Bug Summary

File:tools/clang/lib/Sema/SemaOverload.cpp
Warning:line 9872, column 50
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-9~svn360825/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn360825/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn360825=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-16-032012-25149-1 -x c++ /build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp -faddrsig
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Overload.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/Optional.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36#include <cstdlib>
37
38using namespace clang;
39using namespace sema;
40
41static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
43 return P->hasAttr<PassObjectSizeAttr>();
44 });
45}
46
47/// A convenience routine for creating a decayed reference to a function.
48static ExprResult
49CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
50 const Expr *Base, bool HadMultipleCandidates,
51 SourceLocation Loc = SourceLocation(),
52 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
53 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
54 return ExprError();
55 // If FoundDecl is different from Fn (such as if one is a template
56 // and the other a specialization), make sure DiagnoseUseOfDecl is
57 // called on both.
58 // FIXME: This would be more comprehensively addressed by modifying
59 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
60 // being used.
61 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
62 return ExprError();
63 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
64 S.ResolveExceptionSpec(Loc, FPT);
65 DeclRefExpr *DRE = new (S.Context)
66 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
67 if (HadMultipleCandidates)
68 DRE->setHadMultipleCandidates(true);
69
70 S.MarkDeclRefReferenced(DRE, Base);
71 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
72 CK_FunctionToPointerDecay);
73}
74
75static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
76 bool InOverloadResolution,
77 StandardConversionSequence &SCS,
78 bool CStyle,
79 bool AllowObjCWritebackConversion);
80
81static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
82 QualType &ToType,
83 bool InOverloadResolution,
84 StandardConversionSequence &SCS,
85 bool CStyle);
86static OverloadingResult
87IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
88 UserDefinedConversionSequence& User,
89 OverloadCandidateSet& Conversions,
90 bool AllowExplicit,
91 bool AllowObjCConversionOnExplicit);
92
93
94static ImplicitConversionSequence::CompareKind
95CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
96 const StandardConversionSequence& SCS1,
97 const StandardConversionSequence& SCS2);
98
99static ImplicitConversionSequence::CompareKind
100CompareQualificationConversions(Sema &S,
101 const StandardConversionSequence& SCS1,
102 const StandardConversionSequence& SCS2);
103
104static ImplicitConversionSequence::CompareKind
105CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
106 const StandardConversionSequence& SCS1,
107 const StandardConversionSequence& SCS2);
108
109/// GetConversionRank - Retrieve the implicit conversion rank
110/// corresponding to the given implicit conversion kind.
111ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
112 static const ImplicitConversionRank
113 Rank[(int)ICK_Num_Conversion_Kinds] = {
114 ICR_Exact_Match,
115 ICR_Exact_Match,
116 ICR_Exact_Match,
117 ICR_Exact_Match,
118 ICR_Exact_Match,
119 ICR_Exact_Match,
120 ICR_Promotion,
121 ICR_Promotion,
122 ICR_Promotion,
123 ICR_Conversion,
124 ICR_Conversion,
125 ICR_Conversion,
126 ICR_Conversion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_OCL_Scalar_Widening,
134 ICR_Complex_Real_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Writeback_Conversion,
138 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
139 // it was omitted by the patch that added
140 // ICK_Zero_Event_Conversion
141 ICR_C_Conversion,
142 ICR_C_Conversion_Extension
143 };
144 return Rank[(int)Kind];
145}
146
147/// GetImplicitConversionName - Return the name of this kind of
148/// implicit conversion.
149static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
150 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
151 "No conversion",
152 "Lvalue-to-rvalue",
153 "Array-to-pointer",
154 "Function-to-pointer",
155 "Function pointer conversion",
156 "Qualification",
157 "Integral promotion",
158 "Floating point promotion",
159 "Complex promotion",
160 "Integral conversion",
161 "Floating conversion",
162 "Complex conversion",
163 "Floating-integral conversion",
164 "Pointer conversion",
165 "Pointer-to-member conversion",
166 "Boolean conversion",
167 "Compatible-types conversion",
168 "Derived-to-base conversion",
169 "Vector conversion",
170 "Vector splat",
171 "Complex-real conversion",
172 "Block Pointer conversion",
173 "Transparent Union Conversion",
174 "Writeback conversion",
175 "OpenCL Zero Event Conversion",
176 "C specific type conversion",
177 "Incompatible pointer conversion"
178 };
179 return Name[Kind];
180}
181
182/// StandardConversionSequence - Set the standard conversion
183/// sequence to the identity conversion.
184void StandardConversionSequence::setAsIdentityConversion() {
185 First = ICK_Identity;
186 Second = ICK_Identity;
187 Third = ICK_Identity;
188 DeprecatedStringLiteralToCharPtr = false;
189 QualificationIncludesObjCLifetime = false;
190 ReferenceBinding = false;
191 DirectBinding = false;
192 IsLvalueReference = true;
193 BindsToFunctionLvalue = false;
194 BindsToRvalue = false;
195 BindsImplicitObjectArgumentWithoutRefQualifier = false;
196 ObjCLifetimeConversionBinding = false;
197 CopyConstructor = nullptr;
198}
199
200/// getRank - Retrieve the rank of this standard conversion sequence
201/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
202/// implicit conversions.
203ImplicitConversionRank StandardConversionSequence::getRank() const {
204 ImplicitConversionRank Rank = ICR_Exact_Match;
205 if (GetConversionRank(First) > Rank)
206 Rank = GetConversionRank(First);
207 if (GetConversionRank(Second) > Rank)
208 Rank = GetConversionRank(Second);
209 if (GetConversionRank(Third) > Rank)
210 Rank = GetConversionRank(Third);
211 return Rank;
212}
213
214/// isPointerConversionToBool - Determines whether this conversion is
215/// a conversion of a pointer or pointer-to-member to bool. This is
216/// used as part of the ranking of standard conversion sequences
217/// (C++ 13.3.3.2p4).
218bool StandardConversionSequence::isPointerConversionToBool() const {
219 // Note that FromType has not necessarily been transformed by the
220 // array-to-pointer or function-to-pointer implicit conversions, so
221 // check for their presence as well as checking whether FromType is
222 // a pointer.
223 if (getToType(1)->isBooleanType() &&
224 (getFromType()->isPointerType() ||
225 getFromType()->isMemberPointerType() ||
226 getFromType()->isObjCObjectPointerType() ||
227 getFromType()->isBlockPointerType() ||
228 getFromType()->isNullPtrType() ||
229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230 return true;
231
232 return false;
233}
234
235/// isPointerConversionToVoidPointer - Determines whether this
236/// conversion is a conversion of a pointer to a void pointer. This is
237/// used as part of the ranking of standard conversion sequences (C++
238/// 13.3.3.2p4).
239bool
240StandardConversionSequence::
241isPointerConversionToVoidPointer(ASTContext& Context) const {
242 QualType FromType = getFromType();
243 QualType ToType = getToType(1);
244
245 // Note that FromType has not necessarily been transformed by the
246 // array-to-pointer implicit conversion, so check for its presence
247 // and redo the conversion to get a pointer.
248 if (First == ICK_Array_To_Pointer)
249 FromType = Context.getArrayDecayedType(FromType);
250
251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253 return ToPtrType->getPointeeType()->isVoidType();
254
255 return false;
256}
257
258/// Skip any implicit casts which could be either part of a narrowing conversion
259/// or after one in an implicit conversion.
260static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
261 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
262 switch (ICE->getCastKind()) {
263 case CK_NoOp:
264 case CK_IntegralCast:
265 case CK_IntegralToBoolean:
266 case CK_IntegralToFloating:
267 case CK_BooleanToSignedIntegral:
268 case CK_FloatingToIntegral:
269 case CK_FloatingToBoolean:
270 case CK_FloatingCast:
271 Converted = ICE->getSubExpr();
272 continue;
273
274 default:
275 return Converted;
276 }
277 }
278
279 return Converted;
280}
281
282/// Check if this standard conversion sequence represents a narrowing
283/// conversion, according to C++11 [dcl.init.list]p7.
284///
285/// \param Ctx The AST context.
286/// \param Converted The result of applying this standard conversion sequence.
287/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
288/// value of the expression prior to the narrowing conversion.
289/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
290/// type of the expression prior to the narrowing conversion.
291/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
292/// from floating point types to integral types should be ignored.
293NarrowingKind StandardConversionSequence::getNarrowingKind(
294 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
295 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
296 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 296, __PRETTY_FUNCTION__))
;
297
298 // C++11 [dcl.init.list]p7:
299 // A narrowing conversion is an implicit conversion ...
300 QualType FromType = getToType(0);
301 QualType ToType = getToType(1);
302
303 // A conversion to an enumeration type is narrowing if the conversion to
304 // the underlying type is narrowing. This only arises for expressions of
305 // the form 'Enum{init}'.
306 if (auto *ET = ToType->getAs<EnumType>())
307 ToType = ET->getDecl()->getIntegerType();
308
309 switch (Second) {
310 // 'bool' is an integral type; dispatch to the right place to handle it.
311 case ICK_Boolean_Conversion:
312 if (FromType->isRealFloatingType())
313 goto FloatingIntegralConversion;
314 if (FromType->isIntegralOrUnscopedEnumerationType())
315 goto IntegralConversion;
316 // Boolean conversions can be from pointers and pointers to members
317 // [conv.bool], and those aren't considered narrowing conversions.
318 return NK_Not_Narrowing;
319
320 // -- from a floating-point type to an integer type, or
321 //
322 // -- from an integer type or unscoped enumeration type to a floating-point
323 // type, except where the source is a constant expression and the actual
324 // value after conversion will fit into the target type and will produce
325 // the original value when converted back to the original type, or
326 case ICK_Floating_Integral:
327 FloatingIntegralConversion:
328 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
329 return NK_Type_Narrowing;
330 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
331 ToType->isRealFloatingType()) {
332 if (IgnoreFloatToIntegralConversion)
333 return NK_Not_Narrowing;
334 llvm::APSInt IntConstantValue;
335 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
336 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 336, __PRETTY_FUNCTION__))
;
337
338 // If it's value-dependent, we can't tell whether it's narrowing.
339 if (Initializer->isValueDependent())
340 return NK_Dependent_Narrowing;
341
342 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
343 // Convert the integer to the floating type.
344 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
345 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
346 llvm::APFloat::rmNearestTiesToEven);
347 // And back.
348 llvm::APSInt ConvertedValue = IntConstantValue;
349 bool ignored;
350 Result.convertToInteger(ConvertedValue,
351 llvm::APFloat::rmTowardZero, &ignored);
352 // If the resulting value is different, this was a narrowing conversion.
353 if (IntConstantValue != ConvertedValue) {
354 ConstantValue = APValue(IntConstantValue);
355 ConstantType = Initializer->getType();
356 return NK_Constant_Narrowing;
357 }
358 } else {
359 // Variables are always narrowings.
360 return NK_Variable_Narrowing;
361 }
362 }
363 return NK_Not_Narrowing;
364
365 // -- from long double to double or float, or from double to float, except
366 // where the source is a constant expression and the actual value after
367 // conversion is within the range of values that can be represented (even
368 // if it cannot be represented exactly), or
369 case ICK_Floating_Conversion:
370 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
371 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
372 // FromType is larger than ToType.
373 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
374
375 // If it's value-dependent, we can't tell whether it's narrowing.
376 if (Initializer->isValueDependent())
377 return NK_Dependent_Narrowing;
378
379 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
380 // Constant!
381 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 381, __PRETTY_FUNCTION__))
;
382 llvm::APFloat FloatVal = ConstantValue.getFloat();
383 // Convert the source value into the target type.
384 bool ignored;
385 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
386 Ctx.getFloatTypeSemantics(ToType),
387 llvm::APFloat::rmNearestTiesToEven, &ignored);
388 // If there was no overflow, the source value is within the range of
389 // values that can be represented.
390 if (ConvertStatus & llvm::APFloat::opOverflow) {
391 ConstantType = Initializer->getType();
392 return NK_Constant_Narrowing;
393 }
394 } else {
395 return NK_Variable_Narrowing;
396 }
397 }
398 return NK_Not_Narrowing;
399
400 // -- from an integer type or unscoped enumeration type to an integer type
401 // that cannot represent all the values of the original type, except where
402 // the source is a constant expression and the actual value after
403 // conversion will fit into the target type and will produce the original
404 // value when converted back to the original type.
405 case ICK_Integral_Conversion:
406 IntegralConversion: {
407 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 407, __PRETTY_FUNCTION__))
;
408 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 408, __PRETTY_FUNCTION__))
;
409 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
410 const unsigned FromWidth = Ctx.getIntWidth(FromType);
411 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
412 const unsigned ToWidth = Ctx.getIntWidth(ToType);
413
414 if (FromWidth > ToWidth ||
415 (FromWidth == ToWidth && FromSigned != ToSigned) ||
416 (FromSigned && !ToSigned)) {
417 // Not all values of FromType can be represented in ToType.
418 llvm::APSInt InitializerValue;
419 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
420
421 // If it's value-dependent, we can't tell whether it's narrowing.
422 if (Initializer->isValueDependent())
423 return NK_Dependent_Narrowing;
424
425 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
426 // Such conversions on variables are always narrowing.
427 return NK_Variable_Narrowing;
428 }
429 bool Narrowing = false;
430 if (FromWidth < ToWidth) {
431 // Negative -> unsigned is narrowing. Otherwise, more bits is never
432 // narrowing.
433 if (InitializerValue.isSigned() && InitializerValue.isNegative())
434 Narrowing = true;
435 } else {
436 // Add a bit to the InitializerValue so we don't have to worry about
437 // signed vs. unsigned comparisons.
438 InitializerValue = InitializerValue.extend(
439 InitializerValue.getBitWidth() + 1);
440 // Convert the initializer to and from the target width and signed-ness.
441 llvm::APSInt ConvertedValue = InitializerValue;
442 ConvertedValue = ConvertedValue.trunc(ToWidth);
443 ConvertedValue.setIsSigned(ToSigned);
444 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
445 ConvertedValue.setIsSigned(InitializerValue.isSigned());
446 // If the result is different, this was a narrowing conversion.
447 if (ConvertedValue != InitializerValue)
448 Narrowing = true;
449 }
450 if (Narrowing) {
451 ConstantType = Initializer->getType();
452 ConstantValue = APValue(InitializerValue);
453 return NK_Constant_Narrowing;
454 }
455 }
456 return NK_Not_Narrowing;
457 }
458
459 default:
460 // Other kinds of conversions are not narrowings.
461 return NK_Not_Narrowing;
462 }
463}
464
465/// dump - Print this standard conversion sequence to standard
466/// error. Useful for debugging overloading issues.
467LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
468 raw_ostream &OS = llvm::errs();
469 bool PrintedSomething = false;
470 if (First != ICK_Identity) {
471 OS << GetImplicitConversionName(First);
472 PrintedSomething = true;
473 }
474
475 if (Second != ICK_Identity) {
476 if (PrintedSomething) {
477 OS << " -> ";
478 }
479 OS << GetImplicitConversionName(Second);
480
481 if (CopyConstructor) {
482 OS << " (by copy constructor)";
483 } else if (DirectBinding) {
484 OS << " (direct reference binding)";
485 } else if (ReferenceBinding) {
486 OS << " (reference binding)";
487 }
488 PrintedSomething = true;
489 }
490
491 if (Third != ICK_Identity) {
492 if (PrintedSomething) {
493 OS << " -> ";
494 }
495 OS << GetImplicitConversionName(Third);
496 PrintedSomething = true;
497 }
498
499 if (!PrintedSomething) {
500 OS << "No conversions required";
501 }
502}
503
504/// dump - Print this user-defined conversion sequence to standard
505/// error. Useful for debugging overloading issues.
506void UserDefinedConversionSequence::dump() const {
507 raw_ostream &OS = llvm::errs();
508 if (Before.First || Before.Second || Before.Third) {
509 Before.dump();
510 OS << " -> ";
511 }
512 if (ConversionFunction)
513 OS << '\'' << *ConversionFunction << '\'';
514 else
515 OS << "aggregate initialization";
516 if (After.First || After.Second || After.Third) {
517 OS << " -> ";
518 After.dump();
519 }
520}
521
522/// dump - Print this implicit conversion sequence to standard
523/// error. Useful for debugging overloading issues.
524void ImplicitConversionSequence::dump() const {
525 raw_ostream &OS = llvm::errs();
526 if (isStdInitializerListElement())
527 OS << "Worst std::initializer_list element conversion: ";
528 switch (ConversionKind) {
529 case StandardConversion:
530 OS << "Standard conversion: ";
531 Standard.dump();
532 break;
533 case UserDefinedConversion:
534 OS << "User-defined conversion: ";
535 UserDefined.dump();
536 break;
537 case EllipsisConversion:
538 OS << "Ellipsis conversion";
539 break;
540 case AmbiguousConversion:
541 OS << "Ambiguous conversion";
542 break;
543 case BadConversion:
544 OS << "Bad conversion";
545 break;
546 }
547
548 OS << "\n";
549}
550
551void AmbiguousConversionSequence::construct() {
552 new (&conversions()) ConversionSet();
553}
554
555void AmbiguousConversionSequence::destruct() {
556 conversions().~ConversionSet();
557}
558
559void
560AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
561 FromTypePtr = O.FromTypePtr;
562 ToTypePtr = O.ToTypePtr;
563 new (&conversions()) ConversionSet(O.conversions());
564}
565
566namespace {
567 // Structure used by DeductionFailureInfo to store
568 // template argument information.
569 struct DFIArguments {
570 TemplateArgument FirstArg;
571 TemplateArgument SecondArg;
572 };
573 // Structure used by DeductionFailureInfo to store
574 // template parameter and template argument information.
575 struct DFIParamWithArguments : DFIArguments {
576 TemplateParameter Param;
577 };
578 // Structure used by DeductionFailureInfo to store template argument
579 // information and the index of the problematic call argument.
580 struct DFIDeducedMismatchArgs : DFIArguments {
581 TemplateArgumentList *TemplateArgs;
582 unsigned CallArgIndex;
583 };
584}
585
586/// Convert from Sema's representation of template deduction information
587/// to the form used in overload-candidate information.
588DeductionFailureInfo
589clang::MakeDeductionFailureInfo(ASTContext &Context,
590 Sema::TemplateDeductionResult TDK,
591 TemplateDeductionInfo &Info) {
592 DeductionFailureInfo Result;
593 Result.Result = static_cast<unsigned>(TDK);
594 Result.HasDiagnostic = false;
595 switch (TDK) {
596 case Sema::TDK_Invalid:
597 case Sema::TDK_InstantiationDepth:
598 case Sema::TDK_TooManyArguments:
599 case Sema::TDK_TooFewArguments:
600 case Sema::TDK_MiscellaneousDeductionFailure:
601 case Sema::TDK_CUDATargetMismatch:
602 Result.Data = nullptr;
603 break;
604
605 case Sema::TDK_Incomplete:
606 case Sema::TDK_InvalidExplicitArguments:
607 Result.Data = Info.Param.getOpaqueValue();
608 break;
609
610 case Sema::TDK_DeducedMismatch:
611 case Sema::TDK_DeducedMismatchNested: {
612 // FIXME: Should allocate from normal heap so that we can free this later.
613 auto *Saved = new (Context) DFIDeducedMismatchArgs;
614 Saved->FirstArg = Info.FirstArg;
615 Saved->SecondArg = Info.SecondArg;
616 Saved->TemplateArgs = Info.take();
617 Saved->CallArgIndex = Info.CallArgIndex;
618 Result.Data = Saved;
619 break;
620 }
621
622 case Sema::TDK_NonDeducedMismatch: {
623 // FIXME: Should allocate from normal heap so that we can free this later.
624 DFIArguments *Saved = new (Context) DFIArguments;
625 Saved->FirstArg = Info.FirstArg;
626 Saved->SecondArg = Info.SecondArg;
627 Result.Data = Saved;
628 break;
629 }
630
631 case Sema::TDK_IncompletePack:
632 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
633 case Sema::TDK_Inconsistent:
634 case Sema::TDK_Underqualified: {
635 // FIXME: Should allocate from normal heap so that we can free this later.
636 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
637 Saved->Param = Info.Param;
638 Saved->FirstArg = Info.FirstArg;
639 Saved->SecondArg = Info.SecondArg;
640 Result.Data = Saved;
641 break;
642 }
643
644 case Sema::TDK_SubstitutionFailure:
645 Result.Data = Info.take();
646 if (Info.hasSFINAEDiagnostic()) {
647 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
648 SourceLocation(), PartialDiagnostic::NullDiagnostic());
649 Info.takeSFINAEDiagnostic(*Diag);
650 Result.HasDiagnostic = true;
651 }
652 break;
653
654 case Sema::TDK_Success:
655 case Sema::TDK_NonDependentConversionFailure:
656 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 656)
;
657 }
658
659 return Result;
660}
661
662void DeductionFailureInfo::Destroy() {
663 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
664 case Sema::TDK_Success:
665 case Sema::TDK_Invalid:
666 case Sema::TDK_InstantiationDepth:
667 case Sema::TDK_Incomplete:
668 case Sema::TDK_TooManyArguments:
669 case Sema::TDK_TooFewArguments:
670 case Sema::TDK_InvalidExplicitArguments:
671 case Sema::TDK_CUDATargetMismatch:
672 case Sema::TDK_NonDependentConversionFailure:
673 break;
674
675 case Sema::TDK_IncompletePack:
676 case Sema::TDK_Inconsistent:
677 case Sema::TDK_Underqualified:
678 case Sema::TDK_DeducedMismatch:
679 case Sema::TDK_DeducedMismatchNested:
680 case Sema::TDK_NonDeducedMismatch:
681 // FIXME: Destroy the data?
682 Data = nullptr;
683 break;
684
685 case Sema::TDK_SubstitutionFailure:
686 // FIXME: Destroy the template argument list?
687 Data = nullptr;
688 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
689 Diag->~PartialDiagnosticAt();
690 HasDiagnostic = false;
691 }
692 break;
693
694 // Unhandled
695 case Sema::TDK_MiscellaneousDeductionFailure:
696 break;
697 }
698}
699
700PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
701 if (HasDiagnostic)
702 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
703 return nullptr;
704}
705
706TemplateParameter DeductionFailureInfo::getTemplateParameter() {
707 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
708 case Sema::TDK_Success:
709 case Sema::TDK_Invalid:
710 case Sema::TDK_InstantiationDepth:
711 case Sema::TDK_TooManyArguments:
712 case Sema::TDK_TooFewArguments:
713 case Sema::TDK_SubstitutionFailure:
714 case Sema::TDK_DeducedMismatch:
715 case Sema::TDK_DeducedMismatchNested:
716 case Sema::TDK_NonDeducedMismatch:
717 case Sema::TDK_CUDATargetMismatch:
718 case Sema::TDK_NonDependentConversionFailure:
719 return TemplateParameter();
720
721 case Sema::TDK_Incomplete:
722 case Sema::TDK_InvalidExplicitArguments:
723 return TemplateParameter::getFromOpaqueValue(Data);
724
725 case Sema::TDK_IncompletePack:
726 case Sema::TDK_Inconsistent:
727 case Sema::TDK_Underqualified:
728 return static_cast<DFIParamWithArguments*>(Data)->Param;
729
730 // Unhandled
731 case Sema::TDK_MiscellaneousDeductionFailure:
732 break;
733 }
734
735 return TemplateParameter();
736}
737
738TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
739 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
740 case Sema::TDK_Success:
741 case Sema::TDK_Invalid:
742 case Sema::TDK_InstantiationDepth:
743 case Sema::TDK_TooManyArguments:
744 case Sema::TDK_TooFewArguments:
745 case Sema::TDK_Incomplete:
746 case Sema::TDK_IncompletePack:
747 case Sema::TDK_InvalidExplicitArguments:
748 case Sema::TDK_Inconsistent:
749 case Sema::TDK_Underqualified:
750 case Sema::TDK_NonDeducedMismatch:
751 case Sema::TDK_CUDATargetMismatch:
752 case Sema::TDK_NonDependentConversionFailure:
753 return nullptr;
754
755 case Sema::TDK_DeducedMismatch:
756 case Sema::TDK_DeducedMismatchNested:
757 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
758
759 case Sema::TDK_SubstitutionFailure:
760 return static_cast<TemplateArgumentList*>(Data);
761
762 // Unhandled
763 case Sema::TDK_MiscellaneousDeductionFailure:
764 break;
765 }
766
767 return nullptr;
768}
769
770const TemplateArgument *DeductionFailureInfo::getFirstArg() {
771 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
772 case Sema::TDK_Success:
773 case Sema::TDK_Invalid:
774 case Sema::TDK_InstantiationDepth:
775 case Sema::TDK_Incomplete:
776 case Sema::TDK_TooManyArguments:
777 case Sema::TDK_TooFewArguments:
778 case Sema::TDK_InvalidExplicitArguments:
779 case Sema::TDK_SubstitutionFailure:
780 case Sema::TDK_CUDATargetMismatch:
781 case Sema::TDK_NonDependentConversionFailure:
782 return nullptr;
783
784 case Sema::TDK_IncompletePack:
785 case Sema::TDK_Inconsistent:
786 case Sema::TDK_Underqualified:
787 case Sema::TDK_DeducedMismatch:
788 case Sema::TDK_DeducedMismatchNested:
789 case Sema::TDK_NonDeducedMismatch:
790 return &static_cast<DFIArguments*>(Data)->FirstArg;
791
792 // Unhandled
793 case Sema::TDK_MiscellaneousDeductionFailure:
794 break;
795 }
796
797 return nullptr;
798}
799
800const TemplateArgument *DeductionFailureInfo::getSecondArg() {
801 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
802 case Sema::TDK_Success:
803 case Sema::TDK_Invalid:
804 case Sema::TDK_InstantiationDepth:
805 case Sema::TDK_Incomplete:
806 case Sema::TDK_IncompletePack:
807 case Sema::TDK_TooManyArguments:
808 case Sema::TDK_TooFewArguments:
809 case Sema::TDK_InvalidExplicitArguments:
810 case Sema::TDK_SubstitutionFailure:
811 case Sema::TDK_CUDATargetMismatch:
812 case Sema::TDK_NonDependentConversionFailure:
813 return nullptr;
814
815 case Sema::TDK_Inconsistent:
816 case Sema::TDK_Underqualified:
817 case Sema::TDK_DeducedMismatch:
818 case Sema::TDK_DeducedMismatchNested:
819 case Sema::TDK_NonDeducedMismatch:
820 return &static_cast<DFIArguments*>(Data)->SecondArg;
821
822 // Unhandled
823 case Sema::TDK_MiscellaneousDeductionFailure:
824 break;
825 }
826
827 return nullptr;
828}
829
830llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
831 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
832 case Sema::TDK_DeducedMismatch:
833 case Sema::TDK_DeducedMismatchNested:
834 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
835
836 default:
837 return llvm::None;
838 }
839}
840
841void OverloadCandidateSet::destroyCandidates() {
842 for (iterator i = begin(), e = end(); i != e; ++i) {
843 for (auto &C : i->Conversions)
844 C.~ImplicitConversionSequence();
845 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
846 i->DeductionFailure.Destroy();
847 }
848}
849
850void OverloadCandidateSet::clear(CandidateSetKind CSK) {
851 destroyCandidates();
852 SlabAllocator.Reset();
853 NumInlineBytesUsed = 0;
854 Candidates.clear();
855 Functions.clear();
856 Kind = CSK;
857}
858
859namespace {
860 class UnbridgedCastsSet {
861 struct Entry {
862 Expr **Addr;
863 Expr *Saved;
864 };
865 SmallVector<Entry, 2> Entries;
866
867 public:
868 void save(Sema &S, Expr *&E) {
869 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 869, __PRETTY_FUNCTION__))
;
870 Entry entry = { &E, E };
871 Entries.push_back(entry);
872 E = S.stripARCUnbridgedCast(E);
873 }
874
875 void restore() {
876 for (SmallVectorImpl<Entry>::iterator
877 i = Entries.begin(), e = Entries.end(); i != e; ++i)
878 *i->Addr = i->Saved;
879 }
880 };
881}
882
883/// checkPlaceholderForOverload - Do any interesting placeholder-like
884/// preprocessing on the given expression.
885///
886/// \param unbridgedCasts a collection to which to add unbridged casts;
887/// without this, they will be immediately diagnosed as errors
888///
889/// Return true on unrecoverable error.
890static bool
891checkPlaceholderForOverload(Sema &S, Expr *&E,
892 UnbridgedCastsSet *unbridgedCasts = nullptr) {
893 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
894 // We can't handle overloaded expressions here because overload
895 // resolution might reasonably tweak them.
896 if (placeholder->getKind() == BuiltinType::Overload) return false;
897
898 // If the context potentially accepts unbridged ARC casts, strip
899 // the unbridged cast and add it to the collection for later restoration.
900 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
901 unbridgedCasts) {
902 unbridgedCasts->save(S, E);
903 return false;
904 }
905
906 // Go ahead and check everything else.
907 ExprResult result = S.CheckPlaceholderExpr(E);
908 if (result.isInvalid())
909 return true;
910
911 E = result.get();
912 return false;
913 }
914
915 // Nothing to do.
916 return false;
917}
918
919/// checkArgPlaceholdersForOverload - Check a set of call operands for
920/// placeholders.
921static bool checkArgPlaceholdersForOverload(Sema &S,
922 MultiExprArg Args,
923 UnbridgedCastsSet &unbridged) {
924 for (unsigned i = 0, e = Args.size(); i != e; ++i)
925 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
926 return true;
927
928 return false;
929}
930
931/// Determine whether the given New declaration is an overload of the
932/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
933/// New and Old cannot be overloaded, e.g., if New has the same signature as
934/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
935/// functions (or function templates) at all. When it does return Ovl_Match or
936/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
937/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
938/// declaration.
939///
940/// Example: Given the following input:
941///
942/// void f(int, float); // #1
943/// void f(int, int); // #2
944/// int f(int, int); // #3
945///
946/// When we process #1, there is no previous declaration of "f", so IsOverload
947/// will not be used.
948///
949/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
950/// the parameter types, we see that #1 and #2 are overloaded (since they have
951/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
952/// unchanged.
953///
954/// When we process #3, Old is an overload set containing #1 and #2. We compare
955/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
956/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
957/// functions are not part of the signature), IsOverload returns Ovl_Match and
958/// MatchedDecl will be set to point to the FunctionDecl for #2.
959///
960/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
961/// by a using declaration. The rules for whether to hide shadow declarations
962/// ignore some properties which otherwise figure into a function template's
963/// signature.
964Sema::OverloadKind
965Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
966 NamedDecl *&Match, bool NewIsUsingDecl) {
967 for (LookupResult::iterator I = Old.begin(), E = Old.end();
968 I != E; ++I) {
969 NamedDecl *OldD = *I;
970
971 bool OldIsUsingDecl = false;
972 if (isa<UsingShadowDecl>(OldD)) {
973 OldIsUsingDecl = true;
974
975 // We can always introduce two using declarations into the same
976 // context, even if they have identical signatures.
977 if (NewIsUsingDecl) continue;
978
979 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
980 }
981
982 // A using-declaration does not conflict with another declaration
983 // if one of them is hidden.
984 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
985 continue;
986
987 // If either declaration was introduced by a using declaration,
988 // we'll need to use slightly different rules for matching.
989 // Essentially, these rules are the normal rules, except that
990 // function templates hide function templates with different
991 // return types or template parameter lists.
992 bool UseMemberUsingDeclRules =
993 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
994 !New->getFriendObjectKind();
995
996 if (FunctionDecl *OldF = OldD->getAsFunction()) {
997 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
998 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
999 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1000 continue;
1001 }
1002
1003 if (!isa<FunctionTemplateDecl>(OldD) &&
1004 !shouldLinkPossiblyHiddenDecl(*I, New))
1005 continue;
1006
1007 Match = *I;
1008 return Ovl_Match;
1009 }
1010
1011 // Builtins that have custom typechecking or have a reference should
1012 // not be overloadable or redeclarable.
1013 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1014 Match = *I;
1015 return Ovl_NonFunction;
1016 }
1017 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1018 // We can overload with these, which can show up when doing
1019 // redeclaration checks for UsingDecls.
1020 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1020, __PRETTY_FUNCTION__))
;
1021 } else if (isa<TagDecl>(OldD)) {
1022 // We can always overload with tags by hiding them.
1023 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1024 // Optimistically assume that an unresolved using decl will
1025 // overload; if it doesn't, we'll have to diagnose during
1026 // template instantiation.
1027 //
1028 // Exception: if the scope is dependent and this is not a class
1029 // member, the using declaration can only introduce an enumerator.
1030 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1031 Match = *I;
1032 return Ovl_NonFunction;
1033 }
1034 } else {
1035 // (C++ 13p1):
1036 // Only function declarations can be overloaded; object and type
1037 // declarations cannot be overloaded.
1038 Match = *I;
1039 return Ovl_NonFunction;
1040 }
1041 }
1042
1043 // C++ [temp.friend]p1:
1044 // For a friend function declaration that is not a template declaration:
1045 // -- if the name of the friend is a qualified or unqualified template-id,
1046 // [...], otherwise
1047 // -- if the name of the friend is a qualified-id and a matching
1048 // non-template function is found in the specified class or namespace,
1049 // the friend declaration refers to that function, otherwise,
1050 // -- if the name of the friend is a qualified-id and a matching function
1051 // template is found in the specified class or namespace, the friend
1052 // declaration refers to the deduced specialization of that function
1053 // template, otherwise
1054 // -- the name shall be an unqualified-id [...]
1055 // If we get here for a qualified friend declaration, we've just reached the
1056 // third bullet. If the type of the friend is dependent, skip this lookup
1057 // until instantiation.
1058 if (New->getFriendObjectKind() && New->getQualifier() &&
1059 !New->getDescribedFunctionTemplate() &&
1060 !New->getDependentSpecializationInfo() &&
1061 !New->getType()->isDependentType()) {
1062 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1063 TemplateSpecResult.addAllDecls(Old);
1064 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1065 /*QualifiedFriend*/true)) {
1066 New->setInvalidDecl();
1067 return Ovl_Overload;
1068 }
1069
1070 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1071 return Ovl_Match;
1072 }
1073
1074 return Ovl_Overload;
1075}
1076
1077bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1078 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1079 // C++ [basic.start.main]p2: This function shall not be overloaded.
1080 if (New->isMain())
1081 return false;
1082
1083 // MSVCRT user defined entry points cannot be overloaded.
1084 if (New->isMSVCRTEntryPoint())
1085 return false;
1086
1087 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1088 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1089
1090 // C++ [temp.fct]p2:
1091 // A function template can be overloaded with other function templates
1092 // and with normal (non-template) functions.
1093 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1094 return true;
1095
1096 // Is the function New an overload of the function Old?
1097 QualType OldQType = Context.getCanonicalType(Old->getType());
1098 QualType NewQType = Context.getCanonicalType(New->getType());
1099
1100 // Compare the signatures (C++ 1.3.10) of the two functions to
1101 // determine whether they are overloads. If we find any mismatch
1102 // in the signature, they are overloads.
1103
1104 // If either of these functions is a K&R-style function (no
1105 // prototype), then we consider them to have matching signatures.
1106 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1107 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1108 return false;
1109
1110 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1111 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1112
1113 // The signature of a function includes the types of its
1114 // parameters (C++ 1.3.10), which includes the presence or absence
1115 // of the ellipsis; see C++ DR 357).
1116 if (OldQType != NewQType &&
1117 (OldType->getNumParams() != NewType->getNumParams() ||
1118 OldType->isVariadic() != NewType->isVariadic() ||
1119 !FunctionParamTypesAreEqual(OldType, NewType)))
1120 return true;
1121
1122 // C++ [temp.over.link]p4:
1123 // The signature of a function template consists of its function
1124 // signature, its return type and its template parameter list. The names
1125 // of the template parameters are significant only for establishing the
1126 // relationship between the template parameters and the rest of the
1127 // signature.
1128 //
1129 // We check the return type and template parameter lists for function
1130 // templates first; the remaining checks follow.
1131 //
1132 // However, we don't consider either of these when deciding whether
1133 // a member introduced by a shadow declaration is hidden.
1134 if (!UseMemberUsingDeclRules && NewTemplate &&
1135 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1136 OldTemplate->getTemplateParameters(),
1137 false, TPL_TemplateMatch) ||
1138 !Context.hasSameType(Old->getDeclaredReturnType(),
1139 New->getDeclaredReturnType())))
1140 return true;
1141
1142 // If the function is a class member, its signature includes the
1143 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1144 //
1145 // As part of this, also check whether one of the member functions
1146 // is static, in which case they are not overloads (C++
1147 // 13.1p2). While not part of the definition of the signature,
1148 // this check is important to determine whether these functions
1149 // can be overloaded.
1150 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1151 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1152 if (OldMethod && NewMethod &&
1153 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1154 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1155 if (!UseMemberUsingDeclRules &&
1156 (OldMethod->getRefQualifier() == RQ_None ||
1157 NewMethod->getRefQualifier() == RQ_None)) {
1158 // C++0x [over.load]p2:
1159 // - Member function declarations with the same name and the same
1160 // parameter-type-list as well as member function template
1161 // declarations with the same name, the same parameter-type-list, and
1162 // the same template parameter lists cannot be overloaded if any of
1163 // them, but not all, have a ref-qualifier (8.3.5).
1164 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1165 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1166 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1167 }
1168 return true;
1169 }
1170
1171 // We may not have applied the implicit const for a constexpr member
1172 // function yet (because we haven't yet resolved whether this is a static
1173 // or non-static member function). Add it now, on the assumption that this
1174 // is a redeclaration of OldMethod.
1175 auto OldQuals = OldMethod->getMethodQualifiers();
1176 auto NewQuals = NewMethod->getMethodQualifiers();
1177 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1178 !isa<CXXConstructorDecl>(NewMethod))
1179 NewQuals.addConst();
1180 // We do not allow overloading based off of '__restrict'.
1181 OldQuals.removeRestrict();
1182 NewQuals.removeRestrict();
1183 if (OldQuals != NewQuals)
1184 return true;
1185 }
1186
1187 // Though pass_object_size is placed on parameters and takes an argument, we
1188 // consider it to be a function-level modifier for the sake of function
1189 // identity. Either the function has one or more parameters with
1190 // pass_object_size or it doesn't.
1191 if (functionHasPassObjectSizeParams(New) !=
1192 functionHasPassObjectSizeParams(Old))
1193 return true;
1194
1195 // enable_if attributes are an order-sensitive part of the signature.
1196 for (specific_attr_iterator<EnableIfAttr>
1197 NewI = New->specific_attr_begin<EnableIfAttr>(),
1198 NewE = New->specific_attr_end<EnableIfAttr>(),
1199 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1200 OldE = Old->specific_attr_end<EnableIfAttr>();
1201 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1202 if (NewI == NewE || OldI == OldE)
1203 return true;
1204 llvm::FoldingSetNodeID NewID, OldID;
1205 NewI->getCond()->Profile(NewID, Context, true);
1206 OldI->getCond()->Profile(OldID, Context, true);
1207 if (NewID != OldID)
1208 return true;
1209 }
1210
1211 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1212 // Don't allow overloading of destructors. (In theory we could, but it
1213 // would be a giant change to clang.)
1214 if (isa<CXXDestructorDecl>(New))
1215 return false;
1216
1217 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1218 OldTarget = IdentifyCUDATarget(Old);
1219 if (NewTarget == CFT_InvalidTarget)
1220 return false;
1221
1222 assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1222, __PRETTY_FUNCTION__))
;
1223
1224 // Allow overloading of functions with same signature and different CUDA
1225 // target attributes.
1226 return NewTarget != OldTarget;
1227 }
1228
1229 // The signatures match; this is not an overload.
1230 return false;
1231}
1232
1233/// Tries a user-defined conversion from From to ToType.
1234///
1235/// Produces an implicit conversion sequence for when a standard conversion
1236/// is not an option. See TryImplicitConversion for more information.
1237static ImplicitConversionSequence
1238TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1239 bool SuppressUserConversions,
1240 bool AllowExplicit,
1241 bool InOverloadResolution,
1242 bool CStyle,
1243 bool AllowObjCWritebackConversion,
1244 bool AllowObjCConversionOnExplicit) {
1245 ImplicitConversionSequence ICS;
1246
1247 if (SuppressUserConversions) {
1248 // We're not in the case above, so there is no conversion that
1249 // we can perform.
1250 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1251 return ICS;
1252 }
1253
1254 // Attempt user-defined conversion.
1255 OverloadCandidateSet Conversions(From->getExprLoc(),
1256 OverloadCandidateSet::CSK_Normal);
1257 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1258 Conversions, AllowExplicit,
1259 AllowObjCConversionOnExplicit)) {
1260 case OR_Success:
1261 case OR_Deleted:
1262 ICS.setUserDefined();
1263 // C++ [over.ics.user]p4:
1264 // A conversion of an expression of class type to the same class
1265 // type is given Exact Match rank, and a conversion of an
1266 // expression of class type to a base class of that type is
1267 // given Conversion rank, in spite of the fact that a copy
1268 // constructor (i.e., a user-defined conversion function) is
1269 // called for those cases.
1270 if (CXXConstructorDecl *Constructor
1271 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1272 QualType FromCanon
1273 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1274 QualType ToCanon
1275 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1276 if (Constructor->isCopyConstructor() &&
1277 (FromCanon == ToCanon ||
1278 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1279 // Turn this into a "standard" conversion sequence, so that it
1280 // gets ranked with standard conversion sequences.
1281 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1282 ICS.setStandard();
1283 ICS.Standard.setAsIdentityConversion();
1284 ICS.Standard.setFromType(From->getType());
1285 ICS.Standard.setAllToTypes(ToType);
1286 ICS.Standard.CopyConstructor = Constructor;
1287 ICS.Standard.FoundCopyConstructor = Found;
1288 if (ToCanon != FromCanon)
1289 ICS.Standard.Second = ICK_Derived_To_Base;
1290 }
1291 }
1292 break;
1293
1294 case OR_Ambiguous:
1295 ICS.setAmbiguous();
1296 ICS.Ambiguous.setFromType(From->getType());
1297 ICS.Ambiguous.setToType(ToType);
1298 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1299 Cand != Conversions.end(); ++Cand)
1300 if (Cand->Viable)
1301 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1302 break;
1303
1304 // Fall through.
1305 case OR_No_Viable_Function:
1306 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1307 break;
1308 }
1309
1310 return ICS;
1311}
1312
1313/// TryImplicitConversion - Attempt to perform an implicit conversion
1314/// from the given expression (Expr) to the given type (ToType). This
1315/// function returns an implicit conversion sequence that can be used
1316/// to perform the initialization. Given
1317///
1318/// void f(float f);
1319/// void g(int i) { f(i); }
1320///
1321/// this routine would produce an implicit conversion sequence to
1322/// describe the initialization of f from i, which will be a standard
1323/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1324/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1325//
1326/// Note that this routine only determines how the conversion can be
1327/// performed; it does not actually perform the conversion. As such,
1328/// it will not produce any diagnostics if no conversion is available,
1329/// but will instead return an implicit conversion sequence of kind
1330/// "BadConversion".
1331///
1332/// If @p SuppressUserConversions, then user-defined conversions are
1333/// not permitted.
1334/// If @p AllowExplicit, then explicit user-defined conversions are
1335/// permitted.
1336///
1337/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1338/// writeback conversion, which allows __autoreleasing id* parameters to
1339/// be initialized with __strong id* or __weak id* arguments.
1340static ImplicitConversionSequence
1341TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1342 bool SuppressUserConversions,
1343 bool AllowExplicit,
1344 bool InOverloadResolution,
1345 bool CStyle,
1346 bool AllowObjCWritebackConversion,
1347 bool AllowObjCConversionOnExplicit) {
1348 ImplicitConversionSequence ICS;
1349 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1350 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1351 ICS.setStandard();
1352 return ICS;
1353 }
1354
1355 if (!S.getLangOpts().CPlusPlus) {
1356 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1357 return ICS;
1358 }
1359
1360 // C++ [over.ics.user]p4:
1361 // A conversion of an expression of class type to the same class
1362 // type is given Exact Match rank, and a conversion of an
1363 // expression of class type to a base class of that type is
1364 // given Conversion rank, in spite of the fact that a copy/move
1365 // constructor (i.e., a user-defined conversion function) is
1366 // called for those cases.
1367 QualType FromType = From->getType();
1368 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1369 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1370 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1371 ICS.setStandard();
1372 ICS.Standard.setAsIdentityConversion();
1373 ICS.Standard.setFromType(FromType);
1374 ICS.Standard.setAllToTypes(ToType);
1375
1376 // We don't actually check at this point whether there is a valid
1377 // copy/move constructor, since overloading just assumes that it
1378 // exists. When we actually perform initialization, we'll find the
1379 // appropriate constructor to copy the returned object, if needed.
1380 ICS.Standard.CopyConstructor = nullptr;
1381
1382 // Determine whether this is considered a derived-to-base conversion.
1383 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1384 ICS.Standard.Second = ICK_Derived_To_Base;
1385
1386 return ICS;
1387 }
1388
1389 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1390 AllowExplicit, InOverloadResolution, CStyle,
1391 AllowObjCWritebackConversion,
1392 AllowObjCConversionOnExplicit);
1393}
1394
1395ImplicitConversionSequence
1396Sema::TryImplicitConversion(Expr *From, QualType ToType,
1397 bool SuppressUserConversions,
1398 bool AllowExplicit,
1399 bool InOverloadResolution,
1400 bool CStyle,
1401 bool AllowObjCWritebackConversion) {
1402 return ::TryImplicitConversion(*this, From, ToType,
1403 SuppressUserConversions, AllowExplicit,
1404 InOverloadResolution, CStyle,
1405 AllowObjCWritebackConversion,
1406 /*AllowObjCConversionOnExplicit=*/false);
1407}
1408
1409/// PerformImplicitConversion - Perform an implicit conversion of the
1410/// expression From to the type ToType. Returns the
1411/// converted expression. Flavor is the kind of conversion we're
1412/// performing, used in the error message. If @p AllowExplicit,
1413/// explicit user-defined conversions are permitted.
1414ExprResult
1415Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1416 AssignmentAction Action, bool AllowExplicit) {
1417 ImplicitConversionSequence ICS;
1418 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1419}
1420
1421ExprResult
1422Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1423 AssignmentAction Action, bool AllowExplicit,
1424 ImplicitConversionSequence& ICS) {
1425 if (checkPlaceholderForOverload(*this, From))
1426 return ExprError();
1427
1428 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1429 bool AllowObjCWritebackConversion
1430 = getLangOpts().ObjCAutoRefCount &&
1431 (Action == AA_Passing || Action == AA_Sending);
1432 if (getLangOpts().ObjC)
1433 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1434 From->getType(), From);
1435 ICS = ::TryImplicitConversion(*this, From, ToType,
1436 /*SuppressUserConversions=*/false,
1437 AllowExplicit,
1438 /*InOverloadResolution=*/false,
1439 /*CStyle=*/false,
1440 AllowObjCWritebackConversion,
1441 /*AllowObjCConversionOnExplicit=*/false);
1442 return PerformImplicitConversion(From, ToType, ICS, Action);
1443}
1444
1445/// Determine whether the conversion from FromType to ToType is a valid
1446/// conversion that strips "noexcept" or "noreturn" off the nested function
1447/// type.
1448bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1449 QualType &ResultTy) {
1450 if (Context.hasSameUnqualifiedType(FromType, ToType))
1451 return false;
1452
1453 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1454 // or F(t noexcept) -> F(t)
1455 // where F adds one of the following at most once:
1456 // - a pointer
1457 // - a member pointer
1458 // - a block pointer
1459 // Changes here need matching changes in FindCompositePointerType.
1460 CanQualType CanTo = Context.getCanonicalType(ToType);
1461 CanQualType CanFrom = Context.getCanonicalType(FromType);
1462 Type::TypeClass TyClass = CanTo->getTypeClass();
1463 if (TyClass != CanFrom->getTypeClass()) return false;
1464 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1465 if (TyClass == Type::Pointer) {
1466 CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1467 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1468 } else if (TyClass == Type::BlockPointer) {
1469 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1470 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1471 } else if (TyClass == Type::MemberPointer) {
1472 auto ToMPT = CanTo.getAs<MemberPointerType>();
1473 auto FromMPT = CanFrom.getAs<MemberPointerType>();
1474 // A function pointer conversion cannot change the class of the function.
1475 if (ToMPT->getClass() != FromMPT->getClass())
1476 return false;
1477 CanTo = ToMPT->getPointeeType();
1478 CanFrom = FromMPT->getPointeeType();
1479 } else {
1480 return false;
1481 }
1482
1483 TyClass = CanTo->getTypeClass();
1484 if (TyClass != CanFrom->getTypeClass()) return false;
1485 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1486 return false;
1487 }
1488
1489 const auto *FromFn = cast<FunctionType>(CanFrom);
1490 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1491
1492 const auto *ToFn = cast<FunctionType>(CanTo);
1493 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1494
1495 bool Changed = false;
1496
1497 // Drop 'noreturn' if not present in target type.
1498 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1499 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1500 Changed = true;
1501 }
1502
1503 // Drop 'noexcept' if not present in target type.
1504 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1505 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1506 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1507 FromFn = cast<FunctionType>(
1508 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1509 EST_None)
1510 .getTypePtr());
1511 Changed = true;
1512 }
1513
1514 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1515 // only if the ExtParameterInfo lists of the two function prototypes can be
1516 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1517 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1518 bool CanUseToFPT, CanUseFromFPT;
1519 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1520 CanUseFromFPT, NewParamInfos) &&
1521 CanUseToFPT && !CanUseFromFPT) {
1522 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1523 ExtInfo.ExtParameterInfos =
1524 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1525 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1526 FromFPT->getParamTypes(), ExtInfo);
1527 FromFn = QT->getAs<FunctionType>();
1528 Changed = true;
1529 }
1530 }
1531
1532 if (!Changed)
1533 return false;
1534
1535 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1535, __PRETTY_FUNCTION__))
;
1536 if (QualType(FromFn, 0) != CanTo) return false;
1537
1538 ResultTy = ToType;
1539 return true;
1540}
1541
1542/// Determine whether the conversion from FromType to ToType is a valid
1543/// vector conversion.
1544///
1545/// \param ICK Will be set to the vector conversion kind, if this is a vector
1546/// conversion.
1547static bool IsVectorConversion(Sema &S, QualType FromType,
1548 QualType ToType, ImplicitConversionKind &ICK) {
1549 // We need at least one of these types to be a vector type to have a vector
1550 // conversion.
1551 if (!ToType->isVectorType() && !FromType->isVectorType())
1552 return false;
1553
1554 // Identical types require no conversions.
1555 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1556 return false;
1557
1558 // There are no conversions between extended vector types, only identity.
1559 if (ToType->isExtVectorType()) {
1560 // There are no conversions between extended vector types other than the
1561 // identity conversion.
1562 if (FromType->isExtVectorType())
1563 return false;
1564
1565 // Vector splat from any arithmetic type to a vector.
1566 if (FromType->isArithmeticType()) {
1567 ICK = ICK_Vector_Splat;
1568 return true;
1569 }
1570 }
1571
1572 // We can perform the conversion between vector types in the following cases:
1573 // 1)vector types are equivalent AltiVec and GCC vector types
1574 // 2)lax vector conversions are permitted and the vector types are of the
1575 // same size
1576 if (ToType->isVectorType() && FromType->isVectorType()) {
1577 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1578 S.isLaxVectorConversion(FromType, ToType)) {
1579 ICK = ICK_Vector_Conversion;
1580 return true;
1581 }
1582 }
1583
1584 return false;
1585}
1586
1587static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1588 bool InOverloadResolution,
1589 StandardConversionSequence &SCS,
1590 bool CStyle);
1591
1592/// IsStandardConversion - Determines whether there is a standard
1593/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1594/// expression From to the type ToType. Standard conversion sequences
1595/// only consider non-class types; for conversions that involve class
1596/// types, use TryImplicitConversion. If a conversion exists, SCS will
1597/// contain the standard conversion sequence required to perform this
1598/// conversion and this routine will return true. Otherwise, this
1599/// routine will return false and the value of SCS is unspecified.
1600static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1601 bool InOverloadResolution,
1602 StandardConversionSequence &SCS,
1603 bool CStyle,
1604 bool AllowObjCWritebackConversion) {
1605 QualType FromType = From->getType();
1606
1607 // Standard conversions (C++ [conv])
1608 SCS.setAsIdentityConversion();
1609 SCS.IncompatibleObjC = false;
1610 SCS.setFromType(FromType);
1611 SCS.CopyConstructor = nullptr;
1612
1613 // There are no standard conversions for class types in C++, so
1614 // abort early. When overloading in C, however, we do permit them.
1615 if (S.getLangOpts().CPlusPlus &&
1616 (FromType->isRecordType() || ToType->isRecordType()))
1617 return false;
1618
1619 // The first conversion can be an lvalue-to-rvalue conversion,
1620 // array-to-pointer conversion, or function-to-pointer conversion
1621 // (C++ 4p1).
1622
1623 if (FromType == S.Context.OverloadTy) {
1624 DeclAccessPair AccessPair;
1625 if (FunctionDecl *Fn
1626 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1627 AccessPair)) {
1628 // We were able to resolve the address of the overloaded function,
1629 // so we can convert to the type of that function.
1630 FromType = Fn->getType();
1631 SCS.setFromType(FromType);
1632
1633 // we can sometimes resolve &foo<int> regardless of ToType, so check
1634 // if the type matches (identity) or we are converting to bool
1635 if (!S.Context.hasSameUnqualifiedType(
1636 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1637 QualType resultTy;
1638 // if the function type matches except for [[noreturn]], it's ok
1639 if (!S.IsFunctionConversion(FromType,
1640 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1641 // otherwise, only a boolean conversion is standard
1642 if (!ToType->isBooleanType())
1643 return false;
1644 }
1645
1646 // Check if the "from" expression is taking the address of an overloaded
1647 // function and recompute the FromType accordingly. Take advantage of the
1648 // fact that non-static member functions *must* have such an address-of
1649 // expression.
1650 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1651 if (Method && !Method->isStatic()) {
1652 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1653, __PRETTY_FUNCTION__))
1653 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1653, __PRETTY_FUNCTION__))
;
1654 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1656, __PRETTY_FUNCTION__))
1655 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1656, __PRETTY_FUNCTION__))
1656 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1656, __PRETTY_FUNCTION__))
;
1657 const Type *ClassType
1658 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1659 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1660 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1661 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1663, __PRETTY_FUNCTION__))
1662 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1663, __PRETTY_FUNCTION__))
1663 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1663, __PRETTY_FUNCTION__))
;
1664 FromType = S.Context.getPointerType(FromType);
1665 }
1666
1667 // Check that we've computed the proper type after overload resolution.
1668 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1669 // be calling it from within an NDEBUG block.
1670 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1672, __PRETTY_FUNCTION__))
1671 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1672, __PRETTY_FUNCTION__))
1672 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 1672, __PRETTY_FUNCTION__))
;
1673 } else {
1674 return false;
1675 }
1676 }
1677 // Lvalue-to-rvalue conversion (C++11 4.1):
1678 // A glvalue (3.10) of a non-function, non-array type T can
1679 // be converted to a prvalue.
1680 bool argIsLValue = From->isGLValue();
1681 if (argIsLValue &&
1682 !FromType->isFunctionType() && !FromType->isArrayType() &&
1683 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1684 SCS.First = ICK_Lvalue_To_Rvalue;
1685
1686 // C11 6.3.2.1p2:
1687 // ... if the lvalue has atomic type, the value has the non-atomic version
1688 // of the type of the lvalue ...
1689 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1690 FromType = Atomic->getValueType();
1691
1692 // If T is a non-class type, the type of the rvalue is the
1693 // cv-unqualified version of T. Otherwise, the type of the rvalue
1694 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1695 // just strip the qualifiers because they don't matter.
1696 FromType = FromType.getUnqualifiedType();
1697 } else if (FromType->isArrayType()) {
1698 // Array-to-pointer conversion (C++ 4.2)
1699 SCS.First = ICK_Array_To_Pointer;
1700
1701 // An lvalue or rvalue of type "array of N T" or "array of unknown
1702 // bound of T" can be converted to an rvalue of type "pointer to
1703 // T" (C++ 4.2p1).
1704 FromType = S.Context.getArrayDecayedType(FromType);
1705
1706 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1707 // This conversion is deprecated in C++03 (D.4)
1708 SCS.DeprecatedStringLiteralToCharPtr = true;
1709
1710 // For the purpose of ranking in overload resolution
1711 // (13.3.3.1.1), this conversion is considered an
1712 // array-to-pointer conversion followed by a qualification
1713 // conversion (4.4). (C++ 4.2p2)
1714 SCS.Second = ICK_Identity;
1715 SCS.Third = ICK_Qualification;
1716 SCS.QualificationIncludesObjCLifetime = false;
1717 SCS.setAllToTypes(FromType);
1718 return true;
1719 }
1720 } else if (FromType->isFunctionType() && argIsLValue) {
1721 // Function-to-pointer conversion (C++ 4.3).
1722 SCS.First = ICK_Function_To_Pointer;
1723
1724 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1725 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1726 if (!S.checkAddressOfFunctionIsAvailable(FD))
1727 return false;
1728
1729 // An lvalue of function type T can be converted to an rvalue of
1730 // type "pointer to T." The result is a pointer to the
1731 // function. (C++ 4.3p1).
1732 FromType = S.Context.getPointerType(FromType);
1733 } else {
1734 // We don't require any conversions for the first step.
1735 SCS.First = ICK_Identity;
1736 }
1737 SCS.setToType(0, FromType);
1738
1739 // The second conversion can be an integral promotion, floating
1740 // point promotion, integral conversion, floating point conversion,
1741 // floating-integral conversion, pointer conversion,
1742 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1743 // For overloading in C, this can also be a "compatible-type"
1744 // conversion.
1745 bool IncompatibleObjC = false;
1746 ImplicitConversionKind SecondICK = ICK_Identity;
1747 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1748 // The unqualified versions of the types are the same: there's no
1749 // conversion to do.
1750 SCS.Second = ICK_Identity;
1751 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1752 // Integral promotion (C++ 4.5).
1753 SCS.Second = ICK_Integral_Promotion;
1754 FromType = ToType.getUnqualifiedType();
1755 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1756 // Floating point promotion (C++ 4.6).
1757 SCS.Second = ICK_Floating_Promotion;
1758 FromType = ToType.getUnqualifiedType();
1759 } else if (S.IsComplexPromotion(FromType, ToType)) {
1760 // Complex promotion (Clang extension)
1761 SCS.Second = ICK_Complex_Promotion;
1762 FromType = ToType.getUnqualifiedType();
1763 } else if (ToType->isBooleanType() &&
1764 (FromType->isArithmeticType() ||
1765 FromType->isAnyPointerType() ||
1766 FromType->isBlockPointerType() ||
1767 FromType->isMemberPointerType() ||
1768 FromType->isNullPtrType())) {
1769 // Boolean conversions (C++ 4.12).
1770 SCS.Second = ICK_Boolean_Conversion;
1771 FromType = S.Context.BoolTy;
1772 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1773 ToType->isIntegralType(S.Context)) {
1774 // Integral conversions (C++ 4.7).
1775 SCS.Second = ICK_Integral_Conversion;
1776 FromType = ToType.getUnqualifiedType();
1777 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1778 // Complex conversions (C99 6.3.1.6)
1779 SCS.Second = ICK_Complex_Conversion;
1780 FromType = ToType.getUnqualifiedType();
1781 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1782 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1783 // Complex-real conversions (C99 6.3.1.7)
1784 SCS.Second = ICK_Complex_Real;
1785 FromType = ToType.getUnqualifiedType();
1786 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1787 // FIXME: disable conversions between long double and __float128 if
1788 // their representation is different until there is back end support
1789 // We of course allow this conversion if long double is really double.
1790 if (&S.Context.getFloatTypeSemantics(FromType) !=
1791 &S.Context.getFloatTypeSemantics(ToType)) {
1792 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1793 ToType == S.Context.LongDoubleTy) ||
1794 (FromType == S.Context.LongDoubleTy &&
1795 ToType == S.Context.Float128Ty));
1796 if (Float128AndLongDouble &&
1797 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1798 &llvm::APFloat::PPCDoubleDouble()))
1799 return false;
1800 }
1801 // Floating point conversions (C++ 4.8).
1802 SCS.Second = ICK_Floating_Conversion;
1803 FromType = ToType.getUnqualifiedType();
1804 } else if ((FromType->isRealFloatingType() &&
1805 ToType->isIntegralType(S.Context)) ||
1806 (FromType->isIntegralOrUnscopedEnumerationType() &&
1807 ToType->isRealFloatingType())) {
1808 // Floating-integral conversions (C++ 4.9).
1809 SCS.Second = ICK_Floating_Integral;
1810 FromType = ToType.getUnqualifiedType();
1811 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1812 SCS.Second = ICK_Block_Pointer_Conversion;
1813 } else if (AllowObjCWritebackConversion &&
1814 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1815 SCS.Second = ICK_Writeback_Conversion;
1816 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1817 FromType, IncompatibleObjC)) {
1818 // Pointer conversions (C++ 4.10).
1819 SCS.Second = ICK_Pointer_Conversion;
1820 SCS.IncompatibleObjC = IncompatibleObjC;
1821 FromType = FromType.getUnqualifiedType();
1822 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1823 InOverloadResolution, FromType)) {
1824 // Pointer to member conversions (4.11).
1825 SCS.Second = ICK_Pointer_Member;
1826 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1827 SCS.Second = SecondICK;
1828 FromType = ToType.getUnqualifiedType();
1829 } else if (!S.getLangOpts().CPlusPlus &&
1830 S.Context.typesAreCompatible(ToType, FromType)) {
1831 // Compatible conversions (Clang extension for C function overloading)
1832 SCS.Second = ICK_Compatible_Conversion;
1833 FromType = ToType.getUnqualifiedType();
1834 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1835 InOverloadResolution,
1836 SCS, CStyle)) {
1837 SCS.Second = ICK_TransparentUnionConversion;
1838 FromType = ToType;
1839 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1840 CStyle)) {
1841 // tryAtomicConversion has updated the standard conversion sequence
1842 // appropriately.
1843 return true;
1844 } else if (ToType->isEventT() &&
1845 From->isIntegerConstantExpr(S.getASTContext()) &&
1846 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1847 SCS.Second = ICK_Zero_Event_Conversion;
1848 FromType = ToType;
1849 } else if (ToType->isQueueT() &&
1850 From->isIntegerConstantExpr(S.getASTContext()) &&
1851 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1852 SCS.Second = ICK_Zero_Queue_Conversion;
1853 FromType = ToType;
1854 } else {
1855 // No second conversion required.
1856 SCS.Second = ICK_Identity;
1857 }
1858 SCS.setToType(1, FromType);
1859
1860 // The third conversion can be a function pointer conversion or a
1861 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1862 bool ObjCLifetimeConversion;
1863 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1864 // Function pointer conversions (removing 'noexcept') including removal of
1865 // 'noreturn' (Clang extension).
1866 SCS.Third = ICK_Function_Conversion;
1867 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1868 ObjCLifetimeConversion)) {
1869 SCS.Third = ICK_Qualification;
1870 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1871 FromType = ToType;
1872 } else {
1873 // No conversion required
1874 SCS.Third = ICK_Identity;
1875 }
1876
1877 // C++ [over.best.ics]p6:
1878 // [...] Any difference in top-level cv-qualification is
1879 // subsumed by the initialization itself and does not constitute
1880 // a conversion. [...]
1881 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1882 QualType CanonTo = S.Context.getCanonicalType(ToType);
1883 if (CanonFrom.getLocalUnqualifiedType()
1884 == CanonTo.getLocalUnqualifiedType() &&
1885 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1886 FromType = ToType;
1887 CanonFrom = CanonTo;
1888 }
1889
1890 SCS.setToType(2, FromType);
1891
1892 if (CanonFrom == CanonTo)
1893 return true;
1894
1895 // If we have not converted the argument type to the parameter type,
1896 // this is a bad conversion sequence, unless we're resolving an overload in C.
1897 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1898 return false;
1899
1900 ExprResult ER = ExprResult{From};
1901 Sema::AssignConvertType Conv =
1902 S.CheckSingleAssignmentConstraints(ToType, ER,
1903 /*Diagnose=*/false,
1904 /*DiagnoseCFAudited=*/false,
1905 /*ConvertRHS=*/false);
1906 ImplicitConversionKind SecondConv;
1907 switch (Conv) {
1908 case Sema::Compatible:
1909 SecondConv = ICK_C_Only_Conversion;
1910 break;
1911 // For our purposes, discarding qualifiers is just as bad as using an
1912 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1913 // qualifiers, as well.
1914 case Sema::CompatiblePointerDiscardsQualifiers:
1915 case Sema::IncompatiblePointer:
1916 case Sema::IncompatiblePointerSign:
1917 SecondConv = ICK_Incompatible_Pointer_Conversion;
1918 break;
1919 default:
1920 return false;
1921 }
1922
1923 // First can only be an lvalue conversion, so we pretend that this was the
1924 // second conversion. First should already be valid from earlier in the
1925 // function.
1926 SCS.Second = SecondConv;
1927 SCS.setToType(1, ToType);
1928
1929 // Third is Identity, because Second should rank us worse than any other
1930 // conversion. This could also be ICK_Qualification, but it's simpler to just
1931 // lump everything in with the second conversion, and we don't gain anything
1932 // from making this ICK_Qualification.
1933 SCS.Third = ICK_Identity;
1934 SCS.setToType(2, ToType);
1935 return true;
1936}
1937
1938static bool
1939IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1940 QualType &ToType,
1941 bool InOverloadResolution,
1942 StandardConversionSequence &SCS,
1943 bool CStyle) {
1944
1945 const RecordType *UT = ToType->getAsUnionType();
1946 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1947 return false;
1948 // The field to initialize within the transparent union.
1949 RecordDecl *UD = UT->getDecl();
1950 // It's compatible if the expression matches any of the fields.
1951 for (const auto *it : UD->fields()) {
1952 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1953 CStyle, /*ObjCWritebackConversion=*/false)) {
1954 ToType = it->getType();
1955 return true;
1956 }
1957 }
1958 return false;
1959}
1960
1961/// IsIntegralPromotion - Determines whether the conversion from the
1962/// expression From (whose potentially-adjusted type is FromType) to
1963/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1964/// sets PromotedType to the promoted type.
1965bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1966 const BuiltinType *To = ToType->getAs<BuiltinType>();
1967 // All integers are built-in.
1968 if (!To) {
1969 return false;
1970 }
1971
1972 // An rvalue of type char, signed char, unsigned char, short int, or
1973 // unsigned short int can be converted to an rvalue of type int if
1974 // int can represent all the values of the source type; otherwise,
1975 // the source rvalue can be converted to an rvalue of type unsigned
1976 // int (C++ 4.5p1).
1977 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1978 !FromType->isEnumeralType()) {
1979 if (// We can promote any signed, promotable integer type to an int
1980 (FromType->isSignedIntegerType() ||
1981 // We can promote any unsigned integer type whose size is
1982 // less than int to an int.
1983 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1984 return To->getKind() == BuiltinType::Int;
1985 }
1986
1987 return To->getKind() == BuiltinType::UInt;
1988 }
1989
1990 // C++11 [conv.prom]p3:
1991 // A prvalue of an unscoped enumeration type whose underlying type is not
1992 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1993 // following types that can represent all the values of the enumeration
1994 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1995 // unsigned int, long int, unsigned long int, long long int, or unsigned
1996 // long long int. If none of the types in that list can represent all the
1997 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1998 // type can be converted to an rvalue a prvalue of the extended integer type
1999 // with lowest integer conversion rank (4.13) greater than the rank of long
2000 // long in which all the values of the enumeration can be represented. If
2001 // there are two such extended types, the signed one is chosen.
2002 // C++11 [conv.prom]p4:
2003 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2004 // can be converted to a prvalue of its underlying type. Moreover, if
2005 // integral promotion can be applied to its underlying type, a prvalue of an
2006 // unscoped enumeration type whose underlying type is fixed can also be
2007 // converted to a prvalue of the promoted underlying type.
2008 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2009 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2010 // provided for a scoped enumeration.
2011 if (FromEnumType->getDecl()->isScoped())
2012 return false;
2013
2014 // We can perform an integral promotion to the underlying type of the enum,
2015 // even if that's not the promoted type. Note that the check for promoting
2016 // the underlying type is based on the type alone, and does not consider
2017 // the bitfield-ness of the actual source expression.
2018 if (FromEnumType->getDecl()->isFixed()) {
2019 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2020 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2021 IsIntegralPromotion(nullptr, Underlying, ToType);
2022 }
2023
2024 // We have already pre-calculated the promotion type, so this is trivial.
2025 if (ToType->isIntegerType() &&
2026 isCompleteType(From->getBeginLoc(), FromType))
2027 return Context.hasSameUnqualifiedType(
2028 ToType, FromEnumType->getDecl()->getPromotionType());
2029
2030 // C++ [conv.prom]p5:
2031 // If the bit-field has an enumerated type, it is treated as any other
2032 // value of that type for promotion purposes.
2033 //
2034 // ... so do not fall through into the bit-field checks below in C++.
2035 if (getLangOpts().CPlusPlus)
2036 return false;
2037 }
2038
2039 // C++0x [conv.prom]p2:
2040 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2041 // to an rvalue a prvalue of the first of the following types that can
2042 // represent all the values of its underlying type: int, unsigned int,
2043 // long int, unsigned long int, long long int, or unsigned long long int.
2044 // If none of the types in that list can represent all the values of its
2045 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2046 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2047 // type.
2048 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2049 ToType->isIntegerType()) {
2050 // Determine whether the type we're converting from is signed or
2051 // unsigned.
2052 bool FromIsSigned = FromType->isSignedIntegerType();
2053 uint64_t FromSize = Context.getTypeSize(FromType);
2054
2055 // The types we'll try to promote to, in the appropriate
2056 // order. Try each of these types.
2057 QualType PromoteTypes[6] = {
2058 Context.IntTy, Context.UnsignedIntTy,
2059 Context.LongTy, Context.UnsignedLongTy ,
2060 Context.LongLongTy, Context.UnsignedLongLongTy
2061 };
2062 for (int Idx = 0; Idx < 6; ++Idx) {
2063 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2064 if (FromSize < ToSize ||
2065 (FromSize == ToSize &&
2066 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2067 // We found the type that we can promote to. If this is the
2068 // type we wanted, we have a promotion. Otherwise, no
2069 // promotion.
2070 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2071 }
2072 }
2073 }
2074
2075 // An rvalue for an integral bit-field (9.6) can be converted to an
2076 // rvalue of type int if int can represent all the values of the
2077 // bit-field; otherwise, it can be converted to unsigned int if
2078 // unsigned int can represent all the values of the bit-field. If
2079 // the bit-field is larger yet, no integral promotion applies to
2080 // it. If the bit-field has an enumerated type, it is treated as any
2081 // other value of that type for promotion purposes (C++ 4.5p3).
2082 // FIXME: We should delay checking of bit-fields until we actually perform the
2083 // conversion.
2084 //
2085 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2086 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2087 // bit-fields and those whose underlying type is larger than int) for GCC
2088 // compatibility.
2089 if (From) {
2090 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2091 llvm::APSInt BitWidth;
2092 if (FromType->isIntegralType(Context) &&
2093 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2094 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2095 ToSize = Context.getTypeSize(ToType);
2096
2097 // Are we promoting to an int from a bitfield that fits in an int?
2098 if (BitWidth < ToSize ||
2099 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2100 return To->getKind() == BuiltinType::Int;
2101 }
2102
2103 // Are we promoting to an unsigned int from an unsigned bitfield
2104 // that fits into an unsigned int?
2105 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2106 return To->getKind() == BuiltinType::UInt;
2107 }
2108
2109 return false;
2110 }
2111 }
2112 }
2113
2114 // An rvalue of type bool can be converted to an rvalue of type int,
2115 // with false becoming zero and true becoming one (C++ 4.5p4).
2116 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2117 return true;
2118 }
2119
2120 return false;
2121}
2122
2123/// IsFloatingPointPromotion - Determines whether the conversion from
2124/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2125/// returns true and sets PromotedType to the promoted type.
2126bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2127 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2128 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2129 /// An rvalue of type float can be converted to an rvalue of type
2130 /// double. (C++ 4.6p1).
2131 if (FromBuiltin->getKind() == BuiltinType::Float &&
2132 ToBuiltin->getKind() == BuiltinType::Double)
2133 return true;
2134
2135 // C99 6.3.1.5p1:
2136 // When a float is promoted to double or long double, or a
2137 // double is promoted to long double [...].
2138 if (!getLangOpts().CPlusPlus &&
2139 (FromBuiltin->getKind() == BuiltinType::Float ||
2140 FromBuiltin->getKind() == BuiltinType::Double) &&
2141 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2142 ToBuiltin->getKind() == BuiltinType::Float128))
2143 return true;
2144
2145 // Half can be promoted to float.
2146 if (!getLangOpts().NativeHalfType &&
2147 FromBuiltin->getKind() == BuiltinType::Half &&
2148 ToBuiltin->getKind() == BuiltinType::Float)
2149 return true;
2150 }
2151
2152 return false;
2153}
2154
2155/// Determine if a conversion is a complex promotion.
2156///
2157/// A complex promotion is defined as a complex -> complex conversion
2158/// where the conversion between the underlying real types is a
2159/// floating-point or integral promotion.
2160bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2161 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2162 if (!FromComplex)
2163 return false;
2164
2165 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2166 if (!ToComplex)
2167 return false;
2168
2169 return IsFloatingPointPromotion(FromComplex->getElementType(),
2170 ToComplex->getElementType()) ||
2171 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2172 ToComplex->getElementType());
2173}
2174
2175/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2176/// the pointer type FromPtr to a pointer to type ToPointee, with the
2177/// same type qualifiers as FromPtr has on its pointee type. ToType,
2178/// if non-empty, will be a pointer to ToType that may or may not have
2179/// the right set of qualifiers on its pointee.
2180///
2181static QualType
2182BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2183 QualType ToPointee, QualType ToType,
2184 ASTContext &Context,
2185 bool StripObjCLifetime = false) {
2186 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 2188, __PRETTY_FUNCTION__))
2187 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 2188, __PRETTY_FUNCTION__))
2188 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 2188, __PRETTY_FUNCTION__))
;
2189
2190 /// Conversions to 'id' subsume cv-qualifier conversions.
2191 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2192 return ToType.getUnqualifiedType();
2193
2194 QualType CanonFromPointee
2195 = Context.getCanonicalType(FromPtr->getPointeeType());
2196 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2197 Qualifiers Quals = CanonFromPointee.getQualifiers();
2198
2199 if (StripObjCLifetime)
2200 Quals.removeObjCLifetime();
2201
2202 // Exact qualifier match -> return the pointer type we're converting to.
2203 if (CanonToPointee.getLocalQualifiers() == Quals) {
2204 // ToType is exactly what we need. Return it.
2205 if (!ToType.isNull())
2206 return ToType.getUnqualifiedType();
2207
2208 // Build a pointer to ToPointee. It has the right qualifiers
2209 // already.
2210 if (isa<ObjCObjectPointerType>(ToType))
2211 return Context.getObjCObjectPointerType(ToPointee);
2212 return Context.getPointerType(ToPointee);
2213 }
2214
2215 // Just build a canonical type that has the right qualifiers.
2216 QualType QualifiedCanonToPointee
2217 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2218
2219 if (isa<ObjCObjectPointerType>(ToType))
2220 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2221 return Context.getPointerType(QualifiedCanonToPointee);
2222}
2223
2224static bool isNullPointerConstantForConversion(Expr *Expr,
2225 bool InOverloadResolution,
2226 ASTContext &Context) {
2227 // Handle value-dependent integral null pointer constants correctly.
2228 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2229 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2230 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2231 return !InOverloadResolution;
2232
2233 return Expr->isNullPointerConstant(Context,
2234 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2235 : Expr::NPC_ValueDependentIsNull);
2236}
2237
2238/// IsPointerConversion - Determines whether the conversion of the
2239/// expression From, which has the (possibly adjusted) type FromType,
2240/// can be converted to the type ToType via a pointer conversion (C++
2241/// 4.10). If so, returns true and places the converted type (that
2242/// might differ from ToType in its cv-qualifiers at some level) into
2243/// ConvertedType.
2244///
2245/// This routine also supports conversions to and from block pointers
2246/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2247/// pointers to interfaces. FIXME: Once we've determined the
2248/// appropriate overloading rules for Objective-C, we may want to
2249/// split the Objective-C checks into a different routine; however,
2250/// GCC seems to consider all of these conversions to be pointer
2251/// conversions, so for now they live here. IncompatibleObjC will be
2252/// set if the conversion is an allowed Objective-C conversion that
2253/// should result in a warning.
2254bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2255 bool InOverloadResolution,
2256 QualType& ConvertedType,
2257 bool &IncompatibleObjC) {
2258 IncompatibleObjC = false;
2259 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2260 IncompatibleObjC))
2261 return true;
2262
2263 // Conversion from a null pointer constant to any Objective-C pointer type.
2264 if (ToType->isObjCObjectPointerType() &&
2265 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2266 ConvertedType = ToType;
2267 return true;
2268 }
2269
2270 // Blocks: Block pointers can be converted to void*.
2271 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2272 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2273 ConvertedType = ToType;
2274 return true;
2275 }
2276 // Blocks: A null pointer constant can be converted to a block
2277 // pointer type.
2278 if (ToType->isBlockPointerType() &&
2279 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2280 ConvertedType = ToType;
2281 return true;
2282 }
2283
2284 // If the left-hand-side is nullptr_t, the right side can be a null
2285 // pointer constant.
2286 if (ToType->isNullPtrType() &&
2287 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2288 ConvertedType = ToType;
2289 return true;
2290 }
2291
2292 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2293 if (!ToTypePtr)
2294 return false;
2295
2296 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2297 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2298 ConvertedType = ToType;
2299 return true;
2300 }
2301
2302 // Beyond this point, both types need to be pointers
2303 // , including objective-c pointers.
2304 QualType ToPointeeType = ToTypePtr->getPointeeType();
2305 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2306 !getLangOpts().ObjCAutoRefCount) {
2307 ConvertedType = BuildSimilarlyQualifiedPointerType(
2308 FromType->getAs<ObjCObjectPointerType>(),
2309 ToPointeeType,
2310 ToType, Context);
2311 return true;
2312 }
2313 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2314 if (!FromTypePtr)
2315 return false;
2316
2317 QualType FromPointeeType = FromTypePtr->getPointeeType();
2318
2319 // If the unqualified pointee types are the same, this can't be a
2320 // pointer conversion, so don't do all of the work below.
2321 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2322 return false;
2323
2324 // An rvalue of type "pointer to cv T," where T is an object type,
2325 // can be converted to an rvalue of type "pointer to cv void" (C++
2326 // 4.10p2).
2327 if (FromPointeeType->isIncompleteOrObjectType() &&
2328 ToPointeeType->isVoidType()) {
2329 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2330 ToPointeeType,
2331 ToType, Context,
2332 /*StripObjCLifetime=*/true);
2333 return true;
2334 }
2335
2336 // MSVC allows implicit function to void* type conversion.
2337 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2338 ToPointeeType->isVoidType()) {
2339 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2340 ToPointeeType,
2341 ToType, Context);
2342 return true;
2343 }
2344
2345 // When we're overloading in C, we allow a special kind of pointer
2346 // conversion for compatible-but-not-identical pointee types.
2347 if (!getLangOpts().CPlusPlus &&
2348 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2349 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2350 ToPointeeType,
2351 ToType, Context);
2352 return true;
2353 }
2354
2355 // C++ [conv.ptr]p3:
2356 //
2357 // An rvalue of type "pointer to cv D," where D is a class type,
2358 // can be converted to an rvalue of type "pointer to cv B," where
2359 // B is a base class (clause 10) of D. If B is an inaccessible
2360 // (clause 11) or ambiguous (10.2) base class of D, a program that
2361 // necessitates this conversion is ill-formed. The result of the
2362 // conversion is a pointer to the base class sub-object of the
2363 // derived class object. The null pointer value is converted to
2364 // the null pointer value of the destination type.
2365 //
2366 // Note that we do not check for ambiguity or inaccessibility
2367 // here. That is handled by CheckPointerConversion.
2368 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2369 ToPointeeType->isRecordType() &&
2370 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2371 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2372 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2373 ToPointeeType,
2374 ToType, Context);
2375 return true;
2376 }
2377
2378 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2379 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2380 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2381 ToPointeeType,
2382 ToType, Context);
2383 return true;
2384 }
2385
2386 return false;
2387}
2388
2389/// Adopt the given qualifiers for the given type.
2390static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2391 Qualifiers TQs = T.getQualifiers();
2392
2393 // Check whether qualifiers already match.
2394 if (TQs == Qs)
2395 return T;
2396
2397 if (Qs.compatiblyIncludes(TQs))
2398 return Context.getQualifiedType(T, Qs);
2399
2400 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2401}
2402
2403/// isObjCPointerConversion - Determines whether this is an
2404/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2405/// with the same arguments and return values.
2406bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2407 QualType& ConvertedType,
2408 bool &IncompatibleObjC) {
2409 if (!getLangOpts().ObjC)
2410 return false;
2411
2412 // The set of qualifiers on the type we're converting from.
2413 Qualifiers FromQualifiers = FromType.getQualifiers();
2414
2415 // First, we handle all conversions on ObjC object pointer types.
2416 const ObjCObjectPointerType* ToObjCPtr =
2417 ToType->getAs<ObjCObjectPointerType>();
2418 const ObjCObjectPointerType *FromObjCPtr =
2419 FromType->getAs<ObjCObjectPointerType>();
2420
2421 if (ToObjCPtr && FromObjCPtr) {
2422 // If the pointee types are the same (ignoring qualifications),
2423 // then this is not a pointer conversion.
2424 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2425 FromObjCPtr->getPointeeType()))
2426 return false;
2427
2428 // Conversion between Objective-C pointers.
2429 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2430 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2431 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2432 if (getLangOpts().CPlusPlus && LHS && RHS &&
2433 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2434 FromObjCPtr->getPointeeType()))
2435 return false;
2436 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2437 ToObjCPtr->getPointeeType(),
2438 ToType, Context);
2439 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2440 return true;
2441 }
2442
2443 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2444 // Okay: this is some kind of implicit downcast of Objective-C
2445 // interfaces, which is permitted. However, we're going to
2446 // complain about it.
2447 IncompatibleObjC = true;
2448 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2449 ToObjCPtr->getPointeeType(),
2450 ToType, Context);
2451 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2452 return true;
2453 }
2454 }
2455 // Beyond this point, both types need to be C pointers or block pointers.
2456 QualType ToPointeeType;
2457 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2458 ToPointeeType = ToCPtr->getPointeeType();
2459 else if (const BlockPointerType *ToBlockPtr =
2460 ToType->getAs<BlockPointerType>()) {
2461 // Objective C++: We're able to convert from a pointer to any object
2462 // to a block pointer type.
2463 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2464 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2465 return true;
2466 }
2467 ToPointeeType = ToBlockPtr->getPointeeType();
2468 }
2469 else if (FromType->getAs<BlockPointerType>() &&
2470 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2471 // Objective C++: We're able to convert from a block pointer type to a
2472 // pointer to any object.
2473 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2474 return true;
2475 }
2476 else
2477 return false;
2478
2479 QualType FromPointeeType;
2480 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2481 FromPointeeType = FromCPtr->getPointeeType();
2482 else if (const BlockPointerType *FromBlockPtr =
2483 FromType->getAs<BlockPointerType>())
2484 FromPointeeType = FromBlockPtr->getPointeeType();
2485 else
2486 return false;
2487
2488 // If we have pointers to pointers, recursively check whether this
2489 // is an Objective-C conversion.
2490 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2491 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2492 IncompatibleObjC)) {
2493 // We always complain about this conversion.
2494 IncompatibleObjC = true;
2495 ConvertedType = Context.getPointerType(ConvertedType);
2496 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2497 return true;
2498 }
2499 // Allow conversion of pointee being objective-c pointer to another one;
2500 // as in I* to id.
2501 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2502 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2503 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2504 IncompatibleObjC)) {
2505
2506 ConvertedType = Context.getPointerType(ConvertedType);
2507 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2508 return true;
2509 }
2510
2511 // If we have pointers to functions or blocks, check whether the only
2512 // differences in the argument and result types are in Objective-C
2513 // pointer conversions. If so, we permit the conversion (but
2514 // complain about it).
2515 const FunctionProtoType *FromFunctionType
2516 = FromPointeeType->getAs<FunctionProtoType>();
2517 const FunctionProtoType *ToFunctionType
2518 = ToPointeeType->getAs<FunctionProtoType>();
2519 if (FromFunctionType && ToFunctionType) {
2520 // If the function types are exactly the same, this isn't an
2521 // Objective-C pointer conversion.
2522 if (Context.getCanonicalType(FromPointeeType)
2523 == Context.getCanonicalType(ToPointeeType))
2524 return false;
2525
2526 // Perform the quick checks that will tell us whether these
2527 // function types are obviously different.
2528 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2529 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2530 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2531 return false;
2532
2533 bool HasObjCConversion = false;
2534 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2535 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2536 // Okay, the types match exactly. Nothing to do.
2537 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2538 ToFunctionType->getReturnType(),
2539 ConvertedType, IncompatibleObjC)) {
2540 // Okay, we have an Objective-C pointer conversion.
2541 HasObjCConversion = true;
2542 } else {
2543 // Function types are too different. Abort.
2544 return false;
2545 }
2546
2547 // Check argument types.
2548 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2549 ArgIdx != NumArgs; ++ArgIdx) {
2550 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2551 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2552 if (Context.getCanonicalType(FromArgType)
2553 == Context.getCanonicalType(ToArgType)) {
2554 // Okay, the types match exactly. Nothing to do.
2555 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2556 ConvertedType, IncompatibleObjC)) {
2557 // Okay, we have an Objective-C pointer conversion.
2558 HasObjCConversion = true;
2559 } else {
2560 // Argument types are too different. Abort.
2561 return false;
2562 }
2563 }
2564
2565 if (HasObjCConversion) {
2566 // We had an Objective-C conversion. Allow this pointer
2567 // conversion, but complain about it.
2568 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2569 IncompatibleObjC = true;
2570 return true;
2571 }
2572 }
2573
2574 return false;
2575}
2576
2577/// Determine whether this is an Objective-C writeback conversion,
2578/// used for parameter passing when performing automatic reference counting.
2579///
2580/// \param FromType The type we're converting form.
2581///
2582/// \param ToType The type we're converting to.
2583///
2584/// \param ConvertedType The type that will be produced after applying
2585/// this conversion.
2586bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2587 QualType &ConvertedType) {
2588 if (!getLangOpts().ObjCAutoRefCount ||
2589 Context.hasSameUnqualifiedType(FromType, ToType))
2590 return false;
2591
2592 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2593 QualType ToPointee;
2594 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2595 ToPointee = ToPointer->getPointeeType();
2596 else
2597 return false;
2598
2599 Qualifiers ToQuals = ToPointee.getQualifiers();
2600 if (!ToPointee->isObjCLifetimeType() ||
2601 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2602 !ToQuals.withoutObjCLifetime().empty())
2603 return false;
2604
2605 // Argument must be a pointer to __strong to __weak.
2606 QualType FromPointee;
2607 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2608 FromPointee = FromPointer->getPointeeType();
2609 else
2610 return false;
2611
2612 Qualifiers FromQuals = FromPointee.getQualifiers();
2613 if (!FromPointee->isObjCLifetimeType() ||
2614 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2615 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2616 return false;
2617
2618 // Make sure that we have compatible qualifiers.
2619 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2620 if (!ToQuals.compatiblyIncludes(FromQuals))
2621 return false;
2622
2623 // Remove qualifiers from the pointee type we're converting from; they
2624 // aren't used in the compatibility check belong, and we'll be adding back
2625 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2626 FromPointee = FromPointee.getUnqualifiedType();
2627
2628 // The unqualified form of the pointee types must be compatible.
2629 ToPointee = ToPointee.getUnqualifiedType();
2630 bool IncompatibleObjC;
2631 if (Context.typesAreCompatible(FromPointee, ToPointee))
2632 FromPointee = ToPointee;
2633 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2634 IncompatibleObjC))
2635 return false;
2636
2637 /// Construct the type we're converting to, which is a pointer to
2638 /// __autoreleasing pointee.
2639 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2640 ConvertedType = Context.getPointerType(FromPointee);
2641 return true;
2642}
2643
2644bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2645 QualType& ConvertedType) {
2646 QualType ToPointeeType;
2647 if (const BlockPointerType *ToBlockPtr =
2648 ToType->getAs<BlockPointerType>())
2649 ToPointeeType = ToBlockPtr->getPointeeType();
2650 else
2651 return false;
2652
2653 QualType FromPointeeType;
2654 if (const BlockPointerType *FromBlockPtr =
2655 FromType->getAs<BlockPointerType>())
2656 FromPointeeType = FromBlockPtr->getPointeeType();
2657 else
2658 return false;
2659 // We have pointer to blocks, check whether the only
2660 // differences in the argument and result types are in Objective-C
2661 // pointer conversions. If so, we permit the conversion.
2662
2663 const FunctionProtoType *FromFunctionType
2664 = FromPointeeType->getAs<FunctionProtoType>();
2665 const FunctionProtoType *ToFunctionType
2666 = ToPointeeType->getAs<FunctionProtoType>();
2667
2668 if (!FromFunctionType || !ToFunctionType)
2669 return false;
2670
2671 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2672 return true;
2673
2674 // Perform the quick checks that will tell us whether these
2675 // function types are obviously different.
2676 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2677 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2678 return false;
2679
2680 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2681 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2682 if (FromEInfo != ToEInfo)
2683 return false;
2684
2685 bool IncompatibleObjC = false;
2686 if (Context.hasSameType(FromFunctionType->getReturnType(),
2687 ToFunctionType->getReturnType())) {
2688 // Okay, the types match exactly. Nothing to do.
2689 } else {
2690 QualType RHS = FromFunctionType->getReturnType();
2691 QualType LHS = ToFunctionType->getReturnType();
2692 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2693 !RHS.hasQualifiers() && LHS.hasQualifiers())
2694 LHS = LHS.getUnqualifiedType();
2695
2696 if (Context.hasSameType(RHS,LHS)) {
2697 // OK exact match.
2698 } else if (isObjCPointerConversion(RHS, LHS,
2699 ConvertedType, IncompatibleObjC)) {
2700 if (IncompatibleObjC)
2701 return false;
2702 // Okay, we have an Objective-C pointer conversion.
2703 }
2704 else
2705 return false;
2706 }
2707
2708 // Check argument types.
2709 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2710 ArgIdx != NumArgs; ++ArgIdx) {
2711 IncompatibleObjC = false;
2712 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2713 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2714 if (Context.hasSameType(FromArgType, ToArgType)) {
2715 // Okay, the types match exactly. Nothing to do.
2716 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2717 ConvertedType, IncompatibleObjC)) {
2718 if (IncompatibleObjC)
2719 return false;
2720 // Okay, we have an Objective-C pointer conversion.
2721 } else
2722 // Argument types are too different. Abort.
2723 return false;
2724 }
2725
2726 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2727 bool CanUseToFPT, CanUseFromFPT;
2728 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2729 CanUseToFPT, CanUseFromFPT,
2730 NewParamInfos))
2731 return false;
2732
2733 ConvertedType = ToType;
2734 return true;
2735}
2736
2737enum {
2738 ft_default,
2739 ft_different_class,
2740 ft_parameter_arity,
2741 ft_parameter_mismatch,
2742 ft_return_type,
2743 ft_qualifer_mismatch,
2744 ft_noexcept
2745};
2746
2747/// Attempts to get the FunctionProtoType from a Type. Handles
2748/// MemberFunctionPointers properly.
2749static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2750 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2751 return FPT;
2752
2753 if (auto *MPT = FromType->getAs<MemberPointerType>())
2754 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2755
2756 return nullptr;
2757}
2758
2759/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2760/// function types. Catches different number of parameter, mismatch in
2761/// parameter types, and different return types.
2762void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2763 QualType FromType, QualType ToType) {
2764 // If either type is not valid, include no extra info.
2765 if (FromType.isNull() || ToType.isNull()) {
2766 PDiag << ft_default;
2767 return;
2768 }
2769
2770 // Get the function type from the pointers.
2771 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2772 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2773 *ToMember = ToType->getAs<MemberPointerType>();
2774 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2775 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2776 << QualType(FromMember->getClass(), 0);
2777 return;
2778 }
2779 FromType = FromMember->getPointeeType();
2780 ToType = ToMember->getPointeeType();
2781 }
2782
2783 if (FromType->isPointerType())
2784 FromType = FromType->getPointeeType();
2785 if (ToType->isPointerType())
2786 ToType = ToType->getPointeeType();
2787
2788 // Remove references.
2789 FromType = FromType.getNonReferenceType();
2790 ToType = ToType.getNonReferenceType();
2791
2792 // Don't print extra info for non-specialized template functions.
2793 if (FromType->isInstantiationDependentType() &&
2794 !FromType->getAs<TemplateSpecializationType>()) {
2795 PDiag << ft_default;
2796 return;
2797 }
2798
2799 // No extra info for same types.
2800 if (Context.hasSameType(FromType, ToType)) {
2801 PDiag << ft_default;
2802 return;
2803 }
2804
2805 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2806 *ToFunction = tryGetFunctionProtoType(ToType);
2807
2808 // Both types need to be function types.
2809 if (!FromFunction || !ToFunction) {
2810 PDiag << ft_default;
2811 return;
2812 }
2813
2814 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2815 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2816 << FromFunction->getNumParams();
2817 return;
2818 }
2819
2820 // Handle different parameter types.
2821 unsigned ArgPos;
2822 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2823 PDiag << ft_parameter_mismatch << ArgPos + 1
2824 << ToFunction->getParamType(ArgPos)
2825 << FromFunction->getParamType(ArgPos);
2826 return;
2827 }
2828
2829 // Handle different return type.
2830 if (!Context.hasSameType(FromFunction->getReturnType(),
2831 ToFunction->getReturnType())) {
2832 PDiag << ft_return_type << ToFunction->getReturnType()
2833 << FromFunction->getReturnType();
2834 return;
2835 }
2836
2837 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2838 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2839 << FromFunction->getMethodQuals();
2840 return;
2841 }
2842
2843 // Handle exception specification differences on canonical type (in C++17
2844 // onwards).
2845 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2846 ->isNothrow() !=
2847 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2848 ->isNothrow()) {
2849 PDiag << ft_noexcept;
2850 return;
2851 }
2852
2853 // Unable to find a difference, so add no extra info.
2854 PDiag << ft_default;
2855}
2856
2857/// FunctionParamTypesAreEqual - This routine checks two function proto types
2858/// for equality of their argument types. Caller has already checked that
2859/// they have same number of arguments. If the parameters are different,
2860/// ArgPos will have the parameter index of the first different parameter.
2861bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2862 const FunctionProtoType *NewType,
2863 unsigned *ArgPos) {
2864 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2865 N = NewType->param_type_begin(),
2866 E = OldType->param_type_end();
2867 O && (O != E); ++O, ++N) {
2868 if (!Context.hasSameType(O->getUnqualifiedType(),
2869 N->getUnqualifiedType())) {
2870 if (ArgPos)
2871 *ArgPos = O - OldType->param_type_begin();
2872 return false;
2873 }
2874 }
2875 return true;
2876}
2877
2878/// CheckPointerConversion - Check the pointer conversion from the
2879/// expression From to the type ToType. This routine checks for
2880/// ambiguous or inaccessible derived-to-base pointer
2881/// conversions for which IsPointerConversion has already returned
2882/// true. It returns true and produces a diagnostic if there was an
2883/// error, or returns false otherwise.
2884bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2885 CastKind &Kind,
2886 CXXCastPath& BasePath,
2887 bool IgnoreBaseAccess,
2888 bool Diagnose) {
2889 QualType FromType = From->getType();
2890 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2891
2892 Kind = CK_BitCast;
2893
2894 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2895 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2896 Expr::NPCK_ZeroExpression) {
2897 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2898 DiagRuntimeBehavior(From->getExprLoc(), From,
2899 PDiag(diag::warn_impcast_bool_to_null_pointer)
2900 << ToType << From->getSourceRange());
2901 else if (!isUnevaluatedContext())
2902 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2903 << ToType << From->getSourceRange();
2904 }
2905 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2906 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2907 QualType FromPointeeType = FromPtrType->getPointeeType(),
2908 ToPointeeType = ToPtrType->getPointeeType();
2909
2910 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2911 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2912 // We must have a derived-to-base conversion. Check an
2913 // ambiguous or inaccessible conversion.
2914 unsigned InaccessibleID = 0;
2915 unsigned AmbigiousID = 0;
2916 if (Diagnose) {
2917 InaccessibleID = diag::err_upcast_to_inaccessible_base;
2918 AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2919 }
2920 if (CheckDerivedToBaseConversion(
2921 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2922 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2923 &BasePath, IgnoreBaseAccess))
2924 return true;
2925
2926 // The conversion was successful.
2927 Kind = CK_DerivedToBase;
2928 }
2929
2930 if (Diagnose && !IsCStyleOrFunctionalCast &&
2931 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2932 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 2933, __PRETTY_FUNCTION__))
2933 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 2933, __PRETTY_FUNCTION__))
;
2934 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2935 << From->getSourceRange();
2936 }
2937 }
2938 } else if (const ObjCObjectPointerType *ToPtrType =
2939 ToType->getAs<ObjCObjectPointerType>()) {
2940 if (const ObjCObjectPointerType *FromPtrType =
2941 FromType->getAs<ObjCObjectPointerType>()) {
2942 // Objective-C++ conversions are always okay.
2943 // FIXME: We should have a different class of conversions for the
2944 // Objective-C++ implicit conversions.
2945 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2946 return false;
2947 } else if (FromType->isBlockPointerType()) {
2948 Kind = CK_BlockPointerToObjCPointerCast;
2949 } else {
2950 Kind = CK_CPointerToObjCPointerCast;
2951 }
2952 } else if (ToType->isBlockPointerType()) {
2953 if (!FromType->isBlockPointerType())
2954 Kind = CK_AnyPointerToBlockPointerCast;
2955 }
2956
2957 // We shouldn't fall into this case unless it's valid for other
2958 // reasons.
2959 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2960 Kind = CK_NullToPointer;
2961
2962 return false;
2963}
2964
2965/// IsMemberPointerConversion - Determines whether the conversion of the
2966/// expression From, which has the (possibly adjusted) type FromType, can be
2967/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2968/// If so, returns true and places the converted type (that might differ from
2969/// ToType in its cv-qualifiers at some level) into ConvertedType.
2970bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2971 QualType ToType,
2972 bool InOverloadResolution,
2973 QualType &ConvertedType) {
2974 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2975 if (!ToTypePtr)
2976 return false;
2977
2978 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2979 if (From->isNullPointerConstant(Context,
2980 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2981 : Expr::NPC_ValueDependentIsNull)) {
2982 ConvertedType = ToType;
2983 return true;
2984 }
2985
2986 // Otherwise, both types have to be member pointers.
2987 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2988 if (!FromTypePtr)
2989 return false;
2990
2991 // A pointer to member of B can be converted to a pointer to member of D,
2992 // where D is derived from B (C++ 4.11p2).
2993 QualType FromClass(FromTypePtr->getClass(), 0);
2994 QualType ToClass(ToTypePtr->getClass(), 0);
2995
2996 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2997 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
2998 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2999 ToClass.getTypePtr());
3000 return true;
3001 }
3002
3003 return false;
3004}
3005
3006/// CheckMemberPointerConversion - Check the member pointer conversion from the
3007/// expression From to the type ToType. This routine checks for ambiguous or
3008/// virtual or inaccessible base-to-derived member pointer conversions
3009/// for which IsMemberPointerConversion has already returned true. It returns
3010/// true and produces a diagnostic if there was an error, or returns false
3011/// otherwise.
3012bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3013 CastKind &Kind,
3014 CXXCastPath &BasePath,
3015 bool IgnoreBaseAccess) {
3016 QualType FromType = From->getType();
3017 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3018 if (!FromPtrType) {
3019 // This must be a null pointer to member pointer conversion
3020 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3022, __PRETTY_FUNCTION__))
3021 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3022, __PRETTY_FUNCTION__))
3022 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3022, __PRETTY_FUNCTION__))
;
3023 Kind = CK_NullToMemberPointer;
3024 return false;
3025 }
3026
3027 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3028 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3029, __PRETTY_FUNCTION__))
3029 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3029, __PRETTY_FUNCTION__))
;
3030
3031 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3032 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3033
3034 // FIXME: What about dependent types?
3035 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3035, __PRETTY_FUNCTION__))
;
3036 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3036, __PRETTY_FUNCTION__))
;
3037
3038 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3039 /*DetectVirtual=*/true);
3040 bool DerivationOkay =
3041 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3042 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3043, __PRETTY_FUNCTION__))
3043 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3043, __PRETTY_FUNCTION__))
;
3044 (void)DerivationOkay;
3045
3046 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3047 getUnqualifiedType())) {
3048 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3049 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3050 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3051 return true;
3052 }
3053
3054 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3055 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3056 << FromClass << ToClass << QualType(VBase, 0)
3057 << From->getSourceRange();
3058 return true;
3059 }
3060
3061 if (!IgnoreBaseAccess)
3062 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3063 Paths.front(),
3064 diag::err_downcast_from_inaccessible_base);
3065
3066 // Must be a base to derived member conversion.
3067 BuildBasePathArray(Paths, BasePath);
3068 Kind = CK_BaseToDerivedMemberPointer;
3069 return false;
3070}
3071
3072/// Determine whether the lifetime conversion between the two given
3073/// qualifiers sets is nontrivial.
3074static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3075 Qualifiers ToQuals) {
3076 // Converting anything to const __unsafe_unretained is trivial.
3077 if (ToQuals.hasConst() &&
3078 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3079 return false;
3080
3081 return true;
3082}
3083
3084/// IsQualificationConversion - Determines whether the conversion from
3085/// an rvalue of type FromType to ToType is a qualification conversion
3086/// (C++ 4.4).
3087///
3088/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3089/// when the qualification conversion involves a change in the Objective-C
3090/// object lifetime.
3091bool
3092Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3093 bool CStyle, bool &ObjCLifetimeConversion) {
3094 FromType = Context.getCanonicalType(FromType);
3095 ToType = Context.getCanonicalType(ToType);
3096 ObjCLifetimeConversion = false;
3097
3098 // If FromType and ToType are the same type, this is not a
3099 // qualification conversion.
3100 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3101 return false;
3102
3103 // (C++ 4.4p4):
3104 // A conversion can add cv-qualifiers at levels other than the first
3105 // in multi-level pointers, subject to the following rules: [...]
3106 bool PreviousToQualsIncludeConst = true;
3107 bool UnwrappedAnyPointer = false;
3108 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3109 // Within each iteration of the loop, we check the qualifiers to
3110 // determine if this still looks like a qualification
3111 // conversion. Then, if all is well, we unwrap one more level of
3112 // pointers or pointers-to-members and do it all again
3113 // until there are no more pointers or pointers-to-members left to
3114 // unwrap.
3115 UnwrappedAnyPointer = true;
3116
3117 Qualifiers FromQuals = FromType.getQualifiers();
3118 Qualifiers ToQuals = ToType.getQualifiers();
3119
3120 // Ignore __unaligned qualifier if this type is void.
3121 if (ToType.getUnqualifiedType()->isVoidType())
3122 FromQuals.removeUnaligned();
3123
3124 // Objective-C ARC:
3125 // Check Objective-C lifetime conversions.
3126 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3127 UnwrappedAnyPointer) {
3128 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3129 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3130 ObjCLifetimeConversion = true;
3131 FromQuals.removeObjCLifetime();
3132 ToQuals.removeObjCLifetime();
3133 } else {
3134 // Qualification conversions cannot cast between different
3135 // Objective-C lifetime qualifiers.
3136 return false;
3137 }
3138 }
3139
3140 // Allow addition/removal of GC attributes but not changing GC attributes.
3141 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3142 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3143 FromQuals.removeObjCGCAttr();
3144 ToQuals.removeObjCGCAttr();
3145 }
3146
3147 // -- for every j > 0, if const is in cv 1,j then const is in cv
3148 // 2,j, and similarly for volatile.
3149 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3150 return false;
3151
3152 // -- if the cv 1,j and cv 2,j are different, then const is in
3153 // every cv for 0 < k < j.
3154 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3155 && !PreviousToQualsIncludeConst)
3156 return false;
3157
3158 // Keep track of whether all prior cv-qualifiers in the "to" type
3159 // include const.
3160 PreviousToQualsIncludeConst
3161 = PreviousToQualsIncludeConst && ToQuals.hasConst();
3162 }
3163
3164 // Allows address space promotion by language rules implemented in
3165 // Type::Qualifiers::isAddressSpaceSupersetOf.
3166 Qualifiers FromQuals = FromType.getQualifiers();
3167 Qualifiers ToQuals = ToType.getQualifiers();
3168 if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
3169 !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
3170 return false;
3171 }
3172
3173 // We are left with FromType and ToType being the pointee types
3174 // after unwrapping the original FromType and ToType the same number
3175 // of types. If we unwrapped any pointers, and if FromType and
3176 // ToType have the same unqualified type (since we checked
3177 // qualifiers above), then this is a qualification conversion.
3178 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3179}
3180
3181/// - Determine whether this is a conversion from a scalar type to an
3182/// atomic type.
3183///
3184/// If successful, updates \c SCS's second and third steps in the conversion
3185/// sequence to finish the conversion.
3186static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3187 bool InOverloadResolution,
3188 StandardConversionSequence &SCS,
3189 bool CStyle) {
3190 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3191 if (!ToAtomic)
3192 return false;
3193
3194 StandardConversionSequence InnerSCS;
3195 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3196 InOverloadResolution, InnerSCS,
3197 CStyle, /*AllowObjCWritebackConversion=*/false))
3198 return false;
3199
3200 SCS.Second = InnerSCS.Second;
3201 SCS.setToType(1, InnerSCS.getToType(1));
3202 SCS.Third = InnerSCS.Third;
3203 SCS.QualificationIncludesObjCLifetime
3204 = InnerSCS.QualificationIncludesObjCLifetime;
3205 SCS.setToType(2, InnerSCS.getToType(2));
3206 return true;
3207}
3208
3209static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3210 CXXConstructorDecl *Constructor,
3211 QualType Type) {
3212 const FunctionProtoType *CtorType =
3213 Constructor->getType()->getAs<FunctionProtoType>();
3214 if (CtorType->getNumParams() > 0) {
3215 QualType FirstArg = CtorType->getParamType(0);
3216 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3217 return true;
3218 }
3219 return false;
3220}
3221
3222static OverloadingResult
3223IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3224 CXXRecordDecl *To,
3225 UserDefinedConversionSequence &User,
3226 OverloadCandidateSet &CandidateSet,
3227 bool AllowExplicit) {
3228 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3229 for (auto *D : S.LookupConstructors(To)) {
3230 auto Info = getConstructorInfo(D);
3231 if (!Info)
3232 continue;
3233
3234 bool Usable = !Info.Constructor->isInvalidDecl() &&
3235 S.isInitListConstructor(Info.Constructor) &&
3236 (AllowExplicit || !Info.Constructor->isExplicit());
3237 if (Usable) {
3238 // If the first argument is (a reference to) the target type,
3239 // suppress conversions.
3240 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3241 S.Context, Info.Constructor, ToType);
3242 if (Info.ConstructorTmpl)
3243 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3244 /*ExplicitArgs*/ nullptr, From,
3245 CandidateSet, SuppressUserConversions,
3246 /*PartialOverloading*/ false,
3247 AllowExplicit);
3248 else
3249 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3250 CandidateSet, SuppressUserConversions,
3251 /*PartialOverloading*/ false, AllowExplicit);
3252 }
3253 }
3254
3255 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3256
3257 OverloadCandidateSet::iterator Best;
3258 switch (auto Result =
3259 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3260 case OR_Deleted:
3261 case OR_Success: {
3262 // Record the standard conversion we used and the conversion function.
3263 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3264 QualType ThisType = Constructor->getThisType();
3265 // Initializer lists don't have conversions as such.
3266 User.Before.setAsIdentityConversion();
3267 User.HadMultipleCandidates = HadMultipleCandidates;
3268 User.ConversionFunction = Constructor;
3269 User.FoundConversionFunction = Best->FoundDecl;
3270 User.After.setAsIdentityConversion();
3271 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3272 User.After.setAllToTypes(ToType);
3273 return Result;
3274 }
3275
3276 case OR_No_Viable_Function:
3277 return OR_No_Viable_Function;
3278 case OR_Ambiguous:
3279 return OR_Ambiguous;
3280 }
3281
3282 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3282)
;
3283}
3284
3285/// Determines whether there is a user-defined conversion sequence
3286/// (C++ [over.ics.user]) that converts expression From to the type
3287/// ToType. If such a conversion exists, User will contain the
3288/// user-defined conversion sequence that performs such a conversion
3289/// and this routine will return true. Otherwise, this routine returns
3290/// false and User is unspecified.
3291///
3292/// \param AllowExplicit true if the conversion should consider C++0x
3293/// "explicit" conversion functions as well as non-explicit conversion
3294/// functions (C++0x [class.conv.fct]p2).
3295///
3296/// \param AllowObjCConversionOnExplicit true if the conversion should
3297/// allow an extra Objective-C pointer conversion on uses of explicit
3298/// constructors. Requires \c AllowExplicit to also be set.
3299static OverloadingResult
3300IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3301 UserDefinedConversionSequence &User,
3302 OverloadCandidateSet &CandidateSet,
3303 bool AllowExplicit,
3304 bool AllowObjCConversionOnExplicit) {
3305 assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast
<void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3305, __PRETTY_FUNCTION__))
;
3306 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3307
3308 // Whether we will only visit constructors.
3309 bool ConstructorsOnly = false;
3310
3311 // If the type we are conversion to is a class type, enumerate its
3312 // constructors.
3313 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3314 // C++ [over.match.ctor]p1:
3315 // When objects of class type are direct-initialized (8.5), or
3316 // copy-initialized from an expression of the same or a
3317 // derived class type (8.5), overload resolution selects the
3318 // constructor. [...] For copy-initialization, the candidate
3319 // functions are all the converting constructors (12.3.1) of
3320 // that class. The argument list is the expression-list within
3321 // the parentheses of the initializer.
3322 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3323 (From->getType()->getAs<RecordType>() &&
3324 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3325 ConstructorsOnly = true;
3326
3327 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3328 // We're not going to find any constructors.
3329 } else if (CXXRecordDecl *ToRecordDecl
3330 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3331
3332 Expr **Args = &From;
3333 unsigned NumArgs = 1;
3334 bool ListInitializing = false;
3335 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3336 // But first, see if there is an init-list-constructor that will work.
3337 OverloadingResult Result = IsInitializerListConstructorConversion(
3338 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3339 if (Result != OR_No_Viable_Function)
3340 return Result;
3341 // Never mind.
3342 CandidateSet.clear(
3343 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3344
3345 // If we're list-initializing, we pass the individual elements as
3346 // arguments, not the entire list.
3347 Args = InitList->getInits();
3348 NumArgs = InitList->getNumInits();
3349 ListInitializing = true;
3350 }
3351
3352 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3353 auto Info = getConstructorInfo(D);
3354 if (!Info)
3355 continue;
3356
3357 bool Usable = !Info.Constructor->isInvalidDecl();
3358 if (ListInitializing)
3359 Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3360 else
3361 Usable = Usable &&
3362 Info.Constructor->isConvertingConstructor(AllowExplicit);
3363 if (Usable) {
3364 bool SuppressUserConversions = !ConstructorsOnly;
3365 if (SuppressUserConversions && ListInitializing) {
3366 SuppressUserConversions = false;
3367 if (NumArgs == 1) {
3368 // If the first argument is (a reference to) the target type,
3369 // suppress conversions.
3370 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3371 S.Context, Info.Constructor, ToType);
3372 }
3373 }
3374 if (Info.ConstructorTmpl)
3375 S.AddTemplateOverloadCandidate(
3376 Info.ConstructorTmpl, Info.FoundDecl,
3377 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3378 CandidateSet, SuppressUserConversions,
3379 /*PartialOverloading*/ false, AllowExplicit);
3380 else
3381 // Allow one user-defined conversion when user specifies a
3382 // From->ToType conversion via an static cast (c-style, etc).
3383 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3384 llvm::makeArrayRef(Args, NumArgs),
3385 CandidateSet, SuppressUserConversions,
3386 /*PartialOverloading*/ false, AllowExplicit);
3387 }
3388 }
3389 }
3390 }
3391
3392 // Enumerate conversion functions, if we're allowed to.
3393 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3394 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3395 // No conversion functions from incomplete types.
3396 } else if (const RecordType *FromRecordType =
3397 From->getType()->getAs<RecordType>()) {
3398 if (CXXRecordDecl *FromRecordDecl
3399 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3400 // Add all of the conversion functions as candidates.
3401 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3402 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3403 DeclAccessPair FoundDecl = I.getPair();
3404 NamedDecl *D = FoundDecl.getDecl();
3405 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3406 if (isa<UsingShadowDecl>(D))
3407 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3408
3409 CXXConversionDecl *Conv;
3410 FunctionTemplateDecl *ConvTemplate;
3411 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3412 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3413 else
3414 Conv = cast<CXXConversionDecl>(D);
3415
3416 if (AllowExplicit || !Conv->isExplicit()) {
3417 if (ConvTemplate)
3418 S.AddTemplateConversionCandidate(
3419 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3420 CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
3421 else
3422 S.AddConversionCandidate(
3423 Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
3424 AllowObjCConversionOnExplicit, AllowExplicit);
3425 }
3426 }
3427 }
3428 }
3429
3430 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3431
3432 OverloadCandidateSet::iterator Best;
3433 switch (auto Result =
3434 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3435 case OR_Success:
3436 case OR_Deleted:
3437 // Record the standard conversion we used and the conversion function.
3438 if (CXXConstructorDecl *Constructor
3439 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3440 // C++ [over.ics.user]p1:
3441 // If the user-defined conversion is specified by a
3442 // constructor (12.3.1), the initial standard conversion
3443 // sequence converts the source type to the type required by
3444 // the argument of the constructor.
3445 //
3446 QualType ThisType = Constructor->getThisType();
3447 if (isa<InitListExpr>(From)) {
3448 // Initializer lists don't have conversions as such.
3449 User.Before.setAsIdentityConversion();
3450 } else {
3451 if (Best->Conversions[0].isEllipsis())
3452 User.EllipsisConversion = true;
3453 else {
3454 User.Before = Best->Conversions[0].Standard;
3455 User.EllipsisConversion = false;
3456 }
3457 }
3458 User.HadMultipleCandidates = HadMultipleCandidates;
3459 User.ConversionFunction = Constructor;
3460 User.FoundConversionFunction = Best->FoundDecl;
3461 User.After.setAsIdentityConversion();
3462 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3463 User.After.setAllToTypes(ToType);
3464 return Result;
3465 }
3466 if (CXXConversionDecl *Conversion
3467 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3468 // C++ [over.ics.user]p1:
3469 //
3470 // [...] If the user-defined conversion is specified by a
3471 // conversion function (12.3.2), the initial standard
3472 // conversion sequence converts the source type to the
3473 // implicit object parameter of the conversion function.
3474 User.Before = Best->Conversions[0].Standard;
3475 User.HadMultipleCandidates = HadMultipleCandidates;
3476 User.ConversionFunction = Conversion;
3477 User.FoundConversionFunction = Best->FoundDecl;
3478 User.EllipsisConversion = false;
3479
3480 // C++ [over.ics.user]p2:
3481 // The second standard conversion sequence converts the
3482 // result of the user-defined conversion to the target type
3483 // for the sequence. Since an implicit conversion sequence
3484 // is an initialization, the special rules for
3485 // initialization by user-defined conversion apply when
3486 // selecting the best user-defined conversion for a
3487 // user-defined conversion sequence (see 13.3.3 and
3488 // 13.3.3.1).
3489 User.After = Best->FinalConversion;
3490 return Result;
3491 }
3492 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3492)
;
3493
3494 case OR_No_Viable_Function:
3495 return OR_No_Viable_Function;
3496
3497 case OR_Ambiguous:
3498 return OR_Ambiguous;
3499 }
3500
3501 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 3501)
;
3502}
3503
3504bool
3505Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3506 ImplicitConversionSequence ICS;
3507 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3508 OverloadCandidateSet::CSK_Normal);
3509 OverloadingResult OvResult =
3510 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3511 CandidateSet, false, false);
3512
3513 if (!(OvResult == OR_Ambiguous ||
3514 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3515 return false;
3516
3517 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, From);
3518 if (OvResult == OR_Ambiguous)
3519 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3520 << From->getType() << ToType << From->getSourceRange();
3521 else { // OR_No_Viable_Function && !CandidateSet.empty()
3522 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3523 diag::err_typecheck_nonviable_condition_incomplete,
3524 From->getType(), From->getSourceRange()))
3525 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3526 << false << From->getType() << From->getSourceRange() << ToType;
3527 }
3528
3529 CandidateSet.NoteCandidates(
3530 *this, From, Cands);
3531 return true;
3532}
3533
3534/// Compare the user-defined conversion functions or constructors
3535/// of two user-defined conversion sequences to determine whether any ordering
3536/// is possible.
3537static ImplicitConversionSequence::CompareKind
3538compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3539 FunctionDecl *Function2) {
3540 if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
3541 return ImplicitConversionSequence::Indistinguishable;
3542
3543 // Objective-C++:
3544 // If both conversion functions are implicitly-declared conversions from
3545 // a lambda closure type to a function pointer and a block pointer,
3546 // respectively, always prefer the conversion to a function pointer,
3547 // because the function pointer is more lightweight and is more likely
3548 // to keep code working.
3549 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3550 if (!Conv1)
3551 return ImplicitConversionSequence::Indistinguishable;
3552
3553 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3554 if (!Conv2)
3555 return ImplicitConversionSequence::Indistinguishable;
3556
3557 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3558 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3559 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3560 if (Block1 != Block2)
3561 return Block1 ? ImplicitConversionSequence::Worse
3562 : ImplicitConversionSequence::Better;
3563 }
3564
3565 return ImplicitConversionSequence::Indistinguishable;
3566}
3567
3568static bool hasDeprecatedStringLiteralToCharPtrConversion(
3569 const ImplicitConversionSequence &ICS) {
3570 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3571 (ICS.isUserDefined() &&
3572 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3573}
3574
3575/// CompareImplicitConversionSequences - Compare two implicit
3576/// conversion sequences to determine whether one is better than the
3577/// other or if they are indistinguishable (C++ 13.3.3.2).
3578static ImplicitConversionSequence::CompareKind
3579CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3580 const ImplicitConversionSequence& ICS1,
3581 const ImplicitConversionSequence& ICS2)
3582{
3583 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3584 // conversion sequences (as defined in 13.3.3.1)
3585 // -- a standard conversion sequence (13.3.3.1.1) is a better
3586 // conversion sequence than a user-defined conversion sequence or
3587 // an ellipsis conversion sequence, and
3588 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3589 // conversion sequence than an ellipsis conversion sequence
3590 // (13.3.3.1.3).
3591 //
3592 // C++0x [over.best.ics]p10:
3593 // For the purpose of ranking implicit conversion sequences as
3594 // described in 13.3.3.2, the ambiguous conversion sequence is
3595 // treated as a user-defined sequence that is indistinguishable
3596 // from any other user-defined conversion sequence.
3597
3598 // String literal to 'char *' conversion has been deprecated in C++03. It has
3599 // been removed from C++11. We still accept this conversion, if it happens at
3600 // the best viable function. Otherwise, this conversion is considered worse
3601 // than ellipsis conversion. Consider this as an extension; this is not in the
3602 // standard. For example:
3603 //
3604 // int &f(...); // #1
3605 // void f(char*); // #2
3606 // void g() { int &r = f("foo"); }
3607 //
3608 // In C++03, we pick #2 as the best viable function.
3609 // In C++11, we pick #1 as the best viable function, because ellipsis
3610 // conversion is better than string-literal to char* conversion (since there
3611 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3612 // convert arguments, #2 would be the best viable function in C++11.
3613 // If the best viable function has this conversion, a warning will be issued
3614 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3615
3616 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3617 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3618 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3619 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3620 ? ImplicitConversionSequence::Worse
3621 : ImplicitConversionSequence::Better;
3622
3623 if (ICS1.getKindRank() < ICS2.getKindRank())
3624 return ImplicitConversionSequence::Better;
3625 if (ICS2.getKindRank() < ICS1.getKindRank())
3626 return ImplicitConversionSequence::Worse;
3627
3628 // The following checks require both conversion sequences to be of
3629 // the same kind.
3630 if (ICS1.getKind() != ICS2.getKind())
3631 return ImplicitConversionSequence::Indistinguishable;
3632
3633 ImplicitConversionSequence::CompareKind Result =
3634 ImplicitConversionSequence::Indistinguishable;
3635
3636 // Two implicit conversion sequences of the same form are
3637 // indistinguishable conversion sequences unless one of the
3638 // following rules apply: (C++ 13.3.3.2p3):
3639
3640 // List-initialization sequence L1 is a better conversion sequence than
3641 // list-initialization sequence L2 if:
3642 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3643 // if not that,
3644 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3645 // and N1 is smaller than N2.,
3646 // even if one of the other rules in this paragraph would otherwise apply.
3647 if (!ICS1.isBad()) {
3648 if (ICS1.isStdInitializerListElement() &&
3649 !ICS2.isStdInitializerListElement())
3650 return ImplicitConversionSequence::Better;
3651 if (!ICS1.isStdInitializerListElement() &&
3652 ICS2.isStdInitializerListElement())
3653 return ImplicitConversionSequence::Worse;
3654 }
3655
3656 if (ICS1.isStandard())
3657 // Standard conversion sequence S1 is a better conversion sequence than
3658 // standard conversion sequence S2 if [...]
3659 Result = CompareStandardConversionSequences(S, Loc,
3660 ICS1.Standard, ICS2.Standard);
3661 else if (ICS1.isUserDefined()) {
3662 // User-defined conversion sequence U1 is a better conversion
3663 // sequence than another user-defined conversion sequence U2 if
3664 // they contain the same user-defined conversion function or
3665 // constructor and if the second standard conversion sequence of
3666 // U1 is better than the second standard conversion sequence of
3667 // U2 (C++ 13.3.3.2p3).
3668 if (ICS1.UserDefined.ConversionFunction ==
3669 ICS2.UserDefined.ConversionFunction)
3670 Result = CompareStandardConversionSequences(S, Loc,
3671 ICS1.UserDefined.After,
3672 ICS2.UserDefined.After);
3673 else
3674 Result = compareConversionFunctions(S,
3675 ICS1.UserDefined.ConversionFunction,
3676 ICS2.UserDefined.ConversionFunction);
3677 }
3678
3679 return Result;
3680}
3681
3682// Per 13.3.3.2p3, compare the given standard conversion sequences to
3683// determine if one is a proper subset of the other.
3684static ImplicitConversionSequence::CompareKind
3685compareStandardConversionSubsets(ASTContext &Context,
3686 const StandardConversionSequence& SCS1,
3687 const StandardConversionSequence& SCS2) {
3688 ImplicitConversionSequence::CompareKind Result
3689 = ImplicitConversionSequence::Indistinguishable;
3690
3691 // the identity conversion sequence is considered to be a subsequence of
3692 // any non-identity conversion sequence
3693 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3694 return ImplicitConversionSequence::Better;
3695 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3696 return ImplicitConversionSequence::Worse;
3697
3698 if (SCS1.Second != SCS2.Second) {
3699 if (SCS1.Second == ICK_Identity)
3700 Result = ImplicitConversionSequence::Better;
3701 else if (SCS2.Second == ICK_Identity)
3702 Result = ImplicitConversionSequence::Worse;
3703 else
3704 return ImplicitConversionSequence::Indistinguishable;
3705 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3706 return ImplicitConversionSequence::Indistinguishable;
3707
3708 if (SCS1.Third == SCS2.Third) {
3709 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3710 : ImplicitConversionSequence::Indistinguishable;
3711 }
3712
3713 if (SCS1.Third == ICK_Identity)
3714 return Result == ImplicitConversionSequence::Worse
3715 ? ImplicitConversionSequence::Indistinguishable
3716 : ImplicitConversionSequence::Better;
3717
3718 if (SCS2.Third == ICK_Identity)
3719 return Result == ImplicitConversionSequence::Better
3720 ? ImplicitConversionSequence::Indistinguishable
3721 : ImplicitConversionSequence::Worse;
3722
3723 return ImplicitConversionSequence::Indistinguishable;
3724}
3725
3726/// Determine whether one of the given reference bindings is better
3727/// than the other based on what kind of bindings they are.
3728static bool
3729isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3730 const StandardConversionSequence &SCS2) {
3731 // C++0x [over.ics.rank]p3b4:
3732 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3733 // implicit object parameter of a non-static member function declared
3734 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3735 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3736 // lvalue reference to a function lvalue and S2 binds an rvalue
3737 // reference*.
3738 //
3739 // FIXME: Rvalue references. We're going rogue with the above edits,
3740 // because the semantics in the current C++0x working paper (N3225 at the
3741 // time of this writing) break the standard definition of std::forward
3742 // and std::reference_wrapper when dealing with references to functions.
3743 // Proposed wording changes submitted to CWG for consideration.
3744 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3745 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3746 return false;
3747
3748 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3749 SCS2.IsLvalueReference) ||
3750 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3751 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3752}
3753
3754/// CompareStandardConversionSequences - Compare two standard
3755/// conversion sequences to determine whether one is better than the
3756/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3757static ImplicitConversionSequence::CompareKind
3758CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3759 const StandardConversionSequence& SCS1,
3760 const StandardConversionSequence& SCS2)
3761{
3762 // Standard conversion sequence S1 is a better conversion sequence
3763 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3764
3765 // -- S1 is a proper subsequence of S2 (comparing the conversion
3766 // sequences in the canonical form defined by 13.3.3.1.1,
3767 // excluding any Lvalue Transformation; the identity conversion
3768 // sequence is considered to be a subsequence of any
3769 // non-identity conversion sequence) or, if not that,
3770 if (ImplicitConversionSequence::CompareKind CK
3771 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3772 return CK;
3773
3774 // -- the rank of S1 is better than the rank of S2 (by the rules
3775 // defined below), or, if not that,
3776 ImplicitConversionRank Rank1 = SCS1.getRank();
3777 ImplicitConversionRank Rank2 = SCS2.getRank();
3778 if (Rank1 < Rank2)
3779 return ImplicitConversionSequence::Better;
3780 else if (Rank2 < Rank1)
3781 return ImplicitConversionSequence::Worse;
3782
3783 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3784 // are indistinguishable unless one of the following rules
3785 // applies:
3786
3787 // A conversion that is not a conversion of a pointer, or
3788 // pointer to member, to bool is better than another conversion
3789 // that is such a conversion.
3790 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3791 return SCS2.isPointerConversionToBool()
3792 ? ImplicitConversionSequence::Better
3793 : ImplicitConversionSequence::Worse;
3794
3795 // C++ [over.ics.rank]p4b2:
3796 //
3797 // If class B is derived directly or indirectly from class A,
3798 // conversion of B* to A* is better than conversion of B* to
3799 // void*, and conversion of A* to void* is better than conversion
3800 // of B* to void*.
3801 bool SCS1ConvertsToVoid
3802 = SCS1.isPointerConversionToVoidPointer(S.Context);
3803 bool SCS2ConvertsToVoid
3804 = SCS2.isPointerConversionToVoidPointer(S.Context);
3805 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3806 // Exactly one of the conversion sequences is a conversion to
3807 // a void pointer; it's the worse conversion.
3808 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3809 : ImplicitConversionSequence::Worse;
3810 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3811 // Neither conversion sequence converts to a void pointer; compare
3812 // their derived-to-base conversions.
3813 if (ImplicitConversionSequence::CompareKind DerivedCK
3814 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3815 return DerivedCK;
3816 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3817 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3818 // Both conversion sequences are conversions to void
3819 // pointers. Compare the source types to determine if there's an
3820 // inheritance relationship in their sources.
3821 QualType FromType1 = SCS1.getFromType();
3822 QualType FromType2 = SCS2.getFromType();
3823
3824 // Adjust the types we're converting from via the array-to-pointer
3825 // conversion, if we need to.
3826 if (SCS1.First == ICK_Array_To_Pointer)
3827 FromType1 = S.Context.getArrayDecayedType(FromType1);
3828 if (SCS2.First == ICK_Array_To_Pointer)
3829 FromType2 = S.Context.getArrayDecayedType(FromType2);
3830
3831 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3832 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3833
3834 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3835 return ImplicitConversionSequence::Better;
3836 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3837 return ImplicitConversionSequence::Worse;
3838
3839 // Objective-C++: If one interface is more specific than the
3840 // other, it is the better one.
3841 const ObjCObjectPointerType* FromObjCPtr1
3842 = FromType1->getAs<ObjCObjectPointerType>();
3843 const ObjCObjectPointerType* FromObjCPtr2
3844 = FromType2->getAs<ObjCObjectPointerType>();
3845 if (FromObjCPtr1 && FromObjCPtr2) {
3846 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3847 FromObjCPtr2);
3848 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3849 FromObjCPtr1);
3850 if (AssignLeft != AssignRight) {
3851 return AssignLeft? ImplicitConversionSequence::Better
3852 : ImplicitConversionSequence::Worse;
3853 }
3854 }
3855 }
3856
3857 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3858 // bullet 3).
3859 if (ImplicitConversionSequence::CompareKind QualCK
3860 = CompareQualificationConversions(S, SCS1, SCS2))
3861 return QualCK;
3862
3863 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3864 // Check for a better reference binding based on the kind of bindings.
3865 if (isBetterReferenceBindingKind(SCS1, SCS2))
3866 return ImplicitConversionSequence::Better;
3867 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3868 return ImplicitConversionSequence::Worse;
3869
3870 // C++ [over.ics.rank]p3b4:
3871 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3872 // which the references refer are the same type except for
3873 // top-level cv-qualifiers, and the type to which the reference
3874 // initialized by S2 refers is more cv-qualified than the type
3875 // to which the reference initialized by S1 refers.
3876 QualType T1 = SCS1.getToType(2);
3877 QualType T2 = SCS2.getToType(2);
3878 T1 = S.Context.getCanonicalType(T1);
3879 T2 = S.Context.getCanonicalType(T2);
3880 Qualifiers T1Quals, T2Quals;
3881 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3882 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3883 if (UnqualT1 == UnqualT2) {
3884 // Objective-C++ ARC: If the references refer to objects with different
3885 // lifetimes, prefer bindings that don't change lifetime.
3886 if (SCS1.ObjCLifetimeConversionBinding !=
3887 SCS2.ObjCLifetimeConversionBinding) {
3888 return SCS1.ObjCLifetimeConversionBinding
3889 ? ImplicitConversionSequence::Worse
3890 : ImplicitConversionSequence::Better;
3891 }
3892
3893 // If the type is an array type, promote the element qualifiers to the
3894 // type for comparison.
3895 if (isa<ArrayType>(T1) && T1Quals)
3896 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3897 if (isa<ArrayType>(T2) && T2Quals)
3898 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3899 if (T2.isMoreQualifiedThan(T1))
3900 return ImplicitConversionSequence::Better;
3901 else if (T1.isMoreQualifiedThan(T2))
3902 return ImplicitConversionSequence::Worse;
3903 }
3904 }
3905
3906 // In Microsoft mode, prefer an integral conversion to a
3907 // floating-to-integral conversion if the integral conversion
3908 // is between types of the same size.
3909 // For example:
3910 // void f(float);
3911 // void f(int);
3912 // int main {
3913 // long a;
3914 // f(a);
3915 // }
3916 // Here, MSVC will call f(int) instead of generating a compile error
3917 // as clang will do in standard mode.
3918 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3919 SCS2.Second == ICK_Floating_Integral &&
3920 S.Context.getTypeSize(SCS1.getFromType()) ==
3921 S.Context.getTypeSize(SCS1.getToType(2)))
3922 return ImplicitConversionSequence::Better;
3923
3924 // Prefer a compatible vector conversion over a lax vector conversion
3925 // For example:
3926 //
3927 // typedef float __v4sf __attribute__((__vector_size__(16)));
3928 // void f(vector float);
3929 // void f(vector signed int);
3930 // int main() {
3931 // __v4sf a;
3932 // f(a);
3933 // }
3934 // Here, we'd like to choose f(vector float) and not
3935 // report an ambiguous call error
3936 if (SCS1.Second == ICK_Vector_Conversion &&
3937 SCS2.Second == ICK_Vector_Conversion) {
3938 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3939 SCS1.getFromType(), SCS1.getToType(2));
3940 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
3941 SCS2.getFromType(), SCS2.getToType(2));
3942
3943 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
3944 return SCS1IsCompatibleVectorConversion
3945 ? ImplicitConversionSequence::Better
3946 : ImplicitConversionSequence::Worse;
3947 }
3948
3949 return ImplicitConversionSequence::Indistinguishable;
3950}
3951
3952/// CompareQualificationConversions - Compares two standard conversion
3953/// sequences to determine whether they can be ranked based on their
3954/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3955static ImplicitConversionSequence::CompareKind
3956CompareQualificationConversions(Sema &S,
3957 const StandardConversionSequence& SCS1,
3958 const StandardConversionSequence& SCS2) {
3959 // C++ 13.3.3.2p3:
3960 // -- S1 and S2 differ only in their qualification conversion and
3961 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3962 // cv-qualification signature of type T1 is a proper subset of
3963 // the cv-qualification signature of type T2, and S1 is not the
3964 // deprecated string literal array-to-pointer conversion (4.2).
3965 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3966 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3967 return ImplicitConversionSequence::Indistinguishable;
3968
3969 // FIXME: the example in the standard doesn't use a qualification
3970 // conversion (!)
3971 QualType T1 = SCS1.getToType(2);
3972 QualType T2 = SCS2.getToType(2);
3973 T1 = S.Context.getCanonicalType(T1);
3974 T2 = S.Context.getCanonicalType(T2);
3975 Qualifiers T1Quals, T2Quals;
3976 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3977 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3978
3979 // If the types are the same, we won't learn anything by unwrapped
3980 // them.
3981 if (UnqualT1 == UnqualT2)
3982 return ImplicitConversionSequence::Indistinguishable;
3983
3984 // If the type is an array type, promote the element qualifiers to the type
3985 // for comparison.
3986 if (isa<ArrayType>(T1) && T1Quals)
3987 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3988 if (isa<ArrayType>(T2) && T2Quals)
3989 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3990
3991 ImplicitConversionSequence::CompareKind Result
3992 = ImplicitConversionSequence::Indistinguishable;
3993
3994 // Objective-C++ ARC:
3995 // Prefer qualification conversions not involving a change in lifetime
3996 // to qualification conversions that do not change lifetime.
3997 if (SCS1.QualificationIncludesObjCLifetime !=
3998 SCS2.QualificationIncludesObjCLifetime) {
3999 Result = SCS1.QualificationIncludesObjCLifetime
4000 ? ImplicitConversionSequence::Worse
4001 : ImplicitConversionSequence::Better;
4002 }
4003
4004 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4005 // Within each iteration of the loop, we check the qualifiers to
4006 // determine if this still looks like a qualification
4007 // conversion. Then, if all is well, we unwrap one more level of
4008 // pointers or pointers-to-members and do it all again
4009 // until there are no more pointers or pointers-to-members left
4010 // to unwrap. This essentially mimics what
4011 // IsQualificationConversion does, but here we're checking for a
4012 // strict subset of qualifiers.
4013 if (T1.getQualifiers().withoutObjCLifetime() ==
4014 T2.getQualifiers().withoutObjCLifetime())
4015 // The qualifiers are the same, so this doesn't tell us anything
4016 // about how the sequences rank.
4017 // ObjC ownership quals are omitted above as they interfere with
4018 // the ARC overload rule.
4019 ;
4020 else if (T2.isMoreQualifiedThan(T1)) {
4021 // T1 has fewer qualifiers, so it could be the better sequence.
4022 if (Result == ImplicitConversionSequence::Worse)
4023 // Neither has qualifiers that are a subset of the other's
4024 // qualifiers.
4025 return ImplicitConversionSequence::Indistinguishable;
4026
4027 Result = ImplicitConversionSequence::Better;
4028 } else if (T1.isMoreQualifiedThan(T2)) {
4029 // T2 has fewer qualifiers, so it could be the better sequence.
4030 if (Result == ImplicitConversionSequence::Better)
4031 // Neither has qualifiers that are a subset of the other's
4032 // qualifiers.
4033 return ImplicitConversionSequence::Indistinguishable;
4034
4035 Result = ImplicitConversionSequence::Worse;
4036 } else {
4037 // Qualifiers are disjoint.
4038 return ImplicitConversionSequence::Indistinguishable;
4039 }
4040
4041 // If the types after this point are equivalent, we're done.
4042 if (S.Context.hasSameUnqualifiedType(T1, T2))
4043 break;
4044 }
4045
4046 // Check that the winning standard conversion sequence isn't using
4047 // the deprecated string literal array to pointer conversion.
4048 switch (Result) {
4049 case ImplicitConversionSequence::Better:
4050 if (SCS1.DeprecatedStringLiteralToCharPtr)
4051 Result = ImplicitConversionSequence::Indistinguishable;
4052 break;
4053
4054 case ImplicitConversionSequence::Indistinguishable:
4055 break;
4056
4057 case ImplicitConversionSequence::Worse:
4058 if (SCS2.DeprecatedStringLiteralToCharPtr)
4059 Result = ImplicitConversionSequence::Indistinguishable;
4060 break;
4061 }
4062
4063 return Result;
4064}
4065
4066/// CompareDerivedToBaseConversions - Compares two standard conversion
4067/// sequences to determine whether they can be ranked based on their
4068/// various kinds of derived-to-base conversions (C++
4069/// [over.ics.rank]p4b3). As part of these checks, we also look at
4070/// conversions between Objective-C interface types.
4071static ImplicitConversionSequence::CompareKind
4072CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4073 const StandardConversionSequence& SCS1,
4074 const StandardConversionSequence& SCS2) {
4075 QualType FromType1 = SCS1.getFromType();
4076 QualType ToType1 = SCS1.getToType(1);
4077 QualType FromType2 = SCS2.getFromType();
4078 QualType ToType2 = SCS2.getToType(1);
4079
4080 // Adjust the types we're converting from via the array-to-pointer
4081 // conversion, if we need to.
4082 if (SCS1.First == ICK_Array_To_Pointer)
4083 FromType1 = S.Context.getArrayDecayedType(FromType1);
4084 if (SCS2.First == ICK_Array_To_Pointer)
4085 FromType2 = S.Context.getArrayDecayedType(FromType2);
4086
4087 // Canonicalize all of the types.
4088 FromType1 = S.Context.getCanonicalType(FromType1);
4089 ToType1 = S.Context.getCanonicalType(ToType1);
4090 FromType2 = S.Context.getCanonicalType(FromType2);
4091 ToType2 = S.Context.getCanonicalType(ToType2);
4092
4093 // C++ [over.ics.rank]p4b3:
4094 //
4095 // If class B is derived directly or indirectly from class A and
4096 // class C is derived directly or indirectly from B,
4097 //
4098 // Compare based on pointer conversions.
4099 if (SCS1.Second == ICK_Pointer_Conversion &&
4100 SCS2.Second == ICK_Pointer_Conversion &&
4101 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4102 FromType1->isPointerType() && FromType2->isPointerType() &&
4103 ToType1->isPointerType() && ToType2->isPointerType()) {
4104 QualType FromPointee1
4105 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4106 QualType ToPointee1
4107 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4108 QualType FromPointee2
4109 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4110 QualType ToPointee2
4111 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4112
4113 // -- conversion of C* to B* is better than conversion of C* to A*,
4114 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4115 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4116 return ImplicitConversionSequence::Better;
4117 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4118 return ImplicitConversionSequence::Worse;
4119 }
4120
4121 // -- conversion of B* to A* is better than conversion of C* to A*,
4122 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4123 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4124 return ImplicitConversionSequence::Better;
4125 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4126 return ImplicitConversionSequence::Worse;
4127 }
4128 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4129 SCS2.Second == ICK_Pointer_Conversion) {
4130 const ObjCObjectPointerType *FromPtr1
4131 = FromType1->getAs<ObjCObjectPointerType>();
4132 const ObjCObjectPointerType *FromPtr2
4133 = FromType2->getAs<ObjCObjectPointerType>();
4134 const ObjCObjectPointerType *ToPtr1
4135 = ToType1->getAs<ObjCObjectPointerType>();
4136 const ObjCObjectPointerType *ToPtr2
4137 = ToType2->getAs<ObjCObjectPointerType>();
4138
4139 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4140 // Apply the same conversion ranking rules for Objective-C pointer types
4141 // that we do for C++ pointers to class types. However, we employ the
4142 // Objective-C pseudo-subtyping relationship used for assignment of
4143 // Objective-C pointer types.
4144 bool FromAssignLeft
4145 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4146 bool FromAssignRight
4147 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4148 bool ToAssignLeft
4149 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4150 bool ToAssignRight
4151 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4152
4153 // A conversion to an a non-id object pointer type or qualified 'id'
4154 // type is better than a conversion to 'id'.
4155 if (ToPtr1->isObjCIdType() &&
4156 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4157 return ImplicitConversionSequence::Worse;
4158 if (ToPtr2->isObjCIdType() &&
4159 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4160 return ImplicitConversionSequence::Better;
4161
4162 // A conversion to a non-id object pointer type is better than a
4163 // conversion to a qualified 'id' type
4164 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4165 return ImplicitConversionSequence::Worse;
4166 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4167 return ImplicitConversionSequence::Better;
4168
4169 // A conversion to an a non-Class object pointer type or qualified 'Class'
4170 // type is better than a conversion to 'Class'.
4171 if (ToPtr1->isObjCClassType() &&
4172 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4173 return ImplicitConversionSequence::Worse;
4174 if (ToPtr2->isObjCClassType() &&
4175 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4176 return ImplicitConversionSequence::Better;
4177
4178 // A conversion to a non-Class object pointer type is better than a
4179 // conversion to a qualified 'Class' type.
4180 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4181 return ImplicitConversionSequence::Worse;
4182 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4183 return ImplicitConversionSequence::Better;
4184
4185 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4186 if (S.Context.hasSameType(FromType1, FromType2) &&
4187 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4188 (ToAssignLeft != ToAssignRight)) {
4189 if (FromPtr1->isSpecialized()) {
4190 // "conversion of B<A> * to B * is better than conversion of B * to
4191 // C *.
4192 bool IsFirstSame =
4193 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4194 bool IsSecondSame =
4195 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4196 if (IsFirstSame) {
4197 if (!IsSecondSame)
4198 return ImplicitConversionSequence::Better;
4199 } else if (IsSecondSame)
4200 return ImplicitConversionSequence::Worse;
4201 }
4202 return ToAssignLeft? ImplicitConversionSequence::Worse
4203 : ImplicitConversionSequence::Better;
4204 }
4205
4206 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4207 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4208 (FromAssignLeft != FromAssignRight))
4209 return FromAssignLeft? ImplicitConversionSequence::Better
4210 : ImplicitConversionSequence::Worse;
4211 }
4212 }
4213
4214 // Ranking of member-pointer types.
4215 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4216 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4217 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4218 const MemberPointerType * FromMemPointer1 =
4219 FromType1->getAs<MemberPointerType>();
4220 const MemberPointerType * ToMemPointer1 =
4221 ToType1->getAs<MemberPointerType>();
4222 const MemberPointerType * FromMemPointer2 =
4223 FromType2->getAs<MemberPointerType>();
4224 const MemberPointerType * ToMemPointer2 =
4225 ToType2->getAs<MemberPointerType>();
4226 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4227 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4228 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4229 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4230 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4231 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4232 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4233 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4234 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4235 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4236 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4237 return ImplicitConversionSequence::Worse;
4238 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4239 return ImplicitConversionSequence::Better;
4240 }
4241 // conversion of B::* to C::* is better than conversion of A::* to C::*
4242 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4243 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4244 return ImplicitConversionSequence::Better;
4245 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4246 return ImplicitConversionSequence::Worse;
4247 }
4248 }
4249
4250 if (SCS1.Second == ICK_Derived_To_Base) {
4251 // -- conversion of C to B is better than conversion of C to A,
4252 // -- binding of an expression of type C to a reference of type
4253 // B& is better than binding an expression of type C to a
4254 // reference of type A&,
4255 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4256 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4257 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4258 return ImplicitConversionSequence::Better;
4259 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4260 return ImplicitConversionSequence::Worse;
4261 }
4262
4263 // -- conversion of B to A is better than conversion of C to A.
4264 // -- binding of an expression of type B to a reference of type
4265 // A& is better than binding an expression of type C to a
4266 // reference of type A&,
4267 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4268 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4269 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4270 return ImplicitConversionSequence::Better;
4271 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4272 return ImplicitConversionSequence::Worse;
4273 }
4274 }
4275
4276 return ImplicitConversionSequence::Indistinguishable;
4277}
4278
4279/// Determine whether the given type is valid, e.g., it is not an invalid
4280/// C++ class.
4281static bool isTypeValid(QualType T) {
4282 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4283 return !Record->isInvalidDecl();
4284
4285 return true;
4286}
4287
4288/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4289/// determine whether they are reference-related,
4290/// reference-compatible, reference-compatible with added
4291/// qualification, or incompatible, for use in C++ initialization by
4292/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4293/// type, and the first type (T1) is the pointee type of the reference
4294/// type being initialized.
4295Sema::ReferenceCompareResult
4296Sema::CompareReferenceRelationship(SourceLocation Loc,
4297 QualType OrigT1, QualType OrigT2,
4298 bool &DerivedToBase,
4299 bool &ObjCConversion,
4300 bool &ObjCLifetimeConversion) {
4301 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4302, __PRETTY_FUNCTION__))
4302 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4302, __PRETTY_FUNCTION__))
;
4303 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4303, __PRETTY_FUNCTION__))
;
4304
4305 QualType T1 = Context.getCanonicalType(OrigT1);
4306 QualType T2 = Context.getCanonicalType(OrigT2);
4307 Qualifiers T1Quals, T2Quals;
4308 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4309 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4310
4311 // C++ [dcl.init.ref]p4:
4312 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4313 // reference-related to "cv2 T2" if T1 is the same type as T2, or
4314 // T1 is a base class of T2.
4315 DerivedToBase = false;
4316 ObjCConversion = false;
4317 ObjCLifetimeConversion = false;
4318 QualType ConvertedT2;
4319 if (UnqualT1 == UnqualT2) {
4320 // Nothing to do.
4321 } else if (isCompleteType(Loc, OrigT2) &&
4322 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4323 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4324 DerivedToBase = true;
4325 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4326 UnqualT2->isObjCObjectOrInterfaceType() &&
4327 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4328 ObjCConversion = true;
4329 else if (UnqualT2->isFunctionType() &&
4330 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2))
4331 // C++1z [dcl.init.ref]p4:
4332 // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4333 // function" and T1 is "function"
4334 //
4335 // We extend this to also apply to 'noreturn', so allow any function
4336 // conversion between function types.
4337 return Ref_Compatible;
4338 else
4339 return Ref_Incompatible;
4340
4341 // At this point, we know that T1 and T2 are reference-related (at
4342 // least).
4343
4344 // If the type is an array type, promote the element qualifiers to the type
4345 // for comparison.
4346 if (isa<ArrayType>(T1) && T1Quals)
4347 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4348 if (isa<ArrayType>(T2) && T2Quals)
4349 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4350
4351 // C++ [dcl.init.ref]p4:
4352 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4353 // reference-related to T2 and cv1 is the same cv-qualification
4354 // as, or greater cv-qualification than, cv2. For purposes of
4355 // overload resolution, cases for which cv1 is greater
4356 // cv-qualification than cv2 are identified as
4357 // reference-compatible with added qualification (see 13.3.3.2).
4358 //
4359 // Note that we also require equivalence of Objective-C GC and address-space
4360 // qualifiers when performing these computations, so that e.g., an int in
4361 // address space 1 is not reference-compatible with an int in address
4362 // space 2.
4363 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4364 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4365 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4366 ObjCLifetimeConversion = true;
4367
4368 T1Quals.removeObjCLifetime();
4369 T2Quals.removeObjCLifetime();
4370 }
4371
4372 // MS compiler ignores __unaligned qualifier for references; do the same.
4373 T1Quals.removeUnaligned();
4374 T2Quals.removeUnaligned();
4375
4376 if (T1Quals.compatiblyIncludes(T2Quals))
4377 return Ref_Compatible;
4378 else
4379 return Ref_Related;
4380}
4381
4382/// Look for a user-defined conversion to a value reference-compatible
4383/// with DeclType. Return true if something definite is found.
4384static bool
4385FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4386 QualType DeclType, SourceLocation DeclLoc,
4387 Expr *Init, QualType T2, bool AllowRvalues,
4388 bool AllowExplicit) {
4389 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4389, __PRETTY_FUNCTION__))
;
4390 CXXRecordDecl *T2RecordDecl
4391 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4392
4393 OverloadCandidateSet CandidateSet(
4394 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4395 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4396 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4397 NamedDecl *D = *I;
4398 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4399 if (isa<UsingShadowDecl>(D))
4400 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4401
4402 FunctionTemplateDecl *ConvTemplate
4403 = dyn_cast<FunctionTemplateDecl>(D);
4404 CXXConversionDecl *Conv;
4405 if (ConvTemplate)
4406 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4407 else
4408 Conv = cast<CXXConversionDecl>(D);
4409
4410 // If this is an explicit conversion, and we're not allowed to consider
4411 // explicit conversions, skip it.
4412 if (!AllowExplicit && Conv->isExplicit())
4413 continue;
4414
4415 if (AllowRvalues) {
4416 bool DerivedToBase = false;
4417 bool ObjCConversion = false;
4418 bool ObjCLifetimeConversion = false;
4419
4420 // If we are initializing an rvalue reference, don't permit conversion
4421 // functions that return lvalues.
4422 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4423 const ReferenceType *RefType
4424 = Conv->getConversionType()->getAs<LValueReferenceType>();
4425 if (RefType && !RefType->getPointeeType()->isFunctionType())
4426 continue;
4427 }
4428
4429 if (!ConvTemplate &&
4430 S.CompareReferenceRelationship(
4431 DeclLoc,
4432 Conv->getConversionType().getNonReferenceType()
4433 .getUnqualifiedType(),
4434 DeclType.getNonReferenceType().getUnqualifiedType(),
4435 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4436 Sema::Ref_Incompatible)
4437 continue;
4438 } else {
4439 // If the conversion function doesn't return a reference type,
4440 // it can't be considered for this conversion. An rvalue reference
4441 // is only acceptable if its referencee is a function type.
4442
4443 const ReferenceType *RefType =
4444 Conv->getConversionType()->getAs<ReferenceType>();
4445 if (!RefType ||
4446 (!RefType->isLValueReferenceType() &&
4447 !RefType->getPointeeType()->isFunctionType()))
4448 continue;
4449 }
4450
4451 if (ConvTemplate)
4452 S.AddTemplateConversionCandidate(
4453 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4454 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4455 else
4456 S.AddConversionCandidate(
4457 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4458 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4459 }
4460
4461 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4462
4463 OverloadCandidateSet::iterator Best;
4464 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4465 case OR_Success:
4466 // C++ [over.ics.ref]p1:
4467 //
4468 // [...] If the parameter binds directly to the result of
4469 // applying a conversion function to the argument
4470 // expression, the implicit conversion sequence is a
4471 // user-defined conversion sequence (13.3.3.1.2), with the
4472 // second standard conversion sequence either an identity
4473 // conversion or, if the conversion function returns an
4474 // entity of a type that is a derived class of the parameter
4475 // type, a derived-to-base Conversion.
4476 if (!Best->FinalConversion.DirectBinding)
4477 return false;
4478
4479 ICS.setUserDefined();
4480 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4481 ICS.UserDefined.After = Best->FinalConversion;
4482 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4483 ICS.UserDefined.ConversionFunction = Best->Function;
4484 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4485 ICS.UserDefined.EllipsisConversion = false;
4486 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4488, __PRETTY_FUNCTION__))
4487 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4488, __PRETTY_FUNCTION__))
4488 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4488, __PRETTY_FUNCTION__))
;
4489 return true;
4490
4491 case OR_Ambiguous:
4492 ICS.setAmbiguous();
4493 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4494 Cand != CandidateSet.end(); ++Cand)
4495 if (Cand->Viable)
4496 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4497 return true;
4498
4499 case OR_No_Viable_Function:
4500 case OR_Deleted:
4501 // There was no suitable conversion, or we found a deleted
4502 // conversion; continue with other checks.
4503 return false;
4504 }
4505
4506 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4506)
;
4507}
4508
4509/// Compute an implicit conversion sequence for reference
4510/// initialization.
4511static ImplicitConversionSequence
4512TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4513 SourceLocation DeclLoc,
4514 bool SuppressUserConversions,
4515 bool AllowExplicit) {
4516 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4516, __PRETTY_FUNCTION__))
;
4517
4518 // Most paths end in a failed conversion.
4519 ImplicitConversionSequence ICS;
4520 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4521
4522 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4523 QualType T2 = Init->getType();
4524
4525 // If the initializer is the address of an overloaded function, try
4526 // to resolve the overloaded function. If all goes well, T2 is the
4527 // type of the resulting function.
4528 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4529 DeclAccessPair Found;
4530 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4531 false, Found))
4532 T2 = Fn->getType();
4533 }
4534
4535 // Compute some basic properties of the types and the initializer.
4536 bool isRValRef = DeclType->isRValueReferenceType();
4537 bool DerivedToBase = false;
4538 bool ObjCConversion = false;
4539 bool ObjCLifetimeConversion = false;
4540 Expr::Classification InitCategory = Init->Classify(S.Context);
4541 Sema::ReferenceCompareResult RefRelationship
4542 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4543 ObjCConversion, ObjCLifetimeConversion);
4544
4545
4546 // C++0x [dcl.init.ref]p5:
4547 // A reference to type "cv1 T1" is initialized by an expression
4548 // of type "cv2 T2" as follows:
4549
4550 // -- If reference is an lvalue reference and the initializer expression
4551 if (!isRValRef) {
4552 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4553 // reference-compatible with "cv2 T2," or
4554 //
4555 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4556 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4557 // C++ [over.ics.ref]p1:
4558 // When a parameter of reference type binds directly (8.5.3)
4559 // to an argument expression, the implicit conversion sequence
4560 // is the identity conversion, unless the argument expression
4561 // has a type that is a derived class of the parameter type,
4562 // in which case the implicit conversion sequence is a
4563 // derived-to-base Conversion (13.3.3.1).
4564 ICS.setStandard();
4565 ICS.Standard.First = ICK_Identity;
4566 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4567 : ObjCConversion? ICK_Compatible_Conversion
4568 : ICK_Identity;
4569 ICS.Standard.Third = ICK_Identity;
4570 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4571 ICS.Standard.setToType(0, T2);
4572 ICS.Standard.setToType(1, T1);
4573 ICS.Standard.setToType(2, T1);
4574 ICS.Standard.ReferenceBinding = true;
4575 ICS.Standard.DirectBinding = true;
4576 ICS.Standard.IsLvalueReference = !isRValRef;
4577 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4578 ICS.Standard.BindsToRvalue = false;
4579 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4580 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4581 ICS.Standard.CopyConstructor = nullptr;
4582 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4583
4584 // Nothing more to do: the inaccessibility/ambiguity check for
4585 // derived-to-base conversions is suppressed when we're
4586 // computing the implicit conversion sequence (C++
4587 // [over.best.ics]p2).
4588 return ICS;
4589 }
4590
4591 // -- has a class type (i.e., T2 is a class type), where T1 is
4592 // not reference-related to T2, and can be implicitly
4593 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4594 // is reference-compatible with "cv3 T3" 92) (this
4595 // conversion is selected by enumerating the applicable
4596 // conversion functions (13.3.1.6) and choosing the best
4597 // one through overload resolution (13.3)),
4598 if (!SuppressUserConversions && T2->isRecordType() &&
4599 S.isCompleteType(DeclLoc, T2) &&
4600 RefRelationship == Sema::Ref_Incompatible) {
4601 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4602 Init, T2, /*AllowRvalues=*/false,
4603 AllowExplicit))
4604 return ICS;
4605 }
4606 }
4607
4608 // -- Otherwise, the reference shall be an lvalue reference to a
4609 // non-volatile const type (i.e., cv1 shall be const), or the reference
4610 // shall be an rvalue reference.
4611 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4612 return ICS;
4613
4614 // -- If the initializer expression
4615 //
4616 // -- is an xvalue, class prvalue, array prvalue or function
4617 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4618 if (RefRelationship == Sema::Ref_Compatible &&
4619 (InitCategory.isXValue() ||
4620 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4621 (InitCategory.isLValue() && T2->isFunctionType()))) {
4622 ICS.setStandard();
4623 ICS.Standard.First = ICK_Identity;
4624 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4625 : ObjCConversion? ICK_Compatible_Conversion
4626 : ICK_Identity;
4627 ICS.Standard.Third = ICK_Identity;
4628 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4629 ICS.Standard.setToType(0, T2);
4630 ICS.Standard.setToType(1, T1);
4631 ICS.Standard.setToType(2, T1);
4632 ICS.Standard.ReferenceBinding = true;
4633 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4634 // binding unless we're binding to a class prvalue.
4635 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4636 // allow the use of rvalue references in C++98/03 for the benefit of
4637 // standard library implementors; therefore, we need the xvalue check here.
4638 ICS.Standard.DirectBinding =
4639 S.getLangOpts().CPlusPlus11 ||
4640 !(InitCategory.isPRValue() || T2->isRecordType());
4641 ICS.Standard.IsLvalueReference = !isRValRef;
4642 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4643 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4644 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4645 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4646 ICS.Standard.CopyConstructor = nullptr;
4647 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4648 return ICS;
4649 }
4650
4651 // -- has a class type (i.e., T2 is a class type), where T1 is not
4652 // reference-related to T2, and can be implicitly converted to
4653 // an xvalue, class prvalue, or function lvalue of type
4654 // "cv3 T3", where "cv1 T1" is reference-compatible with
4655 // "cv3 T3",
4656 //
4657 // then the reference is bound to the value of the initializer
4658 // expression in the first case and to the result of the conversion
4659 // in the second case (or, in either case, to an appropriate base
4660 // class subobject).
4661 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4662 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4663 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4664 Init, T2, /*AllowRvalues=*/true,
4665 AllowExplicit)) {
4666 // In the second case, if the reference is an rvalue reference
4667 // and the second standard conversion sequence of the
4668 // user-defined conversion sequence includes an lvalue-to-rvalue
4669 // conversion, the program is ill-formed.
4670 if (ICS.isUserDefined() && isRValRef &&
4671 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4672 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4673
4674 return ICS;
4675 }
4676
4677 // A temporary of function type cannot be created; don't even try.
4678 if (T1->isFunctionType())
4679 return ICS;
4680
4681 // -- Otherwise, a temporary of type "cv1 T1" is created and
4682 // initialized from the initializer expression using the
4683 // rules for a non-reference copy initialization (8.5). The
4684 // reference is then bound to the temporary. If T1 is
4685 // reference-related to T2, cv1 must be the same
4686 // cv-qualification as, or greater cv-qualification than,
4687 // cv2; otherwise, the program is ill-formed.
4688 if (RefRelationship == Sema::Ref_Related) {
4689 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4690 // we would be reference-compatible or reference-compatible with
4691 // added qualification. But that wasn't the case, so the reference
4692 // initialization fails.
4693 //
4694 // Note that we only want to check address spaces and cvr-qualifiers here.
4695 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4696 Qualifiers T1Quals = T1.getQualifiers();
4697 Qualifiers T2Quals = T2.getQualifiers();
4698 T1Quals.removeObjCGCAttr();
4699 T1Quals.removeObjCLifetime();
4700 T2Quals.removeObjCGCAttr();
4701 T2Quals.removeObjCLifetime();
4702 // MS compiler ignores __unaligned qualifier for references; do the same.
4703 T1Quals.removeUnaligned();
4704 T2Quals.removeUnaligned();
4705 if (!T1Quals.compatiblyIncludes(T2Quals))
4706 return ICS;
4707 }
4708
4709 // If at least one of the types is a class type, the types are not
4710 // related, and we aren't allowed any user conversions, the
4711 // reference binding fails. This case is important for breaking
4712 // recursion, since TryImplicitConversion below will attempt to
4713 // create a temporary through the use of a copy constructor.
4714 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4715 (T1->isRecordType() || T2->isRecordType()))
4716 return ICS;
4717
4718 // If T1 is reference-related to T2 and the reference is an rvalue
4719 // reference, the initializer expression shall not be an lvalue.
4720 if (RefRelationship >= Sema::Ref_Related &&
4721 isRValRef && Init->Classify(S.Context).isLValue())
4722 return ICS;
4723
4724 // C++ [over.ics.ref]p2:
4725 // When a parameter of reference type is not bound directly to
4726 // an argument expression, the conversion sequence is the one
4727 // required to convert the argument expression to the
4728 // underlying type of the reference according to
4729 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4730 // to copy-initializing a temporary of the underlying type with
4731 // the argument expression. Any difference in top-level
4732 // cv-qualification is subsumed by the initialization itself
4733 // and does not constitute a conversion.
4734 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4735 /*AllowExplicit=*/false,
4736 /*InOverloadResolution=*/false,
4737 /*CStyle=*/false,
4738 /*AllowObjCWritebackConversion=*/false,
4739 /*AllowObjCConversionOnExplicit=*/false);
4740
4741 // Of course, that's still a reference binding.
4742 if (ICS.isStandard()) {
4743 ICS.Standard.ReferenceBinding = true;
4744 ICS.Standard.IsLvalueReference = !isRValRef;
4745 ICS.Standard.BindsToFunctionLvalue = false;
4746 ICS.Standard.BindsToRvalue = true;
4747 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4748 ICS.Standard.ObjCLifetimeConversionBinding = false;
4749 } else if (ICS.isUserDefined()) {
4750 const ReferenceType *LValRefType =
4751 ICS.UserDefined.ConversionFunction->getReturnType()
4752 ->getAs<LValueReferenceType>();
4753
4754 // C++ [over.ics.ref]p3:
4755 // Except for an implicit object parameter, for which see 13.3.1, a
4756 // standard conversion sequence cannot be formed if it requires [...]
4757 // binding an rvalue reference to an lvalue other than a function
4758 // lvalue.
4759 // Note that the function case is not possible here.
4760 if (DeclType->isRValueReferenceType() && LValRefType) {
4761 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4762 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4763 // reference to an rvalue!
4764 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4765 return ICS;
4766 }
4767
4768 ICS.UserDefined.After.ReferenceBinding = true;
4769 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4770 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4771 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4772 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4773 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4774 }
4775
4776 return ICS;
4777}
4778
4779static ImplicitConversionSequence
4780TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4781 bool SuppressUserConversions,
4782 bool InOverloadResolution,
4783 bool AllowObjCWritebackConversion,
4784 bool AllowExplicit = false);
4785
4786/// TryListConversion - Try to copy-initialize a value of type ToType from the
4787/// initializer list From.
4788static ImplicitConversionSequence
4789TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4790 bool SuppressUserConversions,
4791 bool InOverloadResolution,
4792 bool AllowObjCWritebackConversion) {
4793 // C++11 [over.ics.list]p1:
4794 // When an argument is an initializer list, it is not an expression and
4795 // special rules apply for converting it to a parameter type.
4796
4797 ImplicitConversionSequence Result;
4798 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4799
4800 // We need a complete type for what follows. Incomplete types can never be
4801 // initialized from init lists.
4802 if (!S.isCompleteType(From->getBeginLoc(), ToType))
4803 return Result;
4804
4805 // Per DR1467:
4806 // If the parameter type is a class X and the initializer list has a single
4807 // element of type cv U, where U is X or a class derived from X, the
4808 // implicit conversion sequence is the one required to convert the element
4809 // to the parameter type.
4810 //
4811 // Otherwise, if the parameter type is a character array [... ]
4812 // and the initializer list has a single element that is an
4813 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4814 // implicit conversion sequence is the identity conversion.
4815 if (From->getNumInits() == 1) {
4816 if (ToType->isRecordType()) {
4817 QualType InitType = From->getInit(0)->getType();
4818 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4819 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
4820 return TryCopyInitialization(S, From->getInit(0), ToType,
4821 SuppressUserConversions,
4822 InOverloadResolution,
4823 AllowObjCWritebackConversion);
4824 }
4825 // FIXME: Check the other conditions here: array of character type,
4826 // initializer is a string literal.
4827 if (ToType->isArrayType()) {
4828 InitializedEntity Entity =
4829 InitializedEntity::InitializeParameter(S.Context, ToType,
4830 /*Consumed=*/false);
4831 if (S.CanPerformCopyInitialization(Entity, From)) {
4832 Result.setStandard();
4833 Result.Standard.setAsIdentityConversion();
4834 Result.Standard.setFromType(ToType);
4835 Result.Standard.setAllToTypes(ToType);
4836 return Result;
4837 }
4838 }
4839 }
4840
4841 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4842 // C++11 [over.ics.list]p2:
4843 // If the parameter type is std::initializer_list<X> or "array of X" and
4844 // all the elements can be implicitly converted to X, the implicit
4845 // conversion sequence is the worst conversion necessary to convert an
4846 // element of the list to X.
4847 //
4848 // C++14 [over.ics.list]p3:
4849 // Otherwise, if the parameter type is "array of N X", if the initializer
4850 // list has exactly N elements or if it has fewer than N elements and X is
4851 // default-constructible, and if all the elements of the initializer list
4852 // can be implicitly converted to X, the implicit conversion sequence is
4853 // the worst conversion necessary to convert an element of the list to X.
4854 //
4855 // FIXME: We're missing a lot of these checks.
4856 bool toStdInitializerList = false;
4857 QualType X;
4858 if (ToType->isArrayType())
4859 X = S.Context.getAsArrayType(ToType)->getElementType();
4860 else
4861 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4862 if (!X.isNull()) {
4863 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4864 Expr *Init = From->getInit(i);
4865 ImplicitConversionSequence ICS =
4866 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4867 InOverloadResolution,
4868 AllowObjCWritebackConversion);
4869 // If a single element isn't convertible, fail.
4870 if (ICS.isBad()) {
4871 Result = ICS;
4872 break;
4873 }
4874 // Otherwise, look for the worst conversion.
4875 if (Result.isBad() || CompareImplicitConversionSequences(
4876 S, From->getBeginLoc(), ICS, Result) ==
4877 ImplicitConversionSequence::Worse)
4878 Result = ICS;
4879 }
4880
4881 // For an empty list, we won't have computed any conversion sequence.
4882 // Introduce the identity conversion sequence.
4883 if (From->getNumInits() == 0) {
4884 Result.setStandard();
4885 Result.Standard.setAsIdentityConversion();
4886 Result.Standard.setFromType(ToType);
4887 Result.Standard.setAllToTypes(ToType);
4888 }
4889
4890 Result.setStdInitializerListElement(toStdInitializerList);
4891 return Result;
4892 }
4893
4894 // C++14 [over.ics.list]p4:
4895 // C++11 [over.ics.list]p3:
4896 // Otherwise, if the parameter is a non-aggregate class X and overload
4897 // resolution chooses a single best constructor [...] the implicit
4898 // conversion sequence is a user-defined conversion sequence. If multiple
4899 // constructors are viable but none is better than the others, the
4900 // implicit conversion sequence is a user-defined conversion sequence.
4901 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4902 // This function can deal with initializer lists.
4903 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4904 /*AllowExplicit=*/false,
4905 InOverloadResolution, /*CStyle=*/false,
4906 AllowObjCWritebackConversion,
4907 /*AllowObjCConversionOnExplicit=*/false);
4908 }
4909
4910 // C++14 [over.ics.list]p5:
4911 // C++11 [over.ics.list]p4:
4912 // Otherwise, if the parameter has an aggregate type which can be
4913 // initialized from the initializer list [...] the implicit conversion
4914 // sequence is a user-defined conversion sequence.
4915 if (ToType->isAggregateType()) {
4916 // Type is an aggregate, argument is an init list. At this point it comes
4917 // down to checking whether the initialization works.
4918 // FIXME: Find out whether this parameter is consumed or not.
4919 // FIXME: Expose SemaInit's aggregate initialization code so that we don't
4920 // need to call into the initialization code here; overload resolution
4921 // should not be doing that.
4922 InitializedEntity Entity =
4923 InitializedEntity::InitializeParameter(S.Context, ToType,
4924 /*Consumed=*/false);
4925 if (S.CanPerformCopyInitialization(Entity, From)) {
4926 Result.setUserDefined();
4927 Result.UserDefined.Before.setAsIdentityConversion();
4928 // Initializer lists don't have a type.
4929 Result.UserDefined.Before.setFromType(QualType());
4930 Result.UserDefined.Before.setAllToTypes(QualType());
4931
4932 Result.UserDefined.After.setAsIdentityConversion();
4933 Result.UserDefined.After.setFromType(ToType);
4934 Result.UserDefined.After.setAllToTypes(ToType);
4935 Result.UserDefined.ConversionFunction = nullptr;
4936 }
4937 return Result;
4938 }
4939
4940 // C++14 [over.ics.list]p6:
4941 // C++11 [over.ics.list]p5:
4942 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4943 if (ToType->isReferenceType()) {
4944 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4945 // mention initializer lists in any way. So we go by what list-
4946 // initialization would do and try to extrapolate from that.
4947
4948 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4949
4950 // If the initializer list has a single element that is reference-related
4951 // to the parameter type, we initialize the reference from that.
4952 if (From->getNumInits() == 1) {
4953 Expr *Init = From->getInit(0);
4954
4955 QualType T2 = Init->getType();
4956
4957 // If the initializer is the address of an overloaded function, try
4958 // to resolve the overloaded function. If all goes well, T2 is the
4959 // type of the resulting function.
4960 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4961 DeclAccessPair Found;
4962 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4963 Init, ToType, false, Found))
4964 T2 = Fn->getType();
4965 }
4966
4967 // Compute some basic properties of the types and the initializer.
4968 bool dummy1 = false;
4969 bool dummy2 = false;
4970 bool dummy3 = false;
4971 Sema::ReferenceCompareResult RefRelationship =
4972 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
4973 dummy2, dummy3);
4974
4975 if (RefRelationship >= Sema::Ref_Related) {
4976 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
4977 SuppressUserConversions,
4978 /*AllowExplicit=*/false);
4979 }
4980 }
4981
4982 // Otherwise, we bind the reference to a temporary created from the
4983 // initializer list.
4984 Result = TryListConversion(S, From, T1, SuppressUserConversions,
4985 InOverloadResolution,
4986 AllowObjCWritebackConversion);
4987 if (Result.isFailure())
4988 return Result;
4989 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4990, __PRETTY_FUNCTION__))
4990 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 4990, __PRETTY_FUNCTION__))
;
4991
4992 // Can we even bind to a temporary?
4993 if (ToType->isRValueReferenceType() ||
4994 (T1.isConstQualified() && !T1.isVolatileQualified())) {
4995 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4996 Result.UserDefined.After;
4997 SCS.ReferenceBinding = true;
4998 SCS.IsLvalueReference = ToType->isLValueReferenceType();
4999 SCS.BindsToRvalue = true;
5000 SCS.BindsToFunctionLvalue = false;
5001 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5002 SCS.ObjCLifetimeConversionBinding = false;
5003 } else
5004 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5005 From, ToType);
5006 return Result;
5007 }
5008
5009 // C++14 [over.ics.list]p7:
5010 // C++11 [over.ics.list]p6:
5011 // Otherwise, if the parameter type is not a class:
5012 if (!ToType->isRecordType()) {
5013 // - if the initializer list has one element that is not itself an
5014 // initializer list, the implicit conversion sequence is the one
5015 // required to convert the element to the parameter type.
5016 unsigned NumInits = From->getNumInits();
5017 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5018 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5019 SuppressUserConversions,
5020 InOverloadResolution,
5021 AllowObjCWritebackConversion);
5022 // - if the initializer list has no elements, the implicit conversion
5023 // sequence is the identity conversion.
5024 else if (NumInits == 0) {
5025 Result.setStandard();
5026 Result.Standard.setAsIdentityConversion();
5027 Result.Standard.setFromType(ToType);
5028 Result.Standard.setAllToTypes(ToType);
5029 }
5030 return Result;
5031 }
5032
5033 // C++14 [over.ics.list]p8:
5034 // C++11 [over.ics.list]p7:
5035 // In all cases other than those enumerated above, no conversion is possible
5036 return Result;
5037}
5038
5039/// TryCopyInitialization - Try to copy-initialize a value of type
5040/// ToType from the expression From. Return the implicit conversion
5041/// sequence required to pass this argument, which may be a bad
5042/// conversion sequence (meaning that the argument cannot be passed to
5043/// a parameter of this type). If @p SuppressUserConversions, then we
5044/// do not permit any user-defined conversion sequences.
5045static ImplicitConversionSequence
5046TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5047 bool SuppressUserConversions,
5048 bool InOverloadResolution,
5049 bool AllowObjCWritebackConversion,
5050 bool AllowExplicit) {
5051 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5052 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5053 InOverloadResolution,AllowObjCWritebackConversion);
5054
5055 if (ToType->isReferenceType())
5056 return TryReferenceInit(S, From, ToType,
5057 /*FIXME:*/ From->getBeginLoc(),
5058 SuppressUserConversions, AllowExplicit);
5059
5060 return TryImplicitConversion(S, From, ToType,
5061 SuppressUserConversions,
5062 /*AllowExplicit=*/false,
5063 InOverloadResolution,
5064 /*CStyle=*/false,
5065 AllowObjCWritebackConversion,
5066 /*AllowObjCConversionOnExplicit=*/false);
5067}
5068
5069static bool TryCopyInitialization(const CanQualType FromQTy,
5070 const CanQualType ToQTy,
5071 Sema &S,
5072 SourceLocation Loc,
5073 ExprValueKind FromVK) {
5074 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5075 ImplicitConversionSequence ICS =
5076 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5077
5078 return !ICS.isBad();
5079}
5080
5081/// TryObjectArgumentInitialization - Try to initialize the object
5082/// parameter of the given member function (@c Method) from the
5083/// expression @p From.
5084static ImplicitConversionSequence
5085TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5086 Expr::Classification FromClassification,
5087 CXXMethodDecl *Method,
5088 CXXRecordDecl *ActingContext) {
5089 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5090 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5091 // const volatile object.
5092 Qualifiers Quals;
5093 if (isa<CXXDestructorDecl>(Method)) {
5094 Quals.addConst();
5095 Quals.addVolatile();
5096 } else {
5097 Quals = Method->getMethodQualifiers();
5098 }
5099
5100 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5101
5102 // Set up the conversion sequence as a "bad" conversion, to allow us
5103 // to exit early.
5104 ImplicitConversionSequence ICS;
5105
5106 // We need to have an object of class type.
5107 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5108 FromType = PT->getPointeeType();
5109
5110 // When we had a pointer, it's implicitly dereferenced, so we
5111 // better have an lvalue.
5112 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5112, __PRETTY_FUNCTION__))
;
5113 }
5114
5115 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5115, __PRETTY_FUNCTION__))
;
5116
5117 // C++0x [over.match.funcs]p4:
5118 // For non-static member functions, the type of the implicit object
5119 // parameter is
5120 //
5121 // - "lvalue reference to cv X" for functions declared without a
5122 // ref-qualifier or with the & ref-qualifier
5123 // - "rvalue reference to cv X" for functions declared with the &&
5124 // ref-qualifier
5125 //
5126 // where X is the class of which the function is a member and cv is the
5127 // cv-qualification on the member function declaration.
5128 //
5129 // However, when finding an implicit conversion sequence for the argument, we
5130 // are not allowed to perform user-defined conversions
5131 // (C++ [over.match.funcs]p5). We perform a simplified version of
5132 // reference binding here, that allows class rvalues to bind to
5133 // non-constant references.
5134
5135 // First check the qualifiers.
5136 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5137 if (ImplicitParamType.getCVRQualifiers()
5138 != FromTypeCanon.getLocalCVRQualifiers() &&
5139 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5140 ICS.setBad(BadConversionSequence::bad_qualifiers,
5141 FromType, ImplicitParamType);
5142 return ICS;
5143 }
5144
5145 if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
5146 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5147 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5148 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5149 ICS.setBad(BadConversionSequence::bad_qualifiers,
5150 FromType, ImplicitParamType);
5151 return ICS;
5152 }
5153 }
5154
5155 // Check that we have either the same type or a derived type. It
5156 // affects the conversion rank.
5157 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5158 ImplicitConversionKind SecondKind;
5159 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5160 SecondKind = ICK_Identity;
5161 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5162 SecondKind = ICK_Derived_To_Base;
5163 else {
5164 ICS.setBad(BadConversionSequence::unrelated_class,
5165 FromType, ImplicitParamType);
5166 return ICS;
5167 }
5168
5169 // Check the ref-qualifier.
5170 switch (Method->getRefQualifier()) {
5171 case RQ_None:
5172 // Do nothing; we don't care about lvalueness or rvalueness.
5173 break;
5174
5175 case RQ_LValue:
5176 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5177 // non-const lvalue reference cannot bind to an rvalue
5178 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5179 ImplicitParamType);
5180 return ICS;
5181 }
5182 break;
5183
5184 case RQ_RValue:
5185 if (!FromClassification.isRValue()) {
5186 // rvalue reference cannot bind to an lvalue
5187 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5188 ImplicitParamType);
5189 return ICS;
5190 }
5191 break;
5192 }
5193
5194 // Success. Mark this as a reference binding.
5195 ICS.setStandard();
5196 ICS.Standard.setAsIdentityConversion();
5197 ICS.Standard.Second = SecondKind;
5198 ICS.Standard.setFromType(FromType);
5199 ICS.Standard.setAllToTypes(ImplicitParamType);
5200 ICS.Standard.ReferenceBinding = true;
5201 ICS.Standard.DirectBinding = true;
5202 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5203 ICS.Standard.BindsToFunctionLvalue = false;
5204 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5205 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5206 = (Method->getRefQualifier() == RQ_None);
5207 return ICS;
5208}
5209
5210/// PerformObjectArgumentInitialization - Perform initialization of
5211/// the implicit object parameter for the given Method with the given
5212/// expression.
5213ExprResult
5214Sema::PerformObjectArgumentInitialization(Expr *From,
5215 NestedNameSpecifier *Qualifier,
5216 NamedDecl *FoundDecl,
5217 CXXMethodDecl *Method) {
5218 QualType FromRecordType, DestType;
5219 QualType ImplicitParamRecordType =
5220 Method->getThisType()->getAs<PointerType>()->getPointeeType();
5221
5222 Expr::Classification FromClassification;
5223 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5224 FromRecordType = PT->getPointeeType();
5225 DestType = Method->getThisType();
5226 FromClassification = Expr::Classification::makeSimpleLValue();
5227 } else {
5228 FromRecordType = From->getType();
5229 DestType = ImplicitParamRecordType;
5230 FromClassification = From->Classify(Context);
5231
5232 // When performing member access on an rvalue, materialize a temporary.
5233 if (From->isRValue()) {
5234 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5235 Method->getRefQualifier() !=
5236 RefQualifierKind::RQ_RValue);
5237 }
5238 }
5239
5240 // Note that we always use the true parent context when performing
5241 // the actual argument initialization.
5242 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5243 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5244 Method->getParent());
5245 if (ICS.isBad()) {
5246 switch (ICS.Bad.Kind) {
5247 case BadConversionSequence::bad_qualifiers: {
5248 Qualifiers FromQs = FromRecordType.getQualifiers();
5249 Qualifiers ToQs = DestType.getQualifiers();
5250 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5251 if (CVR) {
5252 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5253 << Method->getDeclName() << FromRecordType << (CVR - 1)
5254 << From->getSourceRange();
5255 Diag(Method->getLocation(), diag::note_previous_decl)
5256 << Method->getDeclName();
5257 return ExprError();
5258 }
5259 break;
5260 }
5261
5262 case BadConversionSequence::lvalue_ref_to_rvalue:
5263 case BadConversionSequence::rvalue_ref_to_lvalue: {
5264 bool IsRValueQualified =
5265 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5266 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5267 << Method->getDeclName() << FromClassification.isRValue()
5268 << IsRValueQualified;
5269 Diag(Method->getLocation(), diag::note_previous_decl)
5270 << Method->getDeclName();
5271 return ExprError();
5272 }
5273
5274 case BadConversionSequence::no_conversion:
5275 case BadConversionSequence::unrelated_class:
5276 break;
5277 }
5278
5279 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5280 << ImplicitParamRecordType << FromRecordType
5281 << From->getSourceRange();
5282 }
5283
5284 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5285 ExprResult FromRes =
5286 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5287 if (FromRes.isInvalid())
5288 return ExprError();
5289 From = FromRes.get();
5290 }
5291
5292 if (!Context.hasSameType(From->getType(), DestType)) {
5293 CastKind CK;
5294 if (FromRecordType.getAddressSpace() != DestType.getAddressSpace())
5295 CK = CK_AddressSpaceConversion;
5296 else
5297 CK = CK_NoOp;
5298 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5299 }
5300 return From;
5301}
5302
5303/// TryContextuallyConvertToBool - Attempt to contextually convert the
5304/// expression From to bool (C++0x [conv]p3).
5305static ImplicitConversionSequence
5306TryContextuallyConvertToBool(Sema &S, Expr *From) {
5307 return TryImplicitConversion(S, From, S.Context.BoolTy,
5308 /*SuppressUserConversions=*/false,
5309 /*AllowExplicit=*/true,
5310 /*InOverloadResolution=*/false,
5311 /*CStyle=*/false,
5312 /*AllowObjCWritebackConversion=*/false,
5313 /*AllowObjCConversionOnExplicit=*/false);
5314}
5315
5316/// PerformContextuallyConvertToBool - Perform a contextual conversion
5317/// of the expression From to bool (C++0x [conv]p3).
5318ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5319 if (checkPlaceholderForOverload(*this, From))
5320 return ExprError();
5321
5322 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5323 if (!ICS.isBad())
5324 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5325
5326 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5327 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5328 << From->getType() << From->getSourceRange();
5329 return ExprError();
5330}
5331
5332/// Check that the specified conversion is permitted in a converted constant
5333/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5334/// is acceptable.
5335static bool CheckConvertedConstantConversions(Sema &S,
5336 StandardConversionSequence &SCS) {
5337 // Since we know that the target type is an integral or unscoped enumeration
5338 // type, most conversion kinds are impossible. All possible First and Third
5339 // conversions are fine.
5340 switch (SCS.Second) {
5341 case ICK_Identity:
5342 case ICK_Function_Conversion:
5343 case ICK_Integral_Promotion:
5344 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5345 case ICK_Zero_Queue_Conversion:
5346 return true;
5347
5348 case ICK_Boolean_Conversion:
5349 // Conversion from an integral or unscoped enumeration type to bool is
5350 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5351 // conversion, so we allow it in a converted constant expression.
5352 //
5353 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5354 // a lot of popular code. We should at least add a warning for this
5355 // (non-conforming) extension.
5356 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5357 SCS.getToType(2)->isBooleanType();
5358
5359 case ICK_Pointer_Conversion:
5360 case ICK_Pointer_Member:
5361 // C++1z: null pointer conversions and null member pointer conversions are
5362 // only permitted if the source type is std::nullptr_t.
5363 return SCS.getFromType()->isNullPtrType();
5364
5365 case ICK_Floating_Promotion:
5366 case ICK_Complex_Promotion:
5367 case ICK_Floating_Conversion:
5368 case ICK_Complex_Conversion:
5369 case ICK_Floating_Integral:
5370 case ICK_Compatible_Conversion:
5371 case ICK_Derived_To_Base:
5372 case ICK_Vector_Conversion:
5373 case ICK_Vector_Splat:
5374 case ICK_Complex_Real:
5375 case ICK_Block_Pointer_Conversion:
5376 case ICK_TransparentUnionConversion:
5377 case ICK_Writeback_Conversion:
5378 case ICK_Zero_Event_Conversion:
5379 case ICK_C_Only_Conversion:
5380 case ICK_Incompatible_Pointer_Conversion:
5381 return false;
5382
5383 case ICK_Lvalue_To_Rvalue:
5384 case ICK_Array_To_Pointer:
5385 case ICK_Function_To_Pointer:
5386 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5386)
;
5387
5388 case ICK_Qualification:
5389 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5389)
;
5390
5391 case ICK_Num_Conversion_Kinds:
5392 break;
5393 }
5394
5395 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5395)
;
5396}
5397
5398/// CheckConvertedConstantExpression - Check that the expression From is a
5399/// converted constant expression of type T, perform the conversion and produce
5400/// the converted expression, per C++11 [expr.const]p3.
5401static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5402 QualType T, APValue &Value,
5403 Sema::CCEKind CCE,
5404 bool RequireInt) {
5405 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5406, __PRETTY_FUNCTION__))
5406 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5406, __PRETTY_FUNCTION__))
;
5407
5408 if (checkPlaceholderForOverload(S, From))
5409 return ExprError();
5410
5411 // C++1z [expr.const]p3:
5412 // A converted constant expression of type T is an expression,
5413 // implicitly converted to type T, where the converted
5414 // expression is a constant expression and the implicit conversion
5415 // sequence contains only [... list of conversions ...].
5416 // C++1z [stmt.if]p2:
5417 // If the if statement is of the form if constexpr, the value of the
5418 // condition shall be a contextually converted constant expression of type
5419 // bool.
5420 ImplicitConversionSequence ICS =
5421 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5422 ? TryContextuallyConvertToBool(S, From)
5423 : TryCopyInitialization(S, From, T,
5424 /*SuppressUserConversions=*/false,
5425 /*InOverloadResolution=*/false,
5426 /*AllowObjcWritebackConversion=*/false,
5427 /*AllowExplicit=*/false);
5428 StandardConversionSequence *SCS = nullptr;
5429 switch (ICS.getKind()) {
5430 case ImplicitConversionSequence::StandardConversion:
5431 SCS = &ICS.Standard;
5432 break;
5433 case ImplicitConversionSequence::UserDefinedConversion:
5434 // We are converting to a non-class type, so the Before sequence
5435 // must be trivial.
5436 SCS = &ICS.UserDefined.After;
5437 break;
5438 case ImplicitConversionSequence::AmbiguousConversion:
5439 case ImplicitConversionSequence::BadConversion:
5440 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5441 return S.Diag(From->getBeginLoc(),
5442 diag::err_typecheck_converted_constant_expression)
5443 << From->getType() << From->getSourceRange() << T;
5444 return ExprError();
5445
5446 case ImplicitConversionSequence::EllipsisConversion:
5447 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5447)
;
5448 }
5449
5450 // Check that we would only use permitted conversions.
5451 if (!CheckConvertedConstantConversions(S, *SCS)) {
5452 return S.Diag(From->getBeginLoc(),
5453 diag::err_typecheck_converted_constant_expression_disallowed)
5454 << From->getType() << From->getSourceRange() << T;
5455 }
5456 // [...] and where the reference binding (if any) binds directly.
5457 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5458 return S.Diag(From->getBeginLoc(),
5459 diag::err_typecheck_converted_constant_expression_indirect)
5460 << From->getType() << From->getSourceRange() << T;
5461 }
5462
5463 ExprResult Result =
5464 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5465 if (Result.isInvalid())
5466 return Result;
5467
5468 // Check for a narrowing implicit conversion.
5469 APValue PreNarrowingValue;
5470 QualType PreNarrowingType;
5471 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5472 PreNarrowingType)) {
5473 case NK_Dependent_Narrowing:
5474 // Implicit conversion to a narrower type, but the expression is
5475 // value-dependent so we can't tell whether it's actually narrowing.
5476 case NK_Variable_Narrowing:
5477 // Implicit conversion to a narrower type, and the value is not a constant
5478 // expression. We'll diagnose this in a moment.
5479 case NK_Not_Narrowing:
5480 break;
5481
5482 case NK_Constant_Narrowing:
5483 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5484 << CCE << /*Constant*/ 1
5485 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5486 break;
5487
5488 case NK_Type_Narrowing:
5489 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5490 << CCE << /*Constant*/ 0 << From->getType() << T;
5491 break;
5492 }
5493
5494 if (Result.get()->isValueDependent()) {
5495 Value = APValue();
5496 return Result;
5497 }
5498
5499 // Check the expression is a constant expression.
5500 SmallVector<PartialDiagnosticAt, 8> Notes;
5501 Expr::EvalResult Eval;
5502 Eval.Diag = &Notes;
5503 Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
5504 ? Expr::EvaluateForMangling
5505 : Expr::EvaluateForCodeGen;
5506
5507 if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
5508 (RequireInt && !Eval.Val.isInt())) {
5509 // The expression can't be folded, so we can't keep it at this position in
5510 // the AST.
5511 Result = ExprError();
5512 } else {
5513 Value = Eval.Val;
5514
5515 if (Notes.empty()) {
5516 // It's a constant expression.
5517 return ConstantExpr::Create(S.Context, Result.get());
5518 }
5519 }
5520
5521 // It's not a constant expression. Produce an appropriate diagnostic.
5522 if (Notes.size() == 1 &&
5523 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5524 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5525 else {
5526 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5527 << CCE << From->getSourceRange();
5528 for (unsigned I = 0; I < Notes.size(); ++I)
5529 S.Diag(Notes[I].first, Notes[I].second);
5530 }
5531 return ExprError();
5532}
5533
5534ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5535 APValue &Value, CCEKind CCE) {
5536 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5537}
5538
5539ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5540 llvm::APSInt &Value,
5541 CCEKind CCE) {
5542 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5542, __PRETTY_FUNCTION__))
;
5543
5544 APValue V;
5545 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5546 if (!R.isInvalid() && !R.get()->isValueDependent())
5547 Value = V.getInt();
5548 return R;
5549}
5550
5551
5552/// dropPointerConversions - If the given standard conversion sequence
5553/// involves any pointer conversions, remove them. This may change
5554/// the result type of the conversion sequence.
5555static void dropPointerConversion(StandardConversionSequence &SCS) {
5556 if (SCS.Second == ICK_Pointer_Conversion) {
5557 SCS.Second = ICK_Identity;
5558 SCS.Third = ICK_Identity;
5559 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5560 }
5561}
5562
5563/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5564/// convert the expression From to an Objective-C pointer type.
5565static ImplicitConversionSequence
5566TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5567 // Do an implicit conversion to 'id'.
5568 QualType Ty = S.Context.getObjCIdType();
5569 ImplicitConversionSequence ICS
5570 = TryImplicitConversion(S, From, Ty,
5571 // FIXME: Are these flags correct?
5572 /*SuppressUserConversions=*/false,
5573 /*AllowExplicit=*/true,
5574 /*InOverloadResolution=*/false,
5575 /*CStyle=*/false,
5576 /*AllowObjCWritebackConversion=*/false,
5577 /*AllowObjCConversionOnExplicit=*/true);
5578
5579 // Strip off any final conversions to 'id'.
5580 switch (ICS.getKind()) {
5581 case ImplicitConversionSequence::BadConversion:
5582 case ImplicitConversionSequence::AmbiguousConversion:
5583 case ImplicitConversionSequence::EllipsisConversion:
5584 break;
5585
5586 case ImplicitConversionSequence::UserDefinedConversion:
5587 dropPointerConversion(ICS.UserDefined.After);
5588 break;
5589
5590 case ImplicitConversionSequence::StandardConversion:
5591 dropPointerConversion(ICS.Standard);
5592 break;
5593 }
5594
5595 return ICS;
5596}
5597
5598/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5599/// conversion of the expression From to an Objective-C pointer type.
5600/// Returns a valid but null ExprResult if no conversion sequence exists.
5601ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5602 if (checkPlaceholderForOverload(*this, From))
5603 return ExprError();
5604
5605 QualType Ty = Context.getObjCIdType();
5606 ImplicitConversionSequence ICS =
5607 TryContextuallyConvertToObjCPointer(*this, From);
5608 if (!ICS.isBad())
5609 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5610 return ExprResult();
5611}
5612
5613/// Determine whether the provided type is an integral type, or an enumeration
5614/// type of a permitted flavor.
5615bool Sema::ICEConvertDiagnoser::match(QualType T) {
5616 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5617 : T->isIntegralOrUnscopedEnumerationType();
5618}
5619
5620static ExprResult
5621diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5622 Sema::ContextualImplicitConverter &Converter,
5623 QualType T, UnresolvedSetImpl &ViableConversions) {
5624
5625 if (Converter.Suppress)
5626 return ExprError();
5627
5628 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5629 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5630 CXXConversionDecl *Conv =
5631 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5632 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5633 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5634 }
5635 return From;
5636}
5637
5638static bool
5639diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5640 Sema::ContextualImplicitConverter &Converter,
5641 QualType T, bool HadMultipleCandidates,
5642 UnresolvedSetImpl &ExplicitConversions) {
5643 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5644 DeclAccessPair Found = ExplicitConversions[0];
5645 CXXConversionDecl *Conversion =
5646 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5647
5648 // The user probably meant to invoke the given explicit
5649 // conversion; use it.
5650 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5651 std::string TypeStr;
5652 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5653
5654 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5655 << FixItHint::CreateInsertion(From->getBeginLoc(),
5656 "static_cast<" + TypeStr + ">(")
5657 << FixItHint::CreateInsertion(
5658 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5659 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5660
5661 // If we aren't in a SFINAE context, build a call to the
5662 // explicit conversion function.
5663 if (SemaRef.isSFINAEContext())
5664 return true;
5665
5666 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5667 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5668 HadMultipleCandidates);
5669 if (Result.isInvalid())
5670 return true;
5671 // Record usage of conversion in an implicit cast.
5672 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5673 CK_UserDefinedConversion, Result.get(),
5674 nullptr, Result.get()->getValueKind());
5675 }
5676 return false;
5677}
5678
5679static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5680 Sema::ContextualImplicitConverter &Converter,
5681 QualType T, bool HadMultipleCandidates,
5682 DeclAccessPair &Found) {
5683 CXXConversionDecl *Conversion =
5684 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5685 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5686
5687 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5688 if (!Converter.SuppressConversion) {
5689 if (SemaRef.isSFINAEContext())
5690 return true;
5691
5692 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5693 << From->getSourceRange();
5694 }
5695
5696 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5697 HadMultipleCandidates);
5698 if (Result.isInvalid())
5699 return true;
5700 // Record usage of conversion in an implicit cast.
5701 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5702 CK_UserDefinedConversion, Result.get(),
5703 nullptr, Result.get()->getValueKind());
5704 return false;
5705}
5706
5707static ExprResult finishContextualImplicitConversion(
5708 Sema &SemaRef, SourceLocation Loc, Expr *From,
5709 Sema::ContextualImplicitConverter &Converter) {
5710 if (!Converter.match(From->getType()) && !Converter.Suppress)
5711 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5712 << From->getSourceRange();
5713
5714 return SemaRef.DefaultLvalueConversion(From);
5715}
5716
5717static void
5718collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5719 UnresolvedSetImpl &ViableConversions,
5720 OverloadCandidateSet &CandidateSet) {
5721 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5722 DeclAccessPair FoundDecl = ViableConversions[I];
5723 NamedDecl *D = FoundDecl.getDecl();
5724 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5725 if (isa<UsingShadowDecl>(D))
5726 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5727
5728 CXXConversionDecl *Conv;
5729 FunctionTemplateDecl *ConvTemplate;
5730 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5731 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5732 else
5733 Conv = cast<CXXConversionDecl>(D);
5734
5735 if (ConvTemplate)
5736 SemaRef.AddTemplateConversionCandidate(
5737 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5738 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
5739 else
5740 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5741 ToType, CandidateSet,
5742 /*AllowObjCConversionOnExplicit=*/false,
5743 /*AllowExplicit*/ true);
5744 }
5745}
5746
5747/// Attempt to convert the given expression to a type which is accepted
5748/// by the given converter.
5749///
5750/// This routine will attempt to convert an expression of class type to a
5751/// type accepted by the specified converter. In C++11 and before, the class
5752/// must have a single non-explicit conversion function converting to a matching
5753/// type. In C++1y, there can be multiple such conversion functions, but only
5754/// one target type.
5755///
5756/// \param Loc The source location of the construct that requires the
5757/// conversion.
5758///
5759/// \param From The expression we're converting from.
5760///
5761/// \param Converter Used to control and diagnose the conversion process.
5762///
5763/// \returns The expression, converted to an integral or enumeration type if
5764/// successful.
5765ExprResult Sema::PerformContextualImplicitConversion(
5766 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5767 // We can't perform any more checking for type-dependent expressions.
5768 if (From->isTypeDependent())
5769 return From;
5770
5771 // Process placeholders immediately.
5772 if (From->hasPlaceholderType()) {
5773 ExprResult result = CheckPlaceholderExpr(From);
5774 if (result.isInvalid())
5775 return result;
5776 From = result.get();
5777 }
5778
5779 // If the expression already has a matching type, we're golden.
5780 QualType T = From->getType();
5781 if (Converter.match(T))
5782 return DefaultLvalueConversion(From);
5783
5784 // FIXME: Check for missing '()' if T is a function type?
5785
5786 // We can only perform contextual implicit conversions on objects of class
5787 // type.
5788 const RecordType *RecordTy = T->getAs<RecordType>();
5789 if (!RecordTy || !getLangOpts().CPlusPlus) {
5790 if (!Converter.Suppress)
5791 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5792 return From;
5793 }
5794
5795 // We must have a complete class type.
5796 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5797 ContextualImplicitConverter &Converter;
5798 Expr *From;
5799
5800 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5801 : Converter(Converter), From(From) {}
5802
5803 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5804 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5805 }
5806 } IncompleteDiagnoser(Converter, From);
5807
5808 if (Converter.Suppress ? !isCompleteType(Loc, T)
5809 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5810 return From;
5811
5812 // Look for a conversion to an integral or enumeration type.
5813 UnresolvedSet<4>
5814 ViableConversions; // These are *potentially* viable in C++1y.
5815 UnresolvedSet<4> ExplicitConversions;
5816 const auto &Conversions =
5817 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5818
5819 bool HadMultipleCandidates =
5820 (std::distance(Conversions.begin(), Conversions.end()) > 1);
5821
5822 // To check that there is only one target type, in C++1y:
5823 QualType ToType;
5824 bool HasUniqueTargetType = true;
5825
5826 // Collect explicit or viable (potentially in C++1y) conversions.
5827 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5828 NamedDecl *D = (*I)->getUnderlyingDecl();
5829 CXXConversionDecl *Conversion;
5830 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5831 if (ConvTemplate) {
5832 if (getLangOpts().CPlusPlus14)
5833 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5834 else
5835 continue; // C++11 does not consider conversion operator templates(?).
5836 } else
5837 Conversion = cast<CXXConversionDecl>(D);
5838
5839 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5841, __PRETTY_FUNCTION__))
5840 "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5841, __PRETTY_FUNCTION__))
5841 "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 5841, __PRETTY_FUNCTION__))
;
5842
5843 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5844 if (Converter.match(CurToType) || ConvTemplate) {
5845
5846 if (Conversion->isExplicit()) {
5847 // FIXME: For C++1y, do we need this restriction?
5848 // cf. diagnoseNoViableConversion()
5849 if (!ConvTemplate)
5850 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5851 } else {
5852 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5853 if (ToType.isNull())
5854 ToType = CurToType.getUnqualifiedType();
5855 else if (HasUniqueTargetType &&
5856 (CurToType.getUnqualifiedType() != ToType))
5857 HasUniqueTargetType = false;
5858 }
5859 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5860 }
5861 }
5862 }
5863
5864 if (getLangOpts().CPlusPlus14) {
5865 // C++1y [conv]p6:
5866 // ... An expression e of class type E appearing in such a context
5867 // is said to be contextually implicitly converted to a specified
5868 // type T and is well-formed if and only if e can be implicitly
5869 // converted to a type T that is determined as follows: E is searched
5870 // for conversion functions whose return type is cv T or reference to
5871 // cv T such that T is allowed by the context. There shall be
5872 // exactly one such T.
5873
5874 // If no unique T is found:
5875 if (ToType.isNull()) {
5876 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5877 HadMultipleCandidates,
5878 ExplicitConversions))
5879 return ExprError();
5880 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5881 }
5882
5883 // If more than one unique Ts are found:
5884 if (!HasUniqueTargetType)
5885 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5886 ViableConversions);
5887
5888 // If one unique T is found:
5889 // First, build a candidate set from the previously recorded
5890 // potentially viable conversions.
5891 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5892 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5893 CandidateSet);
5894
5895 // Then, perform overload resolution over the candidate set.
5896 OverloadCandidateSet::iterator Best;
5897 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5898 case OR_Success: {
5899 // Apply this conversion.
5900 DeclAccessPair Found =
5901 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5902 if (recordConversion(*this, Loc, From, Converter, T,
5903 HadMultipleCandidates, Found))
5904 return ExprError();
5905 break;
5906 }
5907 case OR_Ambiguous:
5908 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5909 ViableConversions);
5910 case OR_No_Viable_Function:
5911 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5912 HadMultipleCandidates,
5913 ExplicitConversions))
5914 return ExprError();
5915 LLVM_FALLTHROUGH[[clang::fallthrough]];
5916 case OR_Deleted:
5917 // We'll complain below about a non-integral condition type.
5918 break;
5919 }
5920 } else {
5921 switch (ViableConversions.size()) {
5922 case 0: {
5923 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5924 HadMultipleCandidates,
5925 ExplicitConversions))
5926 return ExprError();
5927
5928 // We'll complain below about a non-integral condition type.
5929 break;
5930 }
5931 case 1: {
5932 // Apply this conversion.
5933 DeclAccessPair Found = ViableConversions[0];
5934 if (recordConversion(*this, Loc, From, Converter, T,
5935 HadMultipleCandidates, Found))
5936 return ExprError();
5937 break;
5938 }
5939 default:
5940 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5941 ViableConversions);
5942 }
5943 }
5944
5945 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5946}
5947
5948/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5949/// an acceptable non-member overloaded operator for a call whose
5950/// arguments have types T1 (and, if non-empty, T2). This routine
5951/// implements the check in C++ [over.match.oper]p3b2 concerning
5952/// enumeration types.
5953static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5954 FunctionDecl *Fn,
5955 ArrayRef<Expr *> Args) {
5956 QualType T1 = Args[0]->getType();
5957 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5958
5959 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5960 return true;
5961
5962 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5963 return true;
5964
5965 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5966 if (Proto->getNumParams() < 1)
5967 return false;
5968
5969 if (T1->isEnumeralType()) {
5970 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5971 if (Context.hasSameUnqualifiedType(T1, ArgType))
5972 return true;
5973 }
5974
5975 if (Proto->getNumParams() < 2)
5976 return false;
5977
5978 if (!T2.isNull() && T2->isEnumeralType()) {
5979 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5980 if (Context.hasSameUnqualifiedType(T2, ArgType))
5981 return true;
5982 }
5983
5984 return false;
5985}
5986
5987/// AddOverloadCandidate - Adds the given function to the set of
5988/// candidate functions, using the given function call arguments. If
5989/// @p SuppressUserConversions, then don't allow user-defined
5990/// conversions via constructors or conversion operators.
5991///
5992/// \param PartialOverloading true if we are performing "partial" overloading
5993/// based on an incomplete set of function arguments. This feature is used by
5994/// code completion.
5995void Sema::AddOverloadCandidate(
5996 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
5997 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
5998 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
5999 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions) {
6000 const FunctionProtoType *Proto
6001 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6002 assert(Proto && "Functions without a prototype cannot be overloaded")((Proto && "Functions without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Functions without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6002, __PRETTY_FUNCTION__))
;
6003 assert(!Function->getDescribedFunctionTemplate() &&((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6004, __PRETTY_FUNCTION__))
6004 "Use AddTemplateOverloadCandidate for function templates")((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6004, __PRETTY_FUNCTION__))
;
6005
6006 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6007 if (!isa<CXXConstructorDecl>(Method)) {
6008 // If we get here, it's because we're calling a member function
6009 // that is named without a member access expression (e.g.,
6010 // "this->f") that was either written explicitly or created
6011 // implicitly. This can happen with a qualified call to a member
6012 // function, e.g., X::f(). We use an empty type for the implied
6013 // object argument (C++ [over.call.func]p3), and the acting context
6014 // is irrelevant.
6015 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6016 Expr::Classification::makeSimpleLValue(), Args,
6017 CandidateSet, SuppressUserConversions,
6018 PartialOverloading, EarlyConversions);
6019 return;
6020 }
6021 // We treat a constructor like a non-member function, since its object
6022 // argument doesn't participate in overload resolution.
6023 }
6024
6025 if (!CandidateSet.isNewCandidate(Function))
6026 return;
6027
6028 // C++ [over.match.oper]p3:
6029 // if no operand has a class type, only those non-member functions in the
6030 // lookup set that have a first parameter of type T1 or "reference to
6031 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6032 // is a right operand) a second parameter of type T2 or "reference to
6033 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6034 // candidate functions.
6035 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6036 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6037 return;
6038
6039 // C++11 [class.copy]p11: [DR1402]
6040 // A defaulted move constructor that is defined as deleted is ignored by
6041 // overload resolution.
6042 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6043 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6044 Constructor->isMoveConstructor())
6045 return;
6046
6047 // Overload resolution is always an unevaluated context.
6048 EnterExpressionEvaluationContext Unevaluated(
6049 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6050
6051 // Add this candidate
6052 OverloadCandidate &Candidate =
6053 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6054 Candidate.FoundDecl = FoundDecl;
6055 Candidate.Function = Function;
6056 Candidate.Viable = true;
6057 Candidate.IsSurrogate = false;
6058 Candidate.IsADLCandidate = IsADLCandidate;
6059 Candidate.IgnoreObjectArgument = false;
6060 Candidate.ExplicitCallArguments = Args.size();
6061
6062 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6063 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6064 Candidate.Viable = false;
6065 Candidate.FailureKind = ovl_non_default_multiversion_function;
6066 return;
6067 }
6068
6069 if (Constructor) {
6070 // C++ [class.copy]p3:
6071 // A member function template is never instantiated to perform the copy
6072 // of a class object to an object of its class type.
6073 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6074 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6075 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6076 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6077 ClassType))) {
6078 Candidate.Viable = false;
6079 Candidate.FailureKind = ovl_fail_illegal_constructor;
6080 return;
6081 }
6082
6083 // C++ [over.match.funcs]p8: (proposed DR resolution)
6084 // A constructor inherited from class type C that has a first parameter
6085 // of type "reference to P" (including such a constructor instantiated
6086 // from a template) is excluded from the set of candidate functions when
6087 // constructing an object of type cv D if the argument list has exactly
6088 // one argument and D is reference-related to P and P is reference-related
6089 // to C.
6090 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6091 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6092 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6093 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6094 QualType C = Context.getRecordType(Constructor->getParent());
6095 QualType D = Context.getRecordType(Shadow->getParent());
6096 SourceLocation Loc = Args.front()->getExprLoc();
6097 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6098 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6099 Candidate.Viable = false;
6100 Candidate.FailureKind = ovl_fail_inhctor_slice;
6101 return;
6102 }
6103 }
6104 }
6105
6106 unsigned NumParams = Proto->getNumParams();
6107
6108 // (C++ 13.3.2p2): A candidate function having fewer than m
6109 // parameters is viable only if it has an ellipsis in its parameter
6110 // list (8.3.5).
6111 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6112 !Proto->isVariadic()) {
6113 Candidate.Viable = false;
6114 Candidate.FailureKind = ovl_fail_too_many_arguments;
6115 return;
6116 }
6117
6118 // (C++ 13.3.2p2): A candidate function having more than m parameters
6119 // is viable only if the (m+1)st parameter has a default argument
6120 // (8.3.6). For the purposes of overload resolution, the
6121 // parameter list is truncated on the right, so that there are
6122 // exactly m parameters.
6123 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6124 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6125 // Not enough arguments.
6126 Candidate.Viable = false;
6127 Candidate.FailureKind = ovl_fail_too_few_arguments;
6128 return;
6129 }
6130
6131 // (CUDA B.1): Check for invalid calls between targets.
6132 if (getLangOpts().CUDA)
6133 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6134 // Skip the check for callers that are implicit members, because in this
6135 // case we may not yet know what the member's target is; the target is
6136 // inferred for the member automatically, based on the bases and fields of
6137 // the class.
6138 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6139 Candidate.Viable = false;
6140 Candidate.FailureKind = ovl_fail_bad_target;
6141 return;
6142 }
6143
6144 // Determine the implicit conversion sequences for each of the
6145 // arguments.
6146 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6147 if (Candidate.Conversions[ArgIdx].isInitialized()) {
6148 // We already formed a conversion sequence for this parameter during
6149 // template argument deduction.
6150 } else if (ArgIdx < NumParams) {
6151 // (C++ 13.3.2p3): for F to be a viable function, there shall
6152 // exist for each argument an implicit conversion sequence
6153 // (13.3.3.1) that converts that argument to the corresponding
6154 // parameter of F.
6155 QualType ParamType = Proto->getParamType(ArgIdx);
6156 Candidate.Conversions[ArgIdx] = TryCopyInitialization(
6157 *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6158 /*InOverloadResolution=*/true,
6159 /*AllowObjCWritebackConversion=*/
6160 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6161 if (Candidate.Conversions[ArgIdx].isBad()) {
6162 Candidate.Viable = false;
6163 Candidate.FailureKind = ovl_fail_bad_conversion;
6164 return;
6165 }
6166 } else {
6167 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6168 // argument for which there is no corresponding parameter is
6169 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6170 Candidate.Conversions[ArgIdx].setEllipsis();
6171 }
6172 }
6173
6174 if (!AllowExplicit) {
6175 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function);
6176 if (ES.getKind() != ExplicitSpecKind::ResolvedFalse) {
6177 Candidate.Viable = false;
6178 Candidate.FailureKind = ovl_fail_explicit_resolved;
6179 return;
6180 }
6181 }
6182
6183 if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6184 Candidate.Viable = false;
6185 Candidate.FailureKind = ovl_fail_enable_if;
6186 Candidate.DeductionFailure.Data = FailedAttr;
6187 return;
6188 }
6189
6190 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6191 Candidate.Viable = false;
6192 Candidate.FailureKind = ovl_fail_ext_disabled;
6193 return;
6194 }
6195}
6196
6197ObjCMethodDecl *
6198Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6199 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6200 if (Methods.size() <= 1)
6201 return nullptr;
6202
6203 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6204 bool Match = true;
6205 ObjCMethodDecl *Method = Methods[b];
6206 unsigned NumNamedArgs = Sel.getNumArgs();
6207 // Method might have more arguments than selector indicates. This is due
6208 // to addition of c-style arguments in method.
6209 if (Method->param_size() > NumNamedArgs)
6210 NumNamedArgs = Method->param_size();
6211 if (Args.size() < NumNamedArgs)
6212 continue;
6213
6214 for (unsigned i = 0; i < NumNamedArgs; i++) {
6215 // We can't do any type-checking on a type-dependent argument.
6216 if (Args[i]->isTypeDependent()) {
6217 Match = false;
6218 break;
6219 }
6220
6221 ParmVarDecl *param = Method->parameters()[i];
6222 Expr *argExpr = Args[i];
6223 assert(argExpr && "SelectBestMethod(): missing expression")((argExpr && "SelectBestMethod(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"SelectBestMethod(): missing expression\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6223, __PRETTY_FUNCTION__))
;
6224
6225 // Strip the unbridged-cast placeholder expression off unless it's
6226 // a consumed argument.
6227 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6228 !param->hasAttr<CFConsumedAttr>())
6229 argExpr = stripARCUnbridgedCast(argExpr);
6230
6231 // If the parameter is __unknown_anytype, move on to the next method.
6232 if (param->getType() == Context.UnknownAnyTy) {
6233 Match = false;
6234 break;
6235 }
6236
6237 ImplicitConversionSequence ConversionState
6238 = TryCopyInitialization(*this, argExpr, param->getType(),
6239 /*SuppressUserConversions*/false,
6240 /*InOverloadResolution=*/true,
6241 /*AllowObjCWritebackConversion=*/
6242 getLangOpts().ObjCAutoRefCount,
6243 /*AllowExplicit*/false);
6244 // This function looks for a reasonably-exact match, so we consider
6245 // incompatible pointer conversions to be a failure here.
6246 if (ConversionState.isBad() ||
6247 (ConversionState.isStandard() &&
6248 ConversionState.Standard.Second ==
6249 ICK_Incompatible_Pointer_Conversion)) {
6250 Match = false;
6251 break;
6252 }
6253 }
6254 // Promote additional arguments to variadic methods.
6255 if (Match && Method->isVariadic()) {
6256 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6257 if (Args[i]->isTypeDependent()) {
6258 Match = false;
6259 break;
6260 }
6261 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6262 nullptr);
6263 if (Arg.isInvalid()) {
6264 Match = false;
6265 break;
6266 }
6267 }
6268 } else {
6269 // Check for extra arguments to non-variadic methods.
6270 if (Args.size() != NumNamedArgs)
6271 Match = false;
6272 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6273 // Special case when selectors have no argument. In this case, select
6274 // one with the most general result type of 'id'.
6275 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6276 QualType ReturnT = Methods[b]->getReturnType();
6277 if (ReturnT->isObjCIdType())
6278 return Methods[b];
6279 }
6280 }
6281 }
6282
6283 if (Match)
6284 return Method;
6285 }
6286 return nullptr;
6287}
6288
6289static bool
6290convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6291 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6292 bool MissingImplicitThis, Expr *&ConvertedThis,
6293 SmallVectorImpl<Expr *> &ConvertedArgs) {
6294 if (ThisArg) {
6295 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6296 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6297, __PRETTY_FUNCTION__))
6297 "Shouldn't have `this` for ctors!")((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6297, __PRETTY_FUNCTION__))
;
6298 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((!Method->isStatic() && "Shouldn't have `this` for static methods!"
) ? static_cast<void> (0) : __assert_fail ("!Method->isStatic() && \"Shouldn't have `this` for static methods!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6298, __PRETTY_FUNCTION__))
;
6299 ExprResult R = S.PerformObjectArgumentInitialization(
6300 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6301 if (R.isInvalid())
6302 return false;
6303 ConvertedThis = R.get();
6304 } else {
6305 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6306 (void)MD;
6307 assert((MissingImplicitThis || MD->isStatic() ||(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6309, __PRETTY_FUNCTION__))
6308 isa<CXXConstructorDecl>(MD)) &&(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6309, __PRETTY_FUNCTION__))
6309 "Expected `this` for non-ctor instance methods")(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6309, __PRETTY_FUNCTION__))
;
6310 }
6311 ConvertedThis = nullptr;
6312 }
6313
6314 // Ignore any variadic arguments. Converting them is pointless, since the
6315 // user can't refer to them in the function condition.
6316 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6317
6318 // Convert the arguments.
6319 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6320 ExprResult R;
6321 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6322 S.Context, Function->getParamDecl(I)),
6323 SourceLocation(), Args[I]);
6324
6325 if (R.isInvalid())
6326 return false;
6327
6328 ConvertedArgs.push_back(R.get());
6329 }
6330
6331 if (Trap.hasErrorOccurred())
6332 return false;
6333
6334 // Push default arguments if needed.
6335 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6336 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6337 ParmVarDecl *P = Function->getParamDecl(i);
6338 Expr *DefArg = P->hasUninstantiatedDefaultArg()
6339 ? P->getUninstantiatedDefaultArg()
6340 : P->getDefaultArg();
6341 // This can only happen in code completion, i.e. when PartialOverloading
6342 // is true.
6343 if (!DefArg)
6344 return false;
6345 ExprResult R =
6346 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6347 S.Context, Function->getParamDecl(i)),
6348 SourceLocation(), DefArg);
6349 if (R.isInvalid())
6350 return false;
6351 ConvertedArgs.push_back(R.get());
6352 }
6353
6354 if (Trap.hasErrorOccurred())
6355 return false;
6356 }
6357 return true;
6358}
6359
6360EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6361 bool MissingImplicitThis) {
6362 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6363 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6364 return nullptr;
6365
6366 SFINAETrap Trap(*this);
6367 SmallVector<Expr *, 16> ConvertedArgs;
6368 // FIXME: We should look into making enable_if late-parsed.
6369 Expr *DiscardedThis;
6370 if (!convertArgsForAvailabilityChecks(
6371 *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6372 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6373 return *EnableIfAttrs.begin();
6374
6375 for (auto *EIA : EnableIfAttrs) {
6376 APValue Result;
6377 // FIXME: This doesn't consider value-dependent cases, because doing so is
6378 // very difficult. Ideally, we should handle them more gracefully.
6379 if (!EIA->getCond()->EvaluateWithSubstitution(
6380 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6381 return EIA;
6382
6383 if (!Result.isInt() || !Result.getInt().getBoolValue())
6384 return EIA;
6385 }
6386 return nullptr;
6387}
6388
6389template <typename CheckFn>
6390static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6391 bool ArgDependent, SourceLocation Loc,
6392 CheckFn &&IsSuccessful) {
6393 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6394 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6395 if (ArgDependent == DIA->getArgDependent())
6396 Attrs.push_back(DIA);
6397 }
6398
6399 // Common case: No diagnose_if attributes, so we can quit early.
6400 if (Attrs.empty())
6401 return false;
6402
6403 auto WarningBegin = std::stable_partition(
6404 Attrs.begin(), Attrs.end(),
6405 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6406
6407 // Note that diagnose_if attributes are late-parsed, so they appear in the
6408 // correct order (unlike enable_if attributes).
6409 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6410 IsSuccessful);
6411 if (ErrAttr != WarningBegin) {
6412 const DiagnoseIfAttr *DIA = *ErrAttr;
6413 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6414 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6415 << DIA->getParent() << DIA->getCond()->getSourceRange();
6416 return true;
6417 }
6418
6419 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6420 if (IsSuccessful(DIA)) {
6421 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6422 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6423 << DIA->getParent() << DIA->getCond()->getSourceRange();
6424 }
6425
6426 return false;
6427}
6428
6429bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6430 const Expr *ThisArg,
6431 ArrayRef<const Expr *> Args,
6432 SourceLocation Loc) {
6433 return diagnoseDiagnoseIfAttrsWith(
6434 *this, Function, /*ArgDependent=*/true, Loc,
6435 [&](const DiagnoseIfAttr *DIA) {
6436 APValue Result;
6437 // It's sane to use the same Args for any redecl of this function, since
6438 // EvaluateWithSubstitution only cares about the position of each
6439 // argument in the arg list, not the ParmVarDecl* it maps to.
6440 if (!DIA->getCond()->EvaluateWithSubstitution(
6441 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6442 return false;
6443 return Result.isInt() && Result.getInt().getBoolValue();
6444 });
6445}
6446
6447bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6448 SourceLocation Loc) {
6449 return diagnoseDiagnoseIfAttrsWith(
6450 *this, ND, /*ArgDependent=*/false, Loc,
6451 [&](const DiagnoseIfAttr *DIA) {
6452 bool Result;
6453 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6454 Result;
6455 });
6456}
6457
6458/// Add all of the function declarations in the given function set to
6459/// the overload candidate set.
6460void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6461 ArrayRef<Expr *> Args,
6462 OverloadCandidateSet &CandidateSet,
6463 TemplateArgumentListInfo *ExplicitTemplateArgs,
6464 bool SuppressUserConversions,
6465 bool PartialOverloading,
6466 bool FirstArgumentIsBase) {
6467 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6468 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6469 ArrayRef<Expr *> FunctionArgs = Args;
6470
6471 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6472 FunctionDecl *FD =
6473 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6474
6475 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6476 QualType ObjectType;
6477 Expr::Classification ObjectClassification;
6478 if (Args.size() > 0) {
6479 if (Expr *E = Args[0]) {
6480 // Use the explicit base to restrict the lookup:
6481 ObjectType = E->getType();
6482 // Pointers in the object arguments are implicitly dereferenced, so we
6483 // always classify them as l-values.
6484 if (!ObjectType.isNull() && ObjectType->isPointerType())
6485 ObjectClassification = Expr::Classification::makeSimpleLValue();
6486 else
6487 ObjectClassification = E->Classify(Context);
6488 } // .. else there is an implicit base.
6489 FunctionArgs = Args.slice(1);
6490 }
6491 if (FunTmpl) {
6492 AddMethodTemplateCandidate(
6493 FunTmpl, F.getPair(),
6494 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6495 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6496 FunctionArgs, CandidateSet, SuppressUserConversions,
6497 PartialOverloading);
6498 } else {
6499 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6500 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6501 ObjectClassification, FunctionArgs, CandidateSet,
6502 SuppressUserConversions, PartialOverloading);
6503 }
6504 } else {
6505 // This branch handles both standalone functions and static methods.
6506
6507 // Slice the first argument (which is the base) when we access
6508 // static method as non-static.
6509 if (Args.size() > 0 &&
6510 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6511 !isa<CXXConstructorDecl>(FD)))) {
6512 assert(cast<CXXMethodDecl>(FD)->isStatic())((cast<CXXMethodDecl>(FD)->isStatic()) ? static_cast
<void> (0) : __assert_fail ("cast<CXXMethodDecl>(FD)->isStatic()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6512, __PRETTY_FUNCTION__))
;
6513 FunctionArgs = Args.slice(1);
6514 }
6515 if (FunTmpl) {
6516 AddTemplateOverloadCandidate(
6517 FunTmpl, F.getPair(), ExplicitTemplateArgs, FunctionArgs,
6518 CandidateSet, SuppressUserConversions, PartialOverloading);
6519 } else {
6520 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6521 SuppressUserConversions, PartialOverloading);
6522 }
6523 }
6524 }
6525}
6526
6527/// AddMethodCandidate - Adds a named decl (which is some kind of
6528/// method) as a method candidate to the given overload set.
6529void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6530 QualType ObjectType,
6531 Expr::Classification ObjectClassification,
6532 ArrayRef<Expr *> Args,
6533 OverloadCandidateSet& CandidateSet,
6534 bool SuppressUserConversions) {
6535 NamedDecl *Decl = FoundDecl.getDecl();
6536 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6537
6538 if (isa<UsingShadowDecl>(Decl))
6539 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6540
6541 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6542 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6543, __PRETTY_FUNCTION__))
6543 "Expected a member function template")((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6543, __PRETTY_FUNCTION__))
;
6544 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6545 /*ExplicitArgs*/ nullptr, ObjectType,
6546 ObjectClassification, Args, CandidateSet,
6547 SuppressUserConversions);
6548 } else {
6549 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6550 ObjectType, ObjectClassification, Args, CandidateSet,
6551 SuppressUserConversions);
6552 }
6553}
6554
6555/// AddMethodCandidate - Adds the given C++ member function to the set
6556/// of candidate functions, using the given function call arguments
6557/// and the object argument (@c Object). For example, in a call
6558/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6559/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6560/// allow user-defined conversions via constructors or conversion
6561/// operators.
6562void
6563Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6564 CXXRecordDecl *ActingContext, QualType ObjectType,
6565 Expr::Classification ObjectClassification,
6566 ArrayRef<Expr *> Args,
6567 OverloadCandidateSet &CandidateSet,
6568 bool SuppressUserConversions,
6569 bool PartialOverloading,
6570 ConversionSequenceList EarlyConversions) {
6571 const FunctionProtoType *Proto
6572 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6573 assert(Proto && "Methods without a prototype cannot be overloaded")((Proto && "Methods without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Methods without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6573, __PRETTY_FUNCTION__))
;
6574 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6575, __PRETTY_FUNCTION__))
6575 "Use AddOverloadCandidate for constructors")((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6575, __PRETTY_FUNCTION__))
;
6576
6577 if (!CandidateSet.isNewCandidate(Method))
6578 return;
6579
6580 // C++11 [class.copy]p23: [DR1402]
6581 // A defaulted move assignment operator that is defined as deleted is
6582 // ignored by overload resolution.
6583 if (Method->isDefaulted() && Method->isDeleted() &&
6584 Method->isMoveAssignmentOperator())
6585 return;
6586
6587 // Overload resolution is always an unevaluated context.
6588 EnterExpressionEvaluationContext Unevaluated(
6589 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6590
6591 // Add this candidate
6592 OverloadCandidate &Candidate =
6593 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6594 Candidate.FoundDecl = FoundDecl;
6595 Candidate.Function = Method;
6596 Candidate.IsSurrogate = false;
6597 Candidate.IgnoreObjectArgument = false;
6598 Candidate.ExplicitCallArguments = Args.size();
6599
6600 unsigned NumParams = Proto->getNumParams();
6601
6602 // (C++ 13.3.2p2): A candidate function having fewer than m
6603 // parameters is viable only if it has an ellipsis in its parameter
6604 // list (8.3.5).
6605 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6606 !Proto->isVariadic()) {
6607 Candidate.Viable = false;
6608 Candidate.FailureKind = ovl_fail_too_many_arguments;
6609 return;
6610 }
6611
6612 // (C++ 13.3.2p2): A candidate function having more than m parameters
6613 // is viable only if the (m+1)st parameter has a default argument
6614 // (8.3.6). For the purposes of overload resolution, the
6615 // parameter list is truncated on the right, so that there are
6616 // exactly m parameters.
6617 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6618 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6619 // Not enough arguments.
6620 Candidate.Viable = false;
6621 Candidate.FailureKind = ovl_fail_too_few_arguments;
6622 return;
6623 }
6624
6625 Candidate.Viable = true;
6626
6627 if (Method->isStatic() || ObjectType.isNull())
6628 // The implicit object argument is ignored.
6629 Candidate.IgnoreObjectArgument = true;
6630 else {
6631 // Determine the implicit conversion sequence for the object
6632 // parameter.
6633 Candidate.Conversions[0] = TryObjectArgumentInitialization(
6634 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6635 Method, ActingContext);
6636 if (Candidate.Conversions[0].isBad()) {
6637 Candidate.Viable = false;
6638 Candidate.FailureKind = ovl_fail_bad_conversion;
6639 return;
6640 }
6641 }
6642
6643 // (CUDA B.1): Check for invalid calls between targets.
6644 if (getLangOpts().CUDA)
6645 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6646 if (!IsAllowedCUDACall(Caller, Method)) {
6647 Candidate.Viable = false;
6648 Candidate.FailureKind = ovl_fail_bad_target;
6649 return;
6650 }
6651
6652 // Determine the implicit conversion sequences for each of the
6653 // arguments.
6654 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6655 if (Candidate.Conversions[ArgIdx + 1].isInitialized()) {
6656 // We already formed a conversion sequence for this parameter during
6657 // template argument deduction.
6658 } else if (ArgIdx < NumParams) {
6659 // (C++ 13.3.2p3): for F to be a viable function, there shall
6660 // exist for each argument an implicit conversion sequence
6661 // (13.3.3.1) that converts that argument to the corresponding
6662 // parameter of F.
6663 QualType ParamType = Proto->getParamType(ArgIdx);
6664 Candidate.Conversions[ArgIdx + 1]
6665 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6666 SuppressUserConversions,
6667 /*InOverloadResolution=*/true,
6668 /*AllowObjCWritebackConversion=*/
6669 getLangOpts().ObjCAutoRefCount);
6670 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6671 Candidate.Viable = false;
6672 Candidate.FailureKind = ovl_fail_bad_conversion;
6673 return;
6674 }
6675 } else {
6676 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6677 // argument for which there is no corresponding parameter is
6678 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6679 Candidate.Conversions[ArgIdx + 1].setEllipsis();
6680 }
6681 }
6682
6683 if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6684 Candidate.Viable = false;
6685 Candidate.FailureKind = ovl_fail_enable_if;
6686 Candidate.DeductionFailure.Data = FailedAttr;
6687 return;
6688 }
6689
6690 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6691 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6692 Candidate.Viable = false;
6693 Candidate.FailureKind = ovl_non_default_multiversion_function;
6694 }
6695}
6696
6697/// Add a C++ member function template as a candidate to the candidate
6698/// set, using template argument deduction to produce an appropriate member
6699/// function template specialization.
6700void
6701Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6702 DeclAccessPair FoundDecl,
6703 CXXRecordDecl *ActingContext,
6704 TemplateArgumentListInfo *ExplicitTemplateArgs,
6705 QualType ObjectType,
6706 Expr::Classification ObjectClassification,
6707 ArrayRef<Expr *> Args,
6708 OverloadCandidateSet& CandidateSet,
6709 bool SuppressUserConversions,
6710 bool PartialOverloading) {
6711 if (!CandidateSet.isNewCandidate(MethodTmpl))
6712 return;
6713
6714 // C++ [over.match.funcs]p7:
6715 // In each case where a candidate is a function template, candidate
6716 // function template specializations are generated using template argument
6717 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6718 // candidate functions in the usual way.113) A given name can refer to one
6719 // or more function templates and also to a set of overloaded non-template
6720 // functions. In such a case, the candidate functions generated from each
6721 // function template are combined with the set of non-template candidate
6722 // functions.
6723 TemplateDeductionInfo Info(CandidateSet.getLocation());
6724 FunctionDecl *Specialization = nullptr;
6725 ConversionSequenceList Conversions;
6726 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6727 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6728 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6729 return CheckNonDependentConversions(
6730 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6731 SuppressUserConversions, ActingContext, ObjectType,
6732 ObjectClassification);
6733 })) {
6734 OverloadCandidate &Candidate =
6735 CandidateSet.addCandidate(Conversions.size(), Conversions);
6736 Candidate.FoundDecl = FoundDecl;
6737 Candidate.Function = MethodTmpl->getTemplatedDecl();
6738 Candidate.Viable = false;
6739 Candidate.IsSurrogate = false;
6740 Candidate.IgnoreObjectArgument =
6741 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6742 ObjectType.isNull();
6743 Candidate.ExplicitCallArguments = Args.size();
6744 if (Result == TDK_NonDependentConversionFailure)
6745 Candidate.FailureKind = ovl_fail_bad_conversion;
6746 else {
6747 Candidate.FailureKind = ovl_fail_bad_deduction;
6748 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6749 Info);
6750 }
6751 return;
6752 }
6753
6754 // Add the function template specialization produced by template argument
6755 // deduction as a candidate.
6756 assert(Specialization && "Missing member function template specialization?")((Specialization && "Missing member function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing member function template specialization?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6756, __PRETTY_FUNCTION__))
;
6757 assert(isa<CXXMethodDecl>(Specialization) &&((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6758, __PRETTY_FUNCTION__))
6758 "Specialization is not a member function?")((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6758, __PRETTY_FUNCTION__))
;
6759 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6760 ActingContext, ObjectType, ObjectClassification, Args,
6761 CandidateSet, SuppressUserConversions, PartialOverloading,
6762 Conversions);
6763}
6764
6765/// Add a C++ function template specialization as a candidate
6766/// in the candidate set, using template argument deduction to produce
6767/// an appropriate function template specialization.
6768void Sema::AddTemplateOverloadCandidate(
6769 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
6770 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
6771 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6772 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate) {
6773 if (!CandidateSet.isNewCandidate(FunctionTemplate))
6774 return;
6775
6776 // C++ [over.match.funcs]p7:
6777 // In each case where a candidate is a function template, candidate
6778 // function template specializations are generated using template argument
6779 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6780 // candidate functions in the usual way.113) A given name can refer to one
6781 // or more function templates and also to a set of overloaded non-template
6782 // functions. In such a case, the candidate functions generated from each
6783 // function template are combined with the set of non-template candidate
6784 // functions.
6785 TemplateDeductionInfo Info(CandidateSet.getLocation());
6786 FunctionDecl *Specialization = nullptr;
6787 ConversionSequenceList Conversions;
6788 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6789 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6790 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6791 return CheckNonDependentConversions(FunctionTemplate, ParamTypes,
6792 Args, CandidateSet, Conversions,
6793 SuppressUserConversions);
6794 })) {
6795 OverloadCandidate &Candidate =
6796 CandidateSet.addCandidate(Conversions.size(), Conversions);
6797 Candidate.FoundDecl = FoundDecl;
6798 Candidate.Function = FunctionTemplate->getTemplatedDecl();
6799 Candidate.Viable = false;
6800 Candidate.IsSurrogate = false;
6801 Candidate.IsADLCandidate = IsADLCandidate;
6802 // Ignore the object argument if there is one, since we don't have an object
6803 // type.
6804 Candidate.IgnoreObjectArgument =
6805 isa<CXXMethodDecl>(Candidate.Function) &&
6806 !isa<CXXConstructorDecl>(Candidate.Function);
6807 Candidate.ExplicitCallArguments = Args.size();
6808 if (Result == TDK_NonDependentConversionFailure)
6809 Candidate.FailureKind = ovl_fail_bad_conversion;
6810 else {
6811 Candidate.FailureKind = ovl_fail_bad_deduction;
6812 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6813 Info);
6814 }
6815 return;
6816 }
6817
6818 // Add the function template specialization produced by template argument
6819 // deduction as a candidate.
6820 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6820, __PRETTY_FUNCTION__))
;
6821 AddOverloadCandidate(
6822 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
6823 PartialOverloading, AllowExplicit,
6824 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions);
6825}
6826
6827/// Check that implicit conversion sequences can be formed for each argument
6828/// whose corresponding parameter has a non-dependent type, per DR1391's
6829/// [temp.deduct.call]p10.
6830bool Sema::CheckNonDependentConversions(
6831 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6832 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6833 ConversionSequenceList &Conversions, bool SuppressUserConversions,
6834 CXXRecordDecl *ActingContext, QualType ObjectType,
6835 Expr::Classification ObjectClassification) {
6836 // FIXME: The cases in which we allow explicit conversions for constructor
6837 // arguments never consider calling a constructor template. It's not clear
6838 // that is correct.
6839 const bool AllowExplicit = false;
6840
6841 auto *FD = FunctionTemplate->getTemplatedDecl();
6842 auto *Method = dyn_cast<CXXMethodDecl>(FD);
6843 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6844 unsigned ThisConversions = HasThisConversion ? 1 : 0;
6845
6846 Conversions =
6847 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6848
6849 // Overload resolution is always an unevaluated context.
6850 EnterExpressionEvaluationContext Unevaluated(
6851 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6852
6853 // For a method call, check the 'this' conversion here too. DR1391 doesn't
6854 // require that, but this check should never result in a hard error, and
6855 // overload resolution is permitted to sidestep instantiations.
6856 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6857 !ObjectType.isNull()) {
6858 Conversions[0] = TryObjectArgumentInitialization(
6859 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6860 Method, ActingContext);
6861 if (Conversions[0].isBad())
6862 return true;
6863 }
6864
6865 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6866 ++I) {
6867 QualType ParamType = ParamTypes[I];
6868 if (!ParamType->isDependentType()) {
6869 Conversions[ThisConversions + I]
6870 = TryCopyInitialization(*this, Args[I], ParamType,
6871 SuppressUserConversions,
6872 /*InOverloadResolution=*/true,
6873 /*AllowObjCWritebackConversion=*/
6874 getLangOpts().ObjCAutoRefCount,
6875 AllowExplicit);
6876 if (Conversions[ThisConversions + I].isBad())
6877 return true;
6878 }
6879 }
6880
6881 return false;
6882}
6883
6884/// Determine whether this is an allowable conversion from the result
6885/// of an explicit conversion operator to the expected type, per C++
6886/// [over.match.conv]p1 and [over.match.ref]p1.
6887///
6888/// \param ConvType The return type of the conversion function.
6889///
6890/// \param ToType The type we are converting to.
6891///
6892/// \param AllowObjCPointerConversion Allow a conversion from one
6893/// Objective-C pointer to another.
6894///
6895/// \returns true if the conversion is allowable, false otherwise.
6896static bool isAllowableExplicitConversion(Sema &S,
6897 QualType ConvType, QualType ToType,
6898 bool AllowObjCPointerConversion) {
6899 QualType ToNonRefType = ToType.getNonReferenceType();
6900
6901 // Easy case: the types are the same.
6902 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6903 return true;
6904
6905 // Allow qualification conversions.
6906 bool ObjCLifetimeConversion;
6907 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6908 ObjCLifetimeConversion))
6909 return true;
6910
6911 // If we're not allowed to consider Objective-C pointer conversions,
6912 // we're done.
6913 if (!AllowObjCPointerConversion)
6914 return false;
6915
6916 // Is this an Objective-C pointer conversion?
6917 bool IncompatibleObjC = false;
6918 QualType ConvertedType;
6919 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6920 IncompatibleObjC);
6921}
6922
6923/// AddConversionCandidate - Add a C++ conversion function as a
6924/// candidate in the candidate set (C++ [over.match.conv],
6925/// C++ [over.match.copy]). From is the expression we're converting from,
6926/// and ToType is the type that we're eventually trying to convert to
6927/// (which may or may not be the same type as the type that the
6928/// conversion function produces).
6929void Sema::AddConversionCandidate(
6930 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
6931 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
6932 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
6933 bool AllowExplicit, bool AllowResultConversion) {
6934 assert(!Conversion->getDescribedFunctionTemplate() &&((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6935, __PRETTY_FUNCTION__))
6935 "Conversion function templates use AddTemplateConversionCandidate")((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 6935, __PRETTY_FUNCTION__))
;
6936 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6937 if (!CandidateSet.isNewCandidate(Conversion))
6938 return;
6939
6940 // If the conversion function has an undeduced return type, trigger its
6941 // deduction now.
6942 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6943 if (DeduceReturnType(Conversion, From->getExprLoc()))
6944 return;
6945 ConvType = Conversion->getConversionType().getNonReferenceType();
6946 }
6947
6948 // If we don't allow any conversion of the result type, ignore conversion
6949 // functions that don't convert to exactly (possibly cv-qualified) T.
6950 if (!AllowResultConversion &&
6951 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
6952 return;
6953
6954 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6955 // operator is only a candidate if its return type is the target type or
6956 // can be converted to the target type with a qualification conversion.
6957 if (Conversion->isExplicit() &&
6958 !isAllowableExplicitConversion(*this, ConvType, ToType,
6959 AllowObjCConversionOnExplicit))
6960 return;
6961
6962 // Overload resolution is always an unevaluated context.
6963 EnterExpressionEvaluationContext Unevaluated(
6964 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6965
6966 // Add this candidate
6967 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6968 Candidate.FoundDecl = FoundDecl;
6969 Candidate.Function = Conversion;
6970 Candidate.IsSurrogate = false;
6971 Candidate.IgnoreObjectArgument = false;
6972 Candidate.FinalConversion.setAsIdentityConversion();
6973 Candidate.FinalConversion.setFromType(ConvType);
6974 Candidate.FinalConversion.setAllToTypes(ToType);
6975 Candidate.Viable = true;
6976 Candidate.ExplicitCallArguments = 1;
6977
6978 // C++ [over.match.funcs]p4:
6979 // For conversion functions, the function is considered to be a member of
6980 // the class of the implicit implied object argument for the purpose of
6981 // defining the type of the implicit object parameter.
6982 //
6983 // Determine the implicit conversion sequence for the implicit
6984 // object parameter.
6985 QualType ImplicitParamType = From->getType();
6986 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6987 ImplicitParamType = FromPtrType->getPointeeType();
6988 CXXRecordDecl *ConversionContext
6989 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6990
6991 Candidate.Conversions[0] = TryObjectArgumentInitialization(
6992 *this, CandidateSet.getLocation(), From->getType(),
6993 From->Classify(Context), Conversion, ConversionContext);
6994
6995 if (Candidate.Conversions[0].isBad()) {
6996 Candidate.Viable = false;
6997 Candidate.FailureKind = ovl_fail_bad_conversion;
6998 return;
6999 }
7000
7001 // We won't go through a user-defined type conversion function to convert a
7002 // derived to base as such conversions are given Conversion Rank. They only
7003 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7004 QualType FromCanon
7005 = Context.getCanonicalType(From->getType().getUnqualifiedType());
7006 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7007 if (FromCanon == ToCanon ||
7008 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7009 Candidate.Viable = false;
7010 Candidate.FailureKind = ovl_fail_trivial_conversion;
7011 return;
7012 }
7013
7014 // To determine what the conversion from the result of calling the
7015 // conversion function to the type we're eventually trying to
7016 // convert to (ToType), we need to synthesize a call to the
7017 // conversion function and attempt copy initialization from it. This
7018 // makes sure that we get the right semantics with respect to
7019 // lvalues/rvalues and the type. Fortunately, we can allocate this
7020 // call on the stack and we don't need its arguments to be
7021 // well-formed.
7022 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7023 VK_LValue, From->getBeginLoc());
7024 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7025 Context.getPointerType(Conversion->getType()),
7026 CK_FunctionToPointerDecay,
7027 &ConversionRef, VK_RValue);
7028
7029 QualType ConversionType = Conversion->getConversionType();
7030 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7031 Candidate.Viable = false;
7032 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7033 return;
7034 }
7035
7036 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7037
7038 // Note that it is safe to allocate CallExpr on the stack here because
7039 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7040 // allocator).
7041 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7042
7043 llvm::AlignedCharArray<alignof(CallExpr), sizeof(CallExpr) + sizeof(Stmt *)>
7044 Buffer;
7045 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7046 Buffer.buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7047
7048 ImplicitConversionSequence ICS =
7049 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7050 /*SuppressUserConversions=*/true,
7051 /*InOverloadResolution=*/false,
7052 /*AllowObjCWritebackConversion=*/false);
7053
7054 switch (ICS.getKind()) {
7055 case ImplicitConversionSequence::StandardConversion:
7056 Candidate.FinalConversion = ICS.Standard;
7057
7058 // C++ [over.ics.user]p3:
7059 // If the user-defined conversion is specified by a specialization of a
7060 // conversion function template, the second standard conversion sequence
7061 // shall have exact match rank.
7062 if (Conversion->getPrimaryTemplate() &&
7063 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7064 Candidate.Viable = false;
7065 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7066 return;
7067 }
7068
7069 // C++0x [dcl.init.ref]p5:
7070 // In the second case, if the reference is an rvalue reference and
7071 // the second standard conversion sequence of the user-defined
7072 // conversion sequence includes an lvalue-to-rvalue conversion, the
7073 // program is ill-formed.
7074 if (ToType->isRValueReferenceType() &&
7075 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7076 Candidate.Viable = false;
7077 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7078 return;
7079 }
7080 break;
7081
7082 case ImplicitConversionSequence::BadConversion:
7083 Candidate.Viable = false;
7084 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7085 return;
7086
7087 default:
7088 llvm_unreachable(::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7089)
7089 "Can only end up with a standard conversion sequence or failure")::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7089)
;
7090 }
7091
7092 if (!AllowExplicit && Conversion->getExplicitSpecifier().getKind() !=
7093 ExplicitSpecKind::ResolvedFalse) {
7094 Candidate.Viable = false;
7095 Candidate.FailureKind = ovl_fail_explicit_resolved;
7096 return;
7097 }
7098
7099 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7100 Candidate.Viable = false;
7101 Candidate.FailureKind = ovl_fail_enable_if;
7102 Candidate.DeductionFailure.Data = FailedAttr;
7103 return;
7104 }
7105
7106 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7107 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7108 Candidate.Viable = false;
7109 Candidate.FailureKind = ovl_non_default_multiversion_function;
7110 }
7111}
7112
7113/// Adds a conversion function template specialization
7114/// candidate to the overload set, using template argument deduction
7115/// to deduce the template arguments of the conversion function
7116/// template from the type that we are converting to (C++
7117/// [temp.deduct.conv]).
7118void Sema::AddTemplateConversionCandidate(
7119 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7120 CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7121 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7122 bool AllowExplicit, bool AllowResultConversion) {
7123 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7124, __PRETTY_FUNCTION__))
7124 "Only conversion function templates permitted here")((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7124, __PRETTY_FUNCTION__))
;
7125
7126 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7127 return;
7128
7129 TemplateDeductionInfo Info(CandidateSet.getLocation());
7130 CXXConversionDecl *Specialization = nullptr;
7131 if (TemplateDeductionResult Result
7132 = DeduceTemplateArguments(FunctionTemplate, ToType,
7133 Specialization, Info)) {
7134 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7135 Candidate.FoundDecl = FoundDecl;
7136 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7137 Candidate.Viable = false;
7138 Candidate.FailureKind = ovl_fail_bad_deduction;
7139 Candidate.IsSurrogate = false;
7140 Candidate.IgnoreObjectArgument = false;
7141 Candidate.ExplicitCallArguments = 1;
7142 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7143 Info);
7144 return;
7145 }
7146
7147 // Add the conversion function template specialization produced by
7148 // template argument deduction as a candidate.
7149 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7149, __PRETTY_FUNCTION__))
;
7150 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7151 CandidateSet, AllowObjCConversionOnExplicit,
7152 AllowExplicit, AllowResultConversion);
7153}
7154
7155/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7156/// converts the given @c Object to a function pointer via the
7157/// conversion function @c Conversion, and then attempts to call it
7158/// with the given arguments (C++ [over.call.object]p2-4). Proto is
7159/// the type of function that we'll eventually be calling.
7160void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7161 DeclAccessPair FoundDecl,
7162 CXXRecordDecl *ActingContext,
7163 const FunctionProtoType *Proto,
7164 Expr *Object,
7165 ArrayRef<Expr *> Args,
7166 OverloadCandidateSet& CandidateSet) {
7167 if (!CandidateSet.isNewCandidate(Conversion))
7168 return;
7169
7170 // Overload resolution is always an unevaluated context.
7171 EnterExpressionEvaluationContext Unevaluated(
7172 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7173
7174 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7175 Candidate.FoundDecl = FoundDecl;
7176 Candidate.Function = nullptr;
7177 Candidate.Surrogate = Conversion;
7178 Candidate.Viable = true;
7179 Candidate.IsSurrogate = true;
7180 Candidate.IgnoreObjectArgument = false;
7181 Candidate.ExplicitCallArguments = Args.size();
7182
7183 // Determine the implicit conversion sequence for the implicit
7184 // object parameter.
7185 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7186 *this, CandidateSet.getLocation(), Object->getType(),
7187 Object->Classify(Context), Conversion, ActingContext);
7188 if (ObjectInit.isBad()) {
7189 Candidate.Viable = false;
7190 Candidate.FailureKind = ovl_fail_bad_conversion;
7191 Candidate.Conversions[0] = ObjectInit;
7192 return;
7193 }
7194
7195 // The first conversion is actually a user-defined conversion whose
7196 // first conversion is ObjectInit's standard conversion (which is
7197 // effectively a reference binding). Record it as such.
7198 Candidate.Conversions[0].setUserDefined();
7199 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7200 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7201 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7202 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7203 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7204 Candidate.Conversions[0].UserDefined.After
7205 = Candidate.Conversions[0].UserDefined.Before;
7206 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7207
7208 // Find the
7209 unsigned NumParams = Proto->getNumParams();
7210
7211 // (C++ 13.3.2p2): A candidate function having fewer than m
7212 // parameters is viable only if it has an ellipsis in its parameter
7213 // list (8.3.5).
7214 if (Args.size() > NumParams && !Proto->isVariadic()) {
7215 Candidate.Viable = false;
7216 Candidate.FailureKind = ovl_fail_too_many_arguments;
7217 return;
7218 }
7219
7220 // Function types don't have any default arguments, so just check if
7221 // we have enough arguments.
7222 if (Args.size() < NumParams) {
7223 // Not enough arguments.
7224 Candidate.Viable = false;
7225 Candidate.FailureKind = ovl_fail_too_few_arguments;
7226 return;
7227 }
7228
7229 // Determine the implicit conversion sequences for each of the
7230 // arguments.
7231 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7232 if (ArgIdx < NumParams) {
7233 // (C++ 13.3.2p3): for F to be a viable function, there shall
7234 // exist for each argument an implicit conversion sequence
7235 // (13.3.3.1) that converts that argument to the corresponding
7236 // parameter of F.
7237 QualType ParamType = Proto->getParamType(ArgIdx);
7238 Candidate.Conversions[ArgIdx + 1]
7239 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7240 /*SuppressUserConversions=*/false,
7241 /*InOverloadResolution=*/false,
7242 /*AllowObjCWritebackConversion=*/
7243 getLangOpts().ObjCAutoRefCount);
7244 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7245 Candidate.Viable = false;
7246 Candidate.FailureKind = ovl_fail_bad_conversion;
7247 return;
7248 }
7249 } else {
7250 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7251 // argument for which there is no corresponding parameter is
7252 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7253 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7254 }
7255 }
7256
7257 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7258 Candidate.Viable = false;
7259 Candidate.FailureKind = ovl_fail_enable_if;
7260 Candidate.DeductionFailure.Data = FailedAttr;
7261 return;
7262 }
7263}
7264
7265/// Add overload candidates for overloaded operators that are
7266/// member functions.
7267///
7268/// Add the overloaded operator candidates that are member functions
7269/// for the operator Op that was used in an operator expression such
7270/// as "x Op y". , Args/NumArgs provides the operator arguments, and
7271/// CandidateSet will store the added overload candidates. (C++
7272/// [over.match.oper]).
7273void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7274 SourceLocation OpLoc,
7275 ArrayRef<Expr *> Args,
7276 OverloadCandidateSet& CandidateSet,
7277 SourceRange OpRange) {
7278 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7279
7280 // C++ [over.match.oper]p3:
7281 // For a unary operator @ with an operand of a type whose
7282 // cv-unqualified version is T1, and for a binary operator @ with
7283 // a left operand of a type whose cv-unqualified version is T1 and
7284 // a right operand of a type whose cv-unqualified version is T2,
7285 // three sets of candidate functions, designated member
7286 // candidates, non-member candidates and built-in candidates, are
7287 // constructed as follows:
7288 QualType T1 = Args[0]->getType();
7289
7290 // -- If T1 is a complete class type or a class currently being
7291 // defined, the set of member candidates is the result of the
7292 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7293 // the set of member candidates is empty.
7294 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7295 // Complete the type if it can be completed.
7296 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7297 return;
7298 // If the type is neither complete nor being defined, bail out now.
7299 if (!T1Rec->getDecl()->getDefinition())
7300 return;
7301
7302 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7303 LookupQualifiedName(Operators, T1Rec->getDecl());
7304 Operators.suppressDiagnostics();
7305
7306 for (LookupResult::iterator Oper = Operators.begin(),
7307 OperEnd = Operators.end();
7308 Oper != OperEnd;
7309 ++Oper)
7310 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7311 Args[0]->Classify(Context), Args.slice(1),
7312 CandidateSet, /*SuppressUserConversions=*/false);
7313 }
7314}
7315
7316/// AddBuiltinCandidate - Add a candidate for a built-in
7317/// operator. ResultTy and ParamTys are the result and parameter types
7318/// of the built-in candidate, respectively. Args and NumArgs are the
7319/// arguments being passed to the candidate. IsAssignmentOperator
7320/// should be true when this built-in candidate is an assignment
7321/// operator. NumContextualBoolArguments is the number of arguments
7322/// (at the beginning of the argument list) that will be contextually
7323/// converted to bool.
7324void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7325 OverloadCandidateSet& CandidateSet,
7326 bool IsAssignmentOperator,
7327 unsigned NumContextualBoolArguments) {
7328 // Overload resolution is always an unevaluated context.
7329 EnterExpressionEvaluationContext Unevaluated(
7330 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7331
7332 // Add this candidate
7333 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7334 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7335 Candidate.Function = nullptr;
7336 Candidate.IsSurrogate = false;
7337 Candidate.IgnoreObjectArgument = false;
7338 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7339
7340 // Determine the implicit conversion sequences for each of the
7341 // arguments.
7342 Candidate.Viable = true;
7343 Candidate.ExplicitCallArguments = Args.size();
7344 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7345 // C++ [over.match.oper]p4:
7346 // For the built-in assignment operators, conversions of the
7347 // left operand are restricted as follows:
7348 // -- no temporaries are introduced to hold the left operand, and
7349 // -- no user-defined conversions are applied to the left
7350 // operand to achieve a type match with the left-most
7351 // parameter of a built-in candidate.
7352 //
7353 // We block these conversions by turning off user-defined
7354 // conversions, since that is the only way that initialization of
7355 // a reference to a non-class type can occur from something that
7356 // is not of the same type.
7357 if (ArgIdx < NumContextualBoolArguments) {
7358 assert(ParamTys[ArgIdx] == Context.BoolTy &&((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7359, __PRETTY_FUNCTION__))
7359 "Contextual conversion to bool requires bool type")((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7359, __PRETTY_FUNCTION__))
;
7360 Candidate.Conversions[ArgIdx]
7361 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7362 } else {
7363 Candidate.Conversions[ArgIdx]
7364 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7365 ArgIdx == 0 && IsAssignmentOperator,
7366 /*InOverloadResolution=*/false,
7367 /*AllowObjCWritebackConversion=*/
7368 getLangOpts().ObjCAutoRefCount);
7369 }
7370 if (Candidate.Conversions[ArgIdx].isBad()) {
7371 Candidate.Viable = false;
7372 Candidate.FailureKind = ovl_fail_bad_conversion;
7373 break;
7374 }
7375 }
7376}
7377
7378namespace {
7379
7380/// BuiltinCandidateTypeSet - A set of types that will be used for the
7381/// candidate operator functions for built-in operators (C++
7382/// [over.built]). The types are separated into pointer types and
7383/// enumeration types.
7384class BuiltinCandidateTypeSet {
7385 /// TypeSet - A set of types.
7386 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7387 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7388
7389 /// PointerTypes - The set of pointer types that will be used in the
7390 /// built-in candidates.
7391 TypeSet PointerTypes;
7392
7393 /// MemberPointerTypes - The set of member pointer types that will be
7394 /// used in the built-in candidates.
7395 TypeSet MemberPointerTypes;
7396
7397 /// EnumerationTypes - The set of enumeration types that will be
7398 /// used in the built-in candidates.
7399 TypeSet EnumerationTypes;
7400
7401 /// The set of vector types that will be used in the built-in
7402 /// candidates.
7403 TypeSet VectorTypes;
7404
7405 /// A flag indicating non-record types are viable candidates
7406 bool HasNonRecordTypes;
7407
7408 /// A flag indicating whether either arithmetic or enumeration types
7409 /// were present in the candidate set.
7410 bool HasArithmeticOrEnumeralTypes;
7411
7412 /// A flag indicating whether the nullptr type was present in the
7413 /// candidate set.
7414 bool HasNullPtrType;
7415
7416 /// Sema - The semantic analysis instance where we are building the
7417 /// candidate type set.
7418 Sema &SemaRef;
7419
7420 /// Context - The AST context in which we will build the type sets.
7421 ASTContext &Context;
7422
7423 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7424 const Qualifiers &VisibleQuals);
7425 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7426
7427public:
7428 /// iterator - Iterates through the types that are part of the set.
7429 typedef TypeSet::iterator iterator;
7430
7431 BuiltinCandidateTypeSet(Sema &SemaRef)
7432 : HasNonRecordTypes(false),
7433 HasArithmeticOrEnumeralTypes(false),
7434 HasNullPtrType(false),
7435 SemaRef(SemaRef),
7436 Context(SemaRef.Context) { }
7437
7438 void AddTypesConvertedFrom(QualType Ty,
7439 SourceLocation Loc,
7440 bool AllowUserConversions,
7441 bool AllowExplicitConversions,
7442 const Qualifiers &VisibleTypeConversionsQuals);
7443
7444 /// pointer_begin - First pointer type found;
7445 iterator pointer_begin() { return PointerTypes.begin(); }
7446
7447 /// pointer_end - Past the last pointer type found;
7448 iterator pointer_end() { return PointerTypes.end(); }
7449
7450 /// member_pointer_begin - First member pointer type found;
7451 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7452
7453 /// member_pointer_end - Past the last member pointer type found;
7454 iterator member_pointer_end() { return MemberPointerTypes.end(); }
7455
7456 /// enumeration_begin - First enumeration type found;
7457 iterator enumeration_begin() { return EnumerationTypes.begin(); }
7458
7459 /// enumeration_end - Past the last enumeration type found;
7460 iterator enumeration_end() { return EnumerationTypes.end(); }
7461
7462 iterator vector_begin() { return VectorTypes.begin(); }
7463 iterator vector_end() { return VectorTypes.end(); }
7464
7465 bool hasNonRecordTypes() { return HasNonRecordTypes; }
7466 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7467 bool hasNullPtrType() const { return HasNullPtrType; }
7468};
7469
7470} // end anonymous namespace
7471
7472/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7473/// the set of pointer types along with any more-qualified variants of
7474/// that type. For example, if @p Ty is "int const *", this routine
7475/// will add "int const *", "int const volatile *", "int const
7476/// restrict *", and "int const volatile restrict *" to the set of
7477/// pointer types. Returns true if the add of @p Ty itself succeeded,
7478/// false otherwise.
7479///
7480/// FIXME: what to do about extended qualifiers?
7481bool
7482BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7483 const Qualifiers &VisibleQuals) {
7484
7485 // Insert this type.
7486 if (!PointerTypes.insert(Ty))
7487 return false;
7488
7489 QualType PointeeTy;
7490 const PointerType *PointerTy = Ty->getAs<PointerType>();
7491 bool buildObjCPtr = false;
7492 if (!PointerTy) {
7493 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7494 PointeeTy = PTy->getPointeeType();
7495 buildObjCPtr = true;
7496 } else {
7497 PointeeTy = PointerTy->getPointeeType();
7498 }
7499
7500 // Don't add qualified variants of arrays. For one, they're not allowed
7501 // (the qualifier would sink to the element type), and for another, the
7502 // only overload situation where it matters is subscript or pointer +- int,
7503 // and those shouldn't have qualifier variants anyway.
7504 if (PointeeTy->isArrayType())
7505 return true;
7506
7507 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7508 bool hasVolatile = VisibleQuals.hasVolatile();
7509 bool hasRestrict = VisibleQuals.hasRestrict();
7510
7511 // Iterate through all strict supersets of BaseCVR.
7512 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7513 if ((CVR | BaseCVR) != CVR) continue;
7514 // Skip over volatile if no volatile found anywhere in the types.
7515 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7516
7517 // Skip over restrict if no restrict found anywhere in the types, or if
7518 // the type cannot be restrict-qualified.
7519 if ((CVR & Qualifiers::Restrict) &&
7520 (!hasRestrict ||
7521 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7522 continue;
7523
7524 // Build qualified pointee type.
7525 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7526
7527 // Build qualified pointer type.
7528 QualType QPointerTy;
7529 if (!buildObjCPtr)
7530 QPointerTy = Context.getPointerType(QPointeeTy);
7531 else
7532 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7533
7534 // Insert qualified pointer type.
7535 PointerTypes.insert(QPointerTy);
7536 }
7537
7538 return true;
7539}
7540
7541/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7542/// to the set of pointer types along with any more-qualified variants of
7543/// that type. For example, if @p Ty is "int const *", this routine
7544/// will add "int const *", "int const volatile *", "int const
7545/// restrict *", and "int const volatile restrict *" to the set of
7546/// pointer types. Returns true if the add of @p Ty itself succeeded,
7547/// false otherwise.
7548///
7549/// FIXME: what to do about extended qualifiers?
7550bool
7551BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7552 QualType Ty) {
7553 // Insert this type.
7554 if (!MemberPointerTypes.insert(Ty))
7555 return false;
7556
7557 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7558 assert(PointerTy && "type was not a member pointer type!")((PointerTy && "type was not a member pointer type!")
? static_cast<void> (0) : __assert_fail ("PointerTy && \"type was not a member pointer type!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7558, __PRETTY_FUNCTION__))
;
7559
7560 QualType PointeeTy = PointerTy->getPointeeType();
7561 // Don't add qualified variants of arrays. For one, they're not allowed
7562 // (the qualifier would sink to the element type), and for another, the
7563 // only overload situation where it matters is subscript or pointer +- int,
7564 // and those shouldn't have qualifier variants anyway.
7565 if (PointeeTy->isArrayType())
7566 return true;
7567 const Type *ClassTy = PointerTy->getClass();
7568
7569 // Iterate through all strict supersets of the pointee type's CVR
7570 // qualifiers.
7571 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7572 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7573 if ((CVR | BaseCVR) != CVR) continue;
7574
7575 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7576 MemberPointerTypes.insert(
7577 Context.getMemberPointerType(QPointeeTy, ClassTy));
7578 }
7579
7580 return true;
7581}
7582
7583/// AddTypesConvertedFrom - Add each of the types to which the type @p
7584/// Ty can be implicit converted to the given set of @p Types. We're
7585/// primarily interested in pointer types and enumeration types. We also
7586/// take member pointer types, for the conditional operator.
7587/// AllowUserConversions is true if we should look at the conversion
7588/// functions of a class type, and AllowExplicitConversions if we
7589/// should also include the explicit conversion functions of a class
7590/// type.
7591void
7592BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7593 SourceLocation Loc,
7594 bool AllowUserConversions,
7595 bool AllowExplicitConversions,
7596 const Qualifiers &VisibleQuals) {
7597 // Only deal with canonical types.
7598 Ty = Context.getCanonicalType(Ty);
7599
7600 // Look through reference types; they aren't part of the type of an
7601 // expression for the purposes of conversions.
7602 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7603 Ty = RefTy->getPointeeType();
7604
7605 // If we're dealing with an array type, decay to the pointer.
7606 if (Ty->isArrayType())
7607 Ty = SemaRef.Context.getArrayDecayedType(Ty);
7608
7609 // Otherwise, we don't care about qualifiers on the type.
7610 Ty = Ty.getLocalUnqualifiedType();
7611
7612 // Flag if we ever add a non-record type.
7613 const RecordType *TyRec = Ty->getAs<RecordType>();
7614 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7615
7616 // Flag if we encounter an arithmetic type.
7617 HasArithmeticOrEnumeralTypes =
7618 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7619
7620 if (Ty->isObjCIdType() || Ty->isObjCClassType())
7621 PointerTypes.insert(Ty);
7622 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7623 // Insert our type, and its more-qualified variants, into the set
7624 // of types.
7625 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7626 return;
7627 } else if (Ty->isMemberPointerType()) {
7628 // Member pointers are far easier, since the pointee can't be converted.
7629 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7630 return;
7631 } else if (Ty->isEnumeralType()) {
7632 HasArithmeticOrEnumeralTypes = true;
7633 EnumerationTypes.insert(Ty);
7634 } else if (Ty->isVectorType()) {
7635 // We treat vector types as arithmetic types in many contexts as an
7636 // extension.
7637 HasArithmeticOrEnumeralTypes = true;
7638 VectorTypes.insert(Ty);
7639 } else if (Ty->isNullPtrType()) {
7640 HasNullPtrType = true;
7641 } else if (AllowUserConversions && TyRec) {
7642 // No conversion functions in incomplete types.
7643 if (!SemaRef.isCompleteType(Loc, Ty))
7644 return;
7645
7646 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7647 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7648 if (isa<UsingShadowDecl>(D))
7649 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7650
7651 // Skip conversion function templates; they don't tell us anything
7652 // about which builtin types we can convert to.
7653 if (isa<FunctionTemplateDecl>(D))
7654 continue;
7655
7656 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7657 if (AllowExplicitConversions || !Conv->isExplicit()) {
7658 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7659 VisibleQuals);
7660 }
7661 }
7662 }
7663}
7664/// Helper function for adjusting address spaces for the pointer or reference
7665/// operands of builtin operators depending on the argument.
7666static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
7667 Expr *Arg) {
7668 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
7669}
7670
7671/// Helper function for AddBuiltinOperatorCandidates() that adds
7672/// the volatile- and non-volatile-qualified assignment operators for the
7673/// given type to the candidate set.
7674static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7675 QualType T,
7676 ArrayRef<Expr *> Args,
7677 OverloadCandidateSet &CandidateSet) {
7678 QualType ParamTypes[2];
7679
7680 // T& operator=(T&, T)
7681 ParamTypes[0] = S.Context.getLValueReferenceType(
7682 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
7683 ParamTypes[1] = T;
7684 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7685 /*IsAssignmentOperator=*/true);
7686
7687 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7688 // volatile T& operator=(volatile T&, T)
7689 ParamTypes[0] = S.Context.getLValueReferenceType(
7690 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
7691 Args[0]));
7692 ParamTypes[1] = T;
7693 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7694 /*IsAssignmentOperator=*/true);
7695 }
7696}
7697
7698/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7699/// if any, found in visible type conversion functions found in ArgExpr's type.
7700static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7701 Qualifiers VRQuals;
7702 const RecordType *TyRec;
7703 if (const MemberPointerType *RHSMPType =
7704 ArgExpr->getType()->getAs<MemberPointerType>())
7705 TyRec = RHSMPType->getClass()->getAs<RecordType>();
7706 else
7707 TyRec = ArgExpr->getType()->getAs<RecordType>();
7708 if (!TyRec) {
7709 // Just to be safe, assume the worst case.
7710 VRQuals.addVolatile();
7711 VRQuals.addRestrict();
7712 return VRQuals;
7713 }
7714
7715 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7716 if (!ClassDecl->hasDefinition())
7717 return VRQuals;
7718
7719 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7720 if (isa<UsingShadowDecl>(D))
7721 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7722 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7723 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7724 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7725 CanTy = ResTypeRef->getPointeeType();
7726 // Need to go down the pointer/mempointer chain and add qualifiers
7727 // as see them.
7728 bool done = false;
7729 while (!done) {
7730 if (CanTy.isRestrictQualified())
7731 VRQuals.addRestrict();
7732 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7733 CanTy = ResTypePtr->getPointeeType();
7734 else if (const MemberPointerType *ResTypeMPtr =
7735 CanTy->getAs<MemberPointerType>())
7736 CanTy = ResTypeMPtr->getPointeeType();
7737 else
7738 done = true;
7739 if (CanTy.isVolatileQualified())
7740 VRQuals.addVolatile();
7741 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7742 return VRQuals;
7743 }
7744 }
7745 }
7746 return VRQuals;
7747}
7748
7749namespace {
7750
7751/// Helper class to manage the addition of builtin operator overload
7752/// candidates. It provides shared state and utility methods used throughout
7753/// the process, as well as a helper method to add each group of builtin
7754/// operator overloads from the standard to a candidate set.
7755class BuiltinOperatorOverloadBuilder {
7756 // Common instance state available to all overload candidate addition methods.
7757 Sema &S;
7758 ArrayRef<Expr *> Args;
7759 Qualifiers VisibleTypeConversionsQuals;
7760 bool HasArithmeticOrEnumeralCandidateType;
7761 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7762 OverloadCandidateSet &CandidateSet;
7763
7764 static constexpr int ArithmeticTypesCap = 24;
7765 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7766
7767 // Define some indices used to iterate over the arithemetic types in
7768 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
7769 // types are that preserved by promotion (C++ [over.built]p2).
7770 unsigned FirstIntegralType,
7771 LastIntegralType;
7772 unsigned FirstPromotedIntegralType,
7773 LastPromotedIntegralType;
7774 unsigned FirstPromotedArithmeticType,
7775 LastPromotedArithmeticType;
7776 unsigned NumArithmeticTypes;
7777
7778 void InitArithmeticTypes() {
7779 // Start of promoted types.
7780 FirstPromotedArithmeticType = 0;
7781 ArithmeticTypes.push_back(S.Context.FloatTy);
7782 ArithmeticTypes.push_back(S.Context.DoubleTy);
7783 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7784 if (S.Context.getTargetInfo().hasFloat128Type())
7785 ArithmeticTypes.push_back(S.Context.Float128Ty);
7786
7787 // Start of integral types.
7788 FirstIntegralType = ArithmeticTypes.size();
7789 FirstPromotedIntegralType = ArithmeticTypes.size();
7790 ArithmeticTypes.push_back(S.Context.IntTy);
7791 ArithmeticTypes.push_back(S.Context.LongTy);
7792 ArithmeticTypes.push_back(S.Context.LongLongTy);
7793 if (S.Context.getTargetInfo().hasInt128Type())
7794 ArithmeticTypes.push_back(S.Context.Int128Ty);
7795 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7796 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7797 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7798 if (S.Context.getTargetInfo().hasInt128Type())
7799 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7800 LastPromotedIntegralType = ArithmeticTypes.size();
7801 LastPromotedArithmeticType = ArithmeticTypes.size();
7802 // End of promoted types.
7803
7804 ArithmeticTypes.push_back(S.Context.BoolTy);
7805 ArithmeticTypes.push_back(S.Context.CharTy);
7806 ArithmeticTypes.push_back(S.Context.WCharTy);
7807 if (S.Context.getLangOpts().Char8)
7808 ArithmeticTypes.push_back(S.Context.Char8Ty);
7809 ArithmeticTypes.push_back(S.Context.Char16Ty);
7810 ArithmeticTypes.push_back(S.Context.Char32Ty);
7811 ArithmeticTypes.push_back(S.Context.SignedCharTy);
7812 ArithmeticTypes.push_back(S.Context.ShortTy);
7813 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7814 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7815 LastIntegralType = ArithmeticTypes.size();
7816 NumArithmeticTypes = ArithmeticTypes.size();
7817 // End of integral types.
7818 // FIXME: What about complex? What about half?
7819
7820 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7821, __PRETTY_FUNCTION__))
7821 "Enough inline storage for all arithmetic types.")((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 7821, __PRETTY_FUNCTION__))
;
7822 }
7823
7824 /// Helper method to factor out the common pattern of adding overloads
7825 /// for '++' and '--' builtin operators.
7826 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7827 bool HasVolatile,
7828 bool HasRestrict) {
7829 QualType ParamTypes[2] = {
7830 S.Context.getLValueReferenceType(CandidateTy),
7831 S.Context.IntTy
7832 };
7833
7834 // Non-volatile version.
7835 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7836
7837 // Use a heuristic to reduce number of builtin candidates in the set:
7838 // add volatile version only if there are conversions to a volatile type.
7839 if (HasVolatile) {
7840 ParamTypes[0] =
7841 S.Context.getLValueReferenceType(
7842 S.Context.getVolatileType(CandidateTy));
7843 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7844 }
7845
7846 // Add restrict version only if there are conversions to a restrict type
7847 // and our candidate type is a non-restrict-qualified pointer.
7848 if (HasRestrict && CandidateTy->isAnyPointerType() &&
7849 !CandidateTy.isRestrictQualified()) {
7850 ParamTypes[0]
7851 = S.Context.getLValueReferenceType(
7852 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7853 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7854
7855 if (HasVolatile) {
7856 ParamTypes[0]
7857 = S.Context.getLValueReferenceType(
7858 S.Context.getCVRQualifiedType(CandidateTy,
7859 (Qualifiers::Volatile |
7860 Qualifiers::Restrict)));
7861 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7862 }
7863 }
7864
7865 }
7866
7867public:
7868 BuiltinOperatorOverloadBuilder(
7869 Sema &S, ArrayRef<Expr *> Args,
7870 Qualifiers VisibleTypeConversionsQuals,
7871 bool HasArithmeticOrEnumeralCandidateType,
7872 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7873 OverloadCandidateSet &CandidateSet)
7874 : S(S), Args(Args),
7875 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7876 HasArithmeticOrEnumeralCandidateType(
7877 HasArithmeticOrEnumeralCandidateType),
7878 CandidateTypes(CandidateTypes),
7879 CandidateSet(CandidateSet) {
7880
7881 InitArithmeticTypes();
7882 }
7883
7884 // Increment is deprecated for bool since C++17.
7885 //
7886 // C++ [over.built]p3:
7887 //
7888 // For every pair (T, VQ), where T is an arithmetic type other
7889 // than bool, and VQ is either volatile or empty, there exist
7890 // candidate operator functions of the form
7891 //
7892 // VQ T& operator++(VQ T&);
7893 // T operator++(VQ T&, int);
7894 //
7895 // C++ [over.built]p4:
7896 //
7897 // For every pair (T, VQ), where T is an arithmetic type other
7898 // than bool, and VQ is either volatile or empty, there exist
7899 // candidate operator functions of the form
7900 //
7901 // VQ T& operator--(VQ T&);
7902 // T operator--(VQ T&, int);
7903 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7904 if (!HasArithmeticOrEnumeralCandidateType)
7905 return;
7906
7907 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
7908 const auto TypeOfT = ArithmeticTypes[Arith];
7909 if (TypeOfT == S.Context.BoolTy) {
7910 if (Op == OO_MinusMinus)
7911 continue;
7912 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
7913 continue;
7914 }
7915 addPlusPlusMinusMinusStyleOverloads(
7916 TypeOfT,
7917 VisibleTypeConversionsQuals.hasVolatile(),
7918 VisibleTypeConversionsQuals.hasRestrict());
7919 }
7920 }
7921
7922 // C++ [over.built]p5:
7923 //
7924 // For every pair (T, VQ), where T is a cv-qualified or
7925 // cv-unqualified object type, and VQ is either volatile or
7926 // empty, there exist candidate operator functions of the form
7927 //
7928 // T*VQ& operator++(T*VQ&);
7929 // T*VQ& operator--(T*VQ&);
7930 // T* operator++(T*VQ&, int);
7931 // T* operator--(T*VQ&, int);
7932 void addPlusPlusMinusMinusPointerOverloads() {
7933 for (BuiltinCandidateTypeSet::iterator
7934 Ptr = CandidateTypes[0].pointer_begin(),
7935 PtrEnd = CandidateTypes[0].pointer_end();
7936 Ptr != PtrEnd; ++Ptr) {
7937 // Skip pointer types that aren't pointers to object types.
7938 if (!(*Ptr)->getPointeeType()->isObjectType())
7939 continue;
7940
7941 addPlusPlusMinusMinusStyleOverloads(*Ptr,
7942 (!(*Ptr).isVolatileQualified() &&
7943 VisibleTypeConversionsQuals.hasVolatile()),
7944 (!(*Ptr).isRestrictQualified() &&
7945 VisibleTypeConversionsQuals.hasRestrict()));
7946 }
7947 }
7948
7949 // C++ [over.built]p6:
7950 // For every cv-qualified or cv-unqualified object type T, there
7951 // exist candidate operator functions of the form
7952 //
7953 // T& operator*(T*);
7954 //
7955 // C++ [over.built]p7:
7956 // For every function type T that does not have cv-qualifiers or a
7957 // ref-qualifier, there exist candidate operator functions of the form
7958 // T& operator*(T*);
7959 void addUnaryStarPointerOverloads() {
7960 for (BuiltinCandidateTypeSet::iterator
7961 Ptr = CandidateTypes[0].pointer_begin(),
7962 PtrEnd = CandidateTypes[0].pointer_end();
7963 Ptr != PtrEnd; ++Ptr) {
7964 QualType ParamTy = *Ptr;
7965 QualType PointeeTy = ParamTy->getPointeeType();
7966 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7967 continue;
7968
7969 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7970 if (Proto->getMethodQuals() || Proto->getRefQualifier())
7971 continue;
7972
7973 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
7974 }
7975 }
7976
7977 // C++ [over.built]p9:
7978 // For every promoted arithmetic type T, there exist candidate
7979 // operator functions of the form
7980 //
7981 // T operator+(T);
7982 // T operator-(T);
7983 void addUnaryPlusOrMinusArithmeticOverloads() {
7984 if (!HasArithmeticOrEnumeralCandidateType)
7985 return;
7986
7987 for (unsigned Arith = FirstPromotedArithmeticType;
7988 Arith < LastPromotedArithmeticType; ++Arith) {
7989 QualType ArithTy = ArithmeticTypes[Arith];
7990 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
7991 }
7992
7993 // Extension: We also add these operators for vector types.
7994 for (BuiltinCandidateTypeSet::iterator
7995 Vec = CandidateTypes[0].vector_begin(),
7996 VecEnd = CandidateTypes[0].vector_end();
7997 Vec != VecEnd; ++Vec) {
7998 QualType VecTy = *Vec;
7999 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8000 }
8001 }
8002
8003 // C++ [over.built]p8:
8004 // For every type T, there exist candidate operator functions of
8005 // the form
8006 //
8007 // T* operator+(T*);
8008 void addUnaryPlusPointerOverloads() {
8009 for (BuiltinCandidateTypeSet::iterator
8010 Ptr = CandidateTypes[0].pointer_begin(),
8011 PtrEnd = CandidateTypes[0].pointer_end();
8012 Ptr != PtrEnd; ++Ptr) {
8013 QualType ParamTy = *Ptr;
8014 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8015 }
8016 }
8017
8018 // C++ [over.built]p10:
8019 // For every promoted integral type T, there exist candidate
8020 // operator functions of the form
8021 //
8022 // T operator~(T);
8023 void addUnaryTildePromotedIntegralOverloads() {
8024 if (!HasArithmeticOrEnumeralCandidateType)
8025 return;
8026
8027 for (unsigned Int = FirstPromotedIntegralType;
8028 Int < LastPromotedIntegralType; ++Int) {
8029 QualType IntTy = ArithmeticTypes[Int];
8030 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8031 }
8032
8033 // Extension: We also add this operator for vector types.
8034 for (BuiltinCandidateTypeSet::iterator
8035 Vec = CandidateTypes[0].vector_begin(),
8036 VecEnd = CandidateTypes[0].vector_end();
8037 Vec != VecEnd; ++Vec) {
8038 QualType VecTy = *Vec;
8039 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8040 }
8041 }
8042
8043 // C++ [over.match.oper]p16:
8044 // For every pointer to member type T or type std::nullptr_t, there
8045 // exist candidate operator functions of the form
8046 //
8047 // bool operator==(T,T);
8048 // bool operator!=(T,T);
8049 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8050 /// Set of (canonical) types that we've already handled.
8051 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8052
8053 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8054 for (BuiltinCandidateTypeSet::iterator
8055 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8056 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8057 MemPtr != MemPtrEnd;
8058 ++MemPtr) {
8059 // Don't add the same builtin candidate twice.
8060 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8061 continue;
8062
8063 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8064 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8065 }
8066
8067 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8068 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8069 if (AddedTypes.insert(NullPtrTy).second) {
8070 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8071 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8072 }
8073 }
8074 }
8075 }
8076
8077 // C++ [over.built]p15:
8078 //
8079 // For every T, where T is an enumeration type or a pointer type,
8080 // there exist candidate operator functions of the form
8081 //
8082 // bool operator<(T, T);
8083 // bool operator>(T, T);
8084 // bool operator<=(T, T);
8085 // bool operator>=(T, T);
8086 // bool operator==(T, T);
8087 // bool operator!=(T, T);
8088 // R operator<=>(T, T)
8089 void addGenericBinaryPointerOrEnumeralOverloads() {
8090 // C++ [over.match.oper]p3:
8091 // [...]the built-in candidates include all of the candidate operator
8092 // functions defined in 13.6 that, compared to the given operator, [...]
8093 // do not have the same parameter-type-list as any non-template non-member
8094 // candidate.
8095 //
8096 // Note that in practice, this only affects enumeration types because there
8097 // aren't any built-in candidates of record type, and a user-defined operator
8098 // must have an operand of record or enumeration type. Also, the only other
8099 // overloaded operator with enumeration arguments, operator=,
8100 // cannot be overloaded for enumeration types, so this is the only place
8101 // where we must suppress candidates like this.
8102 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8103 UserDefinedBinaryOperators;
8104
8105 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8106 if (CandidateTypes[ArgIdx].enumeration_begin() !=
8107 CandidateTypes[ArgIdx].enumeration_end()) {
8108 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8109 CEnd = CandidateSet.end();
8110 C != CEnd; ++C) {
8111 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8112 continue;
8113
8114 if (C->Function->isFunctionTemplateSpecialization())
8115 continue;
8116
8117 QualType FirstParamType =
8118 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
8119 QualType SecondParamType =
8120 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
8121
8122 // Skip if either parameter isn't of enumeral type.
8123 if (!FirstParamType->isEnumeralType() ||
8124 !SecondParamType->isEnumeralType())
8125 continue;
8126
8127 // Add this operator to the set of known user-defined operators.
8128 UserDefinedBinaryOperators.insert(
8129 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8130 S.Context.getCanonicalType(SecondParamType)));
8131 }
8132 }
8133 }
8134
8135 /// Set of (canonical) types that we've already handled.
8136 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8137
8138 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8139 for (BuiltinCandidateTypeSet::iterator
8140 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8141 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8142 Ptr != PtrEnd; ++Ptr) {
8143 // Don't add the same builtin candidate twice.
8144 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8145 continue;
8146
8147 QualType ParamTypes[2] = { *Ptr, *Ptr };
8148 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8149 }
8150 for (BuiltinCandidateTypeSet::iterator
8151 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8152 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8153 Enum != EnumEnd; ++Enum) {
8154 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8155
8156 // Don't add the same builtin candidate twice, or if a user defined
8157 // candidate exists.
8158 if (!AddedTypes.insert(CanonType).second ||
8159 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8160 CanonType)))
8161 continue;
8162 QualType ParamTypes[2] = { *Enum, *Enum };
8163 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8164 }
8165 }
8166 }
8167
8168 // C++ [over.built]p13:
8169 //
8170 // For every cv-qualified or cv-unqualified object type T
8171 // there exist candidate operator functions of the form
8172 //
8173 // T* operator+(T*, ptrdiff_t);
8174 // T& operator[](T*, ptrdiff_t); [BELOW]
8175 // T* operator-(T*, ptrdiff_t);
8176 // T* operator+(ptrdiff_t, T*);
8177 // T& operator[](ptrdiff_t, T*); [BELOW]
8178 //
8179 // C++ [over.built]p14:
8180 //
8181 // For every T, where T is a pointer to object type, there
8182 // exist candidate operator functions of the form
8183 //
8184 // ptrdiff_t operator-(T, T);
8185 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8186 /// Set of (canonical) types that we've already handled.
8187 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8188
8189 for (int Arg = 0; Arg < 2; ++Arg) {
8190 QualType AsymmetricParamTypes[2] = {
8191 S.Context.getPointerDiffType(),
8192 S.Context.getPointerDiffType(),
8193 };
8194 for (BuiltinCandidateTypeSet::iterator
8195 Ptr = CandidateTypes[Arg].pointer_begin(),
8196 PtrEnd = CandidateTypes[Arg].pointer_end();
8197 Ptr != PtrEnd; ++Ptr) {
8198 QualType PointeeTy = (*Ptr)->getPointeeType();
8199 if (!PointeeTy->isObjectType())
8200 continue;
8201
8202 AsymmetricParamTypes[Arg] = *Ptr;
8203 if (Arg == 0 || Op == OO_Plus) {
8204 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8205 // T* operator+(ptrdiff_t, T*);
8206 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8207 }
8208 if (Op == OO_Minus) {
8209 // ptrdiff_t operator-(T, T);
8210 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8211 continue;
8212
8213 QualType ParamTypes[2] = { *Ptr, *Ptr };
8214 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8215 }
8216 }
8217 }
8218 }
8219
8220 // C++ [over.built]p12:
8221 //
8222 // For every pair of promoted arithmetic types L and R, there
8223 // exist candidate operator functions of the form
8224 //
8225 // LR operator*(L, R);
8226 // LR operator/(L, R);
8227 // LR operator+(L, R);
8228 // LR operator-(L, R);
8229 // bool operator<(L, R);
8230 // bool operator>(L, R);
8231 // bool operator<=(L, R);
8232 // bool operator>=(L, R);
8233 // bool operator==(L, R);
8234 // bool operator!=(L, R);
8235 //
8236 // where LR is the result of the usual arithmetic conversions
8237 // between types L and R.
8238 //
8239 // C++ [over.built]p24:
8240 //
8241 // For every pair of promoted arithmetic types L and R, there exist
8242 // candidate operator functions of the form
8243 //
8244 // LR operator?(bool, L, R);
8245 //
8246 // where LR is the result of the usual arithmetic conversions
8247 // between types L and R.
8248 // Our candidates ignore the first parameter.
8249 void addGenericBinaryArithmeticOverloads() {
8250 if (!HasArithmeticOrEnumeralCandidateType)
8251 return;
8252
8253 for (unsigned Left = FirstPromotedArithmeticType;
8254 Left < LastPromotedArithmeticType; ++Left) {
8255 for (unsigned Right = FirstPromotedArithmeticType;
8256 Right < LastPromotedArithmeticType; ++Right) {
8257 QualType LandR[2] = { ArithmeticTypes[Left],
8258 ArithmeticTypes[Right] };
8259 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8260 }
8261 }
8262
8263 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8264 // conditional operator for vector types.
8265 for (BuiltinCandidateTypeSet::iterator
8266 Vec1 = CandidateTypes[0].vector_begin(),
8267 Vec1End = CandidateTypes[0].vector_end();
8268 Vec1 != Vec1End; ++Vec1) {
8269 for (BuiltinCandidateTypeSet::iterator
8270 Vec2 = CandidateTypes[1].vector_begin(),
8271 Vec2End = CandidateTypes[1].vector_end();
8272 Vec2 != Vec2End; ++Vec2) {
8273 QualType LandR[2] = { *Vec1, *Vec2 };
8274 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8275 }
8276 }
8277 }
8278
8279 // C++2a [over.built]p14:
8280 //
8281 // For every integral type T there exists a candidate operator function
8282 // of the form
8283 //
8284 // std::strong_ordering operator<=>(T, T)
8285 //
8286 // C++2a [over.built]p15:
8287 //
8288 // For every pair of floating-point types L and R, there exists a candidate
8289 // operator function of the form
8290 //
8291 // std::partial_ordering operator<=>(L, R);
8292 //
8293 // FIXME: The current specification for integral types doesn't play nice with
8294 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8295 // comparisons. Under the current spec this can lead to ambiguity during
8296 // overload resolution. For example:
8297 //
8298 // enum A : int {a};
8299 // auto x = (a <=> (long)42);
8300 //
8301 // error: call is ambiguous for arguments 'A' and 'long'.
8302 // note: candidate operator<=>(int, int)
8303 // note: candidate operator<=>(long, long)
8304 //
8305 // To avoid this error, this function deviates from the specification and adds
8306 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8307 // arithmetic types (the same as the generic relational overloads).
8308 //
8309 // For now this function acts as a placeholder.
8310 void addThreeWayArithmeticOverloads() {
8311 addGenericBinaryArithmeticOverloads();
8312 }
8313
8314 // C++ [over.built]p17:
8315 //
8316 // For every pair of promoted integral types L and R, there
8317 // exist candidate operator functions of the form
8318 //
8319 // LR operator%(L, R);
8320 // LR operator&(L, R);
8321 // LR operator^(L, R);
8322 // LR operator|(L, R);
8323 // L operator<<(L, R);
8324 // L operator>>(L, R);
8325 //
8326 // where LR is the result of the usual arithmetic conversions
8327 // between types L and R.
8328 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8329 if (!HasArithmeticOrEnumeralCandidateType)
8330 return;
8331
8332 for (unsigned Left = FirstPromotedIntegralType;
8333 Left < LastPromotedIntegralType; ++Left) {
8334 for (unsigned Right = FirstPromotedIntegralType;
8335 Right < LastPromotedIntegralType; ++Right) {
8336 QualType LandR[2] = { ArithmeticTypes[Left],
8337 ArithmeticTypes[Right] };
8338 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8339 }
8340 }
8341 }
8342
8343 // C++ [over.built]p20:
8344 //
8345 // For every pair (T, VQ), where T is an enumeration or
8346 // pointer to member type and VQ is either volatile or
8347 // empty, there exist candidate operator functions of the form
8348 //
8349 // VQ T& operator=(VQ T&, T);
8350 void addAssignmentMemberPointerOrEnumeralOverloads() {
8351 /// Set of (canonical) types that we've already handled.
8352 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8353
8354 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8355 for (BuiltinCandidateTypeSet::iterator
8356 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8357 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8358 Enum != EnumEnd; ++Enum) {
8359 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8360 continue;
8361
8362 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8363 }
8364
8365 for (BuiltinCandidateTypeSet::iterator
8366 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8367 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8368 MemPtr != MemPtrEnd; ++MemPtr) {
8369 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8370 continue;
8371
8372 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8373 }
8374 }
8375 }
8376
8377 // C++ [over.built]p19:
8378 //
8379 // For every pair (T, VQ), where T is any type and VQ is either
8380 // volatile or empty, there exist candidate operator functions
8381 // of the form
8382 //
8383 // T*VQ& operator=(T*VQ&, T*);
8384 //
8385 // C++ [over.built]p21:
8386 //
8387 // For every pair (T, VQ), where T is a cv-qualified or
8388 // cv-unqualified object type and VQ is either volatile or
8389 // empty, there exist candidate operator functions of the form
8390 //
8391 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8392 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
8393 void addAssignmentPointerOverloads(bool isEqualOp) {
8394 /// Set of (canonical) types that we've already handled.
8395 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8396
8397 for (BuiltinCandidateTypeSet::iterator
8398 Ptr = CandidateTypes[0].pointer_begin(),
8399 PtrEnd = CandidateTypes[0].pointer_end();
8400 Ptr != PtrEnd; ++Ptr) {
8401 // If this is operator=, keep track of the builtin candidates we added.
8402 if (isEqualOp)
8403 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8404 else if (!(*Ptr)->getPointeeType()->isObjectType())
8405 continue;
8406
8407 // non-volatile version
8408 QualType ParamTypes[2] = {
8409 S.Context.getLValueReferenceType(*Ptr),
8410 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8411 };
8412 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8413 /*IsAssigmentOperator=*/ isEqualOp);
8414
8415 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8416 VisibleTypeConversionsQuals.hasVolatile();
8417 if (NeedVolatile) {
8418 // volatile version
8419 ParamTypes[0] =
8420 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8421 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8422 /*IsAssigmentOperator=*/isEqualOp);
8423 }
8424
8425 if (!(*Ptr).isRestrictQualified() &&
8426 VisibleTypeConversionsQuals.hasRestrict()) {
8427 // restrict version
8428 ParamTypes[0]
8429 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8430 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8431 /*IsAssigmentOperator=*/isEqualOp);
8432
8433 if (NeedVolatile) {
8434 // volatile restrict version
8435 ParamTypes[0]
8436 = S.Context.getLValueReferenceType(
8437 S.Context.getCVRQualifiedType(*Ptr,
8438 (Qualifiers::Volatile |
8439 Qualifiers::Restrict)));
8440 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8441 /*IsAssigmentOperator=*/isEqualOp);
8442 }
8443 }
8444 }
8445
8446 if (isEqualOp) {
8447 for (BuiltinCandidateTypeSet::iterator
8448 Ptr = CandidateTypes[1].pointer_begin(),
8449 PtrEnd = CandidateTypes[1].pointer_end();
8450 Ptr != PtrEnd; ++Ptr) {
8451 // Make sure we don't add the same candidate twice.
8452 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8453 continue;
8454
8455 QualType ParamTypes[2] = {
8456 S.Context.getLValueReferenceType(*Ptr),
8457 *Ptr,
8458 };
8459
8460 // non-volatile version
8461 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8462 /*IsAssigmentOperator=*/true);
8463
8464 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8465 VisibleTypeConversionsQuals.hasVolatile();
8466 if (NeedVolatile) {
8467 // volatile version
8468 ParamTypes[0] =
8469 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8470 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8471 /*IsAssigmentOperator=*/true);
8472 }
8473
8474 if (!(*Ptr).isRestrictQualified() &&
8475 VisibleTypeConversionsQuals.hasRestrict()) {
8476 // restrict version
8477 ParamTypes[0]
8478 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8479 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8480 /*IsAssigmentOperator=*/true);
8481
8482 if (NeedVolatile) {
8483 // volatile restrict version
8484 ParamTypes[0]
8485 = S.Context.getLValueReferenceType(
8486 S.Context.getCVRQualifiedType(*Ptr,
8487 (Qualifiers::Volatile |
8488 Qualifiers::Restrict)));
8489 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8490 /*IsAssigmentOperator=*/true);
8491 }
8492 }
8493 }
8494 }
8495 }
8496
8497 // C++ [over.built]p18:
8498 //
8499 // For every triple (L, VQ, R), where L is an arithmetic type,
8500 // VQ is either volatile or empty, and R is a promoted
8501 // arithmetic type, there exist candidate operator functions of
8502 // the form
8503 //
8504 // VQ L& operator=(VQ L&, R);
8505 // VQ L& operator*=(VQ L&, R);
8506 // VQ L& operator/=(VQ L&, R);
8507 // VQ L& operator+=(VQ L&, R);
8508 // VQ L& operator-=(VQ L&, R);
8509 void addAssignmentArithmeticOverloads(bool isEqualOp) {
8510 if (!HasArithmeticOrEnumeralCandidateType)
8511 return;
8512
8513 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8514 for (unsigned Right = FirstPromotedArithmeticType;
8515 Right < LastPromotedArithmeticType; ++Right) {
8516 QualType ParamTypes[2];
8517 ParamTypes[1] = ArithmeticTypes[Right];
8518 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8519 S, ArithmeticTypes[Left], Args[0]);
8520 // Add this built-in operator as a candidate (VQ is empty).
8521 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8522 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8523 /*IsAssigmentOperator=*/isEqualOp);
8524
8525 // Add this built-in operator as a candidate (VQ is 'volatile').
8526 if (VisibleTypeConversionsQuals.hasVolatile()) {
8527 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8528 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8529 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8530 /*IsAssigmentOperator=*/isEqualOp);
8531 }
8532 }
8533 }
8534
8535 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8536 for (BuiltinCandidateTypeSet::iterator
8537 Vec1 = CandidateTypes[0].vector_begin(),
8538 Vec1End = CandidateTypes[0].vector_end();
8539 Vec1 != Vec1End; ++Vec1) {
8540 for (BuiltinCandidateTypeSet::iterator
8541 Vec2 = CandidateTypes[1].vector_begin(),
8542 Vec2End = CandidateTypes[1].vector_end();
8543 Vec2 != Vec2End; ++Vec2) {
8544 QualType ParamTypes[2];
8545 ParamTypes[1] = *Vec2;
8546 // Add this built-in operator as a candidate (VQ is empty).
8547 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8548 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8549 /*IsAssigmentOperator=*/isEqualOp);
8550
8551 // Add this built-in operator as a candidate (VQ is 'volatile').
8552 if (VisibleTypeConversionsQuals.hasVolatile()) {
8553 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8554 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8555 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8556 /*IsAssigmentOperator=*/isEqualOp);
8557 }
8558 }
8559 }
8560 }
8561
8562 // C++ [over.built]p22:
8563 //
8564 // For every triple (L, VQ, R), where L is an integral type, VQ
8565 // is either volatile or empty, and R is a promoted integral
8566 // type, there exist candidate operator functions of the form
8567 //
8568 // VQ L& operator%=(VQ L&, R);
8569 // VQ L& operator<<=(VQ L&, R);
8570 // VQ L& operator>>=(VQ L&, R);
8571 // VQ L& operator&=(VQ L&, R);
8572 // VQ L& operator^=(VQ L&, R);
8573 // VQ L& operator|=(VQ L&, R);
8574 void addAssignmentIntegralOverloads() {
8575 if (!HasArithmeticOrEnumeralCandidateType)
8576 return;
8577
8578 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8579 for (unsigned Right = FirstPromotedIntegralType;
8580 Right < LastPromotedIntegralType; ++Right) {
8581 QualType ParamTypes[2];
8582 ParamTypes[1] = ArithmeticTypes[Right];
8583 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8584 S, ArithmeticTypes[Left], Args[0]);
8585 // Add this built-in operator as a candidate (VQ is empty).
8586 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8587 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8588 if (VisibleTypeConversionsQuals.hasVolatile()) {
8589 // Add this built-in operator as a candidate (VQ is 'volatile').
8590 ParamTypes[0] = LeftBaseTy;
8591 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8592 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8593 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8594 }
8595 }
8596 }
8597 }
8598
8599 // C++ [over.operator]p23:
8600 //
8601 // There also exist candidate operator functions of the form
8602 //
8603 // bool operator!(bool);
8604 // bool operator&&(bool, bool);
8605 // bool operator||(bool, bool);
8606 void addExclaimOverload() {
8607 QualType ParamTy = S.Context.BoolTy;
8608 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8609 /*IsAssignmentOperator=*/false,
8610 /*NumContextualBoolArguments=*/1);
8611 }
8612 void addAmpAmpOrPipePipeOverload() {
8613 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8614 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8615 /*IsAssignmentOperator=*/false,
8616 /*NumContextualBoolArguments=*/2);
8617 }
8618
8619 // C++ [over.built]p13:
8620 //
8621 // For every cv-qualified or cv-unqualified object type T there
8622 // exist candidate operator functions of the form
8623 //
8624 // T* operator+(T*, ptrdiff_t); [ABOVE]
8625 // T& operator[](T*, ptrdiff_t);
8626 // T* operator-(T*, ptrdiff_t); [ABOVE]
8627 // T* operator+(ptrdiff_t, T*); [ABOVE]
8628 // T& operator[](ptrdiff_t, T*);
8629 void addSubscriptOverloads() {
8630 for (BuiltinCandidateTypeSet::iterator
8631 Ptr = CandidateTypes[0].pointer_begin(),
8632 PtrEnd = CandidateTypes[0].pointer_end();
8633 Ptr != PtrEnd; ++Ptr) {
8634 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8635 QualType PointeeType = (*Ptr)->getPointeeType();
8636 if (!PointeeType->isObjectType())
8637 continue;
8638
8639 // T& operator[](T*, ptrdiff_t)
8640 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8641 }
8642
8643 for (BuiltinCandidateTypeSet::iterator
8644 Ptr = CandidateTypes[1].pointer_begin(),
8645 PtrEnd = CandidateTypes[1].pointer_end();
8646 Ptr != PtrEnd; ++Ptr) {
8647 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8648 QualType PointeeType = (*Ptr)->getPointeeType();
8649 if (!PointeeType->isObjectType())
8650 continue;
8651
8652 // T& operator[](ptrdiff_t, T*)
8653 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8654 }
8655 }
8656
8657 // C++ [over.built]p11:
8658 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8659 // C1 is the same type as C2 or is a derived class of C2, T is an object
8660 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8661 // there exist candidate operator functions of the form
8662 //
8663 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8664 //
8665 // where CV12 is the union of CV1 and CV2.
8666 void addArrowStarOverloads() {
8667 for (BuiltinCandidateTypeSet::iterator
8668 Ptr = CandidateTypes[0].pointer_begin(),
8669 PtrEnd = CandidateTypes[0].pointer_end();
8670 Ptr != PtrEnd; ++Ptr) {
8671 QualType C1Ty = (*Ptr);
8672 QualType C1;
8673 QualifierCollector Q1;
8674 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8675 if (!isa<RecordType>(C1))
8676 continue;
8677 // heuristic to reduce number of builtin candidates in the set.
8678 // Add volatile/restrict version only if there are conversions to a
8679 // volatile/restrict type.
8680 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8681 continue;
8682 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8683 continue;
8684 for (BuiltinCandidateTypeSet::iterator
8685 MemPtr = CandidateTypes[1].member_pointer_begin(),
8686 MemPtrEnd = CandidateTypes[1].member_pointer_end();
8687 MemPtr != MemPtrEnd; ++MemPtr) {
8688 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8689 QualType C2 = QualType(mptr->getClass(), 0);
8690 C2 = C2.getUnqualifiedType();
8691 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8692 break;
8693 QualType ParamTypes[2] = { *Ptr, *MemPtr };
8694 // build CV12 T&
8695 QualType T = mptr->getPointeeType();
8696 if (!VisibleTypeConversionsQuals.hasVolatile() &&
8697 T.isVolatileQualified())
8698 continue;
8699 if (!VisibleTypeConversionsQuals.hasRestrict() &&
8700 T.isRestrictQualified())
8701 continue;
8702 T = Q1.apply(S.Context, T);
8703 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8704 }
8705 }
8706 }
8707
8708 // Note that we don't consider the first argument, since it has been
8709 // contextually converted to bool long ago. The candidates below are
8710 // therefore added as binary.
8711 //
8712 // C++ [over.built]p25:
8713 // For every type T, where T is a pointer, pointer-to-member, or scoped
8714 // enumeration type, there exist candidate operator functions of the form
8715 //
8716 // T operator?(bool, T, T);
8717 //
8718 void addConditionalOperatorOverloads() {
8719 /// Set of (canonical) types that we've already handled.
8720 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8721
8722 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8723 for (BuiltinCandidateTypeSet::iterator
8724 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8725 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8726 Ptr != PtrEnd; ++Ptr) {
8727 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8728 continue;
8729
8730 QualType ParamTypes[2] = { *Ptr, *Ptr };
8731 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8732 }
8733
8734 for (BuiltinCandidateTypeSet::iterator
8735 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8736 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8737 MemPtr != MemPtrEnd; ++MemPtr) {
8738 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8739 continue;
8740
8741 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8742 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8743 }
8744
8745 if (S.getLangOpts().CPlusPlus11) {
8746 for (BuiltinCandidateTypeSet::iterator
8747 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8748 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8749 Enum != EnumEnd; ++Enum) {
8750 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8751 continue;
8752
8753 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8754 continue;
8755
8756 QualType ParamTypes[2] = { *Enum, *Enum };
8757 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8758 }
8759 }
8760 }
8761 }
8762};
8763
8764} // end anonymous namespace
8765
8766/// AddBuiltinOperatorCandidates - Add the appropriate built-in
8767/// operator overloads to the candidate set (C++ [over.built]), based
8768/// on the operator @p Op and the arguments given. For example, if the
8769/// operator is a binary '+', this routine might add "int
8770/// operator+(int, int)" to cover integer addition.
8771void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8772 SourceLocation OpLoc,
8773 ArrayRef<Expr *> Args,
8774 OverloadCandidateSet &CandidateSet) {
8775 // Find all of the types that the arguments can convert to, but only
8776 // if the operator we're looking at has built-in operator candidates
8777 // that make use of these types. Also record whether we encounter non-record
8778 // candidate types or either arithmetic or enumeral candidate types.
8779 Qualifiers VisibleTypeConversionsQuals;
8780 VisibleTypeConversionsQuals.addConst();
8781 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8782 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8783
8784 bool HasNonRecordCandidateType = false;
8785 bool HasArithmeticOrEnumeralCandidateType = false;
8786 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8787 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8788 CandidateTypes.emplace_back(*this);
8789 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8790 OpLoc,
8791 true,
8792 (Op == OO_Exclaim ||
8793 Op == OO_AmpAmp ||
8794 Op == OO_PipePipe),
8795 VisibleTypeConversionsQuals);
8796 HasNonRecordCandidateType = HasNonRecordCandidateType ||
8797 CandidateTypes[ArgIdx].hasNonRecordTypes();
8798 HasArithmeticOrEnumeralCandidateType =
8799 HasArithmeticOrEnumeralCandidateType ||
8800 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8801 }
8802
8803 // Exit early when no non-record types have been added to the candidate set
8804 // for any of the arguments to the operator.
8805 //
8806 // We can't exit early for !, ||, or &&, since there we have always have
8807 // 'bool' overloads.
8808 if (!HasNonRecordCandidateType &&
8809 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8810 return;
8811
8812 // Setup an object to manage the common state for building overloads.
8813 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8814 VisibleTypeConversionsQuals,
8815 HasArithmeticOrEnumeralCandidateType,
8816 CandidateTypes, CandidateSet);
8817
8818 // Dispatch over the operation to add in only those overloads which apply.
8819 switch (Op) {
8820 case OO_None:
8821 case NUM_OVERLOADED_OPERATORS:
8822 llvm_unreachable("Expected an overloaded operator")::llvm::llvm_unreachable_internal("Expected an overloaded operator"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 8822)
;
8823
8824 case OO_New:
8825 case OO_Delete:
8826 case OO_Array_New:
8827 case OO_Array_Delete:
8828 case OO_Call:
8829 llvm_unreachable(::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 8830)
8830 "Special operators don't use AddBuiltinOperatorCandidates")::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 8830)
;
8831
8832 case OO_Comma:
8833 case OO_Arrow:
8834 case OO_Coawait:
8835 // C++ [over.match.oper]p3:
8836 // -- For the operator ',', the unary operator '&', the
8837 // operator '->', or the operator 'co_await', the
8838 // built-in candidates set is empty.
8839 break;
8840
8841 case OO_Plus: // '+' is either unary or binary
8842 if (Args.size() == 1)
8843 OpBuilder.addUnaryPlusPointerOverloads();
8844 LLVM_FALLTHROUGH[[clang::fallthrough]];
8845
8846 case OO_Minus: // '-' is either unary or binary
8847 if (Args.size() == 1) {
8848 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8849 } else {
8850 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8851 OpBuilder.addGenericBinaryArithmeticOverloads();
8852 }
8853 break;
8854
8855 case OO_Star: // '*' is either unary or binary
8856 if (Args.size() == 1)
8857 OpBuilder.addUnaryStarPointerOverloads();
8858 else
8859 OpBuilder.addGenericBinaryArithmeticOverloads();
8860 break;
8861
8862 case OO_Slash:
8863 OpBuilder.addGenericBinaryArithmeticOverloads();
8864 break;
8865
8866 case OO_PlusPlus:
8867 case OO_MinusMinus:
8868 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8869 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8870 break;
8871
8872 case OO_EqualEqual:
8873 case OO_ExclaimEqual:
8874 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
8875 LLVM_FALLTHROUGH[[clang::fallthrough]];
8876
8877 case OO_Less:
8878 case OO_Greater:
8879 case OO_LessEqual:
8880 case OO_GreaterEqual:
8881 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8882 OpBuilder.addGenericBinaryArithmeticOverloads();
8883 break;
8884
8885 case OO_Spaceship:
8886 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
8887 OpBuilder.addThreeWayArithmeticOverloads();
8888 break;
8889
8890 case OO_Percent:
8891 case OO_Caret:
8892 case OO_Pipe:
8893 case OO_LessLess:
8894 case OO_GreaterGreater:
8895 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8896 break;
8897
8898 case OO_Amp: // '&' is either unary or binary
8899 if (Args.size() == 1)
8900 // C++ [over.match.oper]p3:
8901 // -- For the operator ',', the unary operator '&', or the
8902 // operator '->', the built-in candidates set is empty.
8903 break;
8904
8905 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8906 break;
8907
8908 case OO_Tilde:
8909 OpBuilder.addUnaryTildePromotedIntegralOverloads();
8910 break;
8911
8912 case OO_Equal:
8913 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8914 LLVM_FALLTHROUGH[[clang::fallthrough]];
8915
8916 case OO_PlusEqual:
8917 case OO_MinusEqual:
8918 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8919 LLVM_FALLTHROUGH[[clang::fallthrough]];
8920
8921 case OO_StarEqual:
8922 case OO_SlashEqual:
8923 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8924 break;
8925
8926 case OO_PercentEqual:
8927 case OO_LessLessEqual:
8928 case OO_GreaterGreaterEqual:
8929 case OO_AmpEqual:
8930 case OO_CaretEqual:
8931 case OO_PipeEqual:
8932 OpBuilder.addAssignmentIntegralOverloads();
8933 break;
8934
8935 case OO_Exclaim:
8936 OpBuilder.addExclaimOverload();
8937 break;
8938
8939 case OO_AmpAmp:
8940 case OO_PipePipe:
8941 OpBuilder.addAmpAmpOrPipePipeOverload();
8942 break;
8943
8944 case OO_Subscript:
8945 OpBuilder.addSubscriptOverloads();
8946 break;
8947
8948 case OO_ArrowStar:
8949 OpBuilder.addArrowStarOverloads();
8950 break;
8951
8952 case OO_Conditional:
8953 OpBuilder.addConditionalOperatorOverloads();
8954 OpBuilder.addGenericBinaryArithmeticOverloads();
8955 break;
8956 }
8957}
8958
8959/// Add function candidates found via argument-dependent lookup
8960/// to the set of overloading candidates.
8961///
8962/// This routine performs argument-dependent name lookup based on the
8963/// given function name (which may also be an operator name) and adds
8964/// all of the overload candidates found by ADL to the overload
8965/// candidate set (C++ [basic.lookup.argdep]).
8966void
8967Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8968 SourceLocation Loc,
8969 ArrayRef<Expr *> Args,
8970 TemplateArgumentListInfo *ExplicitTemplateArgs,
8971 OverloadCandidateSet& CandidateSet,
8972 bool PartialOverloading) {
8973 ADLResult Fns;
8974
8975 // FIXME: This approach for uniquing ADL results (and removing
8976 // redundant candidates from the set) relies on pointer-equality,
8977 // which means we need to key off the canonical decl. However,
8978 // always going back to the canonical decl might not get us the
8979 // right set of default arguments. What default arguments are
8980 // we supposed to consider on ADL candidates, anyway?
8981
8982 // FIXME: Pass in the explicit template arguments?
8983 ArgumentDependentLookup(Name, Loc, Args, Fns);
8984
8985 // Erase all of the candidates we already knew about.
8986 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8987 CandEnd = CandidateSet.end();
8988 Cand != CandEnd; ++Cand)
8989 if (Cand->Function) {
8990 Fns.erase(Cand->Function);
8991 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8992 Fns.erase(FunTmpl);
8993 }
8994
8995 // For each of the ADL candidates we found, add it to the overload
8996 // set.
8997 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8998 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8999
9000 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9001 if (ExplicitTemplateArgs)
9002 continue;
9003
9004 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
9005 /*SupressUserConversions=*/false, PartialOverloading,
9006 /*AllowExplicitConversions*/ false,
9007 /*AllowExplicit*/ true, ADLCallKind::UsesADL);
9008 } else {
9009 AddTemplateOverloadCandidate(
9010 cast<FunctionTemplateDecl>(*I), FoundDecl, ExplicitTemplateArgs, Args,
9011 CandidateSet,
9012 /*SuppressUserConversions=*/false, PartialOverloading,
9013 /*AllowExplicit*/true, ADLCallKind::UsesADL);
9014 }
9015 }
9016}
9017
9018namespace {
9019enum class Comparison { Equal, Better, Worse };
9020}
9021
9022/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9023/// overload resolution.
9024///
9025/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9026/// Cand1's first N enable_if attributes have precisely the same conditions as
9027/// Cand2's first N enable_if attributes (where N = the number of enable_if
9028/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9029///
9030/// Note that you can have a pair of candidates such that Cand1's enable_if
9031/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9032/// worse than Cand1's.
9033static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9034 const FunctionDecl *Cand2) {
9035 // Common case: One (or both) decls don't have enable_if attrs.
9036 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9037 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9038 if (!Cand1Attr || !Cand2Attr) {
9039 if (Cand1Attr == Cand2Attr)
9040 return Comparison::Equal;
9041 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9042 }
9043
9044 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9045 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9046
9047 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9048 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9049 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9050 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9051
9052 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9053 // has fewer enable_if attributes than Cand2, and vice versa.
9054 if (!Cand1A)
9055 return Comparison::Worse;
9056 if (!Cand2A)
9057 return Comparison::Better;
9058
9059 Cand1ID.clear();
9060 Cand2ID.clear();
9061
9062 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9063 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9064 if (Cand1ID != Cand2ID)
9065 return Comparison::Worse;
9066 }
9067
9068 return Comparison::Equal;
9069}
9070
9071static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9072 const OverloadCandidate &Cand2) {
9073 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9074 !Cand2.Function->isMultiVersion())
9075 return false;
9076
9077 // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
9078 // is obviously better.
9079 if (Cand1.Function->isInvalidDecl()) return false;
9080 if (Cand2.Function->isInvalidDecl()) return true;
9081
9082 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9083 // cpu_dispatch, else arbitrarily based on the identifiers.
9084 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9085 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9086 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9087 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9088
9089 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9090 return false;
9091
9092 if (Cand1CPUDisp && !Cand2CPUDisp)
9093 return true;
9094 if (Cand2CPUDisp && !Cand1CPUDisp)
9095 return false;
9096
9097 if (Cand1CPUSpec && Cand2CPUSpec) {
9098 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9099 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
9100
9101 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9102 FirstDiff = std::mismatch(
9103 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9104 Cand2CPUSpec->cpus_begin(),
9105 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9106 return LHS->getName() == RHS->getName();
9107 });
9108
9109 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9111, __PRETTY_FUNCTION__))
9110 "Two different cpu-specific versions should not have the same "((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9111, __PRETTY_FUNCTION__))
9111 "identifier list, otherwise they'd be the same decl!")((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9111, __PRETTY_FUNCTION__))
;
9112 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
9113 }
9114 llvm_unreachable("No way to get here unless both had cpu_dispatch")::llvm::llvm_unreachable_internal("No way to get here unless both had cpu_dispatch"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9114)
;
9115}
9116
9117/// isBetterOverloadCandidate - Determines whether the first overload
9118/// candidate is a better candidate than the second (C++ 13.3.3p1).
9119bool clang::isBetterOverloadCandidate(
9120 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9121 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9122 // Define viable functions to be better candidates than non-viable
9123 // functions.
9124 if (!Cand2.Viable)
9125 return Cand1.Viable;
9126 else if (!Cand1.Viable)
9127 return false;
9128
9129 // C++ [over.match.best]p1:
9130 //
9131 // -- if F is a static member function, ICS1(F) is defined such
9132 // that ICS1(F) is neither better nor worse than ICS1(G) for
9133 // any function G, and, symmetrically, ICS1(G) is neither
9134 // better nor worse than ICS1(F).
9135 unsigned StartArg = 0;
9136 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9137 StartArg = 1;
9138
9139 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9140 // We don't allow incompatible pointer conversions in C++.
9141 if (!S.getLangOpts().CPlusPlus)
9142 return ICS.isStandard() &&
9143 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9144
9145 // The only ill-formed conversion we allow in C++ is the string literal to
9146 // char* conversion, which is only considered ill-formed after C++11.
9147 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9148 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9149 };
9150
9151 // Define functions that don't require ill-formed conversions for a given
9152 // argument to be better candidates than functions that do.
9153 unsigned NumArgs = Cand1.Conversions.size();
9154 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"
) ? static_cast<void> (0) : __assert_fail ("Cand2.Conversions.size() == NumArgs && \"Overload candidate mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9154, __PRETTY_FUNCTION__))
;
9155 bool HasBetterConversion = false;
9156 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9157 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9158 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9159 if (Cand1Bad != Cand2Bad) {
9160 if (Cand1Bad)
9161 return false;
9162 HasBetterConversion = true;
9163 }
9164 }
9165
9166 if (HasBetterConversion)
9167 return true;
9168
9169 // C++ [over.match.best]p1:
9170 // A viable function F1 is defined to be a better function than another
9171 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9172 // conversion sequence than ICSi(F2), and then...
9173 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9174 switch (CompareImplicitConversionSequences(S, Loc,
9175 Cand1.Conversions[ArgIdx],
9176 Cand2.Conversions[ArgIdx])) {
9177 case ImplicitConversionSequence::Better:
9178 // Cand1 has a better conversion sequence.
9179 HasBetterConversion = true;
9180 break;
9181
9182 case ImplicitConversionSequence::Worse:
9183 // Cand1 can't be better than Cand2.
9184 return false;
9185
9186 case ImplicitConversionSequence::Indistinguishable:
9187 // Do nothing.
9188 break;
9189 }
9190 }
9191
9192 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9193 // ICSj(F2), or, if not that,
9194 if (HasBetterConversion)
9195 return true;
9196
9197 // -- the context is an initialization by user-defined conversion
9198 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9199 // from the return type of F1 to the destination type (i.e.,
9200 // the type of the entity being initialized) is a better
9201 // conversion sequence than the standard conversion sequence
9202 // from the return type of F2 to the destination type.
9203 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9204 Cand1.Function && Cand2.Function &&
9205 isa<CXXConversionDecl>(Cand1.Function) &&
9206 isa<CXXConversionDecl>(Cand2.Function)) {
9207 // First check whether we prefer one of the conversion functions over the
9208 // other. This only distinguishes the results in non-standard, extension
9209 // cases such as the conversion from a lambda closure type to a function
9210 // pointer or block.
9211 ImplicitConversionSequence::CompareKind Result =
9212 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9213 if (Result == ImplicitConversionSequence::Indistinguishable)
9214 Result = CompareStandardConversionSequences(S, Loc,
9215 Cand1.FinalConversion,
9216 Cand2.FinalConversion);
9217
9218 if (Result != ImplicitConversionSequence::Indistinguishable)
9219 return Result == ImplicitConversionSequence::Better;
9220
9221 // FIXME: Compare kind of reference binding if conversion functions
9222 // convert to a reference type used in direct reference binding, per
9223 // C++14 [over.match.best]p1 section 2 bullet 3.
9224 }
9225
9226 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9227 // as combined with the resolution to CWG issue 243.
9228 //
9229 // When the context is initialization by constructor ([over.match.ctor] or
9230 // either phase of [over.match.list]), a constructor is preferred over
9231 // a conversion function.
9232 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9233 Cand1.Function && Cand2.Function &&
9234 isa<CXXConstructorDecl>(Cand1.Function) !=
9235 isa<CXXConstructorDecl>(Cand2.Function))
9236 return isa<CXXConstructorDecl>(Cand1.Function);
9237
9238 // -- F1 is a non-template function and F2 is a function template
9239 // specialization, or, if not that,
9240 bool Cand1IsSpecialization = Cand1.Function &&
9241 Cand1.Function->getPrimaryTemplate();
9242 bool Cand2IsSpecialization = Cand2.Function &&
9243 Cand2.Function->getPrimaryTemplate();
9244 if (Cand1IsSpecialization != Cand2IsSpecialization)
9245 return Cand2IsSpecialization;
9246
9247 // -- F1 and F2 are function template specializations, and the function
9248 // template for F1 is more specialized than the template for F2
9249 // according to the partial ordering rules described in 14.5.5.2, or,
9250 // if not that,
9251 if (Cand1IsSpecialization && Cand2IsSpecialization) {
9252 if (FunctionTemplateDecl *BetterTemplate
9253 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9254 Cand2.Function->getPrimaryTemplate(),
9255 Loc,
9256 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9257 : TPOC_Call,
9258 Cand1.ExplicitCallArguments,
9259 Cand2.ExplicitCallArguments))
9260 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9261 }
9262
9263 // FIXME: Work around a defect in the C++17 inheriting constructor wording.
9264 // A derived-class constructor beats an (inherited) base class constructor.
9265 bool Cand1IsInherited =
9266 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9267 bool Cand2IsInherited =
9268 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9269 if (Cand1IsInherited != Cand2IsInherited)
9270 return Cand2IsInherited;
9271 else if (Cand1IsInherited) {
9272 assert(Cand2IsInherited)((Cand2IsInherited) ? static_cast<void> (0) : __assert_fail
("Cand2IsInherited", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9272, __PRETTY_FUNCTION__))
;
9273 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9274 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9275 if (Cand1Class->isDerivedFrom(Cand2Class))
9276 return true;
9277 if (Cand2Class->isDerivedFrom(Cand1Class))
9278 return false;
9279 // Inherited from sibling base classes: still ambiguous.
9280 }
9281
9282 // Check C++17 tie-breakers for deduction guides.
9283 {
9284 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9285 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9286 if (Guide1 && Guide2) {
9287 // -- F1 is generated from a deduction-guide and F2 is not
9288 if (Guide1->isImplicit() != Guide2->isImplicit())
9289 return Guide2->isImplicit();
9290
9291 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9292 if (Guide1->isCopyDeductionCandidate())
9293 return true;
9294 }
9295 }
9296
9297 // Check for enable_if value-based overload resolution.
9298 if (Cand1.Function && Cand2.Function) {
9299 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9300 if (Cmp != Comparison::Equal)
9301 return Cmp == Comparison::Better;
9302 }
9303
9304 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9305 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9306 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9307 S.IdentifyCUDAPreference(Caller, Cand2.Function);
9308 }
9309
9310 bool HasPS1 = Cand1.Function != nullptr &&
9311 functionHasPassObjectSizeParams(Cand1.Function);
9312 bool HasPS2 = Cand2.Function != nullptr &&
9313 functionHasPassObjectSizeParams(Cand2.Function);
9314 if (HasPS1 != HasPS2 && HasPS1)
9315 return true;
9316
9317 return isBetterMultiversionCandidate(Cand1, Cand2);
9318}
9319
9320/// Determine whether two declarations are "equivalent" for the purposes of
9321/// name lookup and overload resolution. This applies when the same internal/no
9322/// linkage entity is defined by two modules (probably by textually including
9323/// the same header). In such a case, we don't consider the declarations to
9324/// declare the same entity, but we also don't want lookups with both
9325/// declarations visible to be ambiguous in some cases (this happens when using
9326/// a modularized libstdc++).
9327bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9328 const NamedDecl *B) {
9329 auto *VA = dyn_cast_or_null<ValueDecl>(A);
9330 auto *VB = dyn_cast_or_null<ValueDecl>(B);
9331 if (!VA || !VB)
9332 return false;
9333
9334 // The declarations must be declaring the same name as an internal linkage
9335 // entity in different modules.
9336 if (!VA->getDeclContext()->getRedeclContext()->Equals(
9337 VB->getDeclContext()->getRedeclContext()) ||
9338 getOwningModule(const_cast<ValueDecl *>(VA)) ==
9339 getOwningModule(const_cast<ValueDecl *>(VB)) ||
9340 VA->isExternallyVisible() || VB->isExternallyVisible())
9341 return false;
9342
9343 // Check that the declarations appear to be equivalent.
9344 //
9345 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9346 // For constants and functions, we should check the initializer or body is
9347 // the same. For non-constant variables, we shouldn't allow it at all.
9348 if (Context.hasSameType(VA->getType(), VB->getType()))
9349 return true;
9350
9351 // Enum constants within unnamed enumerations will have different types, but
9352 // may still be similar enough to be interchangeable for our purposes.
9353 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9354 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9355 // Only handle anonymous enums. If the enumerations were named and
9356 // equivalent, they would have been merged to the same type.
9357 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9358 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9359 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9360 !Context.hasSameType(EnumA->getIntegerType(),
9361 EnumB->getIntegerType()))
9362 return false;
9363 // Allow this only if the value is the same for both enumerators.
9364 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9365 }
9366 }
9367
9368 // Nothing else is sufficiently similar.
9369 return false;
9370}
9371
9372void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9373 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9374 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9375
9376 Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9377 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9378 << !M << (M ? M->getFullModuleName() : "");
9379
9380 for (auto *E : Equiv) {
9381 Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9382 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9383 << !M << (M ? M->getFullModuleName() : "");
9384 }
9385}
9386
9387/// Computes the best viable function (C++ 13.3.3)
9388/// within an overload candidate set.
9389///
9390/// \param Loc The location of the function name (or operator symbol) for
9391/// which overload resolution occurs.
9392///
9393/// \param Best If overload resolution was successful or found a deleted
9394/// function, \p Best points to the candidate function found.
9395///
9396/// \returns The result of overload resolution.
9397OverloadingResult
9398OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9399 iterator &Best) {
9400 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9401 std::transform(begin(), end(), std::back_inserter(Candidates),
9402 [](OverloadCandidate &Cand) { return &Cand; });
9403
9404 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9405 // are accepted by both clang and NVCC. However, during a particular
9406 // compilation mode only one call variant is viable. We need to
9407 // exclude non-viable overload candidates from consideration based
9408 // only on their host/device attributes. Specifically, if one
9409 // candidate call is WrongSide and the other is SameSide, we ignore
9410 // the WrongSide candidate.
9411 if (S.getLangOpts().CUDA) {
9412 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9413 bool ContainsSameSideCandidate =
9414 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9415 return Cand->Function &&
9416 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9417 Sema::CFP_SameSide;
9418 });
9419 if (ContainsSameSideCandidate) {
9420 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9421 return Cand->Function &&
9422 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9423 Sema::CFP_WrongSide;
9424 };
9425 llvm::erase_if(Candidates, IsWrongSideCandidate);
9426 }
9427 }
9428
9429 // Find the best viable function.
9430 Best = end();
9431 for (auto *Cand : Candidates)
9432 if (Cand->Viable)
9433 if (Best == end() ||
9434 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9435 Best = Cand;
9436
9437 // If we didn't find any viable functions, abort.
9438 if (Best == end())
9439 return OR_No_Viable_Function;
9440
9441 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9442
9443 // Make sure that this function is better than every other viable
9444 // function. If not, we have an ambiguity.
9445 for (auto *Cand : Candidates) {
9446 if (Cand->Viable && Cand != Best &&
9447 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) {
9448 if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
9449 Cand->Function)) {
9450 EquivalentCands.push_back(Cand->Function);
9451 continue;
9452 }
9453
9454 Best = end();
9455 return OR_Ambiguous;
9456 }
9457 }
9458
9459 // Best is the best viable function.
9460 if (Best->Function && Best->Function->isDeleted())
9461 return OR_Deleted;
9462
9463 if (!EquivalentCands.empty())
9464 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9465 EquivalentCands);
9466
9467 return OR_Success;
9468}
9469
9470namespace {
9471
9472enum OverloadCandidateKind {
9473 oc_function,
9474 oc_method,
9475 oc_constructor,
9476 oc_implicit_default_constructor,
9477 oc_implicit_copy_constructor,
9478 oc_implicit_move_constructor,
9479 oc_implicit_copy_assignment,
9480 oc_implicit_move_assignment,
9481 oc_inherited_constructor
9482};
9483
9484enum OverloadCandidateSelect {
9485 ocs_non_template,
9486 ocs_template,
9487 ocs_described_template,
9488};
9489
9490static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
9491ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9492 std::string &Description) {
9493
9494 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
9495 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9496 isTemplate = true;
9497 Description = S.getTemplateArgumentBindingsText(
9498 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9499 }
9500
9501 OverloadCandidateSelect Select = [&]() {
9502 if (!Description.empty())
9503 return ocs_described_template;
9504 return isTemplate ? ocs_template : ocs_non_template;
9505 }();
9506
9507 OverloadCandidateKind Kind = [&]() {
9508 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9509 if (!Ctor->isImplicit()) {
9510 if (isa<ConstructorUsingShadowDecl>(Found))
9511 return oc_inherited_constructor;
9512 else
9513 return oc_constructor;
9514 }
9515
9516 if (Ctor->isDefaultConstructor())
9517 return oc_implicit_default_constructor;
9518
9519 if (Ctor->isMoveConstructor())
9520 return oc_implicit_move_constructor;
9521
9522 assert(Ctor->isCopyConstructor() &&((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9523, __PRETTY_FUNCTION__))
9523 "unexpected sort of implicit constructor")((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9523, __PRETTY_FUNCTION__))
;
9524 return oc_implicit_copy_constructor;
9525 }
9526
9527 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9528 // This actually gets spelled 'candidate function' for now, but
9529 // it doesn't hurt to split it out.
9530 if (!Meth->isImplicit())
9531 return oc_method;
9532
9533 if (Meth->isMoveAssignmentOperator())
9534 return oc_implicit_move_assignment;
9535
9536 if (Meth->isCopyAssignmentOperator())
9537 return oc_implicit_copy_assignment;
9538
9539 assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((isa<CXXConversionDecl>(Meth) && "expected conversion"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(Meth) && \"expected conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9539, __PRETTY_FUNCTION__))
;
9540 return oc_method;
9541 }
9542
9543 return oc_function;
9544 }();
9545
9546 return std::make_pair(Kind, Select);
9547}
9548
9549void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9550 // FIXME: It'd be nice to only emit a note once per using-decl per overload
9551 // set.
9552 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9553 S.Diag(FoundDecl->getLocation(),
9554 diag::note_ovl_candidate_inherited_constructor)
9555 << Shadow->getNominatedBaseClass();
9556}
9557
9558} // end anonymous namespace
9559
9560static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9561 const FunctionDecl *FD) {
9562 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9563 bool AlwaysTrue;
9564 if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9565 return false;
9566 if (!AlwaysTrue)
9567 return false;
9568 }
9569 return true;
9570}
9571
9572/// Returns true if we can take the address of the function.
9573///
9574/// \param Complain - If true, we'll emit a diagnostic
9575/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9576/// we in overload resolution?
9577/// \param Loc - The location of the statement we're complaining about. Ignored
9578/// if we're not complaining, or if we're in overload resolution.
9579static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9580 bool Complain,
9581 bool InOverloadResolution,
9582 SourceLocation Loc) {
9583 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9584 if (Complain) {
9585 if (InOverloadResolution)
9586 S.Diag(FD->getBeginLoc(),
9587 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9588 else
9589 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9590 }
9591 return false;
9592 }
9593
9594 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9595 return P->hasAttr<PassObjectSizeAttr>();
9596 });
9597 if (I == FD->param_end())
9598 return true;
9599
9600 if (Complain) {
9601 // Add one to ParamNo because it's user-facing
9602 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9603 if (InOverloadResolution)
9604 S.Diag(FD->getLocation(),
9605 diag::note_ovl_candidate_has_pass_object_size_params)
9606 << ParamNo;
9607 else
9608 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9609 << FD << ParamNo;
9610 }
9611 return false;
9612}
9613
9614static bool checkAddressOfCandidateIsAvailable(Sema &S,
9615 const FunctionDecl *FD) {
9616 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9617 /*InOverloadResolution=*/true,
9618 /*Loc=*/SourceLocation());
9619}
9620
9621bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9622 bool Complain,
9623 SourceLocation Loc) {
9624 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9625 /*InOverloadResolution=*/false,
9626 Loc);
9627}
9628
9629// Notes the location of an overload candidate.
9630void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9631 QualType DestType, bool TakingAddress) {
9632 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9633 return;
9634 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
9635 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9636 return;
9637
9638 std::string FnDesc;
9639 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
9640 ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9641 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9642 << (unsigned)KSPair.first << (unsigned)KSPair.second
9643 << Fn << FnDesc;
9644
9645 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9646 Diag(Fn->getLocation(), PD);
9647 MaybeEmitInheritedConstructorNote(*this, Found);
9648}
9649
9650// Notes the location of all overload candidates designated through
9651// OverloadedExpr
9652void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9653 bool TakingAddress) {
9654 assert(OverloadedExpr->getType() == Context.OverloadTy)((OverloadedExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("OverloadedExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9654, __PRETTY_FUNCTION__))
;
9655
9656 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9657 OverloadExpr *OvlExpr = Ovl.Expression;
9658
9659 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9660 IEnd = OvlExpr->decls_end();
9661 I != IEnd; ++I) {
9662 if (FunctionTemplateDecl *FunTmpl =
9663 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9664 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9665 TakingAddress);
9666 } else if (FunctionDecl *Fun
9667 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9668 NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9669 }
9670 }
9671}
9672
9673/// Diagnoses an ambiguous conversion. The partial diagnostic is the
9674/// "lead" diagnostic; it will be given two arguments, the source and
9675/// target types of the conversion.
9676void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9677 Sema &S,
9678 SourceLocation CaretLoc,
9679 const PartialDiagnostic &PDiag) const {
9680 S.Diag(CaretLoc, PDiag)
9681 << Ambiguous.getFromType() << Ambiguous.getToType();
9682 // FIXME: The note limiting machinery is borrowed from
9683 // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9684 // refactoring here.
9685 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9686 unsigned CandsShown = 0;
9687 AmbiguousConversionSequence::const_iterator I, E;
9688 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9689 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9690 break;
9691 ++CandsShown;
9692 S.NoteOverloadCandidate(I->first, I->second);
9693 }
9694 if (I != E)
9695 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9696}
9697
9698static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9699 unsigned I, bool TakingCandidateAddress) {
9700 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9701 assert(Conv.isBad())((Conv.isBad()) ? static_cast<void> (0) : __assert_fail
("Conv.isBad()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9701, __PRETTY_FUNCTION__))
;
1
'?' condition is true
9702 assert(Cand->Function && "for now, candidate must be a function")((Cand->Function && "for now, candidate must be a function"
) ? static_cast<void> (0) : __assert_fail ("Cand->Function && \"for now, candidate must be a function\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9702, __PRETTY_FUNCTION__))
;
2
Assuming the condition is true
3
'?' condition is true
9703 FunctionDecl *Fn = Cand->Function;
9704
9705 // There's a conversion slot for the object argument if this is a
9706 // non-constructor method. Note that 'I' corresponds the
9707 // conversion-slot index.
9708 bool isObjectArgument = false;
9709 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9710 if (I == 0)
9711 isObjectArgument = true;
9712 else
9713 I--;
9714 }
9715
9716 std::string FnDesc;
9717 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9718 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9719
9720 Expr *FromExpr = Conv.Bad.FromExpr;
4
'FromExpr' initialized here
9721 QualType FromTy = Conv.Bad.getFromType();
9722 QualType ToTy = Conv.Bad.getToType();
9723
9724 if (FromTy == S.Context.OverloadTy) {
5
Taking false branch
9725 assert(FromExpr && "overload set argument came from implicit argument?")((FromExpr && "overload set argument came from implicit argument?"
) ? static_cast<void> (0) : __assert_fail ("FromExpr && \"overload set argument came from implicit argument?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9725, __PRETTY_FUNCTION__))
;
9726 Expr *E = FromExpr->IgnoreParens();
9727 if (isa<UnaryOperator>(E))
9728 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9729 DeclarationName Name = cast<OverloadExpr>(E)->getName();
9730
9731 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9732 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9733 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
9734 << Name << I + 1;
9735 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9736 return;
9737 }
9738
9739 // Do some hand-waving analysis to see if the non-viability is due
9740 // to a qualifier mismatch.
9741 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9742 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9743 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6
Taking false branch
9744 CToTy = RT->getPointeeType();
9745 else {
9746 // TODO: detect and diagnose the full richness of const mismatches.
9747 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
7
Taking false branch
9748 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9749 CFromTy = FromPT->getPointeeType();
9750 CToTy = ToPT->getPointeeType();
9751 }
9752 }
9753
9754 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8
Assuming the condition is false
9
Taking false branch
9755 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9756 Qualifiers FromQs = CFromTy.getQualifiers();
9757 Qualifiers ToQs = CToTy.getQualifiers();
9758
9759 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9760 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9761 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9762 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9763 << ToTy << (unsigned)isObjectArgument << I + 1;
9764 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9765 return;
9766 }
9767
9768 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9769 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9770 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9771 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9772 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9773 << (unsigned)isObjectArgument << I + 1;
9774 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9775 return;
9776 }
9777
9778 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9779 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9780 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9781 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9782 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9783 << (unsigned)isObjectArgument << I + 1;
9784 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9785 return;
9786 }
9787
9788 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9789 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9790 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9791 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9792 << FromQs.hasUnaligned() << I + 1;
9793 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9794 return;
9795 }
9796
9797 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9798 assert(CVR && "unexpected qualifiers mismatch")((CVR && "unexpected qualifiers mismatch") ? static_cast
<void> (0) : __assert_fail ("CVR && \"unexpected qualifiers mismatch\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9798, __PRETTY_FUNCTION__))
;
9799
9800 if (isObjectArgument) {
9801 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9802 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9803 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9804 << (CVR - 1);
9805 } else {
9806 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9807 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9808 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9809 << (CVR - 1) << I + 1;
9810 }
9811 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9812 return;
9813 }
9814
9815 // Special diagnostic for failure to convert an initializer list, since
9816 // telling the user that it has type void is not useful.
9817 if (FromExpr && isa<InitListExpr>(FromExpr)) {
10
Assuming 'FromExpr' is null
9818 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9819 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9820 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9821 << ToTy << (unsigned)isObjectArgument << I + 1;
9822 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9823 return;
9824 }
9825
9826 // Diagnose references or pointers to incomplete types differently,
9827 // since it's far from impossible that the incompleteness triggered
9828 // the failure.
9829 QualType TempFromTy = FromTy.getNonReferenceType();
9830 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
11
Taking false branch
9831 TempFromTy = PTy->getPointeeType();
9832 if (TempFromTy->isIncompleteType()) {
12
Assuming the condition is false
13
Taking false branch
9833 // Emit the generic diagnostic and, optionally, add the hints to it.
9834 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9835 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9836 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9837 << ToTy << (unsigned)isObjectArgument << I + 1
9838 << (unsigned)(Cand->Fix.Kind);
9839
9840 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9841 return;
9842 }
9843
9844 // Diagnose base -> derived pointer conversions.
9845 unsigned BaseToDerivedConversion = 0;
9846 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
14
Taking false branch
9847 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9848 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9849 FromPtrTy->getPointeeType()) &&
9850 !FromPtrTy->getPointeeType()->isIncompleteType() &&
9851 !ToPtrTy->getPointeeType()->isIncompleteType() &&
9852 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9853 FromPtrTy->getPointeeType()))
9854 BaseToDerivedConversion = 1;
9855 }
9856 } else if (const ObjCObjectPointerType *FromPtrTy
15
Taking false branch
9857 = FromTy->getAs<ObjCObjectPointerType>()) {
9858 if (const ObjCObjectPointerType *ToPtrTy
9859 = ToTy->getAs<ObjCObjectPointerType>())
9860 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9861 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9862 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9863 FromPtrTy->getPointeeType()) &&
9864 FromIface->isSuperClassOf(ToIface))
9865 BaseToDerivedConversion = 2;
9866 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
16
Taking true branch
9867 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
17
Taking false branch
9868 !FromTy->isIncompleteType() &&
9869 !ToRefTy->getPointeeType()->isIncompleteType() &&
9870 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9871 BaseToDerivedConversion = 3;
9872 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
18
Called C++ object pointer is null
9873 ToTy.getNonReferenceType().getCanonicalType() ==
9874 FromTy.getNonReferenceType().getCanonicalType()) {
9875 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9876 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9877 << (unsigned)isObjectArgument << I + 1
9878 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
9879 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9880 return;
9881 }
9882 }
9883
9884 if (BaseToDerivedConversion) {
9885 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
9886 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9887 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9888 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
9889 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9890 return;
9891 }
9892
9893 if (isa<ObjCObjectPointerType>(CFromTy) &&
9894 isa<PointerType>(CToTy)) {
9895 Qualifiers FromQs = CFromTy.getQualifiers();
9896 Qualifiers ToQs = CToTy.getQualifiers();
9897 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9898 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9899 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9900 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9901 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
9902 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9903 return;
9904 }
9905 }
9906
9907 if (TakingCandidateAddress &&
9908 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9909 return;
9910
9911 // Emit the generic diagnostic and, optionally, add the hints to it.
9912 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9913 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
9914 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
9915 << ToTy << (unsigned)isObjectArgument << I + 1
9916 << (unsigned)(Cand->Fix.Kind);
9917
9918 // If we can fix the conversion, suggest the FixIts.
9919 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9920 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9921 FDiag << *HI;
9922 S.Diag(Fn->getLocation(), FDiag);
9923
9924 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9925}
9926
9927/// Additional arity mismatch diagnosis specific to a function overload
9928/// candidates. This is not covered by the more general DiagnoseArityMismatch()
9929/// over a candidate in any candidate set.
9930static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9931 unsigned NumArgs) {
9932 FunctionDecl *Fn = Cand->Function;
9933 unsigned MinParams = Fn->getMinRequiredArguments();
9934
9935 // With invalid overloaded operators, it's possible that we think we
9936 // have an arity mismatch when in fact it looks like we have the
9937 // right number of arguments, because only overloaded operators have
9938 // the weird behavior of overloading member and non-member functions.
9939 // Just don't report anything.
9940 if (Fn->isInvalidDecl() &&
9941 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9942 return true;
9943
9944 if (NumArgs < MinParams) {
9945 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9947, __PRETTY_FUNCTION__))
9946 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9947, __PRETTY_FUNCTION__))
9947 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9947, __PRETTY_FUNCTION__))
;
9948 } else {
9949 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9951, __PRETTY_FUNCTION__))
9950 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9951, __PRETTY_FUNCTION__))
9951 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9951, __PRETTY_FUNCTION__))
;
9952 }
9953
9954 return false;
9955}
9956
9957/// General arity mismatch diagnosis over a candidate in a candidate set.
9958static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9959 unsigned NumFormalArgs) {
9960 assert(isa<FunctionDecl>(D) &&((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9963, __PRETTY_FUNCTION__))
9961 "The templated declaration should at least be a function"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9963, __PRETTY_FUNCTION__))
9962 " when diagnosing bad template argument deduction due to too many"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9963, __PRETTY_FUNCTION__))
9963 " or too few arguments")((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 9963, __PRETTY_FUNCTION__))
;
9964
9965 FunctionDecl *Fn = cast<FunctionDecl>(D);
9966
9967 // TODO: treat calls to a missing default constructor as a special case
9968 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9969 unsigned MinParams = Fn->getMinRequiredArguments();
9970
9971 // at least / at most / exactly
9972 unsigned mode, modeCount;
9973 if (NumFormalArgs < MinParams) {
9974 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9975 FnTy->isTemplateVariadic())
9976 mode = 0; // "at least"
9977 else
9978 mode = 2; // "exactly"
9979 modeCount = MinParams;
9980 } else {
9981 if (MinParams != FnTy->getNumParams())
9982 mode = 1; // "at most"
9983 else
9984 mode = 2; // "exactly"
9985 modeCount = FnTy->getNumParams();
9986 }
9987
9988 std::string Description;
9989 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
9990 ClassifyOverloadCandidate(S, Found, Fn, Description);
9991
9992 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
9993 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
9994 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9995 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
9996 else
9997 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
9998 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
9999 << Description << mode << modeCount << NumFormalArgs;
10000
10001 MaybeEmitInheritedConstructorNote(S, Found);
10002}
10003
10004/// Arity mismatch diagnosis specific to a function overload candidate.
10005static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10006 unsigned NumFormalArgs) {
10007 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10008 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10009}
10010
10011static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10012 if (TemplateDecl *TD = Templated->getDescribedTemplate())
10013 return TD;
10014 llvm_unreachable("Unsupported: Getting the described template declaration"::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10015)
10015 " for bad deduction diagnosis")::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10015)
;
10016}
10017
10018/// Diagnose a failed template-argument deduction.
10019static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10020 DeductionFailureInfo &DeductionFailure,
10021 unsigned NumArgs,
10022 bool TakingCandidateAddress) {
10023 TemplateParameter Param = DeductionFailure.getTemplateParameter();
10024 NamedDecl *ParamD;
10025 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10026 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10027 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10028 switch (DeductionFailure.Result) {
10029 case Sema::TDK_Success:
10030 llvm_unreachable("TDK_success while diagnosing bad deduction")::llvm::llvm_unreachable_internal("TDK_success while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10030)
;
10031
10032 case Sema::TDK_Incomplete: {
10033 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10033, __PRETTY_FUNCTION__))
;
10034 S.Diag(Templated->getLocation(),
10035 diag::note_ovl_candidate_incomplete_deduction)
10036 << ParamD->getDeclName();
10037 MaybeEmitInheritedConstructorNote(S, Found);
10038 return;
10039 }
10040
10041 case Sema::TDK_IncompletePack: {
10042 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10042, __PRETTY_FUNCTION__))
;
10043 S.Diag(Templated->getLocation(),
10044 diag::note_ovl_candidate_incomplete_deduction_pack)
10045 << ParamD->getDeclName()
10046 << (DeductionFailure.getFirstArg()->pack_size() + 1)
10047 << *DeductionFailure.getFirstArg();
10048 MaybeEmitInheritedConstructorNote(S, Found);
10049 return;
10050 }
10051
10052 case Sema::TDK_Underqualified: {
10053 assert(ParamD && "no parameter found for bad qualifiers deduction result")((ParamD && "no parameter found for bad qualifiers deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for bad qualifiers deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10053, __PRETTY_FUNCTION__))
;
10054 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10055
10056 QualType Param = DeductionFailure.getFirstArg()->getAsType();
10057
10058 // Param will have been canonicalized, but it should just be a
10059 // qualified version of ParamD, so move the qualifiers to that.
10060 QualifierCollector Qs;
10061 Qs.strip(Param);
10062 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10063 assert(S.Context.hasSameType(Param, NonCanonParam))((S.Context.hasSameType(Param, NonCanonParam)) ? static_cast<
void> (0) : __assert_fail ("S.Context.hasSameType(Param, NonCanonParam)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10063, __PRETTY_FUNCTION__))
;
10064
10065 // Arg has also been canonicalized, but there's nothing we can do
10066 // about that. It also doesn't matter as much, because it won't
10067 // have any template parameters in it (because deduction isn't
10068 // done on dependent types).
10069 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10070
10071 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10072 << ParamD->getDeclName() << Arg << NonCanonParam;
10073 MaybeEmitInheritedConstructorNote(S, Found);
10074 return;
10075 }
10076
10077 case Sema::TDK_Inconsistent: {
10078 assert(ParamD && "no parameter found for inconsistent deduction result")((ParamD && "no parameter found for inconsistent deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for inconsistent deduction result\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10078, __PRETTY_FUNCTION__))
;
10079 int which = 0;
10080 if (isa<TemplateTypeParmDecl>(ParamD))
10081 which = 0;
10082 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10083 // Deduction might have failed because we deduced arguments of two
10084 // different types for a non-type template parameter.
10085 // FIXME: Use a different TDK value for this.
10086 QualType T1 =
10087 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10088 QualType T2 =
10089 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10090 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10091 S.Diag(Templated->getLocation(),
10092 diag::note_ovl_candidate_inconsistent_deduction_types)
10093 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10094 << *DeductionFailure.getSecondArg() << T2;
10095 MaybeEmitInheritedConstructorNote(S, Found);
10096 return;
10097 }
10098
10099 which = 1;
10100 } else {
10101 which = 2;
10102 }
10103
10104 S.Diag(Templated->getLocation(),
10105 diag::note_ovl_candidate_inconsistent_deduction)
10106 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10107 << *DeductionFailure.getSecondArg();
10108 MaybeEmitInheritedConstructorNote(S, Found);
10109 return;
10110 }
10111
10112 case Sema::TDK_InvalidExplicitArguments:
10113 assert(ParamD && "no parameter found for invalid explicit arguments")((ParamD && "no parameter found for invalid explicit arguments"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for invalid explicit arguments\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10113, __PRETTY_FUNCTION__))
;
10114 if (ParamD->getDeclName())
10115 S.Diag(Templated->getLocation(),
10116 diag::note_ovl_candidate_explicit_arg_mismatch_named)
10117 << ParamD->getDeclName();
10118 else {
10119 int index = 0;
10120 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10121 index = TTP->getIndex();
10122 else if (NonTypeTemplateParmDecl *NTTP
10123 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10124 index = NTTP->getIndex();
10125 else
10126 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10127 S.Diag(Templated->getLocation(),
10128 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10129 << (index + 1);
10130 }
10131 MaybeEmitInheritedConstructorNote(S, Found);
10132 return;
10133
10134 case Sema::TDK_TooManyArguments:
10135 case Sema::TDK_TooFewArguments:
10136 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10137 return;
10138
10139 case Sema::TDK_InstantiationDepth:
10140 S.Diag(Templated->getLocation(),
10141 diag::note_ovl_candidate_instantiation_depth);
10142 MaybeEmitInheritedConstructorNote(S, Found);
10143 return;
10144
10145 case Sema::TDK_SubstitutionFailure: {
10146 // Format the template argument list into the argument string.
10147 SmallString<128> TemplateArgString;
10148 if (TemplateArgumentList *Args =
10149 DeductionFailure.getTemplateArgumentList()) {
10150 TemplateArgString = " ";
10151 TemplateArgString += S.getTemplateArgumentBindingsText(
10152 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10153 }
10154
10155 // If this candidate was disabled by enable_if, say so.
10156 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10157 if (PDiag && PDiag->second.getDiagID() ==
10158 diag::err_typename_nested_not_found_enable_if) {
10159 // FIXME: Use the source range of the condition, and the fully-qualified
10160 // name of the enable_if template. These are both present in PDiag.
10161 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10162 << "'enable_if'" << TemplateArgString;
10163 return;
10164 }
10165
10166 // We found a specific requirement that disabled the enable_if.
10167 if (PDiag && PDiag->second.getDiagID() ==
10168 diag::err_typename_nested_not_found_requirement) {
10169 S.Diag(Templated->getLocation(),
10170 diag::note_ovl_candidate_disabled_by_requirement)
10171 << PDiag->second.getStringArg(0) << TemplateArgString;
10172 return;
10173 }
10174
10175 // Format the SFINAE diagnostic into the argument string.
10176 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10177 // formatted message in another diagnostic.
10178 SmallString<128> SFINAEArgString;
10179 SourceRange R;
10180 if (PDiag) {
10181 SFINAEArgString = ": ";
10182 R = SourceRange(PDiag->first, PDiag->first);
10183 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10184 }
10185
10186 S.Diag(Templated->getLocation(),
10187 diag::note_ovl_candidate_substitution_failure)
10188 << TemplateArgString << SFINAEArgString << R;
10189 MaybeEmitInheritedConstructorNote(S, Found);
10190 return;
10191 }
10192
10193 case Sema::TDK_DeducedMismatch:
10194 case Sema::TDK_DeducedMismatchNested: {
10195 // Format the template argument list into the argument string.
10196 SmallString<128> TemplateArgString;
10197 if (TemplateArgumentList *Args =
10198 DeductionFailure.getTemplateArgumentList()) {
10199 TemplateArgString = " ";
10200 TemplateArgString += S.getTemplateArgumentBindingsText(
10201 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10202 }
10203
10204 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10205 << (*DeductionFailure.getCallArgIndex() + 1)
10206 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10207 << TemplateArgString
10208 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10209 break;
10210 }
10211
10212 case Sema::TDK_NonDeducedMismatch: {
10213 // FIXME: Provide a source location to indicate what we couldn't match.
10214 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10215 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10216 if (FirstTA.getKind() == TemplateArgument::Template &&
10217 SecondTA.getKind() == TemplateArgument::Template) {
10218 TemplateName FirstTN = FirstTA.getAsTemplate();
10219 TemplateName SecondTN = SecondTA.getAsTemplate();
10220 if (FirstTN.getKind() == TemplateName::Template &&
10221 SecondTN.getKind() == TemplateName::Template) {
10222 if (FirstTN.getAsTemplateDecl()->getName() ==
10223 SecondTN.getAsTemplateDecl()->getName()) {
10224 // FIXME: This fixes a bad diagnostic where both templates are named
10225 // the same. This particular case is a bit difficult since:
10226 // 1) It is passed as a string to the diagnostic printer.
10227 // 2) The diagnostic printer only attempts to find a better
10228 // name for types, not decls.
10229 // Ideally, this should folded into the diagnostic printer.
10230 S.Diag(Templated->getLocation(),
10231 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10232 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10233 return;
10234 }
10235 }
10236 }
10237
10238 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10239 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10240 return;
10241
10242 // FIXME: For generic lambda parameters, check if the function is a lambda
10243 // call operator, and if so, emit a prettier and more informative
10244 // diagnostic that mentions 'auto' and lambda in addition to
10245 // (or instead of?) the canonical template type parameters.
10246 S.Diag(Templated->getLocation(),
10247 diag::note_ovl_candidate_non_deduced_mismatch)
10248 << FirstTA << SecondTA;
10249 return;
10250 }
10251 // TODO: diagnose these individually, then kill off
10252 // note_ovl_candidate_bad_deduction, which is uselessly vague.
10253 case Sema::TDK_MiscellaneousDeductionFailure:
10254 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10255 MaybeEmitInheritedConstructorNote(S, Found);
10256 return;
10257 case Sema::TDK_CUDATargetMismatch:
10258 S.Diag(Templated->getLocation(),
10259 diag::note_cuda_ovl_candidate_target_mismatch);
10260 return;
10261 }
10262}
10263
10264/// Diagnose a failed template-argument deduction, for function calls.
10265static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10266 unsigned NumArgs,
10267 bool TakingCandidateAddress) {
10268 unsigned TDK = Cand->DeductionFailure.Result;
10269 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10270 if (CheckArityMismatch(S, Cand, NumArgs))
10271 return;
10272 }
10273 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10274 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10275}
10276
10277/// CUDA: diagnose an invalid call across targets.
10278static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10279 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10280 FunctionDecl *Callee = Cand->Function;
10281
10282 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10283 CalleeTarget = S.IdentifyCUDATarget(Callee);
10284
10285 std::string FnDesc;
10286 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10287 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
10288
10289 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10290 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10291 << FnDesc /* Ignored */
10292 << CalleeTarget << CallerTarget;
10293
10294 // This could be an implicit constructor for which we could not infer the
10295 // target due to a collsion. Diagnose that case.
10296 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10297 if (Meth != nullptr && Meth->isImplicit()) {
10298 CXXRecordDecl *ParentClass = Meth->getParent();
10299 Sema::CXXSpecialMember CSM;
10300
10301 switch (FnKindPair.first) {
10302 default:
10303 return;
10304 case oc_implicit_default_constructor:
10305 CSM = Sema::CXXDefaultConstructor;
10306 break;
10307 case oc_implicit_copy_constructor:
10308 CSM = Sema::CXXCopyConstructor;
10309 break;
10310 case oc_implicit_move_constructor:
10311 CSM = Sema::CXXMoveConstructor;
10312 break;
10313 case oc_implicit_copy_assignment:
10314 CSM = Sema::CXXCopyAssignment;
10315 break;
10316 case oc_implicit_move_assignment:
10317 CSM = Sema::CXXMoveAssignment;
10318 break;
10319 };
10320
10321 bool ConstRHS = false;
10322 if (Meth->getNumParams()) {
10323 if (const ReferenceType *RT =
10324 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10325 ConstRHS = RT->getPointeeType().isConstQualified();
10326 }
10327 }
10328
10329 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10330 /* ConstRHS */ ConstRHS,
10331 /* Diagnose */ true);
10332 }
10333}
10334
10335static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10336 FunctionDecl *Callee = Cand->Function;
10337 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10338
10339 S.Diag(Callee->getLocation(),
10340 diag::note_ovl_candidate_disabled_by_function_cond_attr)
10341 << Attr->getCond()->getSourceRange() << Attr->getMessage();
10342}
10343
10344static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
10345 ExplicitSpecifier ES;
10346 const char *DeclName;
10347 switch (Cand->Function->getDeclKind()) {
10348 case Decl::Kind::CXXConstructor:
10349 ES = cast<CXXConstructorDecl>(Cand->Function)->getExplicitSpecifier();
10350 DeclName = "constructor";
10351 break;
10352 case Decl::Kind::CXXConversion:
10353 ES = cast<CXXConversionDecl>(Cand->Function)->getExplicitSpecifier();
10354 DeclName = "conversion operator";
10355 break;
10356 case Decl::Kind::CXXDeductionGuide:
10357 ES = cast<CXXDeductionGuideDecl>(Cand->Function)->getExplicitSpecifier();
10358 DeclName = "deductiong guide";
10359 break;
10360 default:
10361 llvm_unreachable("invalid Decl")::llvm::llvm_unreachable_internal("invalid Decl", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10361)
;
10362 }
10363 assert(ES.getExpr() && "null expression should be handled before")((ES.getExpr() && "null expression should be handled before"
) ? static_cast<void> (0) : __assert_fail ("ES.getExpr() && \"null expression should be handled before\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10363, __PRETTY_FUNCTION__))
;
10364 S.Diag(Cand->Function->getLocation(),
10365 diag::note_ovl_candidate_explicit_forbidden)
10366 << DeclName;
10367 S.Diag(ES.getExpr()->getBeginLoc(),
10368 diag::note_explicit_bool_resolved_to_true);
10369}
10370
10371static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10372 FunctionDecl *Callee = Cand->Function;
10373
10374 S.Diag(Callee->getLocation(),
10375 diag::note_ovl_candidate_disabled_by_extension)
10376 << S.getOpenCLExtensionsFromDeclExtMap(Callee);
10377}
10378
10379/// Generates a 'note' diagnostic for an overload candidate. We've
10380/// already generated a primary error at the call site.
10381///
10382/// It really does need to be a single diagnostic with its caret
10383/// pointed at the candidate declaration. Yes, this creates some
10384/// major challenges of technical writing. Yes, this makes pointing
10385/// out problems with specific arguments quite awkward. It's still
10386/// better than generating twenty screens of text for every failed
10387/// overload.
10388///
10389/// It would be great to be able to express per-candidate problems
10390/// more richly for those diagnostic clients that cared, but we'd
10391/// still have to be just as careful with the default diagnostics.
10392static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10393 unsigned NumArgs,
10394 bool TakingCandidateAddress) {
10395 FunctionDecl *Fn = Cand->Function;
10396
10397 // Note deleted candidates, but only if they're viable.
10398 if (Cand->Viable) {
10399 if (Fn->isDeleted()) {
10400 std::string FnDesc;
10401 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10402 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
10403
10404 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10405 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10406 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10407 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10408 return;
10409 }
10410
10411 // We don't really have anything else to say about viable candidates.
10412 S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10413 return;
10414 }
10415
10416 switch (Cand->FailureKind) {
10417 case ovl_fail_too_many_arguments:
10418 case ovl_fail_too_few_arguments:
10419 return DiagnoseArityMismatch(S, Cand, NumArgs);
10420
10421 case ovl_fail_bad_deduction:
10422 return DiagnoseBadDeduction(S, Cand, NumArgs,
10423 TakingCandidateAddress);
10424
10425 case ovl_fail_illegal_constructor: {
10426 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10427 << (Fn->getPrimaryTemplate() ? 1 : 0);
10428 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10429 return;
10430 }
10431
10432 case ovl_fail_trivial_conversion:
10433 case ovl_fail_bad_final_conversion:
10434 case ovl_fail_final_conversion_not_exact:
10435 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10436
10437 case ovl_fail_bad_conversion: {
10438 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10439 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10440 if (Cand->Conversions[I].isBad())
10441 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10442
10443 // FIXME: this currently happens when we're called from SemaInit
10444 // when user-conversion overload fails. Figure out how to handle
10445 // those conditions and diagnose them well.
10446 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10447 }
10448
10449 case ovl_fail_bad_target:
10450 return DiagnoseBadTarget(S, Cand);
10451
10452 case ovl_fail_enable_if:
10453 return DiagnoseFailedEnableIfAttr(S, Cand);
10454
10455 case ovl_fail_explicit_resolved:
10456 return DiagnoseFailedExplicitSpec(S, Cand);
10457
10458 case ovl_fail_ext_disabled:
10459 return DiagnoseOpenCLExtensionDisabled(S, Cand);
10460
10461 case ovl_fail_inhctor_slice:
10462 // It's generally not interesting to note copy/move constructors here.
10463 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10464 return;
10465 S.Diag(Fn->getLocation(),
10466 diag::note_ovl_candidate_inherited_constructor_slice)
10467 << (Fn->getPrimaryTemplate() ? 1 : 0)
10468 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10469 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10470 return;
10471
10472 case ovl_fail_addr_not_available: {
10473 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10474 (void)Available;
10475 assert(!Available)((!Available) ? static_cast<void> (0) : __assert_fail (
"!Available", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10475, __PRETTY_FUNCTION__))
;
10476 break;
10477 }
10478 case ovl_non_default_multiversion_function:
10479 // Do nothing, these should simply be ignored.
10480 break;
10481 }
10482}
10483
10484static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10485 // Desugar the type of the surrogate down to a function type,
10486 // retaining as many typedefs as possible while still showing
10487 // the function type (and, therefore, its parameter types).
10488 QualType FnType = Cand->Surrogate->getConversionType();
10489 bool isLValueReference = false;
10490 bool isRValueReference = false;
10491 bool isPointer = false;
10492 if (const LValueReferenceType *FnTypeRef =
10493 FnType->getAs<LValueReferenceType>()) {
10494 FnType = FnTypeRef->getPointeeType();
10495 isLValueReference = true;
10496 } else if (const RValueReferenceType *FnTypeRef =
10497 FnType->getAs<RValueReferenceType>()) {
10498 FnType = FnTypeRef->getPointeeType();
10499 isRValueReference = true;
10500 }
10501 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10502 FnType = FnTypePtr->getPointeeType();
10503 isPointer = true;
10504 }
10505 // Desugar down to a function type.
10506 FnType = QualType(FnType->getAs<FunctionType>(), 0);
10507 // Reconstruct the pointer/reference as appropriate.
10508 if (isPointer) FnType = S.Context.getPointerType(FnType);
10509 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10510 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10511
10512 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10513 << FnType;
10514}
10515
10516static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10517 SourceLocation OpLoc,
10518 OverloadCandidate *Cand) {
10519 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((Cand->Conversions.size() <= 2 && "builtin operator is not binary"
) ? static_cast<void> (0) : __assert_fail ("Cand->Conversions.size() <= 2 && \"builtin operator is not binary\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10519, __PRETTY_FUNCTION__))
;
10520 std::string TypeStr("operator");
10521 TypeStr += Opc;
10522 TypeStr += "(";
10523 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10524 if (Cand->Conversions.size() == 1) {
10525 TypeStr += ")";
10526 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
10527 } else {
10528 TypeStr += ", ";
10529 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10530 TypeStr += ")";
10531 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
10532 }
10533}
10534
10535static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10536 OverloadCandidate *Cand) {
10537 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10538 if (ICS.isBad()) break; // all meaningless after first invalid
10539 if (!ICS.isAmbiguous()) continue;
10540
10541 ICS.DiagnoseAmbiguousConversion(
10542 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10543 }
10544}
10545
10546static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10547 if (Cand->Function)
10548 return Cand->Function->getLocation();
10549 if (Cand->IsSurrogate)
10550 return Cand->Surrogate->getLocation();
10551 return SourceLocation();
10552}
10553
10554static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10555 switch ((Sema::TemplateDeductionResult)DFI.Result) {
10556 case Sema::TDK_Success:
10557 case Sema::TDK_NonDependentConversionFailure:
10558 llvm_unreachable("non-deduction failure while diagnosing bad deduction")::llvm::llvm_unreachable_internal("non-deduction failure while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10558)
;
10559
10560 case Sema::TDK_Invalid:
10561 case Sema::TDK_Incomplete:
10562 case Sema::TDK_IncompletePack:
10563 return 1;
10564
10565 case Sema::TDK_Underqualified:
10566 case Sema::TDK_Inconsistent:
10567 return 2;
10568
10569 case Sema::TDK_SubstitutionFailure:
10570 case Sema::TDK_DeducedMismatch:
10571 case Sema::TDK_DeducedMismatchNested:
10572 case Sema::TDK_NonDeducedMismatch:
10573 case Sema::TDK_MiscellaneousDeductionFailure:
10574 case Sema::TDK_CUDATargetMismatch:
10575 return 3;
10576
10577 case Sema::TDK_InstantiationDepth:
10578 return 4;
10579
10580 case Sema::TDK_InvalidExplicitArguments:
10581 return 5;
10582
10583 case Sema::TDK_TooManyArguments:
10584 case Sema::TDK_TooFewArguments:
10585 return 6;
10586 }
10587 llvm_unreachable("Unhandled deduction result")::llvm::llvm_unreachable_internal("Unhandled deduction result"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10587)
;
10588}
10589
10590namespace {
10591struct CompareOverloadCandidatesForDisplay {
10592 Sema &S;
10593 SourceLocation Loc;
10594 size_t NumArgs;
10595 OverloadCandidateSet::CandidateSetKind CSK;
10596
10597 CompareOverloadCandidatesForDisplay(
10598 Sema &S, SourceLocation Loc, size_t NArgs,
10599 OverloadCandidateSet::CandidateSetKind CSK)
10600 : S(S), NumArgs(NArgs), CSK(CSK) {}
10601
10602 bool operator()(const OverloadCandidate *L,
10603 const OverloadCandidate *R) {
10604 // Fast-path this check.
10605 if (L == R) return false;
10606
10607 // Order first by viability.
10608 if (L->Viable) {
10609 if (!R->Viable) return true;
10610
10611 // TODO: introduce a tri-valued comparison for overload
10612 // candidates. Would be more worthwhile if we had a sort
10613 // that could exploit it.
10614 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
10615 return true;
10616 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10617 return false;
10618 } else if (R->Viable)
10619 return false;
10620
10621 assert(L->Viable == R->Viable)((L->Viable == R->Viable) ? static_cast<void> (0)
: __assert_fail ("L->Viable == R->Viable", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10621, __PRETTY_FUNCTION__))
;
10622
10623 // Criteria by which we can sort non-viable candidates:
10624 if (!L->Viable) {
10625 // 1. Arity mismatches come after other candidates.
10626 if (L->FailureKind == ovl_fail_too_many_arguments ||
10627 L->FailureKind == ovl_fail_too_few_arguments) {
10628 if (R->FailureKind == ovl_fail_too_many_arguments ||
10629 R->FailureKind == ovl_fail_too_few_arguments) {
10630 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
10631 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10632 if (LDist == RDist) {
10633 if (L->FailureKind == R->FailureKind)
10634 // Sort non-surrogates before surrogates.
10635 return !L->IsSurrogate && R->IsSurrogate;
10636 // Sort candidates requiring fewer parameters than there were
10637 // arguments given after candidates requiring more parameters
10638 // than there were arguments given.
10639 return L->FailureKind == ovl_fail_too_many_arguments;
10640 }
10641 return LDist < RDist;
10642 }
10643 return false;
10644 }
10645 if (R->FailureKind == ovl_fail_too_many_arguments ||
10646 R->FailureKind == ovl_fail_too_few_arguments)
10647 return true;
10648
10649 // 2. Bad conversions come first and are ordered by the number
10650 // of bad conversions and quality of good conversions.
10651 if (L->FailureKind == ovl_fail_bad_conversion) {
10652 if (R->FailureKind != ovl_fail_bad_conversion)
10653 return true;
10654
10655 // The conversion that can be fixed with a smaller number of changes,
10656 // comes first.
10657 unsigned numLFixes = L->Fix.NumConversionsFixed;
10658 unsigned numRFixes = R->Fix.NumConversionsFixed;
10659 numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes;
10660 numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes;
10661 if (numLFixes != numRFixes) {
10662 return numLFixes < numRFixes;
10663 }
10664
10665 // If there's any ordering between the defined conversions...
10666 // FIXME: this might not be transitive.
10667 assert(L->Conversions.size() == R->Conversions.size())((L->Conversions.size() == R->Conversions.size()) ? static_cast
<void> (0) : __assert_fail ("L->Conversions.size() == R->Conversions.size()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10667, __PRETTY_FUNCTION__))
;
10668
10669 int leftBetter = 0;
10670 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10671 for (unsigned E = L->Conversions.size(); I != E; ++I) {
10672 switch (CompareImplicitConversionSequences(S, Loc,
10673 L->Conversions[I],
10674 R->Conversions[I])) {
10675 case ImplicitConversionSequence::Better:
10676 leftBetter++;
10677 break;
10678
10679 case ImplicitConversionSequence::Worse:
10680 leftBetter--;
10681 break;
10682
10683 case ImplicitConversionSequence::Indistinguishable:
10684 break;
10685 }
10686 }
10687 if (leftBetter > 0) return true;
10688 if (leftBetter < 0) return false;
10689
10690 } else if (R->FailureKind == ovl_fail_bad_conversion)
10691 return false;
10692
10693 if (L->FailureKind == ovl_fail_bad_deduction) {
10694 if (R->FailureKind != ovl_fail_bad_deduction)
10695 return true;
10696
10697 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10698 return RankDeductionFailure(L->DeductionFailure)
10699 < RankDeductionFailure(R->DeductionFailure);
10700 } else if (R->FailureKind == ovl_fail_bad_deduction)
10701 return false;
10702
10703 // TODO: others?
10704 }
10705
10706 // Sort everything else by location.
10707 SourceLocation LLoc = GetLocationForCandidate(L);
10708 SourceLocation RLoc = GetLocationForCandidate(R);
10709
10710 // Put candidates without locations (e.g. builtins) at the end.
10711 if (LLoc.isInvalid()) return false;
10712 if (RLoc.isInvalid()) return true;
10713
10714 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10715 }
10716};
10717}
10718
10719/// CompleteNonViableCandidate - Normally, overload resolution only
10720/// computes up to the first bad conversion. Produces the FixIt set if
10721/// possible.
10722static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
10723 ArrayRef<Expr *> Args) {
10724 assert(!Cand->Viable)((!Cand->Viable) ? static_cast<void> (0) : __assert_fail
("!Cand->Viable", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10724, __PRETTY_FUNCTION__))
;
10725
10726 // Don't do anything on failures other than bad conversion.
10727 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
10728
10729 // We only want the FixIts if all the arguments can be corrected.
10730 bool Unfixable = false;
10731 // Use a implicit copy initialization to check conversion fixes.
10732 Cand->Fix.setConversionChecker(TryCopyInitialization);
10733
10734 // Attempt to fix the bad conversion.
10735 unsigned ConvCount = Cand->Conversions.size();
10736 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
10737 ++ConvIdx) {
10738 assert(ConvIdx != ConvCount && "no bad conversion in candidate")((ConvIdx != ConvCount && "no bad conversion in candidate"
) ? static_cast<void> (0) : __assert_fail ("ConvIdx != ConvCount && \"no bad conversion in candidate\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10738, __PRETTY_FUNCTION__))
;
10739 if (Cand->Conversions[ConvIdx].isInitialized() &&
10740 Cand->Conversions[ConvIdx].isBad()) {
10741 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10742 break;
10743 }
10744 }
10745
10746 // FIXME: this should probably be preserved from the overload
10747 // operation somehow.
10748 bool SuppressUserConversions = false;
10749
10750 unsigned ConvIdx = 0;
10751 ArrayRef<QualType> ParamTypes;
10752
10753 if (Cand->IsSurrogate) {
10754 QualType ConvType
10755 = Cand->Surrogate->getConversionType().getNonReferenceType();
10756 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10757 ConvType = ConvPtrType->getPointeeType();
10758 ParamTypes = ConvType->getAs<FunctionProtoType>()->getParamTypes();
10759 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10760 ConvIdx = 1;
10761 } else if (Cand->Function) {
10762 ParamTypes =
10763 Cand->Function->getType()->getAs<FunctionProtoType>()->getParamTypes();
10764 if (isa<CXXMethodDecl>(Cand->Function) &&
10765 !isa<CXXConstructorDecl>(Cand->Function)) {
10766 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10767 ConvIdx = 1;
10768 }
10769 } else {
10770 // Builtin operator.
10771 assert(ConvCount <= 3)((ConvCount <= 3) ? static_cast<void> (0) : __assert_fail
("ConvCount <= 3", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10771, __PRETTY_FUNCTION__))
;
10772 ParamTypes = Cand->BuiltinParamTypes;
10773 }
10774
10775 // Fill in the rest of the conversions.
10776 for (unsigned ArgIdx = 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10777 if (Cand->Conversions[ConvIdx].isInitialized()) {
10778 // We've already checked this conversion.
10779 } else if (ArgIdx < ParamTypes.size()) {
10780 if (ParamTypes[ArgIdx]->isDependentType())
10781 Cand->Conversions[ConvIdx].setAsIdentityConversion(
10782 Args[ArgIdx]->getType());
10783 else {
10784 Cand->Conversions[ConvIdx] =
10785 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ArgIdx],
10786 SuppressUserConversions,
10787 /*InOverloadResolution=*/true,
10788 /*AllowObjCWritebackConversion=*/
10789 S.getLangOpts().ObjCAutoRefCount);
10790 // Store the FixIt in the candidate if it exists.
10791 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10792 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10793 }
10794 } else
10795 Cand->Conversions[ConvIdx].setEllipsis();
10796 }
10797}
10798
10799SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
10800 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10801 SourceLocation OpLoc,
10802 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10803 // Sort the candidates by viability and position. Sorting directly would
10804 // be prohibitive, so we make a set of pointers and sort those.
10805 SmallVector<OverloadCandidate*, 32> Cands;
10806 if (OCD == OCD_AllCandidates) Cands.reserve(size());
10807 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10808 if (!Filter(*Cand))
10809 continue;
10810 if (Cand->Viable)
10811 Cands.push_back(Cand);
10812 else if (OCD == OCD_AllCandidates) {
10813 CompleteNonViableCandidate(S, Cand, Args);
10814 if (Cand->Function || Cand->IsSurrogate)
10815 Cands.push_back(Cand);
10816 // Otherwise, this a non-viable builtin candidate. We do not, in general,
10817 // want to list every possible builtin candidate.
10818 }
10819 }
10820
10821 llvm::stable_sort(
10822 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
10823
10824 return Cands;
10825}
10826
10827/// When overload resolution fails, prints diagnostic messages containing the
10828/// candidates in the candidate set.
10829void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
10830 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10831 StringRef Opc, SourceLocation OpLoc,
10832 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10833
10834 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
10835
10836 S.Diag(PD.first, PD.second);
10837
10838 NoteCandidates(S, Args, Cands, Opc, OpLoc);
10839}
10840
10841void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
10842 ArrayRef<OverloadCandidate *> Cands,
10843 StringRef Opc, SourceLocation OpLoc) {
10844 bool ReportedAmbiguousConversions = false;
10845
10846 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10847 unsigned CandsShown = 0;
10848 auto I = Cands.begin(), E = Cands.end();
10849 for (; I != E; ++I) {
10850 OverloadCandidate *Cand = *I;
10851
10852 // Set an arbitrary limit on the number of candidate functions we'll spam
10853 // the user with. FIXME: This limit should depend on details of the
10854 // candidate list.
10855 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10856 break;
10857 }
10858 ++CandsShown;
10859
10860 if (Cand->Function)
10861 NoteFunctionCandidate(S, Cand, Args.size(),
10862 /*TakingCandidateAddress=*/false);
10863 else if (Cand->IsSurrogate)
10864 NoteSurrogateCandidate(S, Cand);
10865 else {
10866 assert(Cand->Viable &&((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10867, __PRETTY_FUNCTION__))
10867 "Non-viable built-in candidates are not added to Cands.")((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10867, __PRETTY_FUNCTION__))
;
10868 // Generally we only see ambiguities including viable builtin
10869 // operators if overload resolution got screwed up by an
10870 // ambiguous user-defined conversion.
10871 //
10872 // FIXME: It's quite possible for different conversions to see
10873 // different ambiguities, though.
10874 if (!ReportedAmbiguousConversions) {
10875 NoteAmbiguousUserConversions(S, OpLoc, Cand);
10876 ReportedAmbiguousConversions = true;
10877 }
10878
10879 // If this is a viable builtin, print it.
10880 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10881 }
10882 }
10883
10884 if (I != E)
10885 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10886}
10887
10888static SourceLocation
10889GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10890 return Cand->Specialization ? Cand->Specialization->getLocation()
10891 : SourceLocation();
10892}
10893
10894namespace {
10895struct CompareTemplateSpecCandidatesForDisplay {
10896 Sema &S;
10897 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10898
10899 bool operator()(const TemplateSpecCandidate *L,
10900 const TemplateSpecCandidate *R) {
10901 // Fast-path this check.
10902 if (L == R)
10903 return false;
10904
10905 // Assuming that both candidates are not matches...
10906
10907 // Sort by the ranking of deduction failures.
10908 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10909 return RankDeductionFailure(L->DeductionFailure) <
10910 RankDeductionFailure(R->DeductionFailure);
10911
10912 // Sort everything else by location.
10913 SourceLocation LLoc = GetLocationForCandidate(L);
10914 SourceLocation RLoc = GetLocationForCandidate(R);
10915
10916 // Put candidates without locations (e.g. builtins) at the end.
10917 if (LLoc.isInvalid())
10918 return false;
10919 if (RLoc.isInvalid())
10920 return true;
10921
10922 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10923 }
10924};
10925}
10926
10927/// Diagnose a template argument deduction failure.
10928/// We are treating these failures as overload failures due to bad
10929/// deductions.
10930void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10931 bool ForTakingAddress) {
10932 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10933 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10934}
10935
10936void TemplateSpecCandidateSet::destroyCandidates() {
10937 for (iterator i = begin(), e = end(); i != e; ++i) {
10938 i->DeductionFailure.Destroy();
10939 }
10940}
10941
10942void TemplateSpecCandidateSet::clear() {
10943 destroyCandidates();
10944 Candidates.clear();
10945}
10946
10947/// NoteCandidates - When no template specialization match is found, prints
10948/// diagnostic messages containing the non-matching specializations that form
10949/// the candidate set.
10950/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10951/// OCD == OCD_AllCandidates and Cand->Viable == false.
10952void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10953 // Sort the candidates by position (assuming no candidate is a match).
10954 // Sorting directly would be prohibitive, so we make a set of pointers
10955 // and sort those.
10956 SmallVector<TemplateSpecCandidate *, 32> Cands;
10957 Cands.reserve(size());
10958 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10959 if (Cand->Specialization)
10960 Cands.push_back(Cand);
10961 // Otherwise, this is a non-matching builtin candidate. We do not,
10962 // in general, want to list every possible builtin candidate.
10963 }
10964
10965 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
10966
10967 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10968 // for generalization purposes (?).
10969 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10970
10971 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10972 unsigned CandsShown = 0;
10973 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10974 TemplateSpecCandidate *Cand = *I;
10975
10976 // Set an arbitrary limit on the number of candidates we'll spam
10977 // the user with. FIXME: This limit should depend on details of the
10978 // candidate list.
10979 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10980 break;
10981 ++CandsShown;
10982
10983 assert(Cand->Specialization &&((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10984, __PRETTY_FUNCTION__))
10984 "Non-matching built-in candidates are not added to Cands.")((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 10984, __PRETTY_FUNCTION__))
;
10985 Cand->NoteDeductionFailure(S, ForTakingAddress);
10986 }
10987
10988 if (I != E)
10989 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
10990}
10991
10992// [PossiblyAFunctionType] --> [Return]
10993// NonFunctionType --> NonFunctionType
10994// R (A) --> R(A)
10995// R (*)(A) --> R (A)
10996// R (&)(A) --> R (A)
10997// R (S::*)(A) --> R (A)
10998QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
10999 QualType Ret = PossiblyAFunctionType;
11000 if (const PointerType *ToTypePtr =
11001 PossiblyAFunctionType->getAs<PointerType>())
11002 Ret = ToTypePtr->getPointeeType();
11003 else if (const ReferenceType *ToTypeRef =
11004 PossiblyAFunctionType->getAs<ReferenceType>())
11005 Ret = ToTypeRef->getPointeeType();
11006 else if (const MemberPointerType *MemTypePtr =
11007 PossiblyAFunctionType->getAs<MemberPointerType>())
11008 Ret = MemTypePtr->getPointeeType();
11009 Ret =
11010 Context.getCanonicalType(Ret).getUnqualifiedType();
11011 return Ret;
11012}
11013
11014static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11015 bool Complain = true) {
11016 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11017 S.DeduceReturnType(FD, Loc, Complain))
11018 return true;
11019
11020 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11021 if (S.getLangOpts().CPlusPlus17 &&
11022 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11023 !S.ResolveExceptionSpec(Loc, FPT))
11024 return true;
11025
11026 return false;
11027}
11028
11029namespace {
11030// A helper class to help with address of function resolution
11031// - allows us to avoid passing around all those ugly parameters
11032class AddressOfFunctionResolver {
11033 Sema& S;
11034 Expr* SourceExpr;
11035 const QualType& TargetType;
11036 QualType TargetFunctionType; // Extracted function type from target type
11037
11038 bool Complain;
11039 //DeclAccessPair& ResultFunctionAccessPair;
11040 ASTContext& Context;
11041
11042 bool TargetTypeIsNonStaticMemberFunction;
11043 bool FoundNonTemplateFunction;
11044 bool StaticMemberFunctionFromBoundPointer;
11045 bool HasComplained;
11046
11047 OverloadExpr::FindResult OvlExprInfo;
11048 OverloadExpr *OvlExpr;
11049 TemplateArgumentListInfo OvlExplicitTemplateArgs;
11050 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11051 TemplateSpecCandidateSet FailedCandidates;
11052
11053public:
11054 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11055 const QualType &TargetType, bool Complain)
11056 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11057 Complain(Complain), Context(S.getASTContext()),
11058 TargetTypeIsNonStaticMemberFunction(
11059 !!TargetType->getAs<MemberPointerType>()),
11060 FoundNonTemplateFunction(false),
11061 StaticMemberFunctionFromBoundPointer(false),
11062 HasComplained(false),
11063 OvlExprInfo(OverloadExpr::find(SourceExpr)),
11064 OvlExpr(OvlExprInfo.Expression),
11065 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11066 ExtractUnqualifiedFunctionTypeFromTargetType();
11067
11068 if (TargetFunctionType->isFunctionType()) {
11069 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11070 if (!UME->isImplicitAccess() &&
11071 !S.ResolveSingleFunctionTemplateSpecialization(UME))
11072 StaticMemberFunctionFromBoundPointer = true;
11073 } else if (OvlExpr->hasExplicitTemplateArgs()) {
11074 DeclAccessPair dap;
11075 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11076 OvlExpr, false, &dap)) {
11077 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11078 if (!Method->isStatic()) {
11079 // If the target type is a non-function type and the function found
11080 // is a non-static member function, pretend as if that was the
11081 // target, it's the only possible type to end up with.
11082 TargetTypeIsNonStaticMemberFunction = true;
11083
11084 // And skip adding the function if its not in the proper form.
11085 // We'll diagnose this due to an empty set of functions.
11086 if (!OvlExprInfo.HasFormOfMemberPointer)
11087 return;
11088 }
11089
11090 Matches.push_back(std::make_pair(dap, Fn));
11091 }
11092 return;
11093 }
11094
11095 if (OvlExpr->hasExplicitTemplateArgs())
11096 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11097
11098 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11099 // C++ [over.over]p4:
11100 // If more than one function is selected, [...]
11101 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11102 if (FoundNonTemplateFunction)
11103 EliminateAllTemplateMatches();
11104 else
11105 EliminateAllExceptMostSpecializedTemplate();
11106 }
11107 }
11108
11109 if (S.getLangOpts().CUDA && Matches.size() > 1)
11110 EliminateSuboptimalCudaMatches();
11111 }
11112
11113 bool hasComplained() const { return HasComplained; }
11114
11115private:
11116 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11117 QualType Discard;
11118 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11119 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11120 }
11121
11122 /// \return true if A is considered a better overload candidate for the
11123 /// desired type than B.
11124 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11125 // If A doesn't have exactly the correct type, we don't want to classify it
11126 // as "better" than anything else. This way, the user is required to
11127 // disambiguate for us if there are multiple candidates and no exact match.
11128 return candidateHasExactlyCorrectType(A) &&
11129 (!candidateHasExactlyCorrectType(B) ||
11130 compareEnableIfAttrs(S, A, B) == Comparison::Better);
11131 }
11132
11133 /// \return true if we were able to eliminate all but one overload candidate,
11134 /// false otherwise.
11135 bool eliminiateSuboptimalOverloadCandidates() {
11136 // Same algorithm as overload resolution -- one pass to pick the "best",
11137 // another pass to be sure that nothing is better than the best.
11138 auto Best = Matches.begin();
11139 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11140 if (isBetterCandidate(I->second, Best->second))
11141 Best = I;
11142
11143 const FunctionDecl *BestFn = Best->second;
11144 auto IsBestOrInferiorToBest = [this, BestFn](
11145 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11146 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11147 };
11148
11149 // Note: We explicitly leave Matches unmodified if there isn't a clear best
11150 // option, so we can potentially give the user a better error
11151 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11152 return false;
11153 Matches[0] = *Best;
11154 Matches.resize(1);
11155 return true;
11156 }
11157
11158 bool isTargetTypeAFunction() const {
11159 return TargetFunctionType->isFunctionType();
11160 }
11161
11162 // [ToType] [Return]
11163
11164 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11165 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11166 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11167 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11168 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11169 }
11170
11171 // return true if any matching specializations were found
11172 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11173 const DeclAccessPair& CurAccessFunPair) {
11174 if (CXXMethodDecl *Method
11175 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11176 // Skip non-static function templates when converting to pointer, and
11177 // static when converting to member pointer.
11178 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11179 return false;
11180 }
11181 else if (TargetTypeIsNonStaticMemberFunction)
11182 return false;
11183
11184 // C++ [over.over]p2:
11185 // If the name is a function template, template argument deduction is
11186 // done (14.8.2.2), and if the argument deduction succeeds, the
11187 // resulting template argument list is used to generate a single
11188 // function template specialization, which is added to the set of
11189 // overloaded functions considered.
11190 FunctionDecl *Specialization = nullptr;
11191 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11192 if (Sema::TemplateDeductionResult Result
11193 = S.DeduceTemplateArguments(FunctionTemplate,
11194 &OvlExplicitTemplateArgs,
11195 TargetFunctionType, Specialization,
11196 Info, /*IsAddressOfFunction*/true)) {
11197 // Make a note of the failed deduction for diagnostics.
11198 FailedCandidates.addCandidate()
11199 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11200 MakeDeductionFailureInfo(Context, Result, Info));
11201 return false;
11202 }
11203
11204 // Template argument deduction ensures that we have an exact match or
11205 // compatible pointer-to-function arguments that would be adjusted by ICS.
11206 // This function template specicalization works.
11207 assert(S.isSameOrCompatibleFunctionType(((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11209, __PRETTY_FUNCTION__))
11208 Context.getCanonicalType(Specialization->getType()),((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11209, __PRETTY_FUNCTION__))
11209 Context.getCanonicalType(TargetFunctionType)))((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11209, __PRETTY_FUNCTION__))
;
11210
11211 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
11212 return false;
11213
11214 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
11215 return true;
11216 }
11217
11218 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
11219 const DeclAccessPair& CurAccessFunPair) {
11220 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11221 // Skip non-static functions when converting to pointer, and static
11222 // when converting to member pointer.
11223 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11224 return false;
11225 }
11226 else if (TargetTypeIsNonStaticMemberFunction)
11227 return false;
11228
11229 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
11230 if (S.getLangOpts().CUDA)
11231 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
11232 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
11233 return false;
11234 if (FunDecl->isMultiVersion()) {
11235 const auto *TA = FunDecl->getAttr<TargetAttr>();
11236 if (TA && !TA->isDefaultVersion())
11237 return false;
11238 }
11239
11240 // If any candidate has a placeholder return type, trigger its deduction
11241 // now.
11242 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
11243 Complain)) {
11244 HasComplained |= Complain;
11245 return false;
11246 }
11247
11248 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
11249 return false;
11250
11251 // If we're in C, we need to support types that aren't exactly identical.
11252 if (!S.getLangOpts().CPlusPlus ||
11253 candidateHasExactlyCorrectType(FunDecl)) {
11254 Matches.push_back(std::make_pair(
11255 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
11256 FoundNonTemplateFunction = true;
11257 return true;
11258 }
11259 }
11260
11261 return false;
11262 }
11263
11264 bool FindAllFunctionsThatMatchTargetTypeExactly() {
11265 bool Ret = false;
11266
11267 // If the overload expression doesn't have the form of a pointer to
11268 // member, don't try to convert it to a pointer-to-member type.
11269 if (IsInvalidFormOfPointerToMemberFunction())
11270 return false;
11271
11272 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11273 E = OvlExpr->decls_end();
11274 I != E; ++I) {
11275 // Look through any using declarations to find the underlying function.
11276 NamedDecl *Fn = (*I)->getUnderlyingDecl();
11277
11278 // C++ [over.over]p3:
11279 // Non-member functions and static member functions match
11280 // targets of type "pointer-to-function" or "reference-to-function."
11281 // Nonstatic member functions match targets of
11282 // type "pointer-to-member-function."
11283 // Note that according to DR 247, the containing class does not matter.
11284 if (FunctionTemplateDecl *FunctionTemplate
11285 = dyn_cast<FunctionTemplateDecl>(Fn)) {
11286 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11287 Ret = true;
11288 }
11289 // If we have explicit template arguments supplied, skip non-templates.
11290 else if (!OvlExpr->hasExplicitTemplateArgs() &&
11291 AddMatchingNonTemplateFunction(Fn, I.getPair()))
11292 Ret = true;
11293 }
11294 assert(Ret || Matches.empty())((Ret || Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Ret || Matches.empty()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11294, __PRETTY_FUNCTION__))
;
11295 return Ret;
11296 }
11297
11298 void EliminateAllExceptMostSpecializedTemplate() {
11299 // [...] and any given function template specialization F1 is
11300 // eliminated if the set contains a second function template
11301 // specialization whose function template is more specialized
11302 // than the function template of F1 according to the partial
11303 // ordering rules of 14.5.5.2.
11304
11305 // The algorithm specified above is quadratic. We instead use a
11306 // two-pass algorithm (similar to the one used to identify the
11307 // best viable function in an overload set) that identifies the
11308 // best function template (if it exists).
11309
11310 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11311 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11312 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11313
11314 // TODO: It looks like FailedCandidates does not serve much purpose
11315 // here, since the no_viable diagnostic has index 0.
11316 UnresolvedSetIterator Result = S.getMostSpecialized(
11317 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11318 SourceExpr->getBeginLoc(), S.PDiag(),
11319 S.PDiag(diag::err_addr_ovl_ambiguous)
11320 << Matches[0].second->getDeclName(),
11321 S.PDiag(diag::note_ovl_candidate)
11322 << (unsigned)oc_function << (unsigned)ocs_described_template,
11323 Complain, TargetFunctionType);
11324
11325 if (Result != MatchesCopy.end()) {
11326 // Make it the first and only element
11327 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11328 Matches[0].second = cast<FunctionDecl>(*Result);
11329 Matches.resize(1);
11330 } else
11331 HasComplained |= Complain;
11332 }
11333
11334 void EliminateAllTemplateMatches() {
11335 // [...] any function template specializations in the set are
11336 // eliminated if the set also contains a non-template function, [...]
11337 for (unsigned I = 0, N = Matches.size(); I != N; ) {
11338 if (Matches[I].second->getPrimaryTemplate() == nullptr)
11339 ++I;
11340 else {
11341 Matches[I] = Matches[--N];
11342 Matches.resize(N);
11343 }
11344 }
11345 }
11346
11347 void EliminateSuboptimalCudaMatches() {
11348 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11349 }
11350
11351public:
11352 void ComplainNoMatchesFound() const {
11353 assert(Matches.empty())((Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Matches.empty()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11353, __PRETTY_FUNCTION__))
;
11354 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
11355 << OvlExpr->getName() << TargetFunctionType
11356 << OvlExpr->getSourceRange();
11357 if (FailedCandidates.empty())
11358 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11359 /*TakingAddress=*/true);
11360 else {
11361 // We have some deduction failure messages. Use them to diagnose
11362 // the function templates, and diagnose the non-template candidates
11363 // normally.
11364 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11365 IEnd = OvlExpr->decls_end();
11366 I != IEnd; ++I)
11367 if (FunctionDecl *Fun =
11368 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11369 if (!functionHasPassObjectSizeParams(Fun))
11370 S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
11371 /*TakingAddress=*/true);
11372 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
11373 }
11374 }
11375
11376 bool IsInvalidFormOfPointerToMemberFunction() const {
11377 return TargetTypeIsNonStaticMemberFunction &&
11378 !OvlExprInfo.HasFormOfMemberPointer;
11379 }
11380
11381 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11382 // TODO: Should we condition this on whether any functions might
11383 // have matched, or is it more appropriate to do that in callers?
11384 // TODO: a fixit wouldn't hurt.
11385 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11386 << TargetType << OvlExpr->getSourceRange();
11387 }
11388
11389 bool IsStaticMemberFunctionFromBoundPointer() const {
11390 return StaticMemberFunctionFromBoundPointer;
11391 }
11392
11393 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11394 S.Diag(OvlExpr->getBeginLoc(),
11395 diag::err_invalid_form_pointer_member_function)
11396 << OvlExpr->getSourceRange();
11397 }
11398
11399 void ComplainOfInvalidConversion() const {
11400 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
11401 << OvlExpr->getName() << TargetType;
11402 }
11403
11404 void ComplainMultipleMatchesFound() const {
11405 assert(Matches.size() > 1)((Matches.size() > 1) ? static_cast<void> (0) : __assert_fail
("Matches.size() > 1", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11405, __PRETTY_FUNCTION__))
;
11406 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
11407 << OvlExpr->getName() << OvlExpr->getSourceRange();
11408 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11409 /*TakingAddress=*/true);
11410 }
11411
11412 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11413
11414 int getNumMatches() const { return Matches.size(); }
11415
11416 FunctionDecl* getMatchingFunctionDecl() const {
11417 if (Matches.size() != 1) return nullptr;
11418 return Matches[0].second;
11419 }
11420
11421 const DeclAccessPair* getMatchingFunctionAccessPair() const {
11422 if (Matches.size() != 1) return nullptr;
11423 return &Matches[0].first;
11424 }
11425};
11426}
11427
11428/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11429/// an overloaded function (C++ [over.over]), where @p From is an
11430/// expression with overloaded function type and @p ToType is the type
11431/// we're trying to resolve to. For example:
11432///
11433/// @code
11434/// int f(double);
11435/// int f(int);
11436///
11437/// int (*pfd)(double) = f; // selects f(double)
11438/// @endcode
11439///
11440/// This routine returns the resulting FunctionDecl if it could be
11441/// resolved, and NULL otherwise. When @p Complain is true, this
11442/// routine will emit diagnostics if there is an error.
11443FunctionDecl *
11444Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11445 QualType TargetType,
11446 bool Complain,
11447 DeclAccessPair &FoundResult,
11448 bool *pHadMultipleCandidates) {
11449 assert(AddressOfExpr->getType() == Context.OverloadTy)((AddressOfExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("AddressOfExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11449, __PRETTY_FUNCTION__))
;
11450
11451 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11452 Complain);
11453 int NumMatches = Resolver.getNumMatches();
11454 FunctionDecl *Fn = nullptr;
11455 bool ShouldComplain = Complain && !Resolver.hasComplained();
11456 if (NumMatches == 0 && ShouldComplain) {
11457 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11458 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11459 else
11460 Resolver.ComplainNoMatchesFound();
11461 }
11462 else if (NumMatches > 1 && ShouldComplain)
11463 Resolver.ComplainMultipleMatchesFound();
11464 else if (NumMatches == 1) {
11465 Fn = Resolver.getMatchingFunctionDecl();
11466 assert(Fn)((Fn) ? static_cast<void> (0) : __assert_fail ("Fn", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11466, __PRETTY_FUNCTION__))
;
11467 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11468 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11469 FoundResult = *Resolver.getMatchingFunctionAccessPair();
11470 if (Complain) {
11471 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11472 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11473 else
11474 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11475 }
11476 }
11477
11478 if (pHadMultipleCandidates)
11479 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11480 return Fn;
11481}
11482
11483/// Given an expression that refers to an overloaded function, try to
11484/// resolve that function to a single function that can have its address taken.
11485/// This will modify `Pair` iff it returns non-null.
11486///
11487/// This routine can only realistically succeed if all but one candidates in the
11488/// overload set for SrcExpr cannot have their addresses taken.
11489FunctionDecl *
11490Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11491 DeclAccessPair &Pair) {
11492 OverloadExpr::FindResult R = OverloadExpr::find(E);
11493 OverloadExpr *Ovl = R.Expression;
11494 FunctionDecl *Result = nullptr;
11495 DeclAccessPair DAP;
11496 // Don't use the AddressOfResolver because we're specifically looking for
11497 // cases where we have one overload candidate that lacks
11498 // enable_if/pass_object_size/...
11499 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11500 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11501 if (!FD)
11502 return nullptr;
11503
11504 if (!checkAddressOfFunctionIsAvailable(FD))
11505 continue;
11506
11507 // We have more than one result; quit.
11508 if (Result)
11509 return nullptr;
11510 DAP = I.getPair();
11511 Result = FD;
11512 }
11513
11514 if (Result)
11515 Pair = DAP;
11516 return Result;
11517}
11518
11519/// Given an overloaded function, tries to turn it into a non-overloaded
11520/// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11521/// will perform access checks, diagnose the use of the resultant decl, and, if
11522/// requested, potentially perform a function-to-pointer decay.
11523///
11524/// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11525/// Otherwise, returns true. This may emit diagnostics and return true.
11526bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11527 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11528 Expr *E = SrcExpr.get();
11529 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((E->getType() == Context.OverloadTy && "SrcExpr must be an overload"
) ? static_cast<void> (0) : __assert_fail ("E->getType() == Context.OverloadTy && \"SrcExpr must be an overload\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11529, __PRETTY_FUNCTION__))
;
11530
11531 DeclAccessPair DAP;
11532 FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11533 if (!Found || Found->isCPUDispatchMultiVersion() ||
11534 Found->isCPUSpecificMultiVersion())
11535 return false;
11536
11537 // Emitting multiple diagnostics for a function that is both inaccessible and
11538 // unavailable is consistent with our behavior elsewhere. So, always check
11539 // for both.
11540 DiagnoseUseOfDecl(Found, E->getExprLoc());
11541 CheckAddressOfMemberAccess(E, DAP);
11542 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11543 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11544 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11545 else
11546 SrcExpr = Fixed;
11547 return true;
11548}
11549
11550/// Given an expression that refers to an overloaded function, try to
11551/// resolve that overloaded function expression down to a single function.
11552///
11553/// This routine can only resolve template-ids that refer to a single function
11554/// template, where that template-id refers to a single template whose template
11555/// arguments are either provided by the template-id or have defaults,
11556/// as described in C++0x [temp.arg.explicit]p3.
11557///
11558/// If no template-ids are found, no diagnostics are emitted and NULL is
11559/// returned.
11560FunctionDecl *
11561Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11562 bool Complain,
11563 DeclAccessPair *FoundResult) {
11564 // C++ [over.over]p1:
11565 // [...] [Note: any redundant set of parentheses surrounding the
11566 // overloaded function name is ignored (5.1). ]
11567 // C++ [over.over]p1:
11568 // [...] The overloaded function name can be preceded by the &
11569 // operator.
11570
11571 // If we didn't actually find any template-ids, we're done.
11572 if (!ovl->hasExplicitTemplateArgs())
11573 return nullptr;
11574
11575 TemplateArgumentListInfo ExplicitTemplateArgs;
11576 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11577 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11578
11579 // Look through all of the overloaded functions, searching for one
11580 // whose type matches exactly.
11581 FunctionDecl *Matched = nullptr;
11582 for (UnresolvedSetIterator I = ovl->decls_begin(),
11583 E = ovl->decls_end(); I != E; ++I) {
11584 // C++0x [temp.arg.explicit]p3:
11585 // [...] In contexts where deduction is done and fails, or in contexts
11586 // where deduction is not done, if a template argument list is
11587 // specified and it, along with any default template arguments,
11588 // identifies a single function template specialization, then the
11589 // template-id is an lvalue for the function template specialization.
11590 FunctionTemplateDecl *FunctionTemplate
11591 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11592
11593 // C++ [over.over]p2:
11594 // If the name is a function template, template argument deduction is
11595 // done (14.8.2.2), and if the argument deduction succeeds, the
11596 // resulting template argument list is used to generate a single
11597 // function template specialization, which is added to the set of
11598 // overloaded functions considered.
11599 FunctionDecl *Specialization = nullptr;
11600 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11601 if (TemplateDeductionResult Result
11602 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11603 Specialization, Info,
11604 /*IsAddressOfFunction*/true)) {
11605 // Make a note of the failed deduction for diagnostics.
11606 // TODO: Actually use the failed-deduction info?
11607 FailedCandidates.addCandidate()
11608 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11609 MakeDeductionFailureInfo(Context, Result, Info));
11610 continue;
11611 }
11612
11613 assert(Specialization && "no specialization and no error?")((Specialization && "no specialization and no error?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"no specialization and no error?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11613, __PRETTY_FUNCTION__))
;
11614
11615 // Multiple matches; we can't resolve to a single declaration.
11616 if (Matched) {
11617 if (Complain) {
11618 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11619 << ovl->getName();
11620 NoteAllOverloadCandidates(ovl);
11621 }
11622 return nullptr;
11623 }
11624
11625 Matched = Specialization;
11626 if (FoundResult) *FoundResult = I.getPair();
11627 }
11628
11629 if (Matched &&
11630 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11631 return nullptr;
11632
11633 return Matched;
11634}
11635
11636// Resolve and fix an overloaded expression that can be resolved
11637// because it identifies a single function template specialization.
11638//
11639// Last three arguments should only be supplied if Complain = true
11640//
11641// Return true if it was logically possible to so resolve the
11642// expression, regardless of whether or not it succeeded. Always
11643// returns true if 'complain' is set.
11644bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11645 ExprResult &SrcExpr, bool doFunctionPointerConverion,
11646 bool complain, SourceRange OpRangeForComplaining,
11647 QualType DestTypeForComplaining,
11648 unsigned DiagIDForComplaining) {
11649 assert(SrcExpr.get()->getType() == Context.OverloadTy)((SrcExpr.get()->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("SrcExpr.get()->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11649, __PRETTY_FUNCTION__))
;
11650
11651 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11652
11653 DeclAccessPair found;
11654 ExprResult SingleFunctionExpression;
11655 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11656 ovl.Expression, /*complain*/ false, &found)) {
11657 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
11658 SrcExpr = ExprError();
11659 return true;
11660 }
11661
11662 // It is only correct to resolve to an instance method if we're
11663 // resolving a form that's permitted to be a pointer to member.
11664 // Otherwise we'll end up making a bound member expression, which
11665 // is illegal in all the contexts we resolve like this.
11666 if (!ovl.HasFormOfMemberPointer &&
11667 isa<CXXMethodDecl>(fn) &&
11668 cast<CXXMethodDecl>(fn)->isInstance()) {
11669 if (!complain) return false;
11670
11671 Diag(ovl.Expression->getExprLoc(),
11672 diag::err_bound_member_function)
11673 << 0 << ovl.Expression->getSourceRange();
11674
11675 // TODO: I believe we only end up here if there's a mix of
11676 // static and non-static candidates (otherwise the expression
11677 // would have 'bound member' type, not 'overload' type).
11678 // Ideally we would note which candidate was chosen and why
11679 // the static candidates were rejected.
11680 SrcExpr = ExprError();
11681 return true;
11682 }
11683
11684 // Fix the expression to refer to 'fn'.
11685 SingleFunctionExpression =
11686 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
11687
11688 // If desired, do function-to-pointer decay.
11689 if (doFunctionPointerConverion) {
11690 SingleFunctionExpression =
11691 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
11692 if (SingleFunctionExpression.isInvalid()) {
11693 SrcExpr = ExprError();
11694 return true;
11695 }
11696 }
11697 }
11698
11699 if (!SingleFunctionExpression.isUsable()) {
11700 if (complain) {
11701 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
11702 << ovl.Expression->getName()
11703 << DestTypeForComplaining
11704 << OpRangeForComplaining
11705 << ovl.Expression->getQualifierLoc().getSourceRange();
11706 NoteAllOverloadCandidates(SrcExpr.get());
11707
11708 SrcExpr = ExprError();
11709 return true;
11710 }
11711
11712 return false;
11713 }
11714
11715 SrcExpr = SingleFunctionExpression;
11716 return true;
11717}
11718
11719/// Add a single candidate to the overload set.
11720static void AddOverloadedCallCandidate(Sema &S,
11721 DeclAccessPair FoundDecl,
11722 TemplateArgumentListInfo *ExplicitTemplateArgs,
11723 ArrayRef<Expr *> Args,
11724 OverloadCandidateSet &CandidateSet,
11725 bool PartialOverloading,
11726 bool KnownValid) {
11727 NamedDecl *Callee = FoundDecl.getDecl();
11728 if (isa<UsingShadowDecl>(Callee))
11729 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
11730
11731 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
11732 if (ExplicitTemplateArgs) {
11733 assert(!KnownValid && "Explicit template arguments?")((!KnownValid && "Explicit template arguments?") ? static_cast
<void> (0) : __assert_fail ("!KnownValid && \"Explicit template arguments?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11733, __PRETTY_FUNCTION__))
;
11734 return;
11735 }
11736 // Prevent ill-formed function decls to be added as overload candidates.
11737 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
11738 return;
11739
11740 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
11741 /*SuppressUsedConversions=*/false,
11742 PartialOverloading);
11743 return;
11744 }
11745
11746 if (FunctionTemplateDecl *FuncTemplate
11747 = dyn_cast<FunctionTemplateDecl>(Callee)) {
11748 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
11749 ExplicitTemplateArgs, Args, CandidateSet,
11750 /*SuppressUsedConversions=*/false,
11751 PartialOverloading);
11752 return;
11753 }
11754
11755 assert(!KnownValid && "unhandled case in overloaded call candidate")((!KnownValid && "unhandled case in overloaded call candidate"
) ? static_cast<void> (0) : __assert_fail ("!KnownValid && \"unhandled case in overloaded call candidate\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11755, __PRETTY_FUNCTION__))
;
11756}
11757
11758/// Add the overload candidates named by callee and/or found by argument
11759/// dependent lookup to the given overload set.
11760void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
11761 ArrayRef<Expr *> Args,
11762 OverloadCandidateSet &CandidateSet,
11763 bool PartialOverloading) {
11764
11765#ifndef NDEBUG
11766 // Verify that ArgumentDependentLookup is consistent with the rules
11767 // in C++0x [basic.lookup.argdep]p3:
11768 //
11769 // Let X be the lookup set produced by unqualified lookup (3.4.1)
11770 // and let Y be the lookup set produced by argument dependent
11771 // lookup (defined as follows). If X contains
11772 //
11773 // -- a declaration of a class member, or
11774 //
11775 // -- a block-scope function declaration that is not a
11776 // using-declaration, or
11777 //
11778 // -- a declaration that is neither a function or a function
11779 // template
11780 //
11781 // then Y is empty.
11782
11783 if (ULE->requiresADL()) {
11784 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11785 E = ULE->decls_end(); I != E; ++I) {
11786 assert(!(*I)->getDeclContext()->isRecord())((!(*I)->getDeclContext()->isRecord()) ? static_cast<
void> (0) : __assert_fail ("!(*I)->getDeclContext()->isRecord()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11786, __PRETTY_FUNCTION__))
;
11787 assert(isa<UsingShadowDecl>(*I) ||((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11788, __PRETTY_FUNCTION__))
11788 !(*I)->getDeclContext()->isFunctionOrMethod())((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11788, __PRETTY_FUNCTION__))
;
11789 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())(((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate
()) ? static_cast<void> (0) : __assert_fail ("(*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11789, __PRETTY_FUNCTION__))
;
11790 }
11791 }
11792#endif
11793
11794 // It would be nice to avoid this copy.
11795 TemplateArgumentListInfo TABuffer;
11796 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11797 if (ULE->hasExplicitTemplateArgs()) {
11798 ULE->copyTemplateArgumentsInto(TABuffer);
11799 ExplicitTemplateArgs = &TABuffer;
11800 }
11801
11802 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11803 E = ULE->decls_end(); I != E; ++I)
11804 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11805 CandidateSet, PartialOverloading,
11806 /*KnownValid*/ true);
11807
11808 if (ULE->requiresADL())
11809 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11810 Args, ExplicitTemplateArgs,
11811 CandidateSet, PartialOverloading);
11812}
11813
11814/// Determine whether a declaration with the specified name could be moved into
11815/// a different namespace.
11816static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11817 switch (Name.getCXXOverloadedOperator()) {
11818 case OO_New: case OO_Array_New:
11819 case OO_Delete: case OO_Array_Delete:
11820 return false;
11821
11822 default:
11823 return true;
11824 }
11825}
11826
11827/// Attempt to recover from an ill-formed use of a non-dependent name in a
11828/// template, where the non-dependent name was declared after the template
11829/// was defined. This is common in code written for a compilers which do not
11830/// correctly implement two-stage name lookup.
11831///
11832/// Returns true if a viable candidate was found and a diagnostic was issued.
11833static bool
11834DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11835 const CXXScopeSpec &SS, LookupResult &R,
11836 OverloadCandidateSet::CandidateSetKind CSK,
11837 TemplateArgumentListInfo *ExplicitTemplateArgs,
11838 ArrayRef<Expr *> Args,
11839 bool *DoDiagnoseEmptyLookup = nullptr) {
11840 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
11841 return false;
11842
11843 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11844 if (DC->isTransparentContext())
11845 continue;
11846
11847 SemaRef.LookupQualifiedName(R, DC);
11848
11849 if (!R.empty()) {
11850 R.suppressDiagnostics();
11851
11852 if (isa<CXXRecordDecl>(DC)) {
11853 // Don't diagnose names we find in classes; we get much better
11854 // diagnostics for these from DiagnoseEmptyLookup.
11855 R.clear();
11856 if (DoDiagnoseEmptyLookup)
11857 *DoDiagnoseEmptyLookup = true;
11858 return false;
11859 }
11860
11861 OverloadCandidateSet Candidates(FnLoc, CSK);
11862 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11863 AddOverloadedCallCandidate(SemaRef, I.getPair(),
11864 ExplicitTemplateArgs, Args,
11865 Candidates, false, /*KnownValid*/ false);
11866
11867 OverloadCandidateSet::iterator Best;
11868 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11869 // No viable functions. Don't bother the user with notes for functions
11870 // which don't work and shouldn't be found anyway.
11871 R.clear();
11872 return false;
11873 }
11874
11875 // Find the namespaces where ADL would have looked, and suggest
11876 // declaring the function there instead.
11877 Sema::AssociatedNamespaceSet AssociatedNamespaces;
11878 Sema::AssociatedClassSet AssociatedClasses;
11879 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11880 AssociatedNamespaces,
11881 AssociatedClasses);
11882 Sema::AssociatedNamespaceSet SuggestedNamespaces;
11883 if (canBeDeclaredInNamespace(R.getLookupName())) {
11884 DeclContext *Std = SemaRef.getStdNamespace();
11885 for (Sema::AssociatedNamespaceSet::iterator
11886 it = AssociatedNamespaces.begin(),
11887 end = AssociatedNamespaces.end(); it != end; ++it) {
11888 // Never suggest declaring a function within namespace 'std'.
11889 if (Std && Std->Encloses(*it))
11890 continue;
11891
11892 // Never suggest declaring a function within a namespace with a
11893 // reserved name, like __gnu_cxx.
11894 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11895 if (NS &&
11896 NS->getQualifiedNameAsString().find("__") != std::string::npos)
11897 continue;
11898
11899 SuggestedNamespaces.insert(*it);
11900 }
11901 }
11902
11903 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11904 << R.getLookupName();
11905 if (SuggestedNamespaces.empty()) {
11906 SemaRef.Diag(Best->Function->getLocation(),
11907 diag::note_not_found_by_two_phase_lookup)
11908 << R.getLookupName() << 0;
11909 } else if (SuggestedNamespaces.size() == 1) {
11910 SemaRef.Diag(Best->Function->getLocation(),
11911 diag::note_not_found_by_two_phase_lookup)
11912 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11913 } else {
11914 // FIXME: It would be useful to list the associated namespaces here,
11915 // but the diagnostics infrastructure doesn't provide a way to produce
11916 // a localized representation of a list of items.
11917 SemaRef.Diag(Best->Function->getLocation(),
11918 diag::note_not_found_by_two_phase_lookup)
11919 << R.getLookupName() << 2;
11920 }
11921
11922 // Try to recover by calling this function.
11923 return true;
11924 }
11925
11926 R.clear();
11927 }
11928
11929 return false;
11930}
11931
11932/// Attempt to recover from ill-formed use of a non-dependent operator in a
11933/// template, where the non-dependent operator was declared after the template
11934/// was defined.
11935///
11936/// Returns true if a viable candidate was found and a diagnostic was issued.
11937static bool
11938DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11939 SourceLocation OpLoc,
11940 ArrayRef<Expr *> Args) {
11941 DeclarationName OpName =
11942 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11943 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11944 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11945 OverloadCandidateSet::CSK_Operator,
11946 /*ExplicitTemplateArgs=*/nullptr, Args);
11947}
11948
11949namespace {
11950class BuildRecoveryCallExprRAII {
11951 Sema &SemaRef;
11952public:
11953 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11954 assert(SemaRef.IsBuildingRecoveryCallExpr == false)((SemaRef.IsBuildingRecoveryCallExpr == false) ? static_cast<
void> (0) : __assert_fail ("SemaRef.IsBuildingRecoveryCallExpr == false"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 11954, __PRETTY_FUNCTION__))
;
11955 SemaRef.IsBuildingRecoveryCallExpr = true;
11956 }
11957
11958 ~BuildRecoveryCallExprRAII() {
11959 SemaRef.IsBuildingRecoveryCallExpr = false;
11960 }
11961};
11962
11963}
11964
11965/// Attempts to recover from a call where no functions were found.
11966///
11967/// Returns true if new candidates were found.
11968static ExprResult
11969BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11970 UnresolvedLookupExpr *ULE,
11971 SourceLocation LParenLoc,
11972 MutableArrayRef<Expr *> Args,
11973 SourceLocation RParenLoc,
11974 bool EmptyLookup, bool AllowTypoCorrection) {
11975 // Do not try to recover if it is already building a recovery call.
11976 // This stops infinite loops for template instantiations like
11977 //
11978 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
11979 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
11980 //
11981 if (SemaRef.IsBuildingRecoveryCallExpr)
11982 return ExprError();
11983 BuildRecoveryCallExprRAII RCE(SemaRef);
11984
11985 CXXScopeSpec SS;
11986 SS.Adopt(ULE->getQualifierLoc());
11987 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
11988
11989 TemplateArgumentListInfo TABuffer;
11990 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11991 if (ULE->hasExplicitTemplateArgs()) {
11992 ULE->copyTemplateArgumentsInto(TABuffer);
11993 ExplicitTemplateArgs = &TABuffer;
11994 }
11995
11996 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
11997 Sema::LookupOrdinaryName);
11998 bool DoDiagnoseEmptyLookup = EmptyLookup;
11999 if (!DiagnoseTwoPhaseLookup(
12000 SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
12001 ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
12002 NoTypoCorrectionCCC NoTypoValidator{};
12003 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12004 ExplicitTemplateArgs != nullptr,
12005 dyn_cast<MemberExpr>(Fn));
12006 CorrectionCandidateCallback &Validator =
12007 AllowTypoCorrection
12008 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12009 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12010 if (!DoDiagnoseEmptyLookup ||
12011 SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12012 Args))
12013 return ExprError();
12014 }
12015
12016 assert(!R.empty() && "lookup results empty despite recovery")((!R.empty() && "lookup results empty despite recovery"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"lookup results empty despite recovery\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12016, __PRETTY_FUNCTION__))
;
12017
12018 // If recovery created an ambiguity, just bail out.
12019 if (R.isAmbiguous()) {
12020 R.suppressDiagnostics();
12021 return ExprError();
12022 }
12023
12024 // Build an implicit member call if appropriate. Just drop the
12025 // casts and such from the call, we don't really care.
12026 ExprResult NewFn = ExprError();
12027 if ((*R.begin())->isCXXClassMember())
12028 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12029 ExplicitTemplateArgs, S);
12030 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12031 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12032 ExplicitTemplateArgs);
12033 else
12034 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12035
12036 if (NewFn.isInvalid())
12037 return ExprError();
12038
12039 // This shouldn't cause an infinite loop because we're giving it
12040 // an expression with viable lookup results, which should never
12041 // end up here.
12042 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12043 MultiExprArg(Args.data(), Args.size()),
12044 RParenLoc);
12045}
12046
12047/// Constructs and populates an OverloadedCandidateSet from
12048/// the given function.
12049/// \returns true when an the ExprResult output parameter has been set.
12050bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12051 UnresolvedLookupExpr *ULE,
12052 MultiExprArg Args,
12053 SourceLocation RParenLoc,
12054 OverloadCandidateSet *CandidateSet,
12055 ExprResult *Result) {
12056#ifndef NDEBUG
12057 if (ULE->requiresADL()) {
12058 // To do ADL, we must have found an unqualified name.
12059 assert(!ULE->getQualifier() && "qualified name with ADL")((!ULE->getQualifier() && "qualified name with ADL"
) ? static_cast<void> (0) : __assert_fail ("!ULE->getQualifier() && \"qualified name with ADL\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12059, __PRETTY_FUNCTION__))
;
12060
12061 // We don't perform ADL for implicit declarations of builtins.
12062 // Verify that this was correctly set up.
12063 FunctionDecl *F;
12064 if (ULE->decls_begin() != ULE->decls_end() &&
12065 ULE->decls_begin() + 1 == ULE->decls_end() &&
12066 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12067 F->getBuiltinID() && F->isImplicit())
12068 llvm_unreachable("performing ADL for builtin")::llvm::llvm_unreachable_internal("performing ADL for builtin"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12068)
;
12069
12070 // We don't perform ADL in C.
12071 assert(getLangOpts().CPlusPlus && "ADL enabled in C")((getLangOpts().CPlusPlus && "ADL enabled in C") ? static_cast
<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL enabled in C\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12071, __PRETTY_FUNCTION__))
;
12072 }
12073#endif
12074
12075 UnbridgedCastsSet UnbridgedCasts;
12076 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12077 *Result = ExprError();
12078 return true;
12079 }
12080
12081 // Add the functions denoted by the callee to the set of candidate
12082 // functions, including those from argument-dependent lookup.
12083 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12084
12085 if (getLangOpts().MSVCCompat &&
12086 CurContext->isDependentContext() && !isSFINAEContext() &&
12087 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12088
12089 OverloadCandidateSet::iterator Best;
12090 if (CandidateSet->empty() ||
12091 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12092 OR_No_Viable_Function) {
12093 // In Microsoft mode, if we are inside a template class member function
12094 // then create a type dependent CallExpr. The goal is to postpone name
12095 // lookup to instantiation time to be able to search into type dependent
12096 // base classes.
12097 CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
12098 VK_RValue, RParenLoc);
12099 CE->setTypeDependent(true);
12100 CE->setValueDependent(true);
12101 CE->setInstantiationDependent(true);
12102 *Result = CE;
12103 return true;
12104 }
12105 }
12106
12107 if (CandidateSet->empty())
12108 return false;
12109
12110 UnbridgedCasts.restore();
12111 return false;
12112}
12113
12114/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12115/// the completed call expression. If overload resolution fails, emits
12116/// diagnostics and returns ExprError()
12117static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12118 UnresolvedLookupExpr *ULE,
12119 SourceLocation LParenLoc,
12120 MultiExprArg Args,
12121 SourceLocation RParenLoc,
12122 Expr *ExecConfig,
12123 OverloadCandidateSet *CandidateSet,
12124 OverloadCandidateSet::iterator *Best,
12125 OverloadingResult OverloadResult,
12126 bool AllowTypoCorrection) {
12127 if (CandidateSet->empty())
12128 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
12129 RParenLoc, /*EmptyLookup=*/true,
12130 AllowTypoCorrection);
12131
12132 switch (OverloadResult) {
12133 case OR_Success: {
12134 FunctionDecl *FDecl = (*Best)->Function;
12135 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
12136 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
12137 return ExprError();
12138 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12139 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12140 ExecConfig, /*IsExecConfig=*/false,
12141 (*Best)->IsADLCandidate);
12142 }
12143
12144 case OR_No_Viable_Function: {
12145 // Try to recover by looking for viable functions which the user might
12146 // have meant to call.
12147 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
12148 Args, RParenLoc,
12149 /*EmptyLookup=*/false,
12150 AllowTypoCorrection);
12151 if (!Recovery.isInvalid())
12152 return Recovery;
12153
12154 // If the user passes in a function that we can't take the address of, we
12155 // generally end up emitting really bad error messages. Here, we attempt to
12156 // emit better ones.
12157 for (const Expr *Arg : Args) {
12158 if (!Arg->getType()->isFunctionType())
12159 continue;
12160 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
12161 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
12162 if (FD &&
12163 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12164 Arg->getExprLoc()))
12165 return ExprError();
12166 }
12167 }
12168
12169 CandidateSet->NoteCandidates(
12170 PartialDiagnosticAt(
12171 Fn->getBeginLoc(),
12172 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
12173 << ULE->getName() << Fn->getSourceRange()),
12174 SemaRef, OCD_AllCandidates, Args);
12175 break;
12176 }
12177
12178 case OR_Ambiguous:
12179 CandidateSet->NoteCandidates(
12180 PartialDiagnosticAt(Fn->getBeginLoc(),
12181 SemaRef.PDiag(diag::err_ovl_ambiguous_call)
12182 << ULE->getName() << Fn->getSourceRange()),
12183 SemaRef, OCD_ViableCandidates, Args);
12184 break;
12185
12186 case OR_Deleted: {
12187 CandidateSet->NoteCandidates(
12188 PartialDiagnosticAt(Fn->getBeginLoc(),
12189 SemaRef.PDiag(diag::err_ovl_deleted_call)
12190 << ULE->getName() << Fn->getSourceRange()),
12191 SemaRef, OCD_AllCandidates, Args);
12192
12193 // We emitted an error for the unavailable/deleted function call but keep
12194 // the call in the AST.
12195 FunctionDecl *FDecl = (*Best)->Function;
12196 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
12197 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
12198 ExecConfig, /*IsExecConfig=*/false,
12199 (*Best)->IsADLCandidate);
12200 }
12201 }
12202
12203 // Overload resolution failed.
12204 return ExprError();
12205}
12206
12207static void markUnaddressableCandidatesUnviable(Sema &S,
12208 OverloadCandidateSet &CS) {
12209 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
12210 if (I->Viable &&
12211 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
12212 I->Viable = false;
12213 I->FailureKind = ovl_fail_addr_not_available;
12214 }
12215 }
12216}
12217
12218/// BuildOverloadedCallExpr - Given the call expression that calls Fn
12219/// (which eventually refers to the declaration Func) and the call
12220/// arguments Args/NumArgs, attempt to resolve the function call down
12221/// to a specific function. If overload resolution succeeds, returns
12222/// the call expression produced by overload resolution.
12223/// Otherwise, emits diagnostics and returns ExprError.
12224ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
12225 UnresolvedLookupExpr *ULE,
12226 SourceLocation LParenLoc,
12227 MultiExprArg Args,
12228 SourceLocation RParenLoc,
12229 Expr *ExecConfig,
12230 bool AllowTypoCorrection,
12231 bool CalleesAddressIsTaken) {
12232 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
12233 OverloadCandidateSet::CSK_Normal);
12234 ExprResult result;
12235
12236 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
12237 &result))
12238 return result;
12239
12240 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
12241 // functions that aren't addressible are considered unviable.
12242 if (CalleesAddressIsTaken)
12243 markUnaddressableCandidatesUnviable(*this, CandidateSet);
12244
12245 OverloadCandidateSet::iterator Best;
12246 OverloadingResult OverloadResult =
12247 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
12248
12249 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
12250 ExecConfig, &CandidateSet, &Best,
12251 OverloadResult, AllowTypoCorrection);
12252}
12253
12254static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
12255 return Functions.size() > 1 ||
12256 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
12257}
12258
12259/// Create a unary operation that may resolve to an overloaded
12260/// operator.
12261///
12262/// \param OpLoc The location of the operator itself (e.g., '*').
12263///
12264/// \param Opc The UnaryOperatorKind that describes this operator.
12265///
12266/// \param Fns The set of non-member functions that will be
12267/// considered by overload resolution. The caller needs to build this
12268/// set based on the context using, e.g.,
12269/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12270/// set should not contain any member functions; those will be added
12271/// by CreateOverloadedUnaryOp().
12272///
12273/// \param Input The input argument.
12274ExprResult
12275Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12276 const UnresolvedSetImpl &Fns,
12277 Expr *Input, bool PerformADL) {
12278 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12279 assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((Op != OO_None && "Invalid opcode for overloaded unary operator"
) ? static_cast<void> (0) : __assert_fail ("Op != OO_None && \"Invalid opcode for overloaded unary operator\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12279, __PRETTY_FUNCTION__))
;
12280 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12281 // TODO: provide better source location info.
12282 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12283
12284 if (checkPlaceholderForOverload(*this, Input))
12285 return ExprError();
12286
12287 Expr *Args[2] = { Input, nullptr };
12288 unsigned NumArgs = 1;
12289
12290 // For post-increment and post-decrement, add the implicit '0' as
12291 // the second argument, so that we know this is a post-increment or
12292 // post-decrement.
12293 if (Opc == UO_PostInc || Opc == UO_PostDec) {
12294 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12295 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12296 SourceLocation());
12297 NumArgs = 2;
12298 }
12299
12300 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12301
12302 if (Input->isTypeDependent()) {
12303 if (Fns.empty())
12304 return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12305 VK_RValue, OK_Ordinary, OpLoc, false);
12306
12307 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12308 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12309 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12310 /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
12311 return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
12312 Context.DependentTy, VK_RValue, OpLoc,
12313 FPOptions());
12314 }
12315
12316 // Build an empty overload set.
12317 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12318
12319 // Add the candidates from the given function set.
12320 AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
12321
12322 // Add operator candidates that are member functions.
12323 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12324
12325 // Add candidates from ADL.
12326 if (PerformADL) {
12327 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12328 /*ExplicitTemplateArgs*/nullptr,
12329 CandidateSet);
12330 }
12331
12332 // Add builtin operator candidates.
12333 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12334
12335 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12336
12337 // Perform overload resolution.
12338 OverloadCandidateSet::iterator Best;
12339 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12340 case OR_Success: {
12341 // We found a built-in operator or an overloaded operator.
12342 FunctionDecl *FnDecl = Best->Function;
12343
12344 if (FnDecl) {
12345 Expr *Base = nullptr;
12346 // We matched an overloaded operator. Build a call to that
12347 // operator.
12348
12349 // Convert the arguments.
12350 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12351 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12352
12353 ExprResult InputRes =
12354 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12355 Best->FoundDecl, Method);
12356 if (InputRes.isInvalid())
12357 return ExprError();
12358 Base = Input = InputRes.get();
12359 } else {
12360 // Convert the arguments.
12361 ExprResult InputInit
12362 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12363 Context,
12364 FnDecl->getParamDecl(0)),
12365 SourceLocation(),
12366 Input);
12367 if (InputInit.isInvalid())
12368 return ExprError();
12369 Input = InputInit.get();
12370 }
12371
12372 // Build the actual expression node.
12373 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12374 Base, HadMultipleCandidates,
12375 OpLoc);
12376 if (FnExpr.isInvalid())
12377 return ExprError();
12378
12379 // Determine the result type.
12380 QualType ResultTy = FnDecl->getReturnType();
12381 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12382 ResultTy = ResultTy.getNonLValueExprType(Context);
12383
12384 Args[0] = Input;
12385 CallExpr *TheCall = CXXOperatorCallExpr::Create(
12386 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
12387 FPOptions(), Best->IsADLCandidate);
12388
12389 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12390 return ExprError();
12391
12392 if (CheckFunctionCall(FnDecl, TheCall,
12393 FnDecl->getType()->castAs<FunctionProtoType>()))
12394 return ExprError();
12395
12396 return MaybeBindToTemporary(TheCall);
12397 } else {
12398 // We matched a built-in operator. Convert the arguments, then
12399 // break out so that we will build the appropriate built-in
12400 // operator node.
12401 ExprResult InputRes = PerformImplicitConversion(
12402 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
12403 CCK_ForBuiltinOverloadedOp);
12404 if (InputRes.isInvalid())
12405 return ExprError();
12406 Input = InputRes.get();
12407 break;
12408 }
12409 }
12410
12411 case OR_No_Viable_Function:
12412 // This is an erroneous use of an operator which can be overloaded by
12413 // a non-member function. Check for non-member operators which were
12414 // defined too late to be candidates.
12415 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12416 // FIXME: Recover by calling the found function.
12417 return ExprError();
12418
12419 // No viable function; fall through to handling this as a
12420 // built-in operator, which will produce an error message for us.
12421 break;
12422
12423 case OR_Ambiguous:
12424 CandidateSet.NoteCandidates(
12425 PartialDiagnosticAt(OpLoc,
12426 PDiag(diag::err_ovl_ambiguous_oper_unary)
12427 << UnaryOperator::getOpcodeStr(Opc)
12428 << Input->getType() << Input->getSourceRange()),
12429 *this, OCD_ViableCandidates, ArgsArray,
12430 UnaryOperator::getOpcodeStr(Opc), OpLoc);
12431 return ExprError();
12432
12433 case OR_Deleted:
12434 CandidateSet.NoteCandidates(
12435 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12436 << UnaryOperator::getOpcodeStr(Opc)
12437 << Input->getSourceRange()),
12438 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
12439 OpLoc);
12440 return ExprError();
12441 }
12442
12443 // Either we found no viable overloaded operator or we matched a
12444 // built-in operator. In either case, fall through to trying to
12445 // build a built-in operation.
12446 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12447}
12448
12449/// Create a binary operation that may resolve to an overloaded
12450/// operator.
12451///
12452/// \param OpLoc The location of the operator itself (e.g., '+').
12453///
12454/// \param Opc The BinaryOperatorKind that describes this operator.
12455///
12456/// \param Fns The set of non-member functions that will be
12457/// considered by overload resolution. The caller needs to build this
12458/// set based on the context using, e.g.,
12459/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12460/// set should not contain any member functions; those will be added
12461/// by CreateOverloadedBinOp().
12462///
12463/// \param LHS Left-hand argument.
12464/// \param RHS Right-hand argument.
12465ExprResult
12466Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12467 BinaryOperatorKind Opc,
12468 const UnresolvedSetImpl &Fns,
12469 Expr *LHS, Expr *RHS, bool PerformADL) {
12470 Expr *Args[2] = { LHS, RHS };
12471 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12472
12473 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12474 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12475
12476 // If either side is type-dependent, create an appropriate dependent
12477 // expression.
12478 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12479 if (Fns.empty()) {
12480 // If there are no functions to store, just build a dependent
12481 // BinaryOperator or CompoundAssignment.
12482 if (Opc <= BO_Assign || Opc > BO_OrAssign)
12483 return new (Context) BinaryOperator(
12484 Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12485 OpLoc, FPFeatures);
12486
12487 return new (Context) CompoundAssignOperator(
12488 Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12489 Context.DependentTy, Context.DependentTy, OpLoc,
12490 FPFeatures);
12491 }
12492
12493 // FIXME: save results of ADL from here?
12494 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12495 // TODO: provide better source location info in DNLoc component.
12496 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12497 UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
12498 Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
12499 /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
12500 return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
12501 Context.DependentTy, VK_RValue, OpLoc,
12502 FPFeatures);
12503 }
12504
12505 // Always do placeholder-like conversions on the RHS.
12506 if (checkPlaceholderForOverload(*this, Args[1]))
12507 return ExprError();
12508
12509 // Do placeholder-like conversion on the LHS; note that we should
12510 // not get here with a PseudoObject LHS.
12511 assert(Args[0]->getObjectKind() != OK_ObjCProperty)((Args[0]->getObjectKind() != OK_ObjCProperty) ? static_cast
<void> (0) : __assert_fail ("Args[0]->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12511, __PRETTY_FUNCTION__))
;
12512 if (checkPlaceholderForOverload(*this, Args[0]))
12513 return ExprError();
12514
12515 // If this is the assignment operator, we only perform overload resolution
12516 // if the left-hand side is a class or enumeration type. This is actually
12517 // a hack. The standard requires that we do overload resolution between the
12518 // various built-in candidates, but as DR507 points out, this can lead to
12519 // problems. So we do it this way, which pretty much follows what GCC does.
12520 // Note that we go the traditional code path for compound assignment forms.
12521 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12522 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12523
12524 // If this is the .* operator, which is not overloadable, just
12525 // create a built-in binary operator.
12526 if (Opc == BO_PtrMemD)
12527 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12528
12529 // Build an empty overload set.
12530 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12531
12532 // Add the candidates from the given function set.
12533 AddFunctionCandidates(Fns, Args, CandidateSet);
12534
12535 // Add operator candidates that are member functions.
12536 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12537
12538 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12539 // performed for an assignment operator (nor for operator[] nor operator->,
12540 // which don't get here).
12541 if (Opc != BO_Assign && PerformADL)
12542 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12543 /*ExplicitTemplateArgs*/ nullptr,
12544 CandidateSet);
12545
12546 // Add builtin operator candidates.
12547 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12548
12549 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12550
12551 // Perform overload resolution.
12552 OverloadCandidateSet::iterator Best;
12553 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12554 case OR_Success: {
12555 // We found a built-in operator or an overloaded operator.
12556 FunctionDecl *FnDecl = Best->Function;
12557
12558 if (FnDecl) {
12559 Expr *Base = nullptr;
12560 // We matched an overloaded operator. Build a call to that
12561 // operator.
12562
12563 // Convert the arguments.
12564 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12565 // Best->Access is only meaningful for class members.
12566 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12567
12568 ExprResult Arg1 =
12569 PerformCopyInitialization(
12570 InitializedEntity::InitializeParameter(Context,
12571 FnDecl->getParamDecl(0)),
12572 SourceLocation(), Args[1]);
12573 if (Arg1.isInvalid())
12574 return ExprError();
12575
12576 ExprResult Arg0 =
12577 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12578 Best->FoundDecl, Method);
12579 if (Arg0.isInvalid())
12580 return ExprError();
12581 Base = Args[0] = Arg0.getAs<Expr>();
12582 Args[1] = RHS = Arg1.getAs<Expr>();
12583 } else {
12584 // Convert the arguments.
12585 ExprResult Arg0 = PerformCopyInitialization(
12586 InitializedEntity::InitializeParameter(Context,
12587 FnDecl->getParamDecl(0)),
12588 SourceLocation(), Args[0]);
12589 if (Arg0.isInvalid())
12590 return ExprError();
12591
12592 ExprResult Arg1 =
12593 PerformCopyInitialization(
12594 InitializedEntity::InitializeParameter(Context,
12595 FnDecl->getParamDecl(1)),
12596 SourceLocation(), Args[1]);
12597 if (Arg1.isInvalid())
12598 return ExprError();
12599 Args[0] = LHS = Arg0.getAs<Expr>();
12600 Args[1] = RHS = Arg1.getAs<Expr>();
12601 }
12602
12603 // Build the actual expression node.
12604 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12605 Best->FoundDecl, Base,
12606 HadMultipleCandidates, OpLoc);
12607 if (FnExpr.isInvalid())
12608 return ExprError();
12609
12610 // Determine the result type.
12611 QualType ResultTy = FnDecl->getReturnType();
12612 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12613 ResultTy = ResultTy.getNonLValueExprType(Context);
12614
12615 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
12616 Context, Op, FnExpr.get(), Args, ResultTy, VK, OpLoc, FPFeatures,
12617 Best->IsADLCandidate);
12618
12619 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
12620 FnDecl))
12621 return ExprError();
12622
12623 ArrayRef<const Expr *> ArgsArray(Args, 2);
12624 const Expr *ImplicitThis = nullptr;
12625 // Cut off the implicit 'this'.
12626 if (isa<CXXMethodDecl>(FnDecl)) {
12627 ImplicitThis = ArgsArray[0];
12628 ArgsArray = ArgsArray.slice(1);
12629 }
12630
12631 // Check for a self move.
12632 if (Op == OO_Equal)
12633 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
12634
12635 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
12636 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
12637 VariadicDoesNotApply);
12638
12639 return MaybeBindToTemporary(TheCall);
12640 } else {
12641 // We matched a built-in operator. Convert the arguments, then
12642 // break out so that we will build the appropriate built-in
12643 // operator node.
12644 ExprResult ArgsRes0 = PerformImplicitConversion(
12645 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12646 AA_Passing, CCK_ForBuiltinOverloadedOp);
12647 if (ArgsRes0.isInvalid())
12648 return ExprError();
12649 Args[0] = ArgsRes0.get();
12650
12651 ExprResult ArgsRes1 = PerformImplicitConversion(
12652 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12653 AA_Passing, CCK_ForBuiltinOverloadedOp);
12654 if (ArgsRes1.isInvalid())
12655 return ExprError();
12656 Args[1] = ArgsRes1.get();
12657 break;
12658 }
12659 }
12660
12661 case OR_No_Viable_Function: {
12662 // C++ [over.match.oper]p9:
12663 // If the operator is the operator , [...] and there are no
12664 // viable functions, then the operator is assumed to be the
12665 // built-in operator and interpreted according to clause 5.
12666 if (Opc == BO_Comma)
12667 break;
12668
12669 // For class as left operand for assignment or compound assignment
12670 // operator do not fall through to handling in built-in, but report that
12671 // no overloaded assignment operator found
12672 ExprResult Result = ExprError();
12673 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
12674 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
12675 Args, OpLoc);
12676 if (Args[0]->getType()->isRecordType() &&
12677 Opc >= BO_Assign && Opc <= BO_OrAssign) {
12678 Diag(OpLoc, diag::err_ovl_no_viable_oper)
12679 << BinaryOperator::getOpcodeStr(Opc)
12680 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12681 if (Args[0]->getType()->isIncompleteType()) {
12682 Diag(OpLoc, diag::note_assign_lhs_incomplete)
12683 << Args[0]->getType()
12684 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12685 }
12686 } else {
12687 // This is an erroneous use of an operator which can be overloaded by
12688 // a non-member function. Check for non-member operators which were
12689 // defined too late to be candidates.
12690 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
12691 // FIXME: Recover by calling the found function.
12692 return ExprError();
12693
12694 // No viable function; try to create a built-in operation, which will
12695 // produce an error. Then, show the non-viable candidates.
12696 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12697 }
12698 assert(Result.isInvalid() &&((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12699, __PRETTY_FUNCTION__))
12699 "C++ binary operator overloading is missing candidates!")((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12699, __PRETTY_FUNCTION__))
;
12700 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
12701 return Result;
12702 }
12703
12704 case OR_Ambiguous:
12705 CandidateSet.NoteCandidates(
12706 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12707 << BinaryOperator::getOpcodeStr(Opc)
12708 << Args[0]->getType()
12709 << Args[1]->getType()
12710 << Args[0]->getSourceRange()
12711 << Args[1]->getSourceRange()),
12712 *this, OCD_ViableCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12713 OpLoc);
12714 return ExprError();
12715
12716 case OR_Deleted:
12717 if (isImplicitlyDeleted(Best->Function)) {
12718 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12719 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
12720 << Context.getRecordType(Method->getParent())
12721 << getSpecialMember(Method);
12722
12723 // The user probably meant to call this special member. Just
12724 // explain why it's deleted.
12725 NoteDeletedFunction(Method);
12726 return ExprError();
12727 }
12728 CandidateSet.NoteCandidates(
12729 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
12730 << BinaryOperator::getOpcodeStr(Opc)
12731 << Args[0]->getSourceRange()
12732 << Args[1]->getSourceRange()),
12733 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
12734 OpLoc);
12735 return ExprError();
12736 }
12737
12738 // We matched a built-in operator; build it.
12739 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12740}
12741
12742ExprResult
12743Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
12744 SourceLocation RLoc,
12745 Expr *Base, Expr *Idx) {
12746 Expr *Args[2] = { Base, Idx };
12747 DeclarationName OpName =
12748 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
12749
12750 // If either side is type-dependent, create an appropriate dependent
12751 // expression.
12752 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12753
12754 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12755 // CHECKME: no 'operator' keyword?
12756 DeclarationNameInfo OpNameInfo(OpName, LLoc);
12757 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12758 UnresolvedLookupExpr *Fn
12759 = UnresolvedLookupExpr::Create(Context, NamingClass,
12760 NestedNameSpecifierLoc(), OpNameInfo,
12761 /*ADL*/ true, /*Overloaded*/ false,
12762 UnresolvedSetIterator(),
12763 UnresolvedSetIterator());
12764 // Can't add any actual overloads yet
12765
12766 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
12767 Context.DependentTy, VK_RValue, RLoc,
12768 FPOptions());
12769 }
12770
12771 // Handle placeholders on both operands.
12772 if (checkPlaceholderForOverload(*this, Args[0]))
12773 return ExprError();
12774 if (checkPlaceholderForOverload(*this, Args[1]))
12775 return ExprError();
12776
12777 // Build an empty overload set.
12778 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
12779
12780 // Subscript can only be overloaded as a member function.
12781
12782 // Add operator candidates that are member functions.
12783 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12784
12785 // Add builtin operator candidates.
12786 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12787
12788 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12789
12790 // Perform overload resolution.
12791 OverloadCandidateSet::iterator Best;
12792 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12793 case OR_Success: {
12794 // We found a built-in operator or an overloaded operator.
12795 FunctionDecl *FnDecl = Best->Function;
12796
12797 if (FnDecl) {
12798 // We matched an overloaded operator. Build a call to that
12799 // operator.
12800
12801 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12802
12803 // Convert the arguments.
12804 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12805 ExprResult Arg0 =
12806 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12807 Best->FoundDecl, Method);
12808 if (Arg0.isInvalid())
12809 return ExprError();
12810 Args[0] = Arg0.get();
12811
12812 // Convert the arguments.
12813 ExprResult InputInit
12814 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12815 Context,
12816 FnDecl->getParamDecl(0)),
12817 SourceLocation(),
12818 Args[1]);
12819 if (InputInit.isInvalid())
12820 return ExprError();
12821
12822 Args[1] = InputInit.getAs<Expr>();
12823
12824 // Build the actual expression node.
12825 DeclarationNameInfo OpLocInfo(OpName, LLoc);
12826 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12827 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12828 Best->FoundDecl,
12829 Base,
12830 HadMultipleCandidates,
12831 OpLocInfo.getLoc(),
12832 OpLocInfo.getInfo());
12833 if (FnExpr.isInvalid())
12834 return ExprError();
12835
12836 // Determine the result type
12837 QualType ResultTy = FnDecl->getReturnType();
12838 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12839 ResultTy = ResultTy.getNonLValueExprType(Context);
12840
12841 CXXOperatorCallExpr *TheCall =
12842 CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
12843 Args, ResultTy, VK, RLoc, FPOptions());
12844
12845 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12846 return ExprError();
12847
12848 if (CheckFunctionCall(Method, TheCall,
12849 Method->getType()->castAs<FunctionProtoType>()))
12850 return ExprError();
12851
12852 return MaybeBindToTemporary(TheCall);
12853 } else {
12854 // We matched a built-in operator. Convert the arguments, then
12855 // break out so that we will build the appropriate built-in
12856 // operator node.
12857 ExprResult ArgsRes0 = PerformImplicitConversion(
12858 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
12859 AA_Passing, CCK_ForBuiltinOverloadedOp);
12860 if (ArgsRes0.isInvalid())
12861 return ExprError();
12862 Args[0] = ArgsRes0.get();
12863
12864 ExprResult ArgsRes1 = PerformImplicitConversion(
12865 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
12866 AA_Passing, CCK_ForBuiltinOverloadedOp);
12867 if (ArgsRes1.isInvalid())
12868 return ExprError();
12869 Args[1] = ArgsRes1.get();
12870
12871 break;
12872 }
12873 }
12874
12875 case OR_No_Viable_Function: {
12876 PartialDiagnostic PD = CandidateSet.empty()
12877 ? (PDiag(diag::err_ovl_no_oper)
12878 << Args[0]->getType() << /*subscript*/ 0
12879 << Args[0]->getSourceRange() << Args[1]->getSourceRange())
12880 : (PDiag(diag::err_ovl_no_viable_subscript)
12881 << Args[0]->getType() << Args[0]->getSourceRange()
12882 << Args[1]->getSourceRange());
12883 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
12884 OCD_AllCandidates, Args, "[]", LLoc);
12885 return ExprError();
12886 }
12887
12888 case OR_Ambiguous:
12889 CandidateSet.NoteCandidates(
12890 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
12891 << "[]" << Args[0]->getType()
12892 << Args[1]->getType()
12893 << Args[0]->getSourceRange()
12894 << Args[1]->getSourceRange()),
12895 *this, OCD_ViableCandidates, Args, "[]", LLoc);
12896 return ExprError();
12897
12898 case OR_Deleted:
12899 CandidateSet.NoteCandidates(
12900 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
12901 << "[]" << Args[0]->getSourceRange()
12902 << Args[1]->getSourceRange()),
12903 *this, OCD_AllCandidates, Args, "[]", LLoc);
12904 return ExprError();
12905 }
12906
12907 // We matched a built-in operator; build it.
12908 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12909}
12910
12911/// BuildCallToMemberFunction - Build a call to a member
12912/// function. MemExpr is the expression that refers to the member
12913/// function (and includes the object parameter), Args/NumArgs are the
12914/// arguments to the function call (not including the object
12915/// parameter). The caller needs to validate that the member
12916/// expression refers to a non-static member function or an overloaded
12917/// member function.
12918ExprResult
12919Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12920 SourceLocation LParenLoc,
12921 MultiExprArg Args,
12922 SourceLocation RParenLoc) {
12923 assert(MemExprE->getType() == Context.BoundMemberTy ||((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12924, __PRETTY_FUNCTION__))
12924 MemExprE->getType() == Context.OverloadTy)((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12924, __PRETTY_FUNCTION__))
;
12925
12926 // Dig out the member expression. This holds both the object
12927 // argument and the member function we're referring to.
12928 Expr *NakedMemExpr = MemExprE->IgnoreParens();
12929
12930 // Determine whether this is a call to a pointer-to-member function.
12931 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12932 assert(op->getType() == Context.BoundMemberTy)((op->getType() == Context.BoundMemberTy) ? static_cast<
void> (0) : __assert_fail ("op->getType() == Context.BoundMemberTy"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12932, __PRETTY_FUNCTION__))
;
12933 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI
) ? static_cast<void> (0) : __assert_fail ("op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 12933, __PRETTY_FUNCTION__))
;
12934
12935 QualType fnType =
12936 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12937
12938 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12939 QualType resultType = proto->getCallResultType(Context);
12940 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12941
12942 // Check that the object type isn't more qualified than the
12943 // member function we're calling.
12944 Qualifiers funcQuals = proto->getMethodQuals();
12945
12946 QualType objectType = op->getLHS()->getType();
12947 if (op->getOpcode() == BO_PtrMemI)
12948 objectType = objectType->castAs<PointerType>()->getPointeeType();
12949 Qualifiers objectQuals = objectType.getQualifiers();
12950
12951 Qualifiers difference = objectQuals - funcQuals;
12952 difference.removeObjCGCAttr();
12953 difference.removeAddressSpace();
12954 if (difference) {
12955 std::string qualsString = difference.getAsString();
12956 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
12957 << fnType.getUnqualifiedType()
12958 << qualsString
12959 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
12960 }
12961
12962 CXXMemberCallExpr *call =
12963 CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
12964 valueKind, RParenLoc, proto->getNumParams());
12965
12966 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
12967 call, nullptr))
12968 return ExprError();
12969
12970 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
12971 return ExprError();
12972
12973 if (CheckOtherCall(call, proto))
12974 return ExprError();
12975
12976 return MaybeBindToTemporary(call);
12977 }
12978
12979 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
12980 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
12981 RParenLoc);
12982
12983 UnbridgedCastsSet UnbridgedCasts;
12984 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12985 return ExprError();
12986
12987 MemberExpr *MemExpr;
12988 CXXMethodDecl *Method = nullptr;
12989 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
12990 NestedNameSpecifier *Qualifier = nullptr;
12991 if (isa<MemberExpr>(NakedMemExpr)) {
12992 MemExpr = cast<MemberExpr>(NakedMemExpr);
12993 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
12994 FoundDecl = MemExpr->getFoundDecl();
12995 Qualifier = MemExpr->getQualifier();
12996 UnbridgedCasts.restore();
12997 } else {
12998 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
12999 Qualifier = UnresExpr->getQualifier();
13000
13001 QualType ObjectType = UnresExpr->getBaseType();
13002 Expr::Classification ObjectClassification
13003 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
13004 : UnresExpr->getBase()->Classify(Context);
13005
13006 // Add overload candidates
13007 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
13008 OverloadCandidateSet::CSK_Normal);
13009
13010 // FIXME: avoid copy.
13011 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13012 if (UnresExpr->hasExplicitTemplateArgs()) {
13013 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13014 TemplateArgs = &TemplateArgsBuffer;
13015 }
13016
13017 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
13018 E = UnresExpr->decls_end(); I != E; ++I) {
13019
13020 NamedDecl *Func = *I;
13021 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
13022 if (isa<UsingShadowDecl>(Func))
13023 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
13024
13025
13026 // Microsoft supports direct constructor calls.
13027 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
13028 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
13029 CandidateSet,
13030 /*SuppressUserConversions*/ false);
13031 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
13032 // If explicit template arguments were provided, we can't call a
13033 // non-template member function.
13034 if (TemplateArgs)
13035 continue;
13036
13037 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
13038 ObjectClassification, Args, CandidateSet,
13039 /*SuppressUserConversions=*/false);
13040 } else {
13041 AddMethodTemplateCandidate(
13042 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
13043 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
13044 /*SuppressUsedConversions=*/false);
13045 }
13046 }
13047
13048 DeclarationName DeclName = UnresExpr->getMemberName();
13049
13050 UnbridgedCasts.restore();
13051
13052 OverloadCandidateSet::iterator Best;
13053 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
13054 Best)) {
13055 case OR_Success:
13056 Method = cast<CXXMethodDecl>(Best->Function);
13057 FoundDecl = Best->FoundDecl;
13058 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
13059 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
13060 return ExprError();
13061 // If FoundDecl is different from Method (such as if one is a template
13062 // and the other a specialization), make sure DiagnoseUseOfDecl is
13063 // called on both.
13064 // FIXME: This would be more comprehensively addressed by modifying
13065 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
13066 // being used.
13067 if (Method != FoundDecl.getDecl() &&
13068 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
13069 return ExprError();
13070 break;
13071
13072 case OR_No_Viable_Function:
13073 CandidateSet.NoteCandidates(
13074 PartialDiagnosticAt(
13075 UnresExpr->getMemberLoc(),
13076 PDiag(diag::err_ovl_no_viable_member_function_in_call)
13077 << DeclName << MemExprE->getSourceRange()),
13078 *this, OCD_AllCandidates, Args);
13079 // FIXME: Leaking incoming expressions!
13080 return ExprError();
13081
13082 case OR_Ambiguous:
13083 CandidateSet.NoteCandidates(
13084 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13085 PDiag(diag::err_ovl_ambiguous_member_call)
13086 << DeclName << MemExprE->getSourceRange()),
13087 *this, OCD_AllCandidates, Args);
13088 // FIXME: Leaking incoming expressions!
13089 return ExprError();
13090
13091 case OR_Deleted:
13092 CandidateSet.NoteCandidates(
13093 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
13094 PDiag(diag::err_ovl_deleted_member_call)
13095 << DeclName << MemExprE->getSourceRange()),
13096 *this, OCD_AllCandidates, Args);
13097 // FIXME: Leaking incoming expressions!
13098 return ExprError();
13099 }
13100
13101 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
13102
13103 // If overload resolution picked a static member, build a
13104 // non-member call based on that function.
13105 if (Method->isStatic()) {
13106 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
13107 RParenLoc);
13108 }
13109
13110 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
13111 }
13112
13113 QualType ResultType = Method->getReturnType();
13114 ExprValueKind VK = Expr::getValueKindForType(ResultType);
13115 ResultType = ResultType.getNonLValueExprType(Context);
13116
13117 assert(Method && "Member call to something that isn't a method?")((Method && "Member call to something that isn't a method?"
) ? static_cast<void> (0) : __assert_fail ("Method && \"Member call to something that isn't a method?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13117, __PRETTY_FUNCTION__))
;
13118 const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
13119 CXXMemberCallExpr *TheCall =
13120 CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
13121 RParenLoc, Proto->getNumParams());
13122
13123 // Check for a valid return type.
13124 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
13125 TheCall, Method))
13126 return ExprError();
13127
13128 // Convert the object argument (for a non-static member function call).
13129 // We only need to do this if there was actually an overload; otherwise
13130 // it was done at lookup.
13131 if (!Method->isStatic()) {
13132 ExprResult ObjectArg =
13133 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
13134 FoundDecl, Method);
13135 if (ObjectArg.isInvalid())
13136 return ExprError();
13137 MemExpr->setBase(ObjectArg.get());
13138 }
13139
13140 // Convert the rest of the arguments
13141 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
13142 RParenLoc))
13143 return ExprError();
13144
13145 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13146
13147 if (CheckFunctionCall(Method, TheCall, Proto))
13148 return ExprError();
13149
13150 // In the case the method to call was not selected by the overloading
13151 // resolution process, we still need to handle the enable_if attribute. Do
13152 // that here, so it will not hide previous -- and more relevant -- errors.
13153 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
13154 if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
13155 Diag(MemE->getMemberLoc(),
13156 diag::err_ovl_no_viable_member_function_in_call)
13157 << Method << Method->getSourceRange();
13158 Diag(Method->getLocation(),
13159 diag::note_ovl_candidate_disabled_by_function_cond_attr)
13160 << Attr->getCond()->getSourceRange() << Attr->getMessage();
13161 return ExprError();
13162 }
13163 }
13164
13165 if ((isa<CXXConstructorDecl>(CurContext) ||
13166 isa<CXXDestructorDecl>(CurContext)) &&
13167 TheCall->getMethodDecl()->isPure()) {
13168 const CXXMethodDecl *MD = TheCall->getMethodDecl();
13169
13170 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
13171 MemExpr->performsVirtualDispatch(getLangOpts())) {
13172 Diag(MemExpr->getBeginLoc(),
13173 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
13174 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
13175 << MD->getParent()->getDeclName();
13176
13177 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
13178 if (getLangOpts().AppleKext)
13179 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
13180 << MD->getParent()->getDeclName() << MD->getDeclName();
13181 }
13182 }
13183
13184 if (CXXDestructorDecl *DD =
13185 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
13186 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
13187 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
13188 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
13189 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
13190 MemExpr->getMemberLoc());
13191 }
13192
13193 return MaybeBindToTemporary(TheCall);
13194}
13195
13196/// BuildCallToObjectOfClassType - Build a call to an object of class
13197/// type (C++ [over.call.object]), which can end up invoking an
13198/// overloaded function call operator (@c operator()) or performing a
13199/// user-defined conversion on the object argument.
13200ExprResult
13201Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
13202 SourceLocation LParenLoc,
13203 MultiExprArg Args,
13204 SourceLocation RParenLoc) {
13205 if (checkPlaceholderForOverload(*this, Obj))
13206 return ExprError();
13207 ExprResult Object = Obj;
13208
13209 UnbridgedCastsSet UnbridgedCasts;
13210 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
13211 return ExprError();
13212
13213 assert(Object.get()->getType()->isRecordType() &&((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13214, __PRETTY_FUNCTION__))
13214 "Requires object type argument")((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13214, __PRETTY_FUNCTION__))
;
13215 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
13216
13217 // C++ [over.call.object]p1:
13218 // If the primary-expression E in the function call syntax
13219 // evaluates to a class object of type "cv T", then the set of
13220 // candidate functions includes at least the function call
13221 // operators of T. The function call operators of T are obtained by
13222 // ordinary lookup of the name operator() in the context of
13223 // (E).operator().
13224 OverloadCandidateSet CandidateSet(LParenLoc,
13225 OverloadCandidateSet::CSK_Operator);
13226 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
13227
13228 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
13229 diag::err_incomplete_object_call, Object.get()))
13230 return true;
13231
13232 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
13233 LookupQualifiedName(R, Record->getDecl());
13234 R.suppressDiagnostics();
13235
13236 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13237 Oper != OperEnd; ++Oper) {
13238 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
13239 Object.get()->Classify(Context), Args, CandidateSet,
13240 /*SuppressUserConversions=*/false);
13241 }
13242
13243 // C++ [over.call.object]p2:
13244 // In addition, for each (non-explicit in C++0x) conversion function
13245 // declared in T of the form
13246 //
13247 // operator conversion-type-id () cv-qualifier;
13248 //
13249 // where cv-qualifier is the same cv-qualification as, or a
13250 // greater cv-qualification than, cv, and where conversion-type-id
13251 // denotes the type "pointer to function of (P1,...,Pn) returning
13252 // R", or the type "reference to pointer to function of
13253 // (P1,...,Pn) returning R", or the type "reference to function
13254 // of (P1,...,Pn) returning R", a surrogate call function [...]
13255 // is also considered as a candidate function. Similarly,
13256 // surrogate call functions are added to the set of candidate
13257 // functions for each conversion function declared in an
13258 // accessible base class provided the function is not hidden
13259 // within T by another intervening declaration.
13260 const auto &Conversions =
13261 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
13262 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
13263 NamedDecl *D = *I;
13264 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
13265 if (isa<UsingShadowDecl>(D))
13266 D = cast<UsingShadowDecl>(D)->getTargetDecl();
13267
13268 // Skip over templated conversion functions; they aren't
13269 // surrogates.
13270 if (isa<FunctionTemplateDecl>(D))
13271 continue;
13272
13273 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13274 if (!Conv->isExplicit()) {
13275 // Strip the reference type (if any) and then the pointer type (if
13276 // any) to get down to what might be a function type.
13277 QualType ConvType = Conv->getConversionType().getNonReferenceType();
13278 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13279 ConvType = ConvPtrType->getPointeeType();
13280
13281 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13282 {
13283 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13284 Object.get(), Args, CandidateSet);
13285 }
13286 }
13287 }
13288
13289 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13290
13291 // Perform overload resolution.
13292 OverloadCandidateSet::iterator Best;
13293 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
13294 Best)) {
13295 case OR_Success:
13296 // Overload resolution succeeded; we'll build the appropriate call
13297 // below.
13298 break;
13299
13300 case OR_No_Viable_Function: {
13301 PartialDiagnostic PD =
13302 CandidateSet.empty()
13303 ? (PDiag(diag::err_ovl_no_oper)
13304 << Object.get()->getType() << /*call*/ 1
13305 << Object.get()->getSourceRange())
13306 : (PDiag(diag::err_ovl_no_viable_object_call)
13307 << Object.get()->getType() << Object.get()->getSourceRange());
13308 CandidateSet.NoteCandidates(
13309 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
13310 OCD_AllCandidates, Args);
13311 break;
13312 }
13313 case OR_Ambiguous:
13314 CandidateSet.NoteCandidates(
13315 PartialDiagnosticAt(Object.get()->getBeginLoc(),
13316 PDiag(diag::err_ovl_ambiguous_object_call)
13317 << Object.get()->getType()
13318 << Object.get()->getSourceRange()),
13319 *this, OCD_ViableCandidates, Args);
13320 break;
13321
13322 case OR_Deleted:
13323 CandidateSet.NoteCandidates(
13324 PartialDiagnosticAt(Object.get()->getBeginLoc(),
13325 PDiag(diag::err_ovl_deleted_object_call)
13326 << Object.get()->getType()
13327 << Object.get()->getSourceRange()),
13328 *this, OCD_AllCandidates, Args);
13329 break;
13330 }
13331
13332 if (Best == CandidateSet.end())
13333 return true;
13334
13335 UnbridgedCasts.restore();
13336
13337 if (Best->Function == nullptr) {
13338 // Since there is no function declaration, this is one of the
13339 // surrogate candidates. Dig out the conversion function.
13340 CXXConversionDecl *Conv
13341 = cast<CXXConversionDecl>(
13342 Best->Conversions[0].UserDefined.ConversionFunction);
13343
13344 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13345 Best->FoundDecl);
13346 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13347 return ExprError();
13348 assert(Conv == Best->FoundDecl.getDecl() &&((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13349, __PRETTY_FUNCTION__))
13349 "Found Decl & conversion-to-functionptr should be same, right?!")((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13349, __PRETTY_FUNCTION__))
;
13350 // We selected one of the surrogate functions that converts the
13351 // object parameter to a function pointer. Perform the conversion
13352 // on the object argument, then let BuildCallExpr finish the job.
13353
13354 // Create an implicit member expr to refer to the conversion operator.
13355 // and then call it.
13356 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13357 Conv, HadMultipleCandidates);
13358 if (Call.isInvalid())
13359 return ExprError();
13360 // Record usage of conversion in an implicit cast.
13361 Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13362 CK_UserDefinedConversion, Call.get(),
13363 nullptr, VK_RValue);
13364
13365 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13366 }
13367
13368 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13369
13370 // We found an overloaded operator(). Build a CXXOperatorCallExpr
13371 // that calls this method, using Object for the implicit object
13372 // parameter and passing along the remaining arguments.
13373 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13374
13375 // An error diagnostic has already been printed when parsing the declaration.
13376 if (Method->isInvalidDecl())
13377 return ExprError();
13378
13379 const FunctionProtoType *Proto =
13380 Method->getType()->getAs<FunctionProtoType>();
13381
13382 unsigned NumParams = Proto->getNumParams();
13383
13384 DeclarationNameInfo OpLocInfo(
13385 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13386 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13387 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13388 Obj, HadMultipleCandidates,
13389 OpLocInfo.getLoc(),
13390 OpLocInfo.getInfo());
13391 if (NewFn.isInvalid())
13392 return true;
13393
13394 // The number of argument slots to allocate in the call. If we have default
13395 // arguments we need to allocate space for them as well. We additionally
13396 // need one more slot for the object parameter.
13397 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
13398
13399 // Build the full argument list for the method call (the implicit object
13400 // parameter is placed at the beginning of the list).
13401 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
13402
13403 bool IsError = false;
13404
13405 // Initialize the implicit object parameter.
13406 ExprResult ObjRes =
13407 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13408 Best->FoundDecl, Method);
13409 if (ObjRes.isInvalid())
13410 IsError = true;
13411 else
13412 Object = ObjRes;
13413 MethodArgs[0] = Object.get();
13414
13415 // Check the argument types.
13416 for (unsigned i = 0; i != NumParams; i++) {
13417 Expr *Arg;
13418 if (i < Args.size()) {
13419 Arg = Args[i];
13420
13421 // Pass the argument.
13422
13423 ExprResult InputInit
13424 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13425 Context,
13426 Method->getParamDecl(i)),
13427 SourceLocation(), Arg);
13428
13429 IsError |= InputInit.isInvalid();
13430 Arg = InputInit.getAs<Expr>();
13431 } else {
13432 ExprResult DefArg
13433 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
13434 if (DefArg.isInvalid()) {
13435 IsError = true;
13436 break;
13437 }
13438
13439 Arg = DefArg.getAs<Expr>();
13440 }
13441
13442 MethodArgs[i + 1] = Arg;
13443 }
13444
13445 // If this is a variadic call, handle args passed through "...".
13446 if (Proto->isVariadic()) {
13447 // Promote the arguments (C99 6.5.2.2p7).
13448 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
13449 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
13450 nullptr);
13451 IsError |= Arg.isInvalid();
13452 MethodArgs[i + 1] = Arg.get();
13453 }
13454 }
13455
13456 if (IsError)
13457 return true;
13458
13459 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13460
13461 // Once we've built TheCall, all of the expressions are properly owned.
13462 QualType ResultTy = Method->getReturnType();
13463 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13464 ResultTy = ResultTy.getNonLValueExprType(Context);
13465
13466 CXXOperatorCallExpr *TheCall =
13467 CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
13468 ResultTy, VK, RParenLoc, FPOptions());
13469
13470 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
13471 return true;
13472
13473 if (CheckFunctionCall(Method, TheCall, Proto))
13474 return true;
13475
13476 return MaybeBindToTemporary(TheCall);
13477}
13478
13479/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
13480/// (if one exists), where @c Base is an expression of class type and
13481/// @c Member is the name of the member we're trying to find.
13482ExprResult
13483Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
13484 bool *NoArrowOperatorFound) {
13485 assert(Base->getType()->isRecordType() &&((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13486, __PRETTY_FUNCTION__))
13486 "left-hand side must have class type")((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13486, __PRETTY_FUNCTION__))
;
13487
13488 if (checkPlaceholderForOverload(*this, Base))
13489 return ExprError();
13490
13491 SourceLocation Loc = Base->getExprLoc();
13492
13493 // C++ [over.ref]p1:
13494 //
13495 // [...] An expression x->m is interpreted as (x.operator->())->m
13496 // for a class object x of type T if T::operator->() exists and if
13497 // the operator is selected as the best match function by the
13498 // overload resolution mechanism (13.3).
13499 DeclarationName OpName =
13500 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
13501 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
13502 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
13503
13504 if (RequireCompleteType(Loc, Base->getType(),
13505 diag::err_typecheck_incomplete_tag, Base))
13506 return ExprError();
13507
13508 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
13509 LookupQualifiedName(R, BaseRecord->getDecl());
13510 R.suppressDiagnostics();
13511
13512 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13513 Oper != OperEnd; ++Oper) {
13514 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
13515 None, CandidateSet, /*SuppressUserConversions=*/false);
13516 }
13517
13518 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13519
13520 // Perform overload resolution.
13521 OverloadCandidateSet::iterator Best;
13522 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13523 case OR_Success:
13524 // Overload resolution succeeded; we'll build the call below.
13525 break;
13526
13527 case OR_No_Viable_Function: {
13528 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
13529 if (CandidateSet.empty()) {
13530 QualType BaseType = Base->getType();
13531 if (NoArrowOperatorFound) {
13532 // Report this specific error to the caller instead of emitting a
13533 // diagnostic, as requested.
13534 *NoArrowOperatorFound = true;
13535 return ExprError();
13536 }
13537 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
13538 << BaseType << Base->getSourceRange();
13539 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
13540 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
13541 << FixItHint::CreateReplacement(OpLoc, ".");
13542 }
13543 } else
13544 Diag(OpLoc, diag::err_ovl_no_viable_oper)
13545 << "operator->" << Base->getSourceRange();
13546 CandidateSet.NoteCandidates(*this, Base, Cands);
13547 return ExprError();
13548 }
13549 case OR_Ambiguous:
13550 CandidateSet.NoteCandidates(
13551 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
13552 << "->" << Base->getType()
13553 << Base->getSourceRange()),
13554 *this, OCD_ViableCandidates, Base);
13555 return ExprError();
13556
13557 case OR_Deleted:
13558 CandidateSet.NoteCandidates(
13559 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13560 << "->" << Base->getSourceRange()),
13561 *this, OCD_AllCandidates, Base);
13562 return ExprError();
13563 }
13564
13565 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
13566
13567 // Convert the object parameter.
13568 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13569 ExprResult BaseResult =
13570 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
13571 Best->FoundDecl, Method);
13572 if (BaseResult.isInvalid())
13573 return ExprError();
13574 Base = BaseResult.get();
13575
13576 // Build the operator call.
13577 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13578 Base, HadMultipleCandidates, OpLoc);
13579 if (FnExpr.isInvalid())
13580 return ExprError();
13581
13582 QualType ResultTy = Method->getReturnType();
13583 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13584 ResultTy = ResultTy.getNonLValueExprType(Context);
13585 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13586 Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
13587
13588 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
13589 return ExprError();
13590
13591 if (CheckFunctionCall(Method, TheCall,
13592 Method->getType()->castAs<FunctionProtoType>()))
13593 return ExprError();
13594
13595 return MaybeBindToTemporary(TheCall);
13596}
13597
13598/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
13599/// a literal operator described by the provided lookup results.
13600ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
13601 DeclarationNameInfo &SuffixInfo,
13602 ArrayRef<Expr*> Args,
13603 SourceLocation LitEndLoc,
13604 TemplateArgumentListInfo *TemplateArgs) {
13605 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
13606
13607 OverloadCandidateSet CandidateSet(UDSuffixLoc,
13608 OverloadCandidateSet::CSK_Normal);
13609 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
13610 /*SuppressUserConversions=*/true);
13611
13612 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13613
13614 // Perform overload resolution. This will usually be trivial, but might need
13615 // to perform substitutions for a literal operator template.
13616 OverloadCandidateSet::iterator Best;
13617 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
13618 case OR_Success:
13619 case OR_Deleted:
13620 break;
13621
13622 case OR_No_Viable_Function:
13623 CandidateSet.NoteCandidates(
13624 PartialDiagnosticAt(UDSuffixLoc,
13625 PDiag(diag::err_ovl_no_viable_function_in_call)
13626 << R.getLookupName()),
13627 *this, OCD_AllCandidates, Args);
13628 return ExprError();
13629
13630 case OR_Ambiguous:
13631 CandidateSet.NoteCandidates(
13632 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
13633 << R.getLookupName()),
13634 *this, OCD_ViableCandidates, Args);
13635 return ExprError();
13636 }
13637
13638 FunctionDecl *FD = Best->Function;
13639 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
13640 nullptr, HadMultipleCandidates,
13641 SuffixInfo.getLoc(),
13642 SuffixInfo.getInfo());
13643 if (Fn.isInvalid())
13644 return true;
13645
13646 // Check the argument types. This should almost always be a no-op, except
13647 // that array-to-pointer decay is applied to string literals.
13648 Expr *ConvArgs[2];
13649 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
13650 ExprResult InputInit = PerformCopyInitialization(
13651 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
13652 SourceLocation(), Args[ArgIdx]);
13653 if (InputInit.isInvalid())
13654 return true;
13655 ConvArgs[ArgIdx] = InputInit.get();
13656 }
13657
13658 QualType ResultTy = FD->getReturnType();
13659 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13660 ResultTy = ResultTy.getNonLValueExprType(Context);
13661
13662 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
13663 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
13664 VK, LitEndLoc, UDSuffixLoc);
13665
13666 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
13667 return ExprError();
13668
13669 if (CheckFunctionCall(FD, UDL, nullptr))
13670 return ExprError();
13671
13672 return MaybeBindToTemporary(UDL);
13673}
13674
13675/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
13676/// given LookupResult is non-empty, it is assumed to describe a member which
13677/// will be invoked. Otherwise, the function will be found via argument
13678/// dependent lookup.
13679/// CallExpr is set to a valid expression and FRS_Success returned on success,
13680/// otherwise CallExpr is set to ExprError() and some non-success value
13681/// is returned.
13682Sema::ForRangeStatus
13683Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
13684 SourceLocation RangeLoc,
13685 const DeclarationNameInfo &NameInfo,
13686 LookupResult &MemberLookup,
13687 OverloadCandidateSet *CandidateSet,
13688 Expr *Range, ExprResult *CallExpr) {
13689 Scope *S = nullptr;
13690
13691 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
13692 if (!MemberLookup.empty()) {
13693 ExprResult MemberRef =
13694 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
13695 /*IsPtr=*/false, CXXScopeSpec(),
13696 /*TemplateKWLoc=*/SourceLocation(),
13697 /*FirstQualifierInScope=*/nullptr,
13698 MemberLookup,
13699 /*TemplateArgs=*/nullptr, S);
13700 if (MemberRef.isInvalid()) {
13701 *CallExpr = ExprError();
13702 return FRS_DiagnosticIssued;
13703 }
13704 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
13705 if (CallExpr->isInvalid()) {
13706 *CallExpr = ExprError();
13707 return FRS_DiagnosticIssued;
13708 }
13709 } else {
13710 UnresolvedSet<0> FoundNames;
13711 UnresolvedLookupExpr *Fn =
13712 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
13713 NestedNameSpecifierLoc(), NameInfo,
13714 /*NeedsADL=*/true, /*Overloaded=*/false,
13715 FoundNames.begin(), FoundNames.end());
13716
13717 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
13718 CandidateSet, CallExpr);
13719 if (CandidateSet->empty() || CandidateSetError) {
13720 *CallExpr = ExprError();
13721 return FRS_NoViableFunction;
13722 }
13723 OverloadCandidateSet::iterator Best;
13724 OverloadingResult OverloadResult =
13725 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
13726
13727 if (OverloadResult == OR_No_Viable_Function) {
13728 *CallExpr = ExprError();
13729 return FRS_NoViableFunction;
13730 }
13731 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
13732 Loc, nullptr, CandidateSet, &Best,
13733 OverloadResult,
13734 /*AllowTypoCorrection=*/false);
13735 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
13736 *CallExpr = ExprError();
13737 return FRS_DiagnosticIssued;
13738 }
13739 }
13740 return FRS_Success;
13741}
13742
13743
13744/// FixOverloadedFunctionReference - E is an expression that refers to
13745/// a C++ overloaded function (possibly with some parentheses and
13746/// perhaps a '&' around it). We have resolved the overloaded function
13747/// to the function declaration Fn, so patch up the expression E to
13748/// refer (possibly indirectly) to Fn. Returns the new expr.
13749Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
13750 FunctionDecl *Fn) {
13751 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
13752 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
13753 Found, Fn);
13754 if (SubExpr == PE->getSubExpr())
13755 return PE;
13756
13757 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
13758 }
13759
13760 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
13761 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
13762 Found, Fn);
13763 assert(Context.hasSameType(ICE->getSubExpr()->getType(),((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13765, __PRETTY_FUNCTION__))
13764 SubExpr->getType()) &&((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13765, __PRETTY_FUNCTION__))
13765 "Implicit cast type cannot be determined from overload")((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13765, __PRETTY_FUNCTION__))
;
13766 assert(ICE->path_empty() && "fixing up hierarchy conversion?")((ICE->path_empty() && "fixing up hierarchy conversion?"
) ? static_cast<void> (0) : __assert_fail ("ICE->path_empty() && \"fixing up hierarchy conversion?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13766, __PRETTY_FUNCTION__))
;
13767 if (SubExpr == ICE->getSubExpr())
13768 return ICE;
13769
13770 return ImplicitCastExpr::Create(Context, ICE->getType(),
13771 ICE->getCastKind(),
13772 SubExpr, nullptr,
13773 ICE->getValueKind());
13774 }
13775
13776 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
13777 if (!GSE->isResultDependent()) {
13778 Expr *SubExpr =
13779 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
13780 if (SubExpr == GSE->getResultExpr())
13781 return GSE;
13782
13783 // Replace the resulting type information before rebuilding the generic
13784 // selection expression.
13785 ArrayRef<Expr *> A = GSE->getAssocExprs();
13786 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
13787 unsigned ResultIdx = GSE->getResultIndex();
13788 AssocExprs[ResultIdx] = SubExpr;
13789
13790 return GenericSelectionExpr::Create(
13791 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
13792 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
13793 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
13794 ResultIdx);
13795 }
13796 // Rather than fall through to the unreachable, return the original generic
13797 // selection expression.
13798 return GSE;
13799 }
13800
13801 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
13802 assert(UnOp->getOpcode() == UO_AddrOf &&((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13803, __PRETTY_FUNCTION__))
13803 "Can only take the address of an overloaded function")((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13803, __PRETTY_FUNCTION__))
;
13804 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
13805 if (Method->isStatic()) {
13806 // Do nothing: static member functions aren't any different
13807 // from non-member functions.
13808 } else {
13809 // Fix the subexpression, which really has to be an
13810 // UnresolvedLookupExpr holding an overloaded member function
13811 // or template.
13812 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13813 Found, Fn);
13814 if (SubExpr == UnOp->getSubExpr())
13815 return UnOp;
13816
13817 assert(isa<DeclRefExpr>(SubExpr)((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13818, __PRETTY_FUNCTION__))
13818 && "fixed to something other than a decl ref")((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13818, __PRETTY_FUNCTION__))
;
13819 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13820, __PRETTY_FUNCTION__))
13820 && "fixed to a member ref with no nested name qualifier")((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13820, __PRETTY_FUNCTION__))
;
13821
13822 // We have taken the address of a pointer to member
13823 // function. Perform the computation here so that we get the
13824 // appropriate pointer to member type.
13825 QualType ClassType
13826 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13827 QualType MemPtrType
13828 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13829 // Under the MS ABI, lock down the inheritance model now.
13830 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13831 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13832
13833 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13834 VK_RValue, OK_Ordinary,
13835 UnOp->getOperatorLoc(), false);
13836 }
13837 }
13838 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13839 Found, Fn);
13840 if (SubExpr == UnOp->getSubExpr())
13841 return UnOp;
13842
13843 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13844 Context.getPointerType(SubExpr->getType()),
13845 VK_RValue, OK_Ordinary,
13846 UnOp->getOperatorLoc(), false);
13847 }
13848
13849 // C++ [except.spec]p17:
13850 // An exception-specification is considered to be needed when:
13851 // - in an expression the function is the unique lookup result or the
13852 // selected member of a set of overloaded functions
13853 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
13854 ResolveExceptionSpec(E->getExprLoc(), FPT);
13855
13856 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13857 // FIXME: avoid copy.
13858 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13859 if (ULE->hasExplicitTemplateArgs()) {
13860 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13861 TemplateArgs = &TemplateArgsBuffer;
13862 }
13863
13864 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13865 ULE->getQualifierLoc(),
13866 ULE->getTemplateKeywordLoc(),
13867 Fn,
13868 /*enclosing*/ false, // FIXME?
13869 ULE->getNameLoc(),
13870 Fn->getType(),
13871 VK_LValue,
13872 Found.getDecl(),
13873 TemplateArgs);
13874 MarkDeclRefReferenced(DRE);
13875 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13876 return DRE;
13877 }
13878
13879 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13880 // FIXME: avoid copy.
13881 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13882 if (MemExpr->hasExplicitTemplateArgs()) {
13883 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13884 TemplateArgs = &TemplateArgsBuffer;
13885 }
13886
13887 Expr *Base;
13888
13889 // If we're filling in a static method where we used to have an
13890 // implicit member access, rewrite to a simple decl ref.
13891 if (MemExpr->isImplicitAccess()) {
13892 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13893 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13894 MemExpr->getQualifierLoc(),
13895 MemExpr->getTemplateKeywordLoc(),
13896 Fn,
13897 /*enclosing*/ false,
13898 MemExpr->getMemberLoc(),
13899 Fn->getType(),
13900 VK_LValue,
13901 Found.getDecl(),
13902 TemplateArgs);
13903 MarkDeclRefReferenced(DRE);
13904 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13905 return DRE;
13906 } else {
13907 SourceLocation Loc = MemExpr->getMemberLoc();
13908 if (MemExpr->getQualifier())
13909 Loc = MemExpr->getQualifierLoc().getBeginLoc();
13910 CheckCXXThisCapture(Loc);
13911 Base = new (Context) CXXThisExpr(Loc,
13912 MemExpr->getBaseType(),
13913 /*isImplicit=*/true);
13914 }
13915 } else
13916 Base = MemExpr->getBase();
13917
13918 ExprValueKind valueKind;
13919 QualType type;
13920 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13921 valueKind = VK_LValue;
13922 type = Fn->getType();
13923 } else {
13924 valueKind = VK_RValue;
13925 type = Context.BoundMemberTy;
13926 }
13927
13928 MemberExpr *ME = MemberExpr::Create(
13929 Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13930 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13931 MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
13932 OK_Ordinary);
13933 ME->setHadMultipleCandidates(true);
13934 MarkMemberReferenced(ME);
13935 return ME;
13936 }
13937
13938 llvm_unreachable("Invalid reference to overloaded function")::llvm::llvm_unreachable_internal("Invalid reference to overloaded function"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/Sema/SemaOverload.cpp"
, 13938)
;
13939}
13940
13941ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13942 DeclAccessPair Found,
13943 FunctionDecl *Fn) {
13944 return FixOverloadedFunctionReference(E.get(), Found, Fn);
13945}