
8501 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8502 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8503 << S.Context.getTypeDeclType(Constructor->getParent())
8504 << /*member=*/1
8505 << Entity.getName()
8506 << InheritedFrom;
8507 S.Diag(Entity.getDecl()->getLocation(),
8508 diag::note_member_declared_at);
8509
8510 if (const RecordType *Record
8511 = Entity.getType()->getAs<RecordType>())
8512 S.Diag(Record->getDecl()->getLocation(),
8513 diag::note_previous_decl)
8514 << S.Context.getTagDeclType(Record->getDecl());
8515 }
8516 break;
8517 }
8518
8519 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8520 << DestType << ArgsRange;
8521 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8522 break;
8523
8524 case OR_Deleted: {
8525 OverloadCandidateSet::iterator Best;
8526 OverloadingResult Ovl
8527 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8528 if (Ovl != OR_Deleted) {
8529 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8530 << true << DestType << ArgsRange;
8531 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8531)
;
8532 break;
8533 }
8534
8535 // If this is a defaulted or implicitly-declared function, then
8536 // it was implicitly deleted. Make it clear that the deletion was
8537 // implicit.
8538 if (S.isImplicitlyDeleted(Best->Function))
8539 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8540 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8541 << DestType << ArgsRange;
8542 else
8543 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8544 << true << DestType << ArgsRange;
8545
8546 S.NoteDeletedFunction(Best->Function);
8547 break;
8548 }
8549
8550 case OR_Success:
8551 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8551)
;
8552 }
8553 }
8554 break;
8555
8556 case FK_DefaultInitOfConst:
8557 if (Entity.getKind() == InitializedEntity::EK_Member &&
8558 isa<CXXConstructorDecl>(S.CurContext)) {
8559 // This is implicit default-initialization of a const member in
8560 // a constructor. Complain that it needs to be explicitly
8561 // initialized.
8562 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8563 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8564 << (Constructor->getInheritedConstructor() ? 2 :
8565 Constructor->isImplicit() ? 1 : 0)
8566 << S.Context.getTypeDeclType(Constructor->getParent())
8567 << /*const=*/1
8568 << Entity.getName();
8569 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8570 << Entity.getName();
8571 } else {
8572 S.Diag(Kind.getLocation(), diag::err_default_init_const)
8573 << DestType << (bool)DestType->getAs<RecordType>();
8574 }
8575 break;
8576
8577 case FK_Incomplete:
8578 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8579 diag::err_init_incomplete_type);
8580 break;
8581
8582 case FK_ListInitializationFailed: {
8583 // Run the init list checker again to emit diagnostics.
8584 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8585 diagnoseListInit(S, Entity, InitList);
8586 break;
8587 }
8588
8589 case FK_PlaceholderType: {
8590 // FIXME: Already diagnosed!
8591 break;
8592 }
8593
8594 case FK_ExplicitConstructor: {
8595 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8596 << Args[0]->getSourceRange();
8597 OverloadCandidateSet::iterator Best;
8598 OverloadingResult Ovl
8599 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8600 (void)Ovl;
8601 assert(Ovl == OR_Success && "Inconsistent overload resolution")((Ovl == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 8601, __PRETTY_FUNCTION__))
;
8602 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8603 S.Diag(CtorDecl->getLocation(),
8604 diag::note_explicit_ctor_deduction_guide_here) << false;
8605 break;
8606 }
8607 }
8608
8609 PrintInitLocationNote(S, Entity);
8610 return true;
8611}
8612
8613void InitializationSequence::dump(raw_ostream &OS) const {
8614 switch (SequenceKind) {
8615 case FailedSequence: {
8616 OS << "Failed sequence: ";
8617 switch (Failure) {
8618 case FK_TooManyInitsForReference:
8619 OS << "too many initializers for reference";
8620 break;
8621
8622 case FK_ParenthesizedListInitForReference:
8623 OS << "parenthesized list init for reference";
8624 break;
8625
8626 case FK_ArrayNeedsInitList:
8627 OS << "array requires initializer list";
8628 break;
8629
8630 case FK_AddressOfUnaddressableFunction:
8631 OS << "address of unaddressable function was taken";
8632 break;
8633
8634 case FK_ArrayNeedsInitListOrStringLiteral:
8635 OS << "array requires initializer list or string literal";
8636 break;
8637
8638 case FK_ArrayNeedsInitListOrWideStringLiteral:
8639 OS << "array requires initializer list or wide string literal";
8640 break;
8641
8642 case FK_NarrowStringIntoWideCharArray:
8643 OS << "narrow string into wide char array";
8644 break;
8645
8646 case FK_WideStringIntoCharArray:
8647 OS << "wide string into char array";
8648 break;
8649
8650 case FK_IncompatWideStringIntoWideChar:
8651 OS << "incompatible wide string into wide char array";
8652 break;
8653
8654 case FK_PlainStringIntoUTF8Char:
8655 OS << "plain string literal into char8_t array";
8656 break;
8657
8658 case FK_UTF8StringIntoPlainChar:
8659 OS << "u8 string literal into char array";
8660 break;
8661
8662 case FK_ArrayTypeMismatch:
8663 OS << "array type mismatch";
8664 break;
8665
8666 case FK_NonConstantArrayInit:
8667 OS << "non-constant array initializer";
8668 break;
8669
8670 case FK_AddressOfOverloadFailed:
8671 OS << "address of overloaded function failed";
8672 break;
8673
8674 case FK_ReferenceInitOverloadFailed:
8675 OS << "overload resolution for reference initialization failed";
8676 break;
8677
8678 case FK_NonConstLValueReferenceBindingToTemporary:
8679 OS << "non-const lvalue reference bound to temporary";
8680 break;
8681
8682 case FK_NonConstLValueReferenceBindingToBitfield:
8683 OS << "non-const lvalue reference bound to bit-field";
8684 break;
8685
8686 case FK_NonConstLValueReferenceBindingToVectorElement:
8687 OS << "non-const lvalue reference bound to vector element";
8688 break;
8689
8690 case FK_NonConstLValueReferenceBindingToUnrelated:
8691 OS << "non-const lvalue reference bound to unrelated type";
8692 break;
8693
8694 case FK_RValueReferenceBindingToLValue:
8695 OS << "rvalue reference bound to an lvalue";
8696 break;
8697
8698 case FK_ReferenceInitDropsQualifiers:
8699 OS << "reference initialization drops qualifiers";
8700 break;
8701
8702 case FK_ReferenceInitFailed:
8703 OS << "reference initialization failed";
8704 break;
8705
8706 case FK_ConversionFailed:
8707 OS << "conversion failed";
8708 break;
8709
8710 case FK_ConversionFromPropertyFailed:
8711 OS << "conversion from property failed";
8712 break;
8713
8714 case FK_TooManyInitsForScalar:
8715 OS << "too many initializers for scalar";
8716 break;
8717
8718 case FK_ParenthesizedListInitForScalar:
8719 OS << "parenthesized list init for reference";
8720 break;
8721
8722 case FK_ReferenceBindingToInitList:
8723 OS << "referencing binding to initializer list";
8724 break;
8725
8726 case FK_InitListBadDestinationType:
8727 OS << "initializer list for non-aggregate, non-scalar type";
8728 break;
8729
8730 case FK_UserConversionOverloadFailed:
8731 OS << "overloading failed for user-defined conversion";
8732 break;
8733
8734 case FK_ConstructorOverloadFailed:
8735 OS << "constructor overloading failed";
8736 break;
8737
8738 case FK_DefaultInitOfConst:
8739 OS << "default initialization of a const variable";
8740 break;
8741
8742 case FK_Incomplete:
8743 OS << "initialization of incomplete type";
8744 break;
8745
8746 case FK_ListInitializationFailed:
8747 OS << "list initialization checker failure";
8748 break;
8749
8750 case FK_VariableLengthArrayHasInitializer:
8751 OS << "variable length array has an initializer";
8752 break;
8753
8754 case FK_PlaceholderType:
8755 OS << "initializer expression isn't contextually valid";
8756 break;
8757
8758 case FK_ListConstructorOverloadFailed:
8759 OS << "list constructor overloading failed";
8760 break;
8761
8762 case FK_ExplicitConstructor:
8763 OS << "list copy initialization chose explicit constructor";
8764 break;
8765 }
8766 OS << '\n';
8767 return;
8768 }
8769
8770 case DependentSequence:
8771 OS << "Dependent sequence\n";
8772 return;
8773
8774 case NormalSequence:
8775 OS << "Normal sequence: ";
8776 break;
8777 }
8778
8779 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8780 if (S != step_begin()) {
8781 OS << " -> ";
8782 }
8783
8784 switch (S->Kind) {
8785 case SK_ResolveAddressOfOverloadedFunction:
8786 OS << "resolve address of overloaded function";
8787 break;
8788
8789 case SK_CastDerivedToBaseRValue:
8790 OS << "derived-to-base (rvalue)";
8791 break;
8792
8793 case SK_CastDerivedToBaseXValue:
8794 OS << "derived-to-base (xvalue)";
8795 break;
8796
8797 case SK_CastDerivedToBaseLValue:
8798 OS << "derived-to-base (lvalue)";
8799 break;
8800
8801 case SK_BindReference:
8802 OS << "bind reference to lvalue";
8803 break;
8804
8805 case SK_BindReferenceToTemporary:
8806 OS << "bind reference to a temporary";
8807 break;
8808
8809 case SK_FinalCopy:
8810 OS << "final copy in class direct-initialization";
8811 break;
8812
8813 case SK_ExtraneousCopyToTemporary:
8814 OS << "extraneous C++03 copy to temporary";
8815 break;
8816
8817 case SK_UserConversion:
8818 OS << "user-defined conversion via " << *S->Function.Function;
8819 break;
8820
8821 case SK_QualificationConversionRValue:
8822 OS << "qualification conversion (rvalue)";
8823 break;
8824
8825 case SK_QualificationConversionXValue:
8826 OS << "qualification conversion (xvalue)";
8827 break;
8828
8829 case SK_QualificationConversionLValue:
8830 OS << "qualification conversion (lvalue)";
8831 break;
8832
8833 case SK_AtomicConversion:
8834 OS << "non-atomic-to-atomic conversion";
8835 break;
8836
8837 case SK_LValueToRValue:
8838 OS << "load (lvalue to rvalue)";
8839 break;
8840
8841 case SK_ConversionSequence:
8842 OS << "implicit conversion sequence (";
8843 S->ICS->dump(); // FIXME: use OS
8844 OS << ")";
8845 break;
8846
8847 case SK_ConversionSequenceNoNarrowing:
8848 OS << "implicit conversion sequence with narrowing prohibited (";
8849 S->ICS->dump(); // FIXME: use OS
8850 OS << ")";
8851 break;
8852
8853 case SK_ListInitialization:
8854 OS << "list aggregate initialization";
8855 break;
8856
8857 case SK_UnwrapInitList:
8858 OS << "unwrap reference initializer list";
8859 break;
8860
8861 case SK_RewrapInitList:
8862 OS << "rewrap reference initializer list";
8863 break;
8864
8865 case SK_ConstructorInitialization:
8866 OS << "constructor initialization";
8867 break;
8868
8869 case SK_ConstructorInitializationFromList:
8870 OS << "list initialization via constructor";
8871 break;
8872
8873 case SK_ZeroInitialization:
8874 OS << "zero initialization";
8875 break;
8876
8877 case SK_CAssignment:
8878 OS << "C assignment";
8879 break;
8880
8881 case SK_StringInit:
8882 OS << "string initialization";
8883 break;
8884
8885 case SK_ObjCObjectConversion:
8886 OS << "Objective-C object conversion";
8887 break;
8888
8889 case SK_ArrayLoopIndex:
8890 OS << "indexing for array initialization loop";
8891 break;
8892
8893 case SK_ArrayLoopInit:
8894 OS << "array initialization loop";
8895 break;
8896
8897 case SK_ArrayInit:
8898 OS << "array initialization";
8899 break;
8900
8901 case SK_GNUArrayInit:
8902 OS << "array initialization (GNU extension)";
8903 break;
8904
8905 case SK_ParenthesizedArrayInit:
8906 OS << "parenthesized array initialization";
8907 break;
8908
8909 case SK_PassByIndirectCopyRestore:
8910 OS << "pass by indirect copy and restore";
8911 break;
8912
8913 case SK_PassByIndirectRestore:
8914 OS << "pass by indirect restore";
8915 break;
8916
8917 case SK_ProduceObjCObject:
8918 OS << "Objective-C object retension";
8919 break;
8920
8921 case SK_StdInitializerList:
8922 OS << "std::initializer_list from initializer list";
8923 break;
8924
8925 case SK_StdInitializerListConstructorCall:
8926 OS << "list initialization from std::initializer_list";
8927 break;
8928
8929 case SK_OCLSamplerInit:
8930 OS << "OpenCL sampler_t from integer constant";
8931 break;
8932
8933 case SK_OCLZeroOpaqueType:
8934 OS << "OpenCL opaque type from zero";
8935 break;
8936 }
8937
8938 OS << " [" << S->Type.getAsString() << ']';
8939 }
8940
8941 OS << '\n';
8942}
8943
8944void InitializationSequence::dump() const {
8945 dump(llvm::errs());
8946}
8947
8948static bool NarrowingErrs(const LangOptions &L) {
8949 return L.CPlusPlus11 &&
8950 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
8951}
8952
8953static void DiagnoseNarrowingInInitList(Sema &S,
8954 const ImplicitConversionSequence &ICS,
8955 QualType PreNarrowingType,
8956 QualType EntityType,
8957 const Expr *PostInit) {
8958 const StandardConversionSequence *SCS = nullptr;
8959 switch (ICS.getKind()) {
8960 case ImplicitConversionSequence::StandardConversion:
8961 SCS = &ICS.Standard;
8962 break;
8963 case ImplicitConversionSequence::UserDefinedConversion:
8964 SCS = &ICS.UserDefined.After;
8965 break;
8966 case ImplicitConversionSequence::AmbiguousConversion:
8967 case ImplicitConversionSequence::EllipsisConversion:
8968 case ImplicitConversionSequence::BadConversion:
8969 return;
8970 }
8971
8972 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
8973 APValue ConstantValue;
8974 QualType ConstantType;
8975 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
8976 ConstantType)) {
8977 case NK_Not_Narrowing:
8978 case NK_Dependent_Narrowing:
8979 // No narrowing occurred.
8980 return;
8981
8982 case NK_Type_Narrowing:
8983 // This was a floating-to-integer conversion, which is always considered a
8984 // narrowing conversion even if the value is a constant and can be
8985 // represented exactly as an integer.
8986 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
8987 ? diag::ext_init_list_type_narrowing
8988 : diag::warn_init_list_type_narrowing)
8989 << PostInit->getSourceRange()
8990 << PreNarrowingType.getLocalUnqualifiedType()
8991 << EntityType.getLocalUnqualifiedType();
8992 break;
8993
8994 case NK_Constant_Narrowing:
8995 // A constant value was narrowed.
8996 S.Diag(PostInit->getBeginLoc(),
8997 NarrowingErrs(S.getLangOpts())
8998 ? diag::ext_init_list_constant_narrowing
8999 : diag::warn_init_list_constant_narrowing)
9000 << PostInit->getSourceRange()
9001 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9002 << EntityType.getLocalUnqualifiedType();
9003 break;
9004
9005 case NK_Variable_Narrowing:
9006 // A variable's value may have been narrowed.
9007 S.Diag(PostInit->getBeginLoc(),
9008 NarrowingErrs(S.getLangOpts())
9009 ? diag::ext_init_list_variable_narrowing
9010 : diag::warn_init_list_variable_narrowing)
9011 << PostInit->getSourceRange()
9012 << PreNarrowingType.getLocalUnqualifiedType()
9013 << EntityType.getLocalUnqualifiedType();
9014 break;
9015 }
9016
9017 SmallString<128> StaticCast;
9018 llvm::raw_svector_ostream OS(StaticCast);
9019 OS << "static_cast<";
9020 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9021 // It's important to use the typedef's name if there is one so that the
9022 // fixit doesn't break code using types like int64_t.
9023 //
9024 // FIXME: This will break if the typedef requires qualification. But
9025 // getQualifiedNameAsString() includes non-machine-parsable components.
9026 OS << *TT->getDecl();
9027 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9028 OS << BT->getName(S.getLangOpts());
9029 else {
9030 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
9031 // with a broken cast.
9032 return;
9033 }
9034 OS << ">(";
9035 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9036 << PostInit->getSourceRange()
9037 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9038 << FixItHint::CreateInsertion(
9039 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9040}
9041
9042//===----------------------------------------------------------------------===//
9043// Initialization helper functions
9044//===----------------------------------------------------------------------===//
9045bool
9046Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9047 ExprResult Init) {
9048 if (Init.isInvalid())
9049 return false;
9050
9051 Expr *InitE = Init.get();
9052 assert(InitE && "No initialization expression")((InitE && "No initialization expression") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 9052, __PRETTY_FUNCTION__))
;
9053
9054 InitializationKind Kind =
9055 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9056 InitializationSequence Seq(*this, Entity, Kind, InitE);
9057 return !Seq.Failed();
9058}
9059
9060ExprResult
9061Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9062 SourceLocation EqualLoc,
9063 ExprResult Init,
9064 bool TopLevelOfInitList,
9065 bool AllowExplicit) {
9066 if (Init.isInvalid())
9067 return ExprError();
9068
9069 Expr *InitE = Init.get();
9070 assert(InitE && "No initialization expression?")((InitE && "No initialization expression?") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 9070, __PRETTY_FUNCTION__))
;
9071
9072 if (EqualLoc.isInvalid())
9073 EqualLoc = InitE->getBeginLoc();
9074
9075 InitializationKind Kind = InitializationKind::CreateCopy(
9076 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9077 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9078
9079 // Prevent infinite recursion when performing parameter copy-initialization.
9080 const bool ShouldTrackCopy =
9081 Entity.isParameterKind() && Seq.isConstructorInitialization();
9082 if (ShouldTrackCopy) {
9083 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9084 CurrentParameterCopyTypes.end()) {
9085 Seq.SetOverloadFailure(
9086 InitializationSequence::FK_ConstructorOverloadFailed,
9087 OR_No_Viable_Function);
9088
9089 // Try to give a meaningful diagnostic note for the problematic
9090 // constructor.
9091 const auto LastStep = Seq.step_end() - 1;
9092 assert(LastStep->Kind ==((LastStep->Kind == InitializationSequence::SK_ConstructorInitialization
) ? static_cast<void> (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 9093, __PRETTY_FUNCTION__))
9093 InitializationSequence::SK_ConstructorInitialization)((LastStep->Kind == InitializationSequence::SK_ConstructorInitialization
) ? static_cast<void> (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 9093, __PRETTY_FUNCTION__))
;
9094 const FunctionDecl *Function = LastStep->Function.Function;
9095 auto Candidate =
9096 llvm::find_if(Seq.getFailedCandidateSet(),
9097 [Function](const OverloadCandidate &Candidate) -> bool {
9098 return Candidate.Viable &&
9099 Candidate.Function == Function &&
9100 Candidate.Conversions.size() > 0;
9101 });
9102 if (Candidate != Seq.getFailedCandidateSet().end() &&
9103 Function->getNumParams() > 0) {
9104 Candidate->Viable = false;
9105 Candidate->FailureKind = ovl_fail_bad_conversion;
9106 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9107 InitE,
9108 Function->getParamDecl(0)->getType());
9109 }
9110 }
9111 CurrentParameterCopyTypes.push_back(Entity.getType());
9112 }
9113
9114 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9115
9116 if (ShouldTrackCopy)
9117 CurrentParameterCopyTypes.pop_back();
9118
9119 return Result;
9120}
9121
9122/// Determine whether RD is, or is derived from, a specialization of CTD.
9123static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9124 ClassTemplateDecl *CTD) {
9125 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9126 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9127 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9128 };
9129 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9130}
9131
9132QualType Sema::DeduceTemplateSpecializationFromInitializer(
9133 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9134 const InitializationKind &Kind, MultiExprArg Inits) {
9135 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9136 TSInfo->getType()->getContainedDeducedType());
9137 assert(DeducedTST && "not a deduced template specialization type")((DeducedTST && "not a deduced template specialization type"
) ? static_cast<void> (0) : __assert_fail ("DeducedTST && \"not a deduced template specialization type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaInit.cpp"
, 9137, __PRETTY_FUNCTION__))
;
9138
9139 auto TemplateName = DeducedTST->getTemplateName();
9140 if (TemplateName.isDependent())
9141 return Context.DependentTy;
9142
9143 // We can only perform deduction for class templates.
9144 auto *Template =
9145 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9146 if (!Template) {
9147 Diag(Kind.getLocation(),
9148 diag::err_deduced_non_class_template_specialization_type)
9149 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9150 if (auto *TD = TemplateName.getAsTemplateDecl())
9151 Diag(TD->getLocation(), diag::note_template_decl_here);
9152 return QualType();
9153 }
9154
9155 // Can't deduce from dependent arguments.
9156 if (Expr::hasAnyTypeDependentArguments(Inits)) {
9157 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9158 diag::warn_cxx14_compat_class_template_argument_deduction)
9159 << TSInfo->getTypeLoc().getSourceRange() << 0;
9160 return Context.DependentTy;
9161 }
9162
9163 // FIXME: Perform "exact type" matching first, per CWG discussion?
9164 // Or implement this via an implied 'T(T) -> T' deduction guide?
9165
9166 // FIXME: Do we need/want a std::initializer_list<T> special case?
9167
9168 // Look up deduction guides, including those synthesized from constructors.
9169 //
9170 // C++1z [over.match.class.deduct]p1:
9171 // A set of functions and function templates is formed comprising:
9172 // - For each constructor of the class template designated by the
9173 // template-name, a function template [...]
9174 // - For each deduction-guide, a function or function template [...]
9175 DeclarationNameInfo NameInfo(
9176 Context.DeclarationNames.getCXXDeductionGuideName(Template),
9177 TSInfo->getTypeLoc().getEndLoc());
9178 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9179 LookupQualifiedName(Guides, Template->getDeclContext());
9180
9181 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9182 // clear on this, but they're not found by name so access does not apply.
9183 Guides.suppressDiagnostics();
9184
9185 // Figure out if this is list-initialization.
9186 InitListExpr *ListInit =
9187 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9188 ? dyn_cast<InitListExpr>(Inits[0])
9189 : nullptr;
9190
9191 // C++1z [over.match.class.deduct]p1:
9192 // Initialization and overload resolution are performed as described in
9193 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9194 // (as appropriate for the type of initialization performed) for an object
9195 // of a hypothetical class type, where the selected functions and function
9196 // templates are considered to be the constructors of that class type
9197 //
9198 // Since we know we're initializing a class type of a type unrelated to that
9199 // of the initializer, this reduces to something fairly reasonable.
9200 OverloadCandidateSet Candidates(Kind.getLocation(),
9201 OverloadCandidateSet::CSK_Normal);
9202 OverloadCandidateSet::iterator Best;
9203 auto tryToResolveOverload =
9204 [&](bool OnlyListConstructors) -> OverloadingResult {
9205 Candidates.clear(OverloadCandidateSet::CSK_Normal);
9206 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9207 NamedDecl *D = (*I)->getUnderlyingDecl();
9208 if (D->isInvalidDecl())
9209 continue;
9210
9211 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9212 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9213 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9214 if (!GD)
9215 continue;
9216
9217 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9218 // For copy-initialization, the candidate functions are all the
9219 // converting constructors (12.3.1) of that class.
9220 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9221 // The converting constructors of T are candidate functions.
9222 if (Kind.isCopyInit() && !ListInit) {
9223 // Only consider converting constructors.
9224 if (GD->isExplicit())
9225 continue;
9226
9227 // When looking for a converting constructor, deduction guides that
9228 // could never be called with one argument are not interesting to
9229 // check or note.
9230 if (GD->getMinRequiredArguments() > 1 ||
9231 (GD->getNumParams() == 0 && !GD->isVariadic()))
9232 continue;
9233 }
9234
9235 // C++ [over.match.list]p1.1: (first phase list initialization)
9236 // Initially, the candidate functions are the initializer-list
9237 // constructors of the class T
9238 if (OnlyListConstructors && !isInitListConstructor(GD))
9239 continue;
9240
9241 // C++ [over.match.list]p1.2: (second phase list initialization)
9242 // the candidate functions are all the constructors of the class T
9243 // C++ [over.match.ctor]p1: (all other cases)
9244 // the candidate functions are all the constructors of the class of
9245 // the object being initialized
9246
9247 // C++ [over.best.ics]p4:
9248 // When [...] the constructor [...] is a candidate by
9249 // - [over.match.copy] (in all cases)
9250 // FIXME: The "second phase of [over.match.list] case can also
9251 // theoretically happen here, but it's not clear whether we can
9252 // ever have a parameter of the right type.
9253 bool SuppressUserConversions = Kind.isCopyInit();
9254
9255 if (TD)
9256 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9257 Inits, Candidates,
9258 SuppressUserConversions);
9259 else
9260 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9261 SuppressUserConversions);
9262 }
9263 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9264 };
9265
9266 OverloadingResult Result = OR_No_Viable_Function;
9267
9268 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9269 // try initializer-list constructors.
9270 if (ListInit) {
9271 bool TryListConstructors = true;
9272
9273 // Try list constructors unless the list is empty and the class has one or
9274 // more default constructors, in which case those constructors win.
9275 if (!ListInit->getNumInits()) {
9276 for (NamedDecl *D : Guides) {
9277 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9278 if (FD && FD->getMinRequiredArguments() == 0) {
9279 TryListConstructors = false;
9280 break;
9281 }
9282 }
9283 } else if (ListInit->getNumInits() == 1) {
9284 // C++ [over.match.class.deduct]:
9285 // As an exception, the first phase in [over.match.list] (considering
9286 // initializer-list constructors) is omitted if the initializer list
9287 // consists of a single expression of type cv U, where U is a
9288 // specialization of C or a class derived from a specialization of C.
9289 Expr *E = ListInit->getInit(0);
9290 auto *RD = E->getType()->getAsCXXRecordDecl();
9291 if (!isa<InitListExpr>(E) && RD &&
9292 isCompleteType(Kind.getLocation(), E->getType()) &&
9293 isOrIsDerivedFromSpecializationOf(RD, Template))
9294 TryListConstructors = false;
9295 }
9296
9297 if (TryListConstructors)
9298 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9299 // Then unwrap the initializer list and try again considering all
9300 // constructors.
9301 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9302 }
9303
9304 // If list-initialization fails, or if we're doing any other kind of
9305 // initialization, we (eventually) consider constructors.
9306 if (Result == OR_No_Viable_Function)
9307 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9308
9309 switch (Result) {
9310 case OR_Ambiguous:
9311 Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9312 << TemplateName;
9313 // FIXME: For list-initialization candidates, it'd usually be better to
9314 // list why they were not viable when given the initializer list itself as
9315 // an argument.
9316 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9317 return QualType();
9318
9319 case OR_No_Viable_Function: {
9320 CXXRecordDecl *Primary =
9321 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9322 bool Complete =
9323 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9324 Diag(Kind.getLocation(),
9325 Complete ? diag::err_deduced_class_template_ctor_no_viable
9326 : diag::err_deduced_class_template_incomplete)
9327 << TemplateName << !Guides.empty();
9328 Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9329 return QualType();
9330 }
9331
9332 case OR_Deleted: {
9333 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9334 << TemplateName;
9335 NoteDeletedFunction(Best->Function);
9336 return QualType();
9337 }
9338
9339 case OR_Success:
9340 // C++ [over.match.list]p1:
9341 // In copy-list-initialization, if an explicit constructor is chosen, the
9342 // initialization is ill-formed.
9343 if (Kind.isCopyInit() && ListInit &&
9344 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9345 bool IsDeductionGuide = !Best->Function->isImplicit();
9346 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9347 << TemplateName << IsDeductionGuide;
9348 Diag(Best->Function->getLocation(),
9349 diag::note_explicit_ctor_deduction_guide_here)
9350 << IsDeductionGuide;
9351 return QualType();
9352 }
9353
9354 // Make sure we didn't select an unusable deduction guide, and mark it
9355 // as referenced.
9356 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9357 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9358 break;
9359 }
9360
9361 // C++ [dcl.type.class.deduct]p1:
9362 // The placeholder is replaced by the return type of the function selected
9363 // by overload resolution for class template deduction.
9364 QualType DeducedType =
9365 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9366 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9367 diag::warn_cxx14_compat_class_template_argument_deduction)
9368 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9369 return DeducedType;
9370}