Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2277, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Verifier.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/lib/IR -I /build/llvm-toolchain-snapshot-7~svn338205/lib/IR -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/lib/IR -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp -faddrsig
1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/MapVector.h"
53#include "llvm/ADT/Optional.h"
54#include "llvm/ADT/STLExtras.h"
55#include "llvm/ADT/SmallPtrSet.h"
56#include "llvm/ADT/SmallSet.h"
57#include "llvm/ADT/SmallVector.h"
58#include "llvm/ADT/StringExtras.h"
59#include "llvm/ADT/StringMap.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/Twine.h"
62#include "llvm/ADT/ilist.h"
63#include "llvm/BinaryFormat/Dwarf.h"
64#include "llvm/IR/Argument.h"
65#include "llvm/IR/Attributes.h"
66#include "llvm/IR/BasicBlock.h"
67#include "llvm/IR/CFG.h"
68#include "llvm/IR/CallSite.h"
69#include "llvm/IR/CallingConv.h"
70#include "llvm/IR/Comdat.h"
71#include "llvm/IR/Constant.h"
72#include "llvm/IR/ConstantRange.h"
73#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DebugInfo.h"
76#include "llvm/IR/DebugInfoMetadata.h"
77#include "llvm/IR/DebugLoc.h"
78#include "llvm/IR/DerivedTypes.h"
79#include "llvm/IR/Dominators.h"
80#include "llvm/IR/Function.h"
81#include "llvm/IR/GlobalAlias.h"
82#include "llvm/IR/GlobalValue.h"
83#include "llvm/IR/GlobalVariable.h"
84#include "llvm/IR/InlineAsm.h"
85#include "llvm/IR/InstVisitor.h"
86#include "llvm/IR/InstrTypes.h"
87#include "llvm/IR/Instruction.h"
88#include "llvm/IR/Instructions.h"
89#include "llvm/IR/IntrinsicInst.h"
90#include "llvm/IR/Intrinsics.h"
91#include "llvm/IR/LLVMContext.h"
92#include "llvm/IR/Metadata.h"
93#include "llvm/IR/Module.h"
94#include "llvm/IR/ModuleSlotTracker.h"
95#include "llvm/IR/PassManager.h"
96#include "llvm/IR/Statepoint.h"
97#include "llvm/IR/Type.h"
98#include "llvm/IR/Use.h"
99#include "llvm/IR/User.h"
100#include "llvm/IR/Value.h"
101#include "llvm/Pass.h"
102#include "llvm/Support/AtomicOrdering.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Debug.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118namespace llvm {
119
120struct VerifierSupport {
121 raw_ostream *OS;
122 const Module &M;
123 ModuleSlotTracker MST;
124 const DataLayout &DL;
125 LLVMContext &Context;
126
127 /// Track the brokenness of the module while recursively visiting.
128 bool Broken = false;
129 /// Broken debug info can be "recovered" from by stripping the debug info.
130 bool BrokenDebugInfo = false;
131 /// Whether to treat broken debug info as an error.
132 bool TreatBrokenDebugInfoAsError = true;
133
134 explicit VerifierSupport(raw_ostream *OS, const Module &M)
135 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136
137private:
138 void Write(const Module *M) {
139 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140 }
141
142 void Write(const Value *V) {
143 if (!V)
144 return;
145 if (isa<Instruction>(V)) {
146 V->print(*OS, MST);
147 *OS << '\n';
148 } else {
149 V->printAsOperand(*OS, true, MST);
150 *OS << '\n';
151 }
152 }
153
154 void Write(ImmutableCallSite CS) {
155 Write(CS.getInstruction());
156 }
157
158 void Write(const Metadata *MD) {
159 if (!MD)
160 return;
161 MD->print(*OS, MST, &M);
162 *OS << '\n';
163 }
164
165 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166 Write(MD.get());
167 }
168
169 void Write(const NamedMDNode *NMD) {
170 if (!NMD)
171 return;
172 NMD->print(*OS, MST);
173 *OS << '\n';
174 }
175
176 void Write(Type *T) {
177 if (!T)
178 return;
179 *OS << ' ' << *T;
180 }
181
182 void Write(const Comdat *C) {
183 if (!C)
184 return;
185 *OS << *C;
186 }
187
188 void Write(const APInt *AI) {
189 if (!AI)
190 return;
191 *OS << *AI << '\n';
192 }
193
194 void Write(const unsigned i) { *OS << i << '\n'; }
195
196 template <typename T> void Write(ArrayRef<T> Vs) {
197 for (const T &V : Vs)
198 Write(V);
199 }
200
201 template <typename T1, typename... Ts>
202 void WriteTs(const T1 &V1, const Ts &... Vs) {
203 Write(V1);
204 WriteTs(Vs...);
205 }
206
207 template <typename... Ts> void WriteTs() {}
208
209public:
210 /// A check failed, so printout out the condition and the message.
211 ///
212 /// This provides a nice place to put a breakpoint if you want to see why
213 /// something is not correct.
214 void CheckFailed(const Twine &Message) {
215 if (OS)
216 *OS << Message << '\n';
217 Broken = true;
218 }
219
220 /// A check failed (with values to print).
221 ///
222 /// This calls the Message-only version so that the above is easier to set a
223 /// breakpoint on.
224 template <typename T1, typename... Ts>
225 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226 CheckFailed(Message);
227 if (OS)
228 WriteTs(V1, Vs...);
229 }
230
231 /// A debug info check failed.
232 void DebugInfoCheckFailed(const Twine &Message) {
233 if (OS)
234 *OS << Message << '\n';
235 Broken |= TreatBrokenDebugInfoAsError;
236 BrokenDebugInfo = true;
237 }
238
239 /// A debug info check failed (with values to print).
240 template <typename T1, typename... Ts>
241 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242 const Ts &... Vs) {
243 DebugInfoCheckFailed(Message);
244 if (OS)
245 WriteTs(V1, Vs...);
246 }
247};
248
249} // namespace llvm
250
251namespace {
252
253class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254 friend class InstVisitor<Verifier>;
255
256 DominatorTree DT;
257
258 /// When verifying a basic block, keep track of all of the
259 /// instructions we have seen so far.
260 ///
261 /// This allows us to do efficient dominance checks for the case when an
262 /// instruction has an operand that is an instruction in the same block.
263 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264
265 /// Keep track of the metadata nodes that have been checked already.
266 SmallPtrSet<const Metadata *, 32> MDNodes;
267
268 /// Keep track which DISubprogram is attached to which function.
269 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270
271 /// Track all DICompileUnits visited.
272 SmallPtrSet<const Metadata *, 2> CUVisited;
273
274 /// The result type for a landingpad.
275 Type *LandingPadResultTy;
276
277 /// Whether we've seen a call to @llvm.localescape in this function
278 /// already.
279 bool SawFrameEscape;
280
281 /// Whether the current function has a DISubprogram attached to it.
282 bool HasDebugInfo = false;
283
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
287
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
291
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector<const Function *, 4> DeoptimizeDeclarations;
297
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet<const Value *, 32> GlobalValueVisited;
303
304 // Keeps track of duplicate function argument debug info.
305 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
306
307 TBAAVerifier TBAAVerifyHelper;
308
309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310
311public:
312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313 const Module &M)
314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317 }
318
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320
321 bool verify(const Function &F) {
322 assert(F.getParent() == &M &&(static_cast <bool> (F.getParent() == &M &&
"An instance of this class only works with a specific module!"
) ? void (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 323, __extension__ __PRETTY_FUNCTION__))
323 "An instance of this class only works with a specific module!")(static_cast <bool> (F.getParent() == &M &&
"An instance of this class only works with a specific module!"
) ? void (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 323, __extension__ __PRETTY_FUNCTION__))
;
324
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
331 if (!F.empty())
332 DT.recalculate(const_cast<Function &>(F));
333
334 for (const BasicBlock &BB : F) {
335 if (!BB.empty() && BB.back().isTerminator())
336 continue;
337
338 if (OS) {
339 *OS << "Basic Block in function '" << F.getName()
340 << "' does not have terminator!\n";
341 BB.printAsOperand(*OS, true, MST);
342 *OS << "\n";
343 }
344 return false;
345 }
346
347 Broken = false;
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function &>(F));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock.clear();
352 DebugFnArgs.clear();
353 LandingPadResultTy = nullptr;
354 SawFrameEscape = false;
355 SiblingFuncletInfo.clear();
356
357 return !Broken;
358 }
359
360 /// Verify the module that this instance of \c Verifier was initialized with.
361 bool verify() {
362 Broken = false;
363
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function &F : M)
366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367 DeoptimizeDeclarations.push_back(&F);
368
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable &GV : M.globals())
373 visitGlobalVariable(GV);
374
375 for (const GlobalAlias &GA : M.aliases())
376 visitGlobalAlias(GA);
377
378 for (const NamedMDNode &NMD : M.named_metadata())
379 visitNamedMDNode(NMD);
380
381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382 visitComdat(SMEC.getValue());
383
384 visitModuleFlags(M);
385 visitModuleIdents(M);
386
387 verifyCompileUnits();
388
389 verifyDeoptimizeCallingConvs();
390 DISubprogramAttachments.clear();
391 return !Broken;
392 }
393
394private:
395 // Verification methods...
396 void visitGlobalValue(const GlobalValue &GV);
397 void visitGlobalVariable(const GlobalVariable &GV);
398 void visitGlobalAlias(const GlobalAlias &GA);
399 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401 const GlobalAlias &A, const Constant &C);
402 void visitNamedMDNode(const NamedMDNode &NMD);
403 void visitMDNode(const MDNode &MD);
404 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406 void visitComdat(const Comdat &C);
407 void visitModuleIdents(const Module &M);
408 void visitModuleFlags(const Module &M);
409 void visitModuleFlag(const MDNode *Op,
410 DenseMap<const MDString *, const MDNode *> &SeenIDs,
411 SmallVectorImpl<const MDNode *> &Requirements);
412 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
413 void visitFunction(const Function &F);
414 void visitBasicBlock(BasicBlock &BB);
415 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
416 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
417
418 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
419#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
420#include "llvm/IR/Metadata.def"
421 void visitDIScope(const DIScope &N);
422 void visitDIVariable(const DIVariable &N);
423 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
424 void visitDITemplateParameter(const DITemplateParameter &N);
425
426 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
427
428 // InstVisitor overrides...
429 using InstVisitor<Verifier>::visit;
430 void visit(Instruction &I);
431
432 void visitTruncInst(TruncInst &I);
433 void visitZExtInst(ZExtInst &I);
434 void visitSExtInst(SExtInst &I);
435 void visitFPTruncInst(FPTruncInst &I);
436 void visitFPExtInst(FPExtInst &I);
437 void visitFPToUIInst(FPToUIInst &I);
438 void visitFPToSIInst(FPToSIInst &I);
439 void visitUIToFPInst(UIToFPInst &I);
440 void visitSIToFPInst(SIToFPInst &I);
441 void visitIntToPtrInst(IntToPtrInst &I);
442 void visitPtrToIntInst(PtrToIntInst &I);
443 void visitBitCastInst(BitCastInst &I);
444 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
445 void visitPHINode(PHINode &PN);
446 void visitBinaryOperator(BinaryOperator &B);
447 void visitICmpInst(ICmpInst &IC);
448 void visitFCmpInst(FCmpInst &FC);
449 void visitExtractElementInst(ExtractElementInst &EI);
450 void visitInsertElementInst(InsertElementInst &EI);
451 void visitShuffleVectorInst(ShuffleVectorInst &EI);
452 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
453 void visitCallInst(CallInst &CI);
454 void visitInvokeInst(InvokeInst &II);
455 void visitGetElementPtrInst(GetElementPtrInst &GEP);
456 void visitLoadInst(LoadInst &LI);
457 void visitStoreInst(StoreInst &SI);
458 void verifyDominatesUse(Instruction &I, unsigned i);
459 void visitInstruction(Instruction &I);
460 void visitTerminatorInst(TerminatorInst &I);
461 void visitBranchInst(BranchInst &BI);
462 void visitReturnInst(ReturnInst &RI);
463 void visitSwitchInst(SwitchInst &SI);
464 void visitIndirectBrInst(IndirectBrInst &BI);
465 void visitSelectInst(SelectInst &SI);
466 void visitUserOp1(Instruction &I);
467 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
468 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
469 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
470 void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
471 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
472 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
473 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
474 void visitFenceInst(FenceInst &FI);
475 void visitAllocaInst(AllocaInst &AI);
476 void visitExtractValueInst(ExtractValueInst &EVI);
477 void visitInsertValueInst(InsertValueInst &IVI);
478 void visitEHPadPredecessors(Instruction &I);
479 void visitLandingPadInst(LandingPadInst &LPI);
480 void visitResumeInst(ResumeInst &RI);
481 void visitCatchPadInst(CatchPadInst &CPI);
482 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
483 void visitCleanupPadInst(CleanupPadInst &CPI);
484 void visitFuncletPadInst(FuncletPadInst &FPI);
485 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
486 void visitCleanupReturnInst(CleanupReturnInst &CRI);
487
488 void verifyCallSite(CallSite CS);
489 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
490 void verifySwiftErrorValue(const Value *SwiftErrorVal);
491 void verifyMustTailCall(CallInst &CI);
492 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
493 unsigned ArgNo, std::string &Suffix);
494 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
495 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
496 const Value *V);
497 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
498 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
499 const Value *V);
500 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
501
502 void visitConstantExprsRecursively(const Constant *EntryC);
503 void visitConstantExpr(const ConstantExpr *CE);
504 void verifyStatepoint(ImmutableCallSite CS);
505 void verifyFrameRecoverIndices();
506 void verifySiblingFuncletUnwinds();
507
508 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
509 template <typename ValueOrMetadata>
510 void verifyFragmentExpression(const DIVariable &V,
511 DIExpression::FragmentInfo Fragment,
512 ValueOrMetadata *Desc);
513 void verifyFnArgs(const DbgInfoIntrinsic &I);
514
515 /// Module-level debug info verification...
516 void verifyCompileUnits();
517
518 /// Module-level verification that all @llvm.experimental.deoptimize
519 /// declarations share the same calling convention.
520 void verifyDeoptimizeCallingConvs();
521};
522
523} // end anonymous namespace
524
525/// We know that cond should be true, if not print an error message.
526#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
527 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
528
529/// We know that a debug info condition should be true, if not print
530/// an error message.
531#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
532 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
533
534void Verifier::visit(Instruction &I) {
535 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
536 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
537 InstVisitor<Verifier>::visit(I);
538}
539
540// Helper to recursively iterate over indirect users. By
541// returning false, the callback can ask to stop recursing
542// further.
543static void forEachUser(const Value *User,
544 SmallPtrSet<const Value *, 32> &Visited,
545 llvm::function_ref<bool(const Value *)> Callback) {
546 if (!Visited.insert(User).second)
547 return;
548 for (const Value *TheNextUser : User->materialized_users())
549 if (Callback(TheNextUser))
550 forEachUser(TheNextUser, Visited, Callback);
551}
552
553void Verifier::visitGlobalValue(const GlobalValue &GV) {
554 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
555 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
556
557 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
558 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
559 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
560 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
561
562 if (GV.hasAppendingLinkage()) {
563 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
564 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
565 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
566 }
567
568 if (GV.isDeclarationForLinker())
569 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
570
571 if (GV.hasDLLImportStorageClass()) {
572 Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
573 "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!"
, &GV); return; } } while (false)
;
574
575 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
576 GV.hasAvailableExternallyLinkage(),do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
577 "Global is marked as dllimport, but not external", &GV)do { if (!((GV.isDeclaration() && GV.hasExternalLinkage
()) || GV.hasAvailableExternallyLinkage())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
578 }
579
580 if (GV.hasLocalLinkage())
581 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with private or internal linkage must be dso_local!"
, &GV); return; } } while (false)
582 "GlobalValue with private or internal linkage must be dso_local!",do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with private or internal linkage must be dso_local!"
, &GV); return; } } while (false)
583 &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with private or internal linkage must be dso_local!"
, &GV); return; } } while (false)
;
584
585 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
586 Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with non default visibility must be dso_local!"
, &GV); return; } } while (false)
587 "GlobalValue with non default visibility must be dso_local!", &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with non default visibility must be dso_local!"
, &GV); return; } } while (false)
;
588
589 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
590 if (const Instruction *I = dyn_cast<Instruction>(V)) {
591 if (!I->getParent() || !I->getParent()->getParent())
592 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
593 I);
594 else if (I->getParent()->getParent()->getParent() != &M)
595 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
596 I->getParent()->getParent(),
597 I->getParent()->getParent()->getParent());
598 return false;
599 } else if (const Function *F = dyn_cast<Function>(V)) {
600 if (F->getParent() != &M)
601 CheckFailed("Global is used by function in a different module", &GV, &M,
602 F, F->getParent());
603 return false;
604 }
605 return true;
606 });
607}
608
609void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
610 if (GV.hasInitializer()) {
611 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
612 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
613 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
614 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
615 // If the global has common linkage, it must have a zero initializer and
616 // cannot be constant.
617 if (GV.hasCommonLinkage()) {
618 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
619 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
620 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
621 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
622 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
623 }
624 }
625
626 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
627 GV.getName() == "llvm.global_dtors")) {
628 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
629 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
630 // Don't worry about emitting an error for it not being an array,
631 // visitGlobalValue will complain on appending non-array.
632 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
633 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
634 PointerType *FuncPtrTy =
635 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
636 // FIXME: Reject the 2-field form in LLVM 4.0.
637 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
638 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
639 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
640 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
641 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
642 if (STy->getNumElements() == 3) {
643 Type *ETy = STy->getTypeAtIndex(2);
644 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
645 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
646 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
647 }
648 }
649 }
650
651 if (GV.hasName() && (GV.getName() == "llvm.used" ||
652 GV.getName() == "llvm.compiler.used")) {
653 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
654 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
655 Type *GVType = GV.getValueType();
656 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
657 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
658 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
659 if (GV.hasInitializer()) {
660 const Constant *Init = GV.getInitializer();
661 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
662 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
663 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
664 for (Value *Op : InitArray->operands()) {
665 Value *V = Op->stripPointerCastsNoFollowAliases();
666 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
667 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
668 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
669 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
670 }
671 }
672 }
673 }
674
675 // Visit any debug info attachments.
676 SmallVector<MDNode *, 1> MDs;
677 GV.getMetadata(LLVMContext::MD_dbg, MDs);
678 for (auto *MD : MDs) {
679 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
680 visitDIGlobalVariableExpression(*GVE);
681 else
682 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
683 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
684 }
685
686 if (!GV.hasInitializer()) {
687 visitGlobalValue(GV);
688 return;
689 }
690
691 // Walk any aggregate initializers looking for bitcasts between address spaces
692 visitConstantExprsRecursively(GV.getInitializer());
693
694 visitGlobalValue(GV);
695}
696
697void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
698 SmallPtrSet<const GlobalAlias*, 4> Visited;
699 Visited.insert(&GA);
700 visitAliaseeSubExpr(Visited, GA, C);
701}
702
703void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
704 const GlobalAlias &GA, const Constant &C) {
705 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
706 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
707 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
708
709 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
710 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
711
712 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
713 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
714 } else {
715 // Only continue verifying subexpressions of GlobalAliases.
716 // Do not recurse into global initializers.
717 return;
718 }
719 }
720
721 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
722 visitConstantExprsRecursively(CE);
723
724 for (const Use &U : C.operands()) {
725 Value *V = &*U;
726 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
727 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
728 else if (const auto *C2 = dyn_cast<Constant>(V))
729 visitAliaseeSubExpr(Visited, GA, *C2);
730 }
731}
732
733void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
734 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
735 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
736 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
737 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
738 const Constant *Aliasee = GA.getAliasee();
739 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
740 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
741 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
742
743 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
744 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
745
746 visitAliaseeSubExpr(GA, *Aliasee);
747
748 visitGlobalValue(GA);
749}
750
751void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
752 // There used to be various other llvm.dbg.* nodes, but we don't support
753 // upgrading them and we want to reserve the namespace for future uses.
754 if (NMD.getName().startswith("llvm.dbg."))
755 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
756 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
757 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
758 for (const MDNode *MD : NMD.operands()) {
759 if (NMD.getName() == "llvm.dbg.cu")
760 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
761
762 if (!MD)
763 continue;
764
765 visitMDNode(*MD);
766 }
767}
768
769void Verifier::visitMDNode(const MDNode &MD) {
770 // Only visit each node once. Metadata can be mutually recursive, so this
771 // avoids infinite recursion here, as well as being an optimization.
772 if (!MDNodes.insert(&MD).second)
773 return;
774
775 switch (MD.getMetadataID()) {
776 default:
777 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 777)
;
778 case Metadata::MDTupleKind:
779 break;
780#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
781 case Metadata::CLASS##Kind: \
782 visit##CLASS(cast<CLASS>(MD)); \
783 break;
784#include "llvm/IR/Metadata.def"
785 }
786
787 for (const Metadata *Op : MD.operands()) {
788 if (!Op)
789 continue;
790 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
791 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
792 if (auto *N = dyn_cast<MDNode>(Op)) {
793 visitMDNode(*N);
794 continue;
795 }
796 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
797 visitValueAsMetadata(*V, nullptr);
798 continue;
799 }
800 }
801
802 // Check these last, so we diagnose problems in operands first.
803 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
804 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
805}
806
807void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
808 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
809 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
810 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
811
812 auto *L = dyn_cast<LocalAsMetadata>(&MD);
813 if (!L)
814 return;
815
816 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
817
818 // If this was an instruction, bb, or argument, verify that it is in the
819 // function that we expect.
820 Function *ActualF = nullptr;
821 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
822 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
823 ActualF = I->getParent()->getParent();
824 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
825 ActualF = BB->getParent();
826 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
827 ActualF = A->getParent();
828 assert(ActualF && "Unimplemented function local metadata case!")(static_cast <bool> (ActualF && "Unimplemented function local metadata case!"
) ? void (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 828, __extension__ __PRETTY_FUNCTION__))
;
829
830 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
831}
832
833void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
834 Metadata *MD = MDV.getMetadata();
835 if (auto *N = dyn_cast<MDNode>(MD)) {
836 visitMDNode(*N);
837 return;
838 }
839
840 // Only visit each node once. Metadata can be mutually recursive, so this
841 // avoids infinite recursion here, as well as being an optimization.
842 if (!MDNodes.insert(MD).second)
843 return;
844
845 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
846 visitValueAsMetadata(*V, F);
847}
848
849static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
850static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
851static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
852
853void Verifier::visitDILocation(const DILocation &N) {
854 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
855 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
856 if (auto *IA = N.getRawInlinedAt())
857 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
858 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
859 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
860}
861
862void Verifier::visitGenericDINode(const GenericDINode &N) {
863 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
864}
865
866void Verifier::visitDIScope(const DIScope &N) {
867 if (auto *F = N.getRawFile())
868 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
869}
870
871void Verifier::visitDISubrange(const DISubrange &N) {
872 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
873 auto Count = N.getCount();
874 AssertDI(Count, "Count must either be a signed constant or a DIVariable",do { if (!(Count)) { DebugInfoCheckFailed("Count must either be a signed constant or a DIVariable"
, &N); return; } } while (false)
875 &N)do { if (!(Count)) { DebugInfoCheckFailed("Count must either be a signed constant or a DIVariable"
, &N); return; } } while (false)
;
876 AssertDI(!Count.is<ConstantInt*>() ||do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
877 Count.get<ConstantInt*>()->getSExtValue() >= -1,do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
878 "invalid subrange count", &N)do { if (!(!Count.is<ConstantInt*>() || Count.get<ConstantInt
*>()->getSExtValue() >= -1)) { DebugInfoCheckFailed(
"invalid subrange count", &N); return; } } while (false)
;
879}
880
881void Verifier::visitDIEnumerator(const DIEnumerator &N) {
882 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
883}
884
885void Verifier::visitDIBasicType(const DIBasicType &N) {
886 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
887 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
888 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
889}
890
891void Verifier::visitDIDerivedType(const DIDerivedType &N) {
892 // Common scope checks.
893 visitDIScope(N);
894
895 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
896 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
897 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
898 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
899 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
900 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
901 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
902 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
903 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
904 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
905 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
906 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
907 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
908 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
909 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
910 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
911 }
912
913 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
914 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
915 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
916
917 if (N.getDWARFAddressSpace()) {
918 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
919 N.getTag() == dwarf::DW_TAG_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
920 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
921 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
922 }
923}
924
925/// Detect mutually exclusive flags.
926static bool hasConflictingReferenceFlags(unsigned Flags) {
927 return ((Flags & DINode::FlagLValueReference) &&
928 (Flags & DINode::FlagRValueReference)) ||
929 ((Flags & DINode::FlagTypePassByValue) &&
930 (Flags & DINode::FlagTypePassByReference));
931}
932
933void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
934 auto *Params = dyn_cast<MDTuple>(&RawParams);
935 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
936 for (Metadata *Op : Params->operands()) {
937 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
938 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
939 }
940}
941
942void Verifier::visitDICompositeType(const DICompositeType &N) {
943 // Common scope checks.
944 visitDIScope(N);
945
946 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
947 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
948 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
949 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
950 N.getTag() == dwarf::DW_TAG_class_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
951 N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
952 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
953
954 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
955 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
956 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
957
958 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
959 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
960 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
961 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
962 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
963 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
964
965 if (N.isVector()) {
966 const DINodeArray Elements = N.getElements();
967 AssertDI(Elements.size() == 1 &&do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
968 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
969 "invalid vector, expected one element of type subrange", &N)do { if (!(Elements.size() == 1 && Elements[0]->getTag
() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange"
, &N); return; } } while (false)
;
970 }
971
972 if (auto *Params = N.getRawTemplateParams())
973 visitTemplateParams(N, *Params);
974
975 if (N.getTag() == dwarf::DW_TAG_class_type ||
976 N.getTag() == dwarf::DW_TAG_union_type) {
977 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
978 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
979 }
980
981 if (auto *D = N.getRawDiscriminator()) {
982 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
983 "discriminator can only appear on variant part")do { if (!(isa<DIDerivedType>(D) && N.getTag() ==
dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part"
); return; } } while (false)
;
984 }
985}
986
987void Verifier::visitDISubroutineType(const DISubroutineType &N) {
988 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
989 if (auto *Types = N.getRawTypeArray()) {
990 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
991 for (Metadata *Ty : N.getTypeArray()->operands()) {
992 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
993 }
994 }
995 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
996 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
997}
998
999void Verifier::visitDIFile(const DIFile &N) {
1000 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1001 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1002 if (Checksum) {
1003 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
1004 "invalid checksum kind", &N)do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last
)) { DebugInfoCheckFailed("invalid checksum kind", &N); return
; } } while (false)
;
1005 size_t Size;
1006 switch (Checksum->Kind) {
1007 case DIFile::CSK_MD5:
1008 Size = 32;
1009 break;
1010 case DIFile::CSK_SHA1:
1011 Size = 40;
1012 break;
1013 }
1014 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N)do { if (!(Checksum->Value.size() == Size)) { DebugInfoCheckFailed
("invalid checksum length", &N); return; } } while (false
)
;
1015 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
1016 "invalid checksum", &N)do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) ==
StringRef::npos)) { DebugInfoCheckFailed("invalid checksum",
&N); return; } } while (false)
;
1017 }
1018}
1019
1020void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1021 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
1022 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1023
1024 // Don't bother verifying the compilation directory or producer string
1025 // as those could be empty.
1026 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
1027 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
1028 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
1029 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
1030
1031 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
1032 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
1033
1034 if (auto *Array = N.getRawEnumTypes()) {
1035 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
1036 for (Metadata *Op : N.getEnumTypes()->operands()) {
1037 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1038 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
1039 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
1040 }
1041 }
1042 if (auto *Array = N.getRawRetainedTypes()) {
1043 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
1044 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1045 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1046 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1047 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1048 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1049 }
1050 }
1051 if (auto *Array = N.getRawGlobalVariables()) {
1052 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1053 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1054 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1055 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1056 }
1057 }
1058 if (auto *Array = N.getRawImportedEntities()) {
1059 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1060 for (Metadata *Op : N.getImportedEntities()->operands()) {
1061 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1062 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1063 }
1064 }
1065 if (auto *Array = N.getRawMacros()) {
1066 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1067 for (Metadata *Op : N.getMacros()->operands()) {
1068 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1069 }
1070 }
1071 CUVisited.insert(&N);
1072}
1073
1074void Verifier::visitDISubprogram(const DISubprogram &N) {
1075 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1076 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1077 if (auto *F = N.getRawFile())
1078 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1079 else
1080 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1081 if (auto *T = N.getRawType())
1082 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1083 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1084 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1085 if (auto *Params = N.getRawTemplateParams())
1086 visitTemplateParams(N, *Params);
1087 if (auto *S = N.getRawDeclaration())
1088 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1089 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1090 if (auto *RawNode = N.getRawRetainedNodes()) {
1091 auto *Node = dyn_cast<MDTuple>(RawNode);
1092 AssertDI(Node, "invalid retained nodes list", &N, RawNode)do { if (!(Node)) { DebugInfoCheckFailed("invalid retained nodes list"
, &N, RawNode); return; } } while (false)
;
1093 for (Metadata *Op : Node->operands()) {
1094 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1095 "invalid retained nodes, expected DILocalVariable or DILabel",do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
1096 &N, Node, Op)do { if (!(Op && (isa<DILocalVariable>(Op) || isa
<DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel"
, &N, Node, Op); return; } } while (false)
;
1097 }
1098 }
1099 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1100 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1101
1102 auto *Unit = N.getRawUnit();
1103 if (N.isDefinition()) {
1104 // Subprogram definitions (not part of the type hierarchy).
1105 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1106 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1107 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1108 } else {
1109 // Subprogram declarations (part of the type hierarchy).
1110 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1111 }
1112
1113 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1114 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1115 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1116 for (Metadata *Op : ThrownTypes->operands())
1117 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1118 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1119 }
1120}
1121
1122void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1123 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1124 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1125 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1126 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1127 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy"
, &N); return; } } while (false)
;
1128}
1129
1130void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1131 visitDILexicalBlockBase(N);
1132
1133 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1134 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1135}
1136
1137void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1138 visitDILexicalBlockBase(N);
1139}
1140
1141void Verifier::visitDINamespace(const DINamespace &N) {
1142 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1143 if (auto *S = N.getRawScope())
1144 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1145}
1146
1147void Verifier::visitDIMacro(const DIMacro &N) {
1148 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1149 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1150 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1151 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1152 if (!N.getValue().empty()) {
1153 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")(static_cast <bool> (N.getValue().data()[0] != ' ' &&
"Macro value has a space prefix") ? void (0) : __assert_fail
("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 1153, __extension__ __PRETTY_FUNCTION__))
;
1154 }
1155}
1156
1157void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1158 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1159 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1160 if (auto *F = N.getRawFile())
1161 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1162
1163 if (auto *Array = N.getRawElements()) {
1164 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1165 for (Metadata *Op : N.getElements()->operands()) {
1166 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1167 }
1168 }
1169}
1170
1171void Verifier::visitDIModule(const DIModule &N) {
1172 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1173 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1174}
1175
1176void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1177 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1178}
1179
1180void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1181 visitDITemplateParameter(N);
1182
1183 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1184 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1185}
1186
1187void Verifier::visitDITemplateValueParameter(
1188 const DITemplateValueParameter &N) {
1189 visitDITemplateParameter(N);
1190
1191 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1192 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1193 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1194 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1195}
1196
1197void Verifier::visitDIVariable(const DIVariable &N) {
1198 if (auto *S = N.getRawScope())
1199 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1200 if (auto *F = N.getRawFile())
1201 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1202}
1203
1204void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1205 // Checks common to all variables.
1206 visitDIVariable(N);
1207
1208 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1209 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1210 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1211 AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type"
, &N); return; } } while (false)
;
1212 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1213 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1214 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1215 }
1216}
1217
1218void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1219 // Checks common to all variables.
1220 visitDIVariable(N);
1221
1222 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1223 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1224 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1225 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1226}
1227
1228void Verifier::visitDILabel(const DILabel &N) {
1229 if (auto *S = N.getRawScope())
1230 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1231 if (auto *F = N.getRawFile())
1232 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1233
1234 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_label)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1235 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1236 "label requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1237}
1238
1239void Verifier::visitDIExpression(const DIExpression &N) {
1240 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1241}
1242
1243void Verifier::visitDIGlobalVariableExpression(
1244 const DIGlobalVariableExpression &GVE) {
1245 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1246 if (auto *Var = GVE.getVariable())
1247 visitDIGlobalVariable(*Var);
1248 if (auto *Expr = GVE.getExpression()) {
1249 visitDIExpression(*Expr);
1250 if (auto Fragment = Expr->getFragmentInfo())
1251 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1252 }
1253}
1254
1255void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1256 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1257 if (auto *T = N.getRawType())
1258 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1259 if (auto *F = N.getRawFile())
1260 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1261}
1262
1263void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1264 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1265 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1266 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1267 if (auto *S = N.getRawScope())
1268 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1269 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1270 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1271}
1272
1273void Verifier::visitComdat(const Comdat &C) {
1274 // The Module is invalid if the GlobalValue has private linkage. Entities
1275 // with private linkage don't have entries in the symbol table.
1276 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1277 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1278 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1279}
1280
1281void Verifier::visitModuleIdents(const Module &M) {
1282 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1283 if (!Idents)
1284 return;
1285
1286 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1287 // Scan each llvm.ident entry and make sure that this requirement is met.
1288 for (const MDNode *N : Idents->operands()) {
1289 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1290 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1291 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1292 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1293 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1294 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1295 }
1296}
1297
1298void Verifier::visitModuleFlags(const Module &M) {
1299 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1300 if (!Flags) return;
1301
1302 // Scan each flag, and track the flags and requirements.
1303 DenseMap<const MDString*, const MDNode*> SeenIDs;
1304 SmallVector<const MDNode*, 16> Requirements;
1305 for (const MDNode *MDN : Flags->operands())
1306 visitModuleFlag(MDN, SeenIDs, Requirements);
1307
1308 // Validate that the requirements in the module are valid.
1309 for (const MDNode *Requirement : Requirements) {
1310 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1311 const Metadata *ReqValue = Requirement->getOperand(1);
1312
1313 const MDNode *Op = SeenIDs.lookup(Flag);
1314 if (!Op) {
1315 CheckFailed("invalid requirement on flag, flag is not present in module",
1316 Flag);
1317 continue;
1318 }
1319
1320 if (Op->getOperand(2) != ReqValue) {
1321 CheckFailed(("invalid requirement on flag, "
1322 "flag does not have the required value"),
1323 Flag);
1324 continue;
1325 }
1326 }
1327}
1328
1329void
1330Verifier::visitModuleFlag(const MDNode *Op,
1331 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1332 SmallVectorImpl<const MDNode *> &Requirements) {
1333 // Each module flag should have three arguments, the merge behavior (a
1334 // constant int), the flag ID (an MDString), and the value.
1335 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1336 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1337 Module::ModFlagBehavior MFB;
1338 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1339 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1340 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1341 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1342 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1343 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1344 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1345 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1346 }
1347 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1348 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1349 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1350
1351 // Sanity check the values for behaviors with additional requirements.
1352 switch (MFB) {
1353 case Module::Error:
1354 case Module::Warning:
1355 case Module::Override:
1356 // These behavior types accept any value.
1357 break;
1358
1359 case Module::Max: {
1360 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1361 "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
1362 Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)"
, Op->getOperand(2)); return; } } while (false)
;
1363 break;
1364 }
1365
1366 case Module::Require: {
1367 // The value should itself be an MDNode with two operands, a flag ID (an
1368 // MDString), and a value.
1369 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1370 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1371 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1372 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1373 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1374 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1375 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1376 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1377
1378 // Append it to the list of requirements, to check once all module flags are
1379 // scanned.
1380 Requirements.push_back(Value);
1381 break;
1382 }
1383
1384 case Module::Append:
1385 case Module::AppendUnique: {
1386 // These behavior types require the operand be an MDNode.
1387 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1388 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1389 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1390 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1391 break;
1392 }
1393 }
1394
1395 // Unless this is a "requires" flag, check the ID is unique.
1396 if (MFB != Module::Require) {
1397 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1398 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1399 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1400 }
1401
1402 if (ID->getString() == "wchar_size") {
1403 ConstantInt *Value
1404 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1405 Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument"
); return; } } while (false)
;
1406 }
1407
1408 if (ID->getString() == "Linker Options") {
1409 // If the llvm.linker.options named metadata exists, we assume that the
1410 // bitcode reader has upgraded the module flag. Otherwise the flag might
1411 // have been created by a client directly.
1412 Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
1413 "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed
("'Linker Options' named metadata no longer supported"); return
; } } while (false)
;
1414 }
1415
1416 if (ID->getString() == "CG Profile") {
1417 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1418 visitModuleFlagCGProfileEntry(MDO);
1419 }
1420}
1421
1422void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1423 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1424 if (!FuncMDO)
1425 return;
1426 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1427 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
1428 FuncMDO)do { if (!(F && isa<Function>(F->getValue())
)) { CheckFailed("expected a Function or null", FuncMDO); return
; } } while (false)
;
1429 };
1430 auto Node = dyn_cast_or_null<MDNode>(MDO);
1431 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO)do { if (!(Node && Node->getNumOperands() == 3)) {
CheckFailed("expected a MDNode triple", MDO); return; } } while
(false)
;
1432 CheckFunction(Node->getOperand(0));
1433 CheckFunction(Node->getOperand(1));
1434 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1435 Assert(Count && Count->getType()->isIntegerTy(),do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
1436 "expected an integer constant", Node->getOperand(2))do { if (!(Count && Count->getType()->isIntegerTy
())) { CheckFailed("expected an integer constant", Node->getOperand
(2)); return; } } while (false)
;
1437}
1438
1439/// Return true if this attribute kind only applies to functions.
1440static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1441 switch (Kind) {
1442 case Attribute::NoReturn:
1443 case Attribute::NoCfCheck:
1444 case Attribute::NoUnwind:
1445 case Attribute::NoInline:
1446 case Attribute::AlwaysInline:
1447 case Attribute::OptimizeForSize:
1448 case Attribute::StackProtect:
1449 case Attribute::StackProtectReq:
1450 case Attribute::StackProtectStrong:
1451 case Attribute::SafeStack:
1452 case Attribute::ShadowCallStack:
1453 case Attribute::NoRedZone:
1454 case Attribute::NoImplicitFloat:
1455 case Attribute::Naked:
1456 case Attribute::InlineHint:
1457 case Attribute::StackAlignment:
1458 case Attribute::UWTable:
1459 case Attribute::NonLazyBind:
1460 case Attribute::ReturnsTwice:
1461 case Attribute::SanitizeAddress:
1462 case Attribute::SanitizeHWAddress:
1463 case Attribute::SanitizeThread:
1464 case Attribute::SanitizeMemory:
1465 case Attribute::MinSize:
1466 case Attribute::NoDuplicate:
1467 case Attribute::Builtin:
1468 case Attribute::NoBuiltin:
1469 case Attribute::Cold:
1470 case Attribute::OptForFuzzing:
1471 case Attribute::OptimizeNone:
1472 case Attribute::JumpTable:
1473 case Attribute::Convergent:
1474 case Attribute::ArgMemOnly:
1475 case Attribute::NoRecurse:
1476 case Attribute::InaccessibleMemOnly:
1477 case Attribute::InaccessibleMemOrArgMemOnly:
1478 case Attribute::AllocSize:
1479 case Attribute::Speculatable:
1480 case Attribute::StrictFP:
1481 return true;
1482 default:
1483 break;
1484 }
1485 return false;
1486}
1487
1488/// Return true if this is a function attribute that can also appear on
1489/// arguments.
1490static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1491 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1492 Kind == Attribute::ReadNone;
1493}
1494
1495void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1496 const Value *V) {
1497 for (Attribute A : Attrs) {
1498 if (A.isStringAttribute())
1499 continue;
1500
1501 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1502 if (!IsFunction) {
1503 CheckFailed("Attribute '" + A.getAsString() +
1504 "' only applies to functions!",
1505 V);
1506 return;
1507 }
1508 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1509 CheckFailed("Attribute '" + A.getAsString() +
1510 "' does not apply to functions!",
1511 V);
1512 return;
1513 }
1514 }
1515}
1516
1517// VerifyParameterAttrs - Check the given attributes for an argument or return
1518// value of the specified type. The value V is printed in error messages.
1519void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1520 const Value *V) {
1521 if (!Attrs.hasAttributes())
1522 return;
1523
1524 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1525
1526 // Check for mutually incompatible attributes. Only inreg is compatible with
1527 // sret.
1528 unsigned AttrCount = 0;
1529 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1530 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1531 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1532 Attrs.hasAttribute(Attribute::InReg);
1533 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1534 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1535 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1536 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1537
1538 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1539 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1540 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1541 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1542 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1543
1544 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1545 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1546 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1547 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1548 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1549
1550 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1551 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1552 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1553 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1554 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1555
1556 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1557 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1558 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1559 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1560 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1561
1562 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1563 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1564 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1565 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1566 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1567
1568 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1569 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1570 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1571 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1572 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1573
1574 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1575 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1576 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1577 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1578 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1579
1580 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1581 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1582 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1583 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1584 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1585
1586 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1587 SmallPtrSet<Type*, 4> Visited;
1588 if (!PTy->getElementType()->isSized(&Visited)) {
1589 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1590 !Attrs.hasAttribute(Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1591 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1592 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1593 }
1594 if (!isa<PointerType>(PTy->getElementType()))
1595 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1596 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1597 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1598 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1599 } else {
1600 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1601 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1602 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1603 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1604 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1605 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1606 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1607 }
1608}
1609
1610// Check parameter attributes against a function type.
1611// The value V is printed in error messages.
1612void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1613 const Value *V) {
1614 if (Attrs.isEmpty())
1615 return;
1616
1617 bool SawNest = false;
1618 bool SawReturned = false;
1619 bool SawSRet = false;
1620 bool SawSwiftSelf = false;
1621 bool SawSwiftError = false;
1622
1623 // Verify return value attributes.
1624 AttributeSet RetAttrs = Attrs.getRetAttributes();
1625 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1626 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1627 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1628 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1629 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1630 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1631 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1632 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1633 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1634 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1635 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1636 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1637 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1638 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1639 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1640 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1641 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1642 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1643 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1644
1645 // Verify parameter attributes.
1646 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1647 Type *Ty = FT->getParamType(i);
1648 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1649
1650 verifyParameterAttrs(ArgAttrs, Ty, V);
1651
1652 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1653 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1654 SawNest = true;
1655 }
1656
1657 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1658 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1659 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1660 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1661 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1662 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1663 SawReturned = true;
1664 }
1665
1666 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1667 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1668 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1669 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1670 SawSRet = true;
1671 }
1672
1673 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1674 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1675 SawSwiftSelf = true;
1676 }
1677
1678 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1679 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1680 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1681 SawSwiftError = true;
1682 }
1683
1684 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1685 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1686 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1687 }
1688 }
1689
1690 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1691 return;
1692
1693 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1694
1695 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1696 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1697 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1698
1699 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1700 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1701 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1702
1703 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1704 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1705 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1706
1707 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1708 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1709 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1710 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1711 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1712
1713 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1714 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1715 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1716
1717 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1718 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1719 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1720
1721 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1722 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1723 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1724
1725 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1726 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1727
1728 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1729 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1730 }
1731
1732 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1733 const GlobalValue *GV = cast<GlobalValue>(V);
1734 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1735 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1736 }
1737
1738 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1739 std::pair<unsigned, Optional<unsigned>> Args =
1740 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1741
1742 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1743 if (ParamNo >= FT->getNumParams()) {
1744 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1745 return false;
1746 }
1747
1748 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1749 CheckFailed("'allocsize' " + Name +
1750 " argument must refer to an integer parameter",
1751 V);
1752 return false;
1753 }
1754
1755 return true;
1756 };
1757
1758 if (!CheckParam("element size", Args.first))
1759 return;
1760
1761 if (Args.second && !CheckParam("number of elements", *Args.second))
1762 return;
1763 }
1764}
1765
1766void Verifier::verifyFunctionMetadata(
1767 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1768 for (const auto &Pair : MDs) {
1769 if (Pair.first == LLVMContext::MD_prof) {
1770 MDNode *MD = Pair.second;
1771 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1772 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1773
1774 // Check first operand.
1775 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1776 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1777 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1778 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1779 MDString *MDS = cast<MDString>(MD->getOperand(0));
1780 StringRef ProfName = MDS->getString();
1781 Assert(ProfName.equals("function_entry_count") ||do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1782 ProfName.equals("synthetic_function_entry_count"),do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1783 "first operand should be 'function_entry_count'"do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1784 " or 'synthetic_function_entry_count'",do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
1785 MD)do { if (!(ProfName.equals("function_entry_count") || ProfName
.equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'"
" or 'synthetic_function_entry_count'", MD); return; } } while
(false)
;
1786
1787 // Check second operand.
1788 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1789 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1790 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1791 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1792 }
1793 }
1794}
1795
1796void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1797 if (!ConstantExprVisited.insert(EntryC).second)
1798 return;
1799
1800 SmallVector<const Constant *, 16> Stack;
1801 Stack.push_back(EntryC);
1802
1803 while (!Stack.empty()) {
1804 const Constant *C = Stack.pop_back_val();
1805
1806 // Check this constant expression.
1807 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1808 visitConstantExpr(CE);
1809
1810 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1811 // Global Values get visited separately, but we do need to make sure
1812 // that the global value is in the correct module
1813 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1814 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1815 continue;
1816 }
1817
1818 // Visit all sub-expressions.
1819 for (const Use &U : C->operands()) {
1820 const auto *OpC = dyn_cast<Constant>(U);
1821 if (!OpC)
1822 continue;
1823 if (!ConstantExprVisited.insert(OpC).second)
1824 continue;
1825 Stack.push_back(OpC);
1826 }
1827 }
1828}
1829
1830void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1831 if (CE->getOpcode() == Instruction::BitCast)
1832 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1833 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1834 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1835
1836 if (CE->getOpcode() == Instruction::IntToPtr ||
1837 CE->getOpcode() == Instruction::PtrToInt) {
1838 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1839 ? CE->getType()
1840 : CE->getOperand(0)->getType();
1841 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1842 ? "inttoptr not supported for non-integral pointers"
1843 : "ptrtoint not supported for non-integral pointers";
1844 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1845 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1846 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1847 }
1848}
1849
1850bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1851 // There shouldn't be more attribute sets than there are parameters plus the
1852 // function and return value.
1853 return Attrs.getNumAttrSets() <= Params + 2;
1854}
1855
1856/// Verify that statepoint intrinsic is well formed.
1857void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1858 assert(CS.getCalledFunction() &&(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 1860, __extension__ __PRETTY_FUNCTION__))
1859 CS.getCalledFunction()->getIntrinsicID() ==(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 1860, __extension__ __PRETTY_FUNCTION__))
1860 Intrinsic::experimental_gc_statepoint)(static_cast <bool> (CS.getCalledFunction() && CS
.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
) ? void (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 1860, __extension__ __PRETTY_FUNCTION__))
;
1861
1862 const Instruction &CI = *CS.getInstruction();
1863
1864 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1865 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1866 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1867 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1868 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1869
1870 const Value *IDV = CS.getArgument(0);
1871 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1872 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1873
1874 const Value *NumPatchBytesV = CS.getArgument(1);
1875 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1876 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1877 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1878 const int64_t NumPatchBytes =
1879 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1880 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")(static_cast <bool> (isInt<32>(NumPatchBytes) &&
"NumPatchBytesV is an i32!") ? void (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 1880, __extension__ __PRETTY_FUNCTION__))
;
1881 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1882 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1883 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1884
1885 const Value *Target = CS.getArgument(2);
1886 auto *PT = dyn_cast<PointerType>(Target->getType());
1887 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1888 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1889 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1890
1891 const Value *NumCallArgsV = CS.getArgument(3);
1892 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1893 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1894 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1895 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1896 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1897 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1898 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1899 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1900 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1901 const int NumParams = (int)TargetFuncType->getNumParams();
1902 if (TargetFuncType->isVarArg()) {
1903 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1904 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1905
1906 // TODO: Remove this limitation
1907 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1908 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1909 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1910 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1911 } else
1912 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1913 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1914
1915 const Value *FlagsV = CS.getArgument(4);
1916 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1917 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1918 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1919 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1920 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1921
1922 // Verify that the types of the call parameter arguments match
1923 // the type of the wrapped callee.
1924 for (int i = 0; i < NumParams; i++) {
1925 Type *ParamType = TargetFuncType->getParamType(i);
1926 Type *ArgType = CS.getArgument(5 + i)->getType();
1927 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1928 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1929 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1930 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1931 }
1932
1933 const int EndCallArgsInx = 4 + NumCallArgs;
1934
1935 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1936 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1937 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1938 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1939 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1940 const int NumTransitionArgs =
1941 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1942 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1943 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1944 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1945
1946 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1947 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1948 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1949 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1950 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1951 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1952 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1953 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1954 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1955
1956 const int ExpectedNumArgs =
1957 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1958 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1959 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1960
1961 // Check that the only uses of this gc.statepoint are gc.result or
1962 // gc.relocate calls which are tied to this statepoint and thus part
1963 // of the same statepoint sequence
1964 for (const User *U : CI.users()) {
1965 const CallInst *Call = dyn_cast<const CallInst>(U);
1966 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1967 if (!Call) continue;
1968 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1969 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1970 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1971 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1972 if (isa<GCResultInst>(Call)) {
1973 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1974 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1975 } else if (isa<GCRelocateInst>(Call)) {
1976 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1977 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1978 }
1979 }
1980
1981 // Note: It is legal for a single derived pointer to be listed multiple
1982 // times. It's non-optimal, but it is legal. It can also happen after
1983 // insertion if we strip a bitcast away.
1984 // Note: It is really tempting to check that each base is relocated and
1985 // that a derived pointer is never reused as a base pointer. This turns
1986 // out to be problematic since optimizations run after safepoint insertion
1987 // can recognize equality properties that the insertion logic doesn't know
1988 // about. See example statepoint.ll in the verifier subdirectory
1989}
1990
1991void Verifier::verifyFrameRecoverIndices() {
1992 for (auto &Counts : FrameEscapeInfo) {
1993 Function *F = Counts.first;
1994 unsigned EscapedObjectCount = Counts.second.first;
1995 unsigned MaxRecoveredIndex = Counts.second.second;
1996 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1997 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1998 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1999 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
2000 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
2001 }
2002}
2003
2004static Instruction *getSuccPad(TerminatorInst *Terminator) {
2005 BasicBlock *UnwindDest;
2006 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2007 UnwindDest = II->getUnwindDest();
2008 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2009 UnwindDest = CSI->getUnwindDest();
2010 else
2011 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2012 return UnwindDest->getFirstNonPHI();
2013}
2014
2015void Verifier::verifySiblingFuncletUnwinds() {
2016 SmallPtrSet<Instruction *, 8> Visited;
2017 SmallPtrSet<Instruction *, 8> Active;
2018 for (const auto &Pair : SiblingFuncletInfo) {
2019 Instruction *PredPad = Pair.first;
2020 if (Visited.count(PredPad))
2021 continue;
2022 Active.insert(PredPad);
2023 TerminatorInst *Terminator = Pair.second;
2024 do {
2025 Instruction *SuccPad = getSuccPad(Terminator);
2026 if (Active.count(SuccPad)) {
2027 // Found a cycle; report error
2028 Instruction *CyclePad = SuccPad;
2029 SmallVector<Instruction *, 8> CycleNodes;
2030 do {
2031 CycleNodes.push_back(CyclePad);
2032 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
2033 if (CycleTerminator != CyclePad)
2034 CycleNodes.push_back(CycleTerminator);
2035 CyclePad = getSuccPad(CycleTerminator);
2036 } while (CyclePad != SuccPad);
2037 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
2038 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
2039 }
2040 // Don't re-walk a node we've already checked
2041 if (!Visited.insert(SuccPad).second)
2042 break;
2043 // Walk to this successor if it has a map entry.
2044 PredPad = SuccPad;
2045 auto TermI = SiblingFuncletInfo.find(PredPad);
2046 if (TermI == SiblingFuncletInfo.end())
2047 break;
2048 Terminator = TermI->second;
2049 Active.insert(PredPad);
2050 } while (true);
2051 // Each node only has one successor, so we've walked all the active
2052 // nodes' successors.
2053 Active.clear();
2054 }
2055}
2056
2057// visitFunction - Verify that a function is ok.
2058//
2059void Verifier::visitFunction(const Function &F) {
2060 visitGlobalValue(F);
2061
2062 // Check function arguments.
2063 FunctionType *FT = F.getFunctionType();
2064 unsigned NumArgs = F.arg_size();
2065
2066 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
2067 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
2068
2069 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
2070 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
2071 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
2072 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
2073 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
2074 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
2075 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
2076
2077 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
2078 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
2079
2080 AttributeList Attrs = F.getAttributes();
2081
2082 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
2083 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
2084
2085 // Check function attributes.
2086 verifyFunctionAttrs(FT, Attrs, &F);
2087
2088 // On function declarations/definitions, we do not support the builtin
2089 // attribute. We do not check this in VerifyFunctionAttrs since that is
2090 // checking for Attributes that can/can not ever be on functions.
2091 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
2092 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
2093
2094 // Check that this function meets the restrictions on this calling convention.
2095 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2096 // restrictions can be lifted.
2097 switch (F.getCallingConv()) {
1
Control jumps to 'case C:' at line 2099
2098 default:
2099 case CallingConv::C:
2100 break;
2
Execution continues on line 2125
2101 case CallingConv::AMDGPU_KERNEL:
2102 case CallingConv::SPIR_KERNEL:
2103 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
2104 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
2105 LLVM_FALLTHROUGH[[clang::fallthrough]];
2106 case CallingConv::AMDGPU_VS:
2107 case CallingConv::AMDGPU_HS:
2108 case CallingConv::AMDGPU_GS:
2109 case CallingConv::AMDGPU_PS:
2110 case CallingConv::AMDGPU_CS:
2111 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
2112 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
2113 LLVM_FALLTHROUGH[[clang::fallthrough]];
2114 case CallingConv::Fast:
2115 case CallingConv::Cold:
2116 case CallingConv::Intel_OCL_BI:
2117 case CallingConv::PTX_Kernel:
2118 case CallingConv::PTX_Device:
2119 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2120 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2121 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2122 break;
2123 }
2124
2125 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2126 F.getName().substr(0, 5) == "llvm.";
2127
2128 // Check that the argument values match the function type for this function...
2129 unsigned i = 0;
2130 for (const Argument &Arg : F.args()) {
4
Assuming '__begin1' is equal to '__end1'
2131 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2132 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2133 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2134 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2135 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2136 if (!isLLVMdotName) {
2137 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2138 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2139 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2140 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2141 }
2142
2143 // Check that swifterror argument is only used by loads and stores.
2144 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2145 verifySwiftErrorValue(&Arg);
2146 }
2147 ++i;
2148 }
2149
2150 if (!isLLVMdotName)
5
Taking true branch
2151 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2152 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2153
2154 // Get the function metadata attachments.
2155 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2156 F.getAllMetadata(MDs);
2157 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")(static_cast <bool> (F.hasMetadata() != MDs.empty() &&
"Bit out-of-sync") ? void (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 2157, __extension__ __PRETTY_FUNCTION__))
;
2158 verifyFunctionMetadata(MDs);
2159
2160 // Check validity of the personality function
2161 if (F.hasPersonalityFn()) {
6
Assuming the condition is false
7
Taking false branch
2162 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2163 if (Per)
2164 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2165 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2166 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2167 }
2168
2169 if (F.isMaterializable()) {
8
Assuming the condition is false
9
Taking false branch
2170 // Function has a body somewhere we can't see.
2171 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2172 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2173 } else if (F.isDeclaration()) {
10
Assuming the condition is false
11
Taking false branch
2174 for (const auto &I : MDs) {
2175 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2176 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2177 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2178 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2179
2180 // Verify the metadata itself.
2181 visitMDNode(*I.second);
2182 }
2183 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2184 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2185 } else {
2186 // Verify that this function (which has a body) is not named "llvm.*". It
2187 // is not legal to define intrinsics.
2188 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2189
2190 // Check the entry node
2191 const BasicBlock *Entry = &F.getEntryBlock();
2192 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2193 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2194
2195 // The address of the entry block cannot be taken, unless it is dead.
2196 if (Entry->hasAddressTaken()) {
12
Assuming the condition is false
13
Taking false branch
2197 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2198 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2199 }
2200
2201 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2202 // Visit metadata attachments.
2203 for (const auto &I : MDs) {
14
Assuming '__begin3' is equal to '__end3'
2204 // Verify that the attachment is legal.
2205 switch (I.first) {
2206 default:
2207 break;
2208 case LLVMContext::MD_dbg: {
2209 ++NumDebugAttachments;
2210 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2211 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2212 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2213 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2214 auto *SP = cast<DISubprogram>(I.second);
2215 const Function *&AttachedTo = DISubprogramAttachments[SP];
2216 AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
2217 "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed
("DISubprogram attached to more than one function", SP, &
F); return; } } while (false)
;
2218 AttachedTo = &F;
2219 break;
2220 }
2221 case LLVMContext::MD_prof:
2222 ++NumProfAttachments;
2223 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2224 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2225 break;
2226 }
2227
2228 // Verify the metadata itself.
2229 visitMDNode(*I.second);
2230 }
2231 }
2232
2233 // If this function is actually an intrinsic, verify that it is only used in
2234 // direct call/invokes, never having its "address taken".
2235 // Only do this if the module is materialized, otherwise we don't have all the
2236 // uses.
2237 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
15
Assuming the condition is false
2238 const User *U;
2239 if (F.hasAddressTaken(&U))
2240 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2241 }
2242
2243 auto *N = F.getSubprogram();
2244 HasDebugInfo = (N != nullptr);
16
Assuming the condition is true
2245 if (!HasDebugInfo)
17
Taking false branch
2246 return;
2247
2248 // Check that all !dbg attachments lead to back to N (or, at least, another
2249 // subprogram that describes the same function).
2250 //
2251 // FIXME: Check this incrementally while visiting !dbg attachments.
2252 // FIXME: Only check when N is the canonical subprogram for F.
2253 SmallPtrSet<const MDNode *, 32> Seen;
2254 for (auto &BB : F)
2255 for (auto &I : BB) {
2256 // Be careful about using DILocation here since we might be dealing with
2257 // broken code (this is the Verifier after all).
2258 DILocation *DL =
2259 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2260 if (!DL)
18
Assuming 'DL' is non-null
19
Taking false branch
2261 continue;
2262 if (!Seen.insert(DL).second)
20
Assuming the condition is false
21
Taking false branch
2263 continue;
2264
2265 DILocalScope *Scope = DL->getInlinedAtScope();
2266 if (Scope && !Seen.insert(Scope).second)
22
Assuming 'Scope' is null
23
Taking false branch
2267 continue;
2268
2269 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
24
'?' condition is false
25
'SP' initialized to a null pointer value
2270
2271 // Scope and SP could be the same MDNode and we don't want to skip
2272 // validation in that case
2273 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
26
Taking false branch
2274 continue;
2275
2276 // FIXME: Once N is canonical, check "SP == &N".
2277 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
27
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2278 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2279 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2280 }
2281}
2282
2283// verifyBasicBlock - Verify that a basic block is well formed...
2284//
2285void Verifier::visitBasicBlock(BasicBlock &BB) {
2286 InstsInThisBlock.clear();
2287
2288 // Ensure that basic blocks have terminators!
2289 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2290
2291 // Check constraints that this basic block imposes on all of the PHI nodes in
2292 // it.
2293 if (isa<PHINode>(BB.front())) {
2294 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2295 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2296 llvm::sort(Preds.begin(), Preds.end());
2297 for (const PHINode &PN : BB.phis()) {
2298 // Ensure that PHI nodes have at least one entry!
2299 Assert(PN.getNumIncomingValues() != 0,do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2300 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2301 "the PHI should be removed!",do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
2302 &PN)do { if (!(PN.getNumIncomingValues() != 0)) { CheckFailed("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", &PN); return; } } while (false
)
;
2303 Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2304 "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2305 "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
2306 &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", &PN); return; } } while (false)
;
2307
2308 // Get and sort all incoming values in the PHI node...
2309 Values.clear();
2310 Values.reserve(PN.getNumIncomingValues());
2311 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2312 Values.push_back(
2313 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2314 llvm::sort(Values.begin(), Values.end());
2315
2316 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2317 // Check to make sure that if there is more than one entry for a
2318 // particular basic block in this PHI node, that the incoming values are
2319 // all identical.
2320 //
2321 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2322 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2323 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2324 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
2325 &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first, Values
[i].second, Values[i - 1].second); return; } } while (false)
;
2326
2327 // Check to make sure that the predecessors and PHI node entries are
2328 // matched up.
2329 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2330 "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
2331 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, &PN, Values[i].first, Preds[i]); return; } } while (false
)
;
2332 }
2333 }
2334 }
2335
2336 // Check that all instructions have their parent pointers set up correctly.
2337 for (auto &I : BB)
2338 {
2339 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2340 }
2341}
2342
2343void Verifier::visitTerminatorInst(TerminatorInst &I) {
2344 // Ensure that terminators only exist at the end of the basic block.
2345 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2346 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2347 visitInstruction(I);
2348}
2349
2350void Verifier::visitBranchInst(BranchInst &BI) {
2351 if (BI.isConditional()) {
2352 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2353 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2354 }
2355 visitTerminatorInst(BI);
2356}
2357
2358void Verifier::visitReturnInst(ReturnInst &RI) {
2359 Function *F = RI.getParent()->getParent();
2360 unsigned N = RI.getNumOperands();
2361 if (F->getReturnType()->isVoidTy())
2362 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2363 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2364 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2365 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2366 else
2367 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2368 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2369 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2370 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2371
2372 // Check to make sure that the return value has necessary properties for
2373 // terminators...
2374 visitTerminatorInst(RI);
2375}
2376
2377void Verifier::visitSwitchInst(SwitchInst &SI) {
2378 // Check to make sure that all of the constants in the switch instruction
2379 // have the same type as the switched-on value.
2380 Type *SwitchTy = SI.getCondition()->getType();
2381 SmallPtrSet<ConstantInt*, 32> Constants;
2382 for (auto &Case : SI.cases()) {
2383 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2384 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2385 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2386 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2387 }
2388
2389 visitTerminatorInst(SI);
2390}
2391
2392void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2393 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2394 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2395 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2396 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2397 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2398
2399 visitTerminatorInst(BI);
2400}
2401
2402void Verifier::visitSelectInst(SelectInst &SI) {
2403 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2404 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2405 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2406
2407 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2408 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2409 visitInstruction(SI);
2410}
2411
2412/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2413/// a pass, if any exist, it's an error.
2414///
2415void Verifier::visitUserOp1(Instruction &I) {
2416 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2417}
2418
2419void Verifier::visitTruncInst(TruncInst &I) {
2420 // Get the source and destination types
2421 Type *SrcTy = I.getOperand(0)->getType();
2422 Type *DestTy = I.getType();
2423
2424 // Get the size of the types in bits, we'll need this later
2425 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2426 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2427
2428 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2429 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2430 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2431 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2432 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2433
2434 visitInstruction(I);
2435}
2436
2437void Verifier::visitZExtInst(ZExtInst &I) {
2438 // Get the source and destination types
2439 Type *SrcTy = I.getOperand(0)->getType();
2440 Type *DestTy = I.getType();
2441
2442 // Get the size of the types in bits, we'll need this later
2443 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2444 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2445 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2446 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2447 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2448 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2449
2450 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2451
2452 visitInstruction(I);
2453}
2454
2455void Verifier::visitSExtInst(SExtInst &I) {
2456 // Get the source and destination types
2457 Type *SrcTy = I.getOperand(0)->getType();
2458 Type *DestTy = I.getType();
2459
2460 // Get the size of the types in bits, we'll need this later
2461 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2462 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2463
2464 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2465 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2466 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2467 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2468 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2469
2470 visitInstruction(I);
2471}
2472
2473void Verifier::visitFPTruncInst(FPTruncInst &I) {
2474 // Get the source and destination types
2475 Type *SrcTy = I.getOperand(0)->getType();
2476 Type *DestTy = I.getType();
2477 // Get the size of the types in bits, we'll need this later
2478 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2479 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2480
2481 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2482 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2483 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2484 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2485 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2486
2487 visitInstruction(I);
2488}
2489
2490void Verifier::visitFPExtInst(FPExtInst &I) {
2491 // Get the source and destination types
2492 Type *SrcTy = I.getOperand(0)->getType();
2493 Type *DestTy = I.getType();
2494
2495 // Get the size of the types in bits, we'll need this later
2496 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2497 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2498
2499 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2500 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2501 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2502 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2503 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2504
2505 visitInstruction(I);
2506}
2507
2508void Verifier::visitUIToFPInst(UIToFPInst &I) {
2509 // Get the source and destination types
2510 Type *SrcTy = I.getOperand(0)->getType();
2511 Type *DestTy = I.getType();
2512
2513 bool SrcVec = SrcTy->isVectorTy();
2514 bool DstVec = DestTy->isVectorTy();
2515
2516 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2517 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2518 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2519 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2520 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2521 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2522
2523 if (SrcVec && DstVec)
2524 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2525 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2526 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2527
2528 visitInstruction(I);
2529}
2530
2531void Verifier::visitSIToFPInst(SIToFPInst &I) {
2532 // Get the source and destination types
2533 Type *SrcTy = I.getOperand(0)->getType();
2534 Type *DestTy = I.getType();
2535
2536 bool SrcVec = SrcTy->isVectorTy();
2537 bool DstVec = DestTy->isVectorTy();
2538
2539 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2540 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2541 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2542 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2543 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2544 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2545
2546 if (SrcVec && DstVec)
2547 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2548 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2549 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2550
2551 visitInstruction(I);
2552}
2553
2554void Verifier::visitFPToUIInst(FPToUIInst &I) {
2555 // Get the source and destination types
2556 Type *SrcTy = I.getOperand(0)->getType();
2557 Type *DestTy = I.getType();
2558
2559 bool SrcVec = SrcTy->isVectorTy();
2560 bool DstVec = DestTy->isVectorTy();
2561
2562 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2563 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2564 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2565 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2566 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2567 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2568
2569 if (SrcVec && DstVec)
2570 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2571 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2572 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2573
2574 visitInstruction(I);
2575}
2576
2577void Verifier::visitFPToSIInst(FPToSIInst &I) {
2578 // Get the source and destination types
2579 Type *SrcTy = I.getOperand(0)->getType();
2580 Type *DestTy = I.getType();
2581
2582 bool SrcVec = SrcTy->isVectorTy();
2583 bool DstVec = DestTy->isVectorTy();
2584
2585 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2586 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2587 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2588 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2589 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2590 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2591
2592 if (SrcVec && DstVec)
2593 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2594 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2595 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2596
2597 visitInstruction(I);
2598}
2599
2600void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2601 // Get the source and destination types
2602 Type *SrcTy = I.getOperand(0)->getType();
2603 Type *DestTy = I.getType();
2604
2605 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer"
, &I); return; } } while (false)
;
2606
2607 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2608 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2609 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2610
2611 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral"
, &I); return; } } while (false)
;
2612 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2613 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2614
2615 if (SrcTy->isVectorTy()) {
2616 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2617 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2618 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2619 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2620 }
2621
2622 visitInstruction(I);
2623}
2624
2625void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2626 // Get the source and destination types
2627 Type *SrcTy = I.getOperand(0)->getType();
2628 Type *DestTy = I.getType();
2629
2630 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
2631 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral"
, &I); return; } } while (false)
;
2632 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer"
, &I); return; } } while (false)
;
2633
2634 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2635 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2636 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2637
2638 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2639 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2640 if (SrcTy->isVectorTy()) {
2641 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2642 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2643 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2644 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2645 }
2646 visitInstruction(I);
2647}
2648
2649void Verifier::visitBitCastInst(BitCastInst &I) {
2650 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2651 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2652 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2653 visitInstruction(I);
2654}
2655
2656void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2657 Type *SrcTy = I.getOperand(0)->getType();
2658 Type *DestTy = I.getType();
2659
2660 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2661 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2662 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2663 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2664 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2665 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2666 if (SrcTy->isVectorTy())
2667 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2668 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2669 visitInstruction(I);
2670}
2671
2672/// visitPHINode - Ensure that a PHI node is well formed.
2673///
2674void Verifier::visitPHINode(PHINode &PN) {
2675 // Ensure that the PHI nodes are all grouped together at the top of the block.
2676 // This can be tested by checking whether the instruction before this is
2677 // either nonexistent (because this is begin()) or is a PHI node. If not,
2678 // then there is some other instruction before a PHI.
2679 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2680 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2681 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2682
2683 // Check that a PHI doesn't yield a Token.
2684 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2685
2686 // Check that all of the values of the PHI node have the same type as the
2687 // result, and that the incoming blocks are really basic blocks.
2688 for (Value *IncValue : PN.incoming_values()) {
2689 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2690 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2691 }
2692
2693 // All other PHI node constraints are checked in the visitBasicBlock method.
2694
2695 visitInstruction(PN);
2696}
2697
2698void Verifier::verifyCallSite(CallSite CS) {
2699 Instruction *I = CS.getInstruction();
2700
2701 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2702 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2703 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2704
2705 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2706 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2707
2708 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2709 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2710
2711 FunctionType *FTy = CS.getFunctionType();
2712
2713 // Verify that the correct number of arguments are being passed
2714 if (FTy->isVarArg())
2715 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2716 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2717 else
2718 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2719 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2720
2721 // Verify that all arguments to the call match the function type.
2722 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2723 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2724 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2725 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2726
2727 AttributeList Attrs = CS.getAttributes();
2728
2729 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2730 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2731
2732 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2733 // Don't allow speculatable on call sites, unless the underlying function
2734 // declaration is also speculatable.
2735 Function *Callee
2736 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2737 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
2738 "speculatable attribute may not apply to call sites", I)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
;
2739 }
2740
2741 // Verify call attributes.
2742 verifyFunctionAttrs(FTy, Attrs, I);
2743
2744 // Conservatively check the inalloca argument.
2745 // We have a bug if we can find that there is an underlying alloca without
2746 // inalloca.
2747 if (CS.hasInAllocaArgument()) {
2748 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2749 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2750 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2751 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2752 }
2753
2754 // For each argument of the callsite, if it has the swifterror argument,
2755 // make sure the underlying alloca/parameter it comes from has a swifterror as
2756 // well.
2757 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2758 if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2759 Value *SwiftErrorArg = CS.getArgument(i);
2760 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2761 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2762 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2763 continue;
2764 }
2765 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2766 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2767 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2768 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2769 }
2770
2771 if (FTy->isVarArg()) {
2772 // FIXME? is 'nest' even legal here?
2773 bool SawNest = false;
2774 bool SawReturned = false;
2775
2776 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2777 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2778 SawNest = true;
2779 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2780 SawReturned = true;
2781 }
2782
2783 // Check attributes on the varargs part.
2784 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2785 Type *Ty = CS.getArgument(Idx)->getType();
2786 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2787 verifyParameterAttrs(ArgAttrs, Ty, I);
2788
2789 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2790 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2791 SawNest = true;
2792 }
2793
2794 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2795 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2796 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2797 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2798 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2799 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2800 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2801 SawReturned = true;
2802 }
2803
2804 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2805 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2806
2807 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2808 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
2809 I)do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2810 }
2811 }
2812
2813 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2814 if (CS.getCalledFunction() == nullptr ||
2815 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2816 for (Type *ParamTy : FTy->params()) {
2817 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2818 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2819 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2820 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2821 }
2822 }
2823
2824 // Verify that indirect calls don't return tokens.
2825 if (CS.getCalledFunction() == nullptr)
2826 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2827 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2828
2829 if (Function *F = CS.getCalledFunction())
2830 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2831 visitIntrinsicCallSite(ID, CS);
2832
2833 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2834 // at most one "gc-transition" operand bundle.
2835 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2836 FoundGCTransitionBundle = false;
2837 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2838 OperandBundleUse BU = CS.getOperandBundleAt(i);
2839 uint32_t Tag = BU.getTagID();
2840 if (Tag == LLVMContext::OB_deopt) {
2841 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2842 FoundDeoptBundle = true;
2843 } else if (Tag == LLVMContext::OB_gc_transition) {
2844 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2845 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2846 FoundGCTransitionBundle = true;
2847 } else if (Tag == LLVMContext::OB_funclet) {
2848 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2849 FoundFuncletBundle = true;
2850 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2851 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2852 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2853 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2854 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2855 }
2856 }
2857
2858 // Verify that each inlinable callsite of a debug-info-bearing function in a
2859 // debug-info-bearing function has a debug location attached to it. Failure to
2860 // do so causes assertion failures when the inliner sets up inline scope info.
2861 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2862 CS.getCalledFunction()->getSubprogram())
2863 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2864 "debug info must have a !dbg location",do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2865 I)do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
;
2866
2867 visitInstruction(*I);
2868}
2869
2870/// Two types are "congruent" if they are identical, or if they are both pointer
2871/// types with different pointee types and the same address space.
2872static bool isTypeCongruent(Type *L, Type *R) {
2873 if (L == R)
2874 return true;
2875 PointerType *PL = dyn_cast<PointerType>(L);
2876 PointerType *PR = dyn_cast<PointerType>(R);
2877 if (!PL || !PR)
2878 return false;
2879 return PL->getAddressSpace() == PR->getAddressSpace();
2880}
2881
2882static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2883 static const Attribute::AttrKind ABIAttrs[] = {
2884 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2885 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2886 Attribute::SwiftError};
2887 AttrBuilder Copy;
2888 for (auto AK : ABIAttrs) {
2889 if (Attrs.hasParamAttribute(I, AK))
2890 Copy.addAttribute(AK);
2891 }
2892 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2893 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2894 return Copy;
2895}
2896
2897void Verifier::verifyMustTailCall(CallInst &CI) {
2898 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2899
2900 // - The caller and callee prototypes must match. Pointer types of
2901 // parameters or return types may differ in pointee type, but not
2902 // address space.
2903 Function *F = CI.getParent()->getParent();
2904 FunctionType *CallerTy = F->getFunctionType();
2905 FunctionType *CalleeTy = CI.getFunctionType();
2906 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2907 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2908 "cannot guarantee tail call due to mismatched parameter counts",do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2909 &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2910 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2911 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2912 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2913 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2914 }
2915 }
2916 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2917 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2918 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2919 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2920
2921 // - The calling conventions of the caller and callee must match.
2922 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2923 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2924
2925 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2926 // returned, and inalloca, must match.
2927 AttributeList CallerAttrs = F->getAttributes();
2928 AttributeList CalleeAttrs = CI.getAttributes();
2929 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2930 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2931 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2932 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2933 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2934 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2935 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2936 }
2937
2938 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2939 // or a pointer bitcast followed by a ret instruction.
2940 // - The ret instruction must return the (possibly bitcasted) value
2941 // produced by the call or void.
2942 Value *RetVal = &CI;
2943 Instruction *Next = CI.getNextNode();
2944
2945 // Handle the optional bitcast.
2946 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2947 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2948 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2949 RetVal = BI;
2950 Next = BI->getNextNode();
2951 }
2952
2953 // Check the return.
2954 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2955 Assert(Ret, "musttail call must precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2956 &CI)do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2957 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2958 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2959}
2960
2961void Verifier::visitCallInst(CallInst &CI) {
2962 verifyCallSite(&CI);
2963
2964 if (CI.isMustTailCall())
2965 verifyMustTailCall(CI);
2966}
2967
2968void Verifier::visitInvokeInst(InvokeInst &II) {
2969 verifyCallSite(&II);
2970
2971 // Verify that the first non-PHI instruction of the unwind destination is an
2972 // exception handling instruction.
2973 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2974 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2975 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2976 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2977
2978 visitTerminatorInst(II);
2979}
2980
2981/// visitBinaryOperator - Check that both arguments to the binary operator are
2982/// of the same type!
2983///
2984void Verifier::visitBinaryOperator(BinaryOperator &B) {
2985 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2986 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2987
2988 switch (B.getOpcode()) {
2989 // Check that integer arithmetic operators are only used with
2990 // integral operands.
2991 case Instruction::Add:
2992 case Instruction::Sub:
2993 case Instruction::Mul:
2994 case Instruction::SDiv:
2995 case Instruction::UDiv:
2996 case Instruction::SRem:
2997 case Instruction::URem:
2998 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2999 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
3000 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3001 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3002 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3003 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3004 break;
3005 // Check that floating-point arithmetic operators are only used with
3006 // floating-point operands.
3007 case Instruction::FAdd:
3008 case Instruction::FSub:
3009 case Instruction::FMul:
3010 case Instruction::FDiv:
3011 case Instruction::FRem:
3012 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3013 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3014 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
3015 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
3016 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3017 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3018 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
3019 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
3020 break;
3021 // Check that logical operators are only used with integral operands.
3022 case Instruction::And:
3023 case Instruction::Or:
3024 case Instruction::Xor:
3025 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
3026 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
3027 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3028 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
3029 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
3030 break;
3031 case Instruction::Shl:
3032 case Instruction::LShr:
3033 case Instruction::AShr:
3034 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
3035 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
3036 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
3037 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
3038 break;
3039 default:
3040 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 3040)
;
3041 }
3042
3043 visitInstruction(B);
3044}
3045
3046void Verifier::visitICmpInst(ICmpInst &IC) {
3047 // Check that the operands are the same type
3048 Type *Op0Ty = IC.getOperand(0)->getType();
3049 Type *Op1Ty = IC.getOperand(1)->getType();
3050 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
3051 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
3052 // Check that the operands are the right type
3053 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
3054 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy
())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
3055 // Check that the predicate is valid.
3056 Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
3057 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!"
, &IC); return; } } while (false)
;
3058
3059 visitInstruction(IC);
3060}
3061
3062void Verifier::visitFCmpInst(FCmpInst &FC) {
3063 // Check that the operands are the same type
3064 Type *Op0Ty = FC.getOperand(0)->getType();
3065 Type *Op1Ty = FC.getOperand(1)->getType();
3066 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
3067 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
3068 // Check that the operands are the right type
3069 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
3070 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
3071 // Check that the predicate is valid.
3072 Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
3073 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!"
, &FC); return; } } while (false)
;
3074
3075 visitInstruction(FC);
3076}
3077
3078void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3079 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3080 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
3081 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
3082 visitInstruction(EI);
3083}
3084
3085void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3086 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3087 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
3088 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
3089 visitInstruction(IE);
3090}
3091
3092void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3093 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3094 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
3095 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
3096 visitInstruction(SV);
3097}
3098
3099void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3100 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3101
3102 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
3103 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
3104 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
3105
3106 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3107 Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3108 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
3109 "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType(
)->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers"
, &GEP); return; } } while (false)
;
3110 Type *ElTy =
3111 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3112 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
3113
3114 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3115 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
3116 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP
.getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!"
, &GEP, ElTy); return; } } while (false)
;
3117
3118 if (GEP.getType()->isVectorTy()) {
3119 // Additional checks for vector GEPs.
3120 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3121 if (GEP.getPointerOperandType()->isVectorTy())
3122 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3123 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3124 for (Value *Idx : Idxs) {
3125 Type *IndexTy = Idx->getType();
3126 if (IndexTy->isVectorTy()) {
3127 unsigned IndexWidth = IndexTy->getVectorNumElements();
3128 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3129 }
3130 Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
3131 "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type"
); return; } } while (false)
;
3132 }
3133 }
3134 visitInstruction(GEP);
3135}
3136
3137static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3138 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3139}
3140
3141void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3142 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&(static_cast <bool> (Range && Range == I.getMetadata
(LLVMContext::MD_range) && "precondition violation") ?
void (0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 3143, __extension__ __PRETTY_FUNCTION__))
3143 "precondition violation")(static_cast <bool> (Range && Range == I.getMetadata
(LLVMContext::MD_range) && "precondition violation") ?
void (0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 3143, __extension__ __PRETTY_FUNCTION__))
;
3144
3145 unsigned NumOperands = Range->getNumOperands();
3146 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3147 unsigned NumRanges = NumOperands / 2;
3148 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3149
3150 ConstantRange LastRange(1); // Dummy initial value
3151 for (unsigned i = 0; i < NumRanges; ++i) {
3152 ConstantInt *Low =
3153 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3154 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3155 ConstantInt *High =
3156 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3157 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3158 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3159 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3160
3161 APInt HighV = High->getValue();
3162 APInt LowV = Low->getValue();
3163 ConstantRange CurRange(LowV, HighV);
3164 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3165 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3166 if (i != 0) {
3167 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3168 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3169 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3170 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3171 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3172 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3173 }
3174 LastRange = ConstantRange(LowV, HighV);
3175 }
3176 if (NumRanges > 2) {
3177 APInt FirstLow =
3178 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3179 APInt FirstHigh =
3180 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3181 ConstantRange FirstRange(FirstLow, FirstHigh);
3182 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3183 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3184 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3185 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3186 }
3187}
3188
3189void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3190 unsigned Size = DL.getTypeSizeInBits(Ty);
3191 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3192 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3193 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3194}
3195
3196void Verifier::visitLoadInst(LoadInst &LI) {
3197 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3198 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3199 Type *ElTy = LI.getType();
3200 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3201 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3202 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3203 if (LI.isAtomic()) {
3204 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3205 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3206 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3207 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3208 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3209 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3210 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3211 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3212 ElTy, &LI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3213 checkAtomicMemAccessSize(ElTy, &LI);
3214 } else {
3215 Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
3216 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic load cannot have SynchronizationScope specified"
, &LI); return; } } while (false)
;
3217 }
3218
3219 visitInstruction(LI);
3220}
3221
3222void Verifier::visitStoreInst(StoreInst &SI) {
3223 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3224 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3225 Type *ElTy = PTy->getElementType();
3226 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3227 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3228 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3229 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3230 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3231 if (SI.isAtomic()) {
3232 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3233 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3234 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3235 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3236 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3237 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3238 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3239 "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3240 ElTy, &SI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy
())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3241 checkAtomicMemAccessSize(ElTy, &SI);
3242 } else {
3243 Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3244 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed
("Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3245 }
3246 visitInstruction(SI);
3247}
3248
3249/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3250void Verifier::verifySwiftErrorCallSite(CallSite CS,
3251 const Value *SwiftErrorVal) {
3252 unsigned Idx = 0;
3253 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3254 I != E; ++I, ++Idx) {
3255 if (*I == SwiftErrorVal) {
3256 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3257 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3258 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3259 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3260 }
3261 }
3262}
3263
3264void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3265 // Check that swifterror value is only used by loads, stores, or as
3266 // a swifterror argument.
3267 for (const User *U : SwiftErrorVal->users()) {
3268 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3269 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3270 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3271 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3272 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3273 // If it is used by a store, check it is the second operand.
3274 if (auto StoreI = dyn_cast<StoreInst>(U))
3275 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3276 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3277 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3278 if (auto CallI = dyn_cast<CallInst>(U))
3279 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3280 if (auto II = dyn_cast<InvokeInst>(U))
3281 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3282 }
3283}
3284
3285void Verifier::visitAllocaInst(AllocaInst &AI) {
3286 SmallPtrSet<Type*, 4> Visited;
3287 PointerType *PTy = AI.getType();
3288 // TODO: Relax this restriction?
3289 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3290 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3291 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3292 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3293 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3294 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3295 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3296 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3297 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3298
3299 if (AI.isSwiftError()) {
3300 verifySwiftErrorValue(&AI);
3301 }
3302
3303 visitInstruction(AI);
3304}
3305
3306void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3307
3308 // FIXME: more conditions???
3309 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3310 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3311 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3312 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3313 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3314 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3315 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3316 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3317 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3318 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3319 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3320 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3321 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3322 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3323 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3324
3325 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3326 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3327 Type *ElTy = PTy->getElementType();
3328 Assert(ElTy->isIntOrPtrTy(),do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3329 "cmpxchg operand must have integer or pointer type", ElTy, &CXI)do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3330 checkAtomicMemAccessSize(ElTy, &CXI);
3331 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3332 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3333 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3334 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3335 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3336 visitInstruction(CXI);
3337}
3338
3339void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3340 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3341 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3342 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3343 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3344 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3345 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3346 Type *ElTy = PTy->getElementType();
3347 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3348 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3349 checkAtomicMemAccessSize(ElTy, &RMWI);
3350 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3351 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3352 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3353 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3354 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3355 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3356 visitInstruction(RMWI);
3357}
3358
3359void Verifier::visitFenceInst(FenceInst &FI) {
3360 const AtomicOrdering Ordering = FI.getOrdering();
3361 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3362 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3363 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3364 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3365 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3366 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3367 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3368 visitInstruction(FI);
3369}
3370
3371void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3372 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3373 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3374 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3375
3376 visitInstruction(EVI);
3377}
3378
3379void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3380 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3381 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3382 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3383 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3384
3385 visitInstruction(IVI);
3386}
3387
3388static Value *getParentPad(Value *EHPad) {
3389 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3390 return FPI->getParentPad();
3391
3392 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3393}
3394
3395void Verifier::visitEHPadPredecessors(Instruction &I) {
3396 assert(I.isEHPad())(static_cast <bool> (I.isEHPad()) ? void (0) : __assert_fail
("I.isEHPad()", "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 3396, __extension__ __PRETTY_FUNCTION__))
;
3397
3398 BasicBlock *BB = I.getParent();
3399 Function *F = BB->getParent();
3400
3401 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3402
3403 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3404 // The landingpad instruction defines its parent as a landing pad block. The
3405 // landing pad block may be branched to only by the unwind edge of an
3406 // invoke.
3407 for (BasicBlock *PredBB : predecessors(BB)) {
3408 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3409 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3410 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3411 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3412 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3413 }
3414 return;
3415 }
3416 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3417 if (!pred_empty(BB))
3418 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3419 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3420 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3421 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3422 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3423 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3424 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3425 return;
3426 }
3427
3428 // Verify that each pred has a legal terminator with a legal to/from EH
3429 // pad relationship.
3430 Instruction *ToPad = &I;
3431 Value *ToPadParent = getParentPad(ToPad);
3432 for (BasicBlock *PredBB : predecessors(BB)) {
3433 TerminatorInst *TI = PredBB->getTerminator();
3434 Value *FromPad;
3435 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3436 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3437 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3438 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3439 FromPad = Bundle->Inputs[0];
3440 else
3441 FromPad = ConstantTokenNone::get(II->getContext());
3442 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3443 FromPad = CRI->getOperand(0);
3444 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3445 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3446 FromPad = CSI;
3447 } else {
3448 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3449 }
3450
3451 // The edge may exit from zero or more nested pads.
3452 SmallSet<Value *, 8> Seen;
3453 for (;; FromPad = getParentPad(FromPad)) {
3454 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3455 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3456 if (FromPad == ToPadParent) {
3457 // This is a legal unwind edge.
3458 break;
3459 }
3460 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3461 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3462 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3463 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3464 }
3465 }
3466}
3467
3468void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3469 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3470 // isn't a cleanup.
3471 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3472 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3473
3474 visitEHPadPredecessors(LPI);
3475
3476 if (!LandingPadResultTy)
3477 LandingPadResultTy = LPI.getType();
3478 else
3479 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3480 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3481 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3482 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3483
3484 Function *F = LPI.getParent()->getParent();
3485 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3486 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3487
3488 // The landingpad instruction must be the first non-PHI instruction in the
3489 // block.
3490 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3491 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3492 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3493
3494 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3495 Constant *Clause = LPI.getClause(i);
3496 if (LPI.isCatch(i)) {
3497 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3498 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3499 } else {
3500 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3501 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3502 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3503 }
3504 }
3505
3506 visitInstruction(LPI);
3507}
3508
3509void Verifier::visitResumeInst(ResumeInst &RI) {
3510 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3511 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3512
3513 if (!LandingPadResultTy)
3514 LandingPadResultTy = RI.getValue()->getType();
3515 else
3516 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3517 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3518 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3519 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3520
3521 visitTerminatorInst(RI);
3522}
3523
3524void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3525 BasicBlock *BB = CPI.getParent();
3526
3527 Function *F = BB->getParent();
3528 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3529 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3530
3531 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3532 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3533 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3534
3535 // The catchpad instruction must be the first non-PHI instruction in the
3536 // block.
3537 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3538 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3539
3540 visitEHPadPredecessors(CPI);
3541 visitFuncletPadInst(CPI);
3542}
3543
3544void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3545 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3546 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3547 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3548
3549 visitTerminatorInst(CatchReturn);
3550}
3551
3552void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3553 BasicBlock *BB = CPI.getParent();
3554
3555 Function *F = BB->getParent();
3556 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3557 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3558
3559 // The cleanuppad instruction must be the first non-PHI instruction in the
3560 // block.
3561 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3562 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3563 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3564
3565 auto *ParentPad = CPI.getParentPad();
3566 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3567 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3568
3569 visitEHPadPredecessors(CPI);
3570 visitFuncletPadInst(CPI);
3571}
3572
3573void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3574 User *FirstUser = nullptr;
3575 Value *FirstUnwindPad = nullptr;
3576 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3577 SmallSet<FuncletPadInst *, 8> Seen;
3578
3579 while (!Worklist.empty()) {
3580 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3581 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3582 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3583 Value *UnresolvedAncestorPad = nullptr;
3584 for (User *U : CurrentPad->users()) {
3585 BasicBlock *UnwindDest;
3586 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3587 UnwindDest = CRI->getUnwindDest();
3588 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3589 // We allow catchswitch unwind to caller to nest
3590 // within an outer pad that unwinds somewhere else,
3591 // because catchswitch doesn't have a nounwind variant.
3592 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3593 if (CSI->unwindsToCaller())
3594 continue;
3595 UnwindDest = CSI->getUnwindDest();
3596 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3597 UnwindDest = II->getUnwindDest();
3598 } else if (isa<CallInst>(U)) {
3599 // Calls which don't unwind may be found inside funclet
3600 // pads that unwind somewhere else. We don't *require*
3601 // such calls to be annotated nounwind.
3602 continue;
3603 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3604 // The unwind dest for a cleanup can only be found by
3605 // recursive search. Add it to the worklist, and we'll
3606 // search for its first use that determines where it unwinds.
3607 Worklist.push_back(CPI);
3608 continue;
3609 } else {
3610 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3611 continue;
3612 }
3613
3614 Value *UnwindPad;
3615 bool ExitsFPI;
3616 if (UnwindDest) {
3617 UnwindPad = UnwindDest->getFirstNonPHI();
3618 if (!cast<Instruction>(UnwindPad)->isEHPad())
3619 continue;
3620 Value *UnwindParent = getParentPad(UnwindPad);
3621 // Ignore unwind edges that don't exit CurrentPad.
3622 if (UnwindParent == CurrentPad)
3623 continue;
3624 // Determine whether the original funclet pad is exited,
3625 // and if we are scanning nested pads determine how many
3626 // of them are exited so we can stop searching their
3627 // children.
3628 Value *ExitedPad = CurrentPad;
3629 ExitsFPI = false;
3630 do {
3631 if (ExitedPad == &FPI) {
3632 ExitsFPI = true;
3633 // Now we can resolve any ancestors of CurrentPad up to
3634 // FPI, but not including FPI since we need to make sure
3635 // to check all direct users of FPI for consistency.
3636 UnresolvedAncestorPad = &FPI;
3637 break;
3638 }
3639 Value *ExitedParent = getParentPad(ExitedPad);
3640 if (ExitedParent == UnwindParent) {
3641 // ExitedPad is the ancestor-most pad which this unwind
3642 // edge exits, so we can resolve up to it, meaning that
3643 // ExitedParent is the first ancestor still unresolved.
3644 UnresolvedAncestorPad = ExitedParent;
3645 break;
3646 }
3647 ExitedPad = ExitedParent;
3648 } while (!isa<ConstantTokenNone>(ExitedPad));
3649 } else {
3650 // Unwinding to caller exits all pads.
3651 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3652 ExitsFPI = true;
3653 UnresolvedAncestorPad = &FPI;
3654 }
3655
3656 if (ExitsFPI) {
3657 // This unwind edge exits FPI. Make sure it agrees with other
3658 // such edges.
3659 if (FirstUser) {
3660 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3661 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3662 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3663 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3664 } else {
3665 FirstUser = U;
3666 FirstUnwindPad = UnwindPad;
3667 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3668 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3669 getParentPad(UnwindPad) == getParentPad(&FPI))
3670 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3671 }
3672 }
3673 // Make sure we visit all uses of FPI, but for nested pads stop as
3674 // soon as we know where they unwind to.
3675 if (CurrentPad != &FPI)
3676 break;
3677 }
3678 if (UnresolvedAncestorPad) {
3679 if (CurrentPad == UnresolvedAncestorPad) {
3680 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3681 // we've found an unwind edge that exits it, because we need to verify
3682 // all direct uses of FPI.
3683 assert(CurrentPad == &FPI)(static_cast <bool> (CurrentPad == &FPI) ? void (0)
: __assert_fail ("CurrentPad == &FPI", "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 3683, __extension__ __PRETTY_FUNCTION__))
;
3684 continue;
3685 }
3686 // Pop off the worklist any nested pads that we've found an unwind
3687 // destination for. The pads on the worklist are the uncles,
3688 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3689 // for all ancestors of CurrentPad up to but not including
3690 // UnresolvedAncestorPad.
3691 Value *ResolvedPad = CurrentPad;
3692 while (!Worklist.empty()) {
3693 Value *UnclePad = Worklist.back();
3694 Value *AncestorPad = getParentPad(UnclePad);
3695 // Walk ResolvedPad up the ancestor list until we either find the
3696 // uncle's parent or the last resolved ancestor.
3697 while (ResolvedPad != AncestorPad) {
3698 Value *ResolvedParent = getParentPad(ResolvedPad);
3699 if (ResolvedParent == UnresolvedAncestorPad) {
3700 break;
3701 }
3702 ResolvedPad = ResolvedParent;
3703 }
3704 // If the resolved ancestor search didn't find the uncle's parent,
3705 // then the uncle is not yet resolved.
3706 if (ResolvedPad != AncestorPad)
3707 break;
3708 // This uncle is resolved, so pop it from the worklist.
3709 Worklist.pop_back();
3710 }
3711 }
3712 }
3713
3714 if (FirstUnwindPad) {
3715 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3716 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3717 Value *SwitchUnwindPad;
3718 if (SwitchUnwindDest)
3719 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3720 else
3721 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3722 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3723 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3724 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3725 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3726 }
3727 }
3728
3729 visitInstruction(FPI);
3730}
3731
3732void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3733 BasicBlock *BB = CatchSwitch.getParent();
3734
3735 Function *F = BB->getParent();
3736 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3737 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3738 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3739
3740 // The catchswitch instruction must be the first non-PHI instruction in the
3741 // block.
3742 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3743 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3744 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3745
3746 auto *ParentPad = CatchSwitch.getParentPad();
3747 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3748 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3749
3750 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3751 Instruction *I = UnwindDest->getFirstNonPHI();
3752 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3753 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3754 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3755 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3756
3757 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3758 if (getParentPad(I) == ParentPad)
3759 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3760 }
3761
3762 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3763 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3764
3765 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3766 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3767 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3768 }
3769
3770 visitEHPadPredecessors(CatchSwitch);
3771 visitTerminatorInst(CatchSwitch);
3772}
3773
3774void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3775 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3776 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3777 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3778
3779 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3780 Instruction *I = UnwindDest->getFirstNonPHI();
3781 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3782 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3783 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3784 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3785 }
3786
3787 visitTerminatorInst(CRI);
3788}
3789
3790void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3791 Instruction *Op = cast<Instruction>(I.getOperand(i));
3792 // If the we have an invalid invoke, don't try to compute the dominance.
3793 // We already reject it in the invoke specific checks and the dominance
3794 // computation doesn't handle multiple edges.
3795 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3796 if (II->getNormalDest() == II->getUnwindDest())
3797 return;
3798 }
3799
3800 // Quick check whether the def has already been encountered in the same block.
3801 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3802 // uses are defined to happen on the incoming edge, not at the instruction.
3803 //
3804 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3805 // wrapping an SSA value, assert that we've already encountered it. See
3806 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3807 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3808 return;
3809
3810 const Use &U = I.getOperandUse(i);
3811 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3812 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3813}
3814
3815void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3816 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3817 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3818 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3819 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3820 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3821 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3822 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3823 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3824 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3825 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3826}
3827
3828/// verifyInstruction - Verify that an instruction is well formed.
3829///
3830void Verifier::visitInstruction(Instruction &I) {
3831 BasicBlock *BB = I.getParent();
3832 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3833
3834 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3835 for (User *U : I.users()) {
3836 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3837 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3838 }
3839 }
3840
3841 // Check that void typed values don't have names
3842 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3843 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3844
3845 // Check that the return value of the instruction is either void or a legal
3846 // value type.
3847 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3848 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3849
3850 // Check that the instruction doesn't produce metadata. Calls are already
3851 // checked against the callee type.
3852 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3853 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3854
3855 // Check that all uses of the instruction, if they are instructions
3856 // themselves, actually have parent basic blocks. If the use is not an
3857 // instruction, it is an error!
3858 for (Use &U : I.uses()) {
3859 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3860 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3861 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3862 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3863 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3864 else {
3865 CheckFailed("Use of instruction is not an instruction!", U);
3866 return;
3867 }
3868 }
3869
3870 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3871 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3872
3873 // Check to make sure that only first-class-values are operands to
3874 // instructions.
3875 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3876 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3877 }
3878
3879 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3880 // Check to make sure that the "address of" an intrinsic function is never
3881 // taken.
3882 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3883 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3884 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3885 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3886 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3887 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3888 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3889 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3890 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3891 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3892 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3893 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3894 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3895 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3896 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3897 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3898 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3899 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3900 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3901 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3902 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3903 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3904 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3905 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3906 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3907 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3908 } else if (isa<Instruction>(I.getOperand(i))) {
3909 verifyDominatesUse(I, i);
3910 } else if (isa<InlineAsm>(I.getOperand(i))) {
3911 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3912 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3913 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3914 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3915 if (CE->getType()->isPtrOrPtrVectorTy() ||
3916 !DL.getNonIntegralAddressSpaces().empty()) {
3917 // If we have a ConstantExpr pointer, we need to see if it came from an
3918 // illegal bitcast. If the datalayout string specifies non-integral
3919 // address spaces then we also need to check for illegal ptrtoint and
3920 // inttoptr expressions.
3921 visitConstantExprsRecursively(CE);
3922 }
3923 }
3924 }
3925
3926 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3927 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3928 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3929 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3930 if (ConstantFP *CFP0 =
3931 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3932 const APFloat &Accuracy = CFP0->getValueAPF();
3933 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3934 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3935 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3936 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3937 } else {
3938 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3939 }
3940 }
3941
3942 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3943 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3944 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3945 visitRangeMetadata(I, Range, I.getType());
3946 }
3947
3948 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3949 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3950 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3951 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3952 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3953 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3954 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3955 }
3956
3957 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3958 visitDereferenceableMetadata(I, MD);
3959
3960 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3961 visitDereferenceableMetadata(I, MD);
3962
3963 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3964 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3965
3966 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3967 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3968 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3969 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3970 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3971 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3972 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3973 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3974 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3975 uint64_t Align = CI->getZExtValue();
3976 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3977 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3978 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3979 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3980 }
3981
3982 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3983 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3984 visitMDNode(*N);
3985 }
3986
3987 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3988 verifyFragmentExpression(*DII);
3989
3990 InstsInThisBlock.insert(&I);
3991}
3992
3993/// Allow intrinsics to be verified in different ways.
3994void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3995 Function *IF = CS.getCalledFunction();
3996 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3997 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3998
3999 // Verify that the intrinsic prototype lines up with what the .td files
4000 // describe.
4001 FunctionType *IFTy = IF->getFunctionType();
4002 bool IsVarArg = IFTy->isVarArg();
4003
4004 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4005 getIntrinsicInfoTableEntries(ID, Table);
4006 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4007
4008 SmallVector<Type *, 4> ArgTys;
4009 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
4010 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
4011 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
4012 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4013 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
4014 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
4015 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
4016
4017 // Verify if the intrinsic call matches the vararg property.
4018 if (IsVarArg)
4019 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
4020 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
4021 else
4022 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
4023 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
4024
4025 // All descriptors should be absorbed by now.
4026 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
4027
4028 // Now that we have the intrinsic ID and the actual argument types (and we
4029 // know they are legal for the intrinsic!) get the intrinsic name through the
4030 // usual means. This allows us to verify the mangling of argument types into
4031 // the name.
4032 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4033 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4034 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4035 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4036 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
4037 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
4038
4039 // If the intrinsic takes MDNode arguments, verify that they are either global
4040 // or are local to *this* function.
4041 for (Value *V : CS.args())
4042 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4043 visitMetadataAsValue(*MD, CS.getCaller());
4044
4045 switch (ID) {
4046 default:
4047 break;
4048 case Intrinsic::coro_id: {
4049 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4050 if (isa<ConstantPointerNull>(InfoArg))
4051 break;
4052 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4053 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
4054 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
4055 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
4056 Constant *Init = GV->getInitializer();
4057 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
4058 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
4059 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
4060 break;
4061 }
4062 case Intrinsic::ctlz: // llvm.ctlz
4063 case Intrinsic::cttz: // llvm.cttz
4064 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
4065 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
4066 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
4067 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
4068 break;
4069 case Intrinsic::experimental_constrained_fadd:
4070 case Intrinsic::experimental_constrained_fsub:
4071 case Intrinsic::experimental_constrained_fmul:
4072 case Intrinsic::experimental_constrained_fdiv:
4073 case Intrinsic::experimental_constrained_frem:
4074 case Intrinsic::experimental_constrained_fma:
4075 case Intrinsic::experimental_constrained_sqrt:
4076 case Intrinsic::experimental_constrained_pow:
4077 case Intrinsic::experimental_constrained_powi:
4078 case Intrinsic::experimental_constrained_sin:
4079 case Intrinsic::experimental_constrained_cos:
4080 case Intrinsic::experimental_constrained_exp:
4081 case Intrinsic::experimental_constrained_exp2:
4082 case Intrinsic::experimental_constrained_log:
4083 case Intrinsic::experimental_constrained_log10:
4084 case Intrinsic::experimental_constrained_log2:
4085 case Intrinsic::experimental_constrained_rint:
4086 case Intrinsic::experimental_constrained_nearbyint:
4087 visitConstrainedFPIntrinsic(
4088 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4089 break;
4090 case Intrinsic::dbg_declare: // llvm.dbg.declare
4091 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
4092 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
4093 visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4094 break;
4095 case Intrinsic::dbg_addr: // llvm.dbg.addr
4096 visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4097 break;
4098 case Intrinsic::dbg_value: // llvm.dbg.value
4099 visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4100 break;
4101 case Intrinsic::dbg_label: // llvm.dbg.label
4102 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction()));
4103 break;
4104 case Intrinsic::memcpy:
4105 case Intrinsic::memmove:
4106 case Intrinsic::memset: {
4107 const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4108 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4109 return Alignment == 0 || isPowerOf2_32(Alignment);
4110 };
4111 Assert(IsValidAlignment(MI->getDestAlignment()),do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, CS); return; } } while (false)
4112 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, CS); return; } } while (false)
4113 CS)do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed
("alignment of arg 0 of memory intrinsic must be 0 or a power of 2"
, CS); return; } } while (false)
;
4114 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4115 Assert(IsValidAlignment(MTI->getSourceAlignment()),do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, CS); return; } } while (false)
4116 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, CS); return; } } while (false)
4117 CS)do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) {
CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2"
, CS); return; } } while (false)
;
4118 }
4119 Assert(isa<ConstantInt>(CS.getArgOperand(3)),do { if (!(isa<ConstantInt>(CS.getArgOperand(3)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4120 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(3)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
4121 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(3)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
4122 break;
4123 }
4124 case Intrinsic::memcpy_element_unordered_atomic:
4125 case Intrinsic::memmove_element_unordered_atomic:
4126 case Intrinsic::memset_element_unordered_atomic: {
4127 const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4128
4129 ConstantInt *ElementSizeCI =
4130 dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4131 Assert(ElementSizeCI,do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4132 "element size of the element-wise unordered atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4133 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
4134 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise unordered atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
4135 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4136 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4137 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4138 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
4139 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
4140
4141 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4142 uint64_t Length = LengthCI->getZExtValue();
4143 uint64_t ElementSize = AMI->getElementSizeInBytes();
4144 Assert((Length % ElementSize) == 0,do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4145 "constant length must be a multiple of the element size in the "do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4146 "element-wise atomic memory intrinsic",do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
4147 CS)do { if (!((Length % ElementSize) == 0)) { CheckFailed("constant length must be a multiple of the element size in the "
"element-wise atomic memory intrinsic", CS); return; } } while
(false)
;
4148 }
4149
4150 auto IsValidAlignment = [&](uint64_t Alignment) {
4151 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4152 };
4153 uint64_t DstAlignment = AMI->getDestAlignment();
4154 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4155 "incorrect alignment of the destination argument", CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4156 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4157 uint64_t SrcAlignment = AMT->getSourceAlignment();
4158 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4159 "incorrect alignment of the source argument", CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4160 }
4161 break;
4162 }
4163 case Intrinsic::gcroot:
4164 case Intrinsic::gcwrite:
4165 case Intrinsic::gcread:
4166 if (ID == Intrinsic::gcroot) {
4167 AllocaInst *AI =
4168 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4169 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4170 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4171 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4172 if (!AI->getAllocatedType()->isPointerTy()) {
4173 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4174 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4175 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4176 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4177 }
4178 }
4179
4180 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4181 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4182 break;
4183 case Intrinsic::init_trampoline:
4184 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4185 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4186 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4187 break;
4188 case Intrinsic::prefetch:
4189 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4190 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4191 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4192 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4193 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4194 break;
4195 case Intrinsic::stackprotector:
4196 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4197 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4198 break;
4199 case Intrinsic::lifetime_start:
4200 case Intrinsic::lifetime_end:
4201 case Intrinsic::invariant_start:
4202 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4203 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4204 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4205 break;
4206 case Intrinsic::invariant_end:
4207 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4208 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4209 break;
4210
4211 case Intrinsic::localescape: {
4212 BasicBlock *BB = CS.getParent();
4213 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4214 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4215 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4216 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4217 for (Value *Arg : CS.args()) {
4218 if (isa<ConstantPointerNull>(Arg))
4219 continue; // Null values are allowed as placeholders.
4220 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4221 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4222 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4223 }
4224 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4225 SawFrameEscape = true;
4226 break;
4227 }
4228 case Intrinsic::localrecover: {
4229 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4230 Function *Fn = dyn_cast<Function>(FnArg);
4231 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4232 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4233 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4234 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4235 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4236 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4237 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4238 auto &Entry = FrameEscapeInfo[Fn];
4239 Entry.second = unsigned(
4240 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4241 break;
4242 }
4243
4244 case Intrinsic::experimental_gc_statepoint:
4245 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4246 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4247 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4248 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4249
4250 verifyStatepoint(CS);
4251 break;
4252 case Intrinsic::experimental_gc_result: {
4253 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4254 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4255 // Are we tied to a statepoint properly?
4256 CallSite StatepointCS(CS.getArgOperand(0));
4257 const Function *StatepointFn =
4258 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4259 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4260 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4261 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4262 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4263 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4264
4265 // Assert that result type matches wrapped callee.
4266 const Value *Target = StatepointCS.getArgument(2);
4267 auto *PT = cast<PointerType>(Target->getType());
4268 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4269 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4270 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4271 break;
4272 }
4273 case Intrinsic::experimental_gc_relocate: {
4274 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4275
4276 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4277 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4278
4279 // Check that this relocate is correctly tied to the statepoint
4280
4281 // This is case for relocate on the unwinding path of an invoke statepoint
4282 if (LandingPadInst *LandingPad =
4283 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4284
4285 const BasicBlock *InvokeBB =
4286 LandingPad->getParent()->getUniquePredecessor();
4287
4288 // Landingpad relocates should have only one predecessor with invoke
4289 // statepoint terminator
4290 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4291 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4292 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4293 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4294 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4295 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4296 }
4297 else {
4298 // In all other cases relocate should be tied to the statepoint directly.
4299 // This covers relocates on a normal return path of invoke statepoint and
4300 // relocates of a call statepoint.
4301 auto Token = CS.getArgOperand(0);
4302 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4303 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4304 }
4305
4306 // Verify rest of the relocate arguments.
4307
4308 ImmutableCallSite StatepointCS(
4309 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4310
4311 // Both the base and derived must be piped through the safepoint.
4312 Value* Base = CS.getArgOperand(1);
4313 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4314 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4315
4316 Value* Derived = CS.getArgOperand(2);
4317 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4318 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4319
4320 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4321 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4322 // Check the bounds
4323 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4324 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4325 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4326 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4327
4328 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4329 // section of the statepoint's argument.
4330 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4331 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4332 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4333 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4334 const unsigned NumCallArgs =
4335 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4336 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4337 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4338 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4339 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4340 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4341 const int NumTransitionArgs =
4342 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4343 ->getZExtValue();
4344 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4345 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4346 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4347 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4348 const int NumDeoptArgs =
4349 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4350 ->getZExtValue();
4351 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4352 const int GCParamArgsEnd = StatepointCS.arg_size();
4353 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4354 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4355 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4356 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4357 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4358 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4359 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4360 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4361
4362 // Relocated value must be either a pointer type or vector-of-pointer type,
4363 // but gc_relocate does not need to return the same pointer type as the
4364 // relocated pointer. It can be casted to the correct type later if it's
4365 // desired. However, they must have the same address space and 'vectorness'
4366 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4367 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4368 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4369
4370 auto ResultType = CS.getType();
4371 auto DerivedType = Relocate.getDerivedPtr()->getType();
4372 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4373 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4374 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4375 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4376 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4377 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4378 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4379 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4380 break;
4381 }
4382 case Intrinsic::eh_exceptioncode:
4383 case Intrinsic::eh_exceptionpointer: {
4384 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4385 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4386 break;
4387 }
4388 case Intrinsic::masked_load: {
4389 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4390
4391 Value *Ptr = CS.getArgOperand(0);
4392 //Value *Alignment = CS.getArgOperand(1);
4393 Value *Mask = CS.getArgOperand(2);
4394 Value *PassThru = CS.getArgOperand(3);
4395 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4396 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4397
4398 // DataTy is the overloaded type
4399 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4400 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4401 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4402 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4403 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4404 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4405 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4406 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4407 break;
4408 }
4409 case Intrinsic::masked_store: {
4410 Value *Val = CS.getArgOperand(0);
4411 Value *Ptr = CS.getArgOperand(1);
4412 //Value *Alignment = CS.getArgOperand(2);
4413 Value *Mask = CS.getArgOperand(3);
4414 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4415 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4416
4417 // DataTy is the overloaded type
4418 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4419 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4420 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4421 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4422 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4423 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4424 break;
4425 }
4426
4427 case Intrinsic::experimental_guard: {
4428 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4429 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4430 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4431 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4432 break;
4433 }
4434
4435 case Intrinsic::experimental_deoptimize: {
4436 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4437 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4438 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4439 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4440 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4441 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4442
4443 if (CS.isCall()) {
4444 auto *DeoptCI = CS.getInstruction();
4445 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4446 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4447 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4448
4449 if (!CS.getType()->isVoidTy() && RI)
4450 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4451 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4452 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4453 }
4454
4455 break;
4456 }
4457 };
4458}
4459
4460/// Carefully grab the subprogram from a local scope.
4461///
4462/// This carefully grabs the subprogram from a local scope, avoiding the
4463/// built-in assertions that would typically fire.
4464static DISubprogram *getSubprogram(Metadata *LocalScope) {
4465 if (!LocalScope)
4466 return nullptr;
4467
4468 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4469 return SP;
4470
4471 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4472 return getSubprogram(LB->getRawScope());
4473
4474 // Just return null; broken scope chains are checked elsewhere.
4475 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")(static_cast <bool> (!isa<DILocalScope>(LocalScope
) && "Unknown type of local scope") ? void (0) : __assert_fail
("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 4475, __extension__ __PRETTY_FUNCTION__))
;
4476 return nullptr;
4477}
4478
4479void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4480 unsigned NumOperands = FPI.getNumArgOperands();
4481 Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4482 (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
4483 "invalid arguments for constrained FP intrinsic", &FPI)do { if (!(((NumOperands == 5 && FPI.isTernaryOp()) ||
(NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands
== 4)))) { CheckFailed("invalid arguments for constrained FP intrinsic"
, &FPI); return; } } while (false)
;
4484 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-1)))) { CheckFailed("invalid exception behavior argument", &
FPI); return; } } while (false)
4485 "invalid exception behavior argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-1)))) { CheckFailed("invalid exception behavior argument", &
FPI); return; } } while (false)
;
4486 Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-2)))) { CheckFailed("invalid rounding mode argument", &FPI
); return; } } while (false)
4487 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands
-2)))) { CheckFailed("invalid rounding mode argument", &FPI
); return; } } while (false)
;
4488 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4489 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4490 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4491 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4492}
4493
4494void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4495 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4496 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4497 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4498 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4499 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4500 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4501 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4502 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4503 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4504 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4505
4506 // Ignore broken !dbg attachments; they're checked elsewhere.
4507 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4508 if (!isa<DILocation>(N))
4509 return;
4510
4511 BasicBlock *BB = DII.getParent();
4512 Function *F = BB ? BB->getParent() : nullptr;
4513
4514 // The scopes for variables and !dbg attachments must agree.
4515 DILocalVariable *Var = DII.getVariable();
4516 DILocation *Loc = DII.getDebugLoc();
4517 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4518 &DII, BB, F)do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4519
4520 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4521 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4522 if (!VarSP || !LocSP)
4523 return; // Broken scope chains are checked elsewhere.
4524
4525 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4526 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4527 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4528 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4529
4530 verifyFnArgs(DII);
4531}
4532
4533void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4534 AssertDI(isa<DILabel>(DLI.getRawVariable()),do { if (!(isa<DILabel>(DLI.getRawVariable()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawVariable()); return; } } while (false)
4535 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,do { if (!(isa<DILabel>(DLI.getRawVariable()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawVariable()); return; } } while (false)
4536 DLI.getRawVariable())do { if (!(isa<DILabel>(DLI.getRawVariable()))) { DebugInfoCheckFailed
("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI
, DLI.getRawVariable()); return; } } while (false)
;
4537
4538 // Ignore broken !dbg attachments; they're checked elsewhere.
4539 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4540 if (!isa<DILocation>(N))
4541 return;
4542
4543 BasicBlock *BB = DLI.getParent();
4544 Function *F = BB ? BB->getParent() : nullptr;
4545
4546 // The scopes for variables and !dbg attachments must agree.
4547 DILabel *Label = DLI.getLabel();
4548 DILocation *Loc = DLI.getDebugLoc();
4549 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DLI, BB, F); return; } } while (false)
4550 &DLI, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DLI, BB, F); return; } } while (false)
;
4551
4552 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4553 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4554 if (!LabelSP || !LocSP)
4555 return;
4556
4557 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4558 " label and !dbg attachment",do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4559 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4560 Loc->getScope()->getSubprogram())do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " label and !dbg attachment", &DLI, BB, F, Label
, Label->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4561}
4562
4563void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4564 if (dyn_cast<DbgLabelInst>(&I))
4565 return;
4566
4567 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4568 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4569
4570 // We don't know whether this intrinsic verified correctly.
4571 if (!V || !E || !E->isValid())
4572 return;
4573
4574 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4575 auto Fragment = E->getFragmentInfo();
4576 if (!Fragment)
4577 return;
4578
4579 // The frontend helps out GDB by emitting the members of local anonymous
4580 // unions as artificial local variables with shared storage. When SROA splits
4581 // the storage for artificial local variables that are smaller than the entire
4582 // union, the overhang piece will be outside of the allotted space for the
4583 // variable and this check fails.
4584 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4585 if (V->isArtificial())
4586 return;
4587
4588 verifyFragmentExpression(*V, *Fragment, &I);
4589}
4590
4591template <typename ValueOrMetadata>
4592void Verifier::verifyFragmentExpression(const DIVariable &V,
4593 DIExpression::FragmentInfo Fragment,
4594 ValueOrMetadata *Desc) {
4595 // If there's no size, the type is broken, but that should be checked
4596 // elsewhere.
4597 auto VarSize = V.getSizeInBits();
4598 if (!VarSize)
4599 return;
4600
4601 unsigned FragSize = Fragment.SizeInBits;
4602 unsigned FragOffset = Fragment.OffsetInBits;
4603 AssertDI(FragSize + FragOffset <= *VarSize,do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
4604 "fragment is larger than or outside of variable", Desc, &V)do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", Desc, &
V); return; } } while (false)
;
4605 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V)do { if (!(FragSize != *VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, Desc, &V); return; } } while (false)
;
4606}
4607
4608void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4609 // This function does not take the scope of noninlined function arguments into
4610 // account. Don't run it if current function is nodebug, because it may
4611 // contain inlined debug intrinsics.
4612 if (!HasDebugInfo)
4613 return;
4614
4615 // For performance reasons only check non-inlined ones.
4616 if (I.getDebugLoc()->getInlinedAt())
4617 return;
4618
4619 DILocalVariable *Var = I.getVariable();
4620 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4621
4622 unsigned ArgNo = Var->getArg();
4623 if (!ArgNo)
4624 return;
4625
4626 // Verify there are no duplicate function argument debug info entries.
4627 // These will cause hard-to-debug assertions in the DWARF backend.
4628 if (DebugFnArgs.size() < ArgNo)
4629 DebugFnArgs.resize(ArgNo, nullptr);
4630
4631 auto *Prev = DebugFnArgs[ArgNo - 1];
4632 DebugFnArgs[ArgNo - 1] = Var;
4633 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4634 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4635}
4636
4637void Verifier::verifyCompileUnits() {
4638 // When more than one Module is imported into the same context, such as during
4639 // an LTO build before linking the modules, ODR type uniquing may cause types
4640 // to point to a different CU. This check does not make sense in this case.
4641 if (M.getContext().isODRUniquingDebugTypes())
4642 return;
4643 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4644 SmallPtrSet<const Metadata *, 2> Listed;
4645 if (CUs)
4646 Listed.insert(CUs->op_begin(), CUs->op_end());
4647 for (auto *CU : CUVisited)
4648 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4649 CUVisited.clear();
4650}
4651
4652void Verifier::verifyDeoptimizeCallingConvs() {
4653 if (DeoptimizeDeclarations.empty())
4654 return;
4655
4656 const Function *First = DeoptimizeDeclarations[0];
4657 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4658 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4659 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4660 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4661 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4662 }
4663}
4664
4665//===----------------------------------------------------------------------===//
4666// Implement the public interfaces to this file...
4667//===----------------------------------------------------------------------===//
4668
4669bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4670 Function &F = const_cast<Function &>(f);
4671
4672 // Don't use a raw_null_ostream. Printing IR is expensive.
4673 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4674
4675 // Note that this function's return value is inverted from what you would
4676 // expect of a function called "verify".
4677 return !V.verify(F);
4678}
4679
4680bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4681 bool *BrokenDebugInfo) {
4682 // Don't use a raw_null_ostream. Printing IR is expensive.
4683 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4684
4685 bool Broken = false;
4686 for (const Function &F : M)
4687 Broken |= !V.verify(F);
4688
4689 Broken |= !V.verify();
4690 if (BrokenDebugInfo)
4691 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4692 // Note that this function's return value is inverted from what you would
4693 // expect of a function called "verify".
4694 return Broken;
4695}
4696
4697namespace {
4698
4699struct VerifierLegacyPass : public FunctionPass {
4700 static char ID;
4701
4702 std::unique_ptr<Verifier> V;
4703 bool FatalErrors = true;
4704
4705 VerifierLegacyPass() : FunctionPass(ID) {
4706 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4707 }
4708 explicit VerifierLegacyPass(bool FatalErrors)
4709 : FunctionPass(ID),
4710 FatalErrors(FatalErrors) {
4711 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4712 }
4713
4714 bool doInitialization(Module &M) override {
4715 V = llvm::make_unique<Verifier>(
4716 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4717 return false;
4718 }
4719
4720 bool runOnFunction(Function &F) override {
4721 if (!V->verify(F) && FatalErrors)
4722 report_fatal_error("Broken function found, compilation aborted!");
4723
4724 return false;
4725 }
4726
4727 bool doFinalization(Module &M) override {
4728 bool HasErrors = false;
4729 for (Function &F : M)
4730 if (F.isDeclaration())
4731 HasErrors |= !V->verify(F);
4732
4733 HasErrors |= !V->verify();
4734 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4735 report_fatal_error("Broken module found, compilation aborted!");
4736 return false;
4737 }
4738
4739 void getAnalysisUsage(AnalysisUsage &AU) const override {
4740 AU.setPreservesAll();
4741 }
4742};
4743
4744} // end anonymous namespace
4745
4746/// Helper to issue failure from the TBAA verification
4747template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4748 if (Diagnostic)
4749 return Diagnostic->CheckFailed(Args...);
4750}
4751
4752#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4753 do { \
4754 if (!(C)) { \
4755 CheckFailed(__VA_ARGS__); \
4756 return false; \
4757 } \
4758 } while (false)
4759
4760/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4761/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4762/// struct-type node describing an aggregate data structure (like a struct).
4763TBAAVerifier::TBAABaseNodeSummary
4764TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4765 bool IsNewFormat) {
4766 if (BaseNode->getNumOperands() < 2) {
4767 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4768 return {true, ~0u};
4769 }
4770
4771 auto Itr = TBAABaseNodes.find(BaseNode);
4772 if (Itr != TBAABaseNodes.end())
4773 return Itr->second;
4774
4775 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4776 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4777 (void)InsertResult;
4778 assert(InsertResult.second && "We just checked!")(static_cast <bool> (InsertResult.second && "We just checked!"
) ? void (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 4778, __extension__ __PRETTY_FUNCTION__))
;
4779 return Result;
4780}
4781
4782TBAAVerifier::TBAABaseNodeSummary
4783TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4784 bool IsNewFormat) {
4785 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4786
4787 if (BaseNode->getNumOperands() == 2) {
4788 // Scalar nodes can only be accessed at offset 0.
4789 return isValidScalarTBAANode(BaseNode)
4790 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4791 : InvalidNode;
4792 }
4793
4794 if (IsNewFormat) {
4795 if (BaseNode->getNumOperands() % 3 != 0) {
4796 CheckFailed("Access tag nodes must have the number of operands that is a "
4797 "multiple of 3!", BaseNode);
4798 return InvalidNode;
4799 }
4800 } else {
4801 if (BaseNode->getNumOperands() % 2 != 1) {
4802 CheckFailed("Struct tag nodes must have an odd number of operands!",
4803 BaseNode);
4804 return InvalidNode;
4805 }
4806 }
4807
4808 // Check the type size field.
4809 if (IsNewFormat) {
4810 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4811 BaseNode->getOperand(1));
4812 if (!TypeSizeNode) {
4813 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4814 return InvalidNode;
4815 }
4816 }
4817
4818 // Check the type name field. In the new format it can be anything.
4819 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4820 CheckFailed("Struct tag nodes have a string as their first operand",
4821 BaseNode);
4822 return InvalidNode;
4823 }
4824
4825 bool Failed = false;
4826
4827 Optional<APInt> PrevOffset;
4828 unsigned BitWidth = ~0u;
4829
4830 // We've already checked that BaseNode is not a degenerate root node with one
4831 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4832 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4833 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4834 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4835 Idx += NumOpsPerField) {
4836 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4837 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4838 if (!isa<MDNode>(FieldTy)) {
4839 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4840 Failed = true;
4841 continue;
4842 }
4843
4844 auto *OffsetEntryCI =
4845 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4846 if (!OffsetEntryCI) {
4847 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4848 Failed = true;
4849 continue;
4850 }
4851
4852 if (BitWidth == ~0u)
4853 BitWidth = OffsetEntryCI->getBitWidth();
4854
4855 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4856 CheckFailed(
4857 "Bitwidth between the offsets and struct type entries must match", &I,
4858 BaseNode);
4859 Failed = true;
4860 continue;
4861 }
4862
4863 // NB! As far as I can tell, we generate a non-strictly increasing offset
4864 // sequence only from structs that have zero size bit fields. When
4865 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4866 // pick the field lexically the latest in struct type metadata node. This
4867 // mirrors the actual behavior of the alias analysis implementation.
4868 bool IsAscending =
4869 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4870
4871 if (!IsAscending) {
4872 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4873 Failed = true;
4874 }
4875
4876 PrevOffset = OffsetEntryCI->getValue();
4877
4878 if (IsNewFormat) {
4879 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4880 BaseNode->getOperand(Idx + 2));
4881 if (!MemberSizeNode) {
4882 CheckFailed("Member size entries must be constants!", &I, BaseNode);
4883 Failed = true;
4884 continue;
4885 }
4886 }
4887 }
4888
4889 return Failed ? InvalidNode
4890 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4891}
4892
4893static bool IsRootTBAANode(const MDNode *MD) {
4894 return MD->getNumOperands() < 2;
4895}
4896
4897static bool IsScalarTBAANodeImpl(const MDNode *MD,
4898 SmallPtrSetImpl<const MDNode *> &Visited) {
4899 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4900 return false;
4901
4902 if (!isa<MDString>(MD->getOperand(0)))
4903 return false;
4904
4905 if (MD->getNumOperands() == 3) {
4906 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4907 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4908 return false;
4909 }
4910
4911 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4912 return Parent && Visited.insert(Parent).second &&
4913 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4914}
4915
4916bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4917 auto ResultIt = TBAAScalarNodes.find(MD);
4918 if (ResultIt != TBAAScalarNodes.end())
4919 return ResultIt->second;
4920
4921 SmallPtrSet<const MDNode *, 4> Visited;
4922 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4923 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4924 (void)InsertResult;
4925 assert(InsertResult.second && "Just checked!")(static_cast <bool> (InsertResult.second && "Just checked!"
) ? void (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 4925, __extension__ __PRETTY_FUNCTION__))
;
4926
4927 return Result;
4928}
4929
4930/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4931/// Offset in place to be the offset within the field node returned.
4932///
4933/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4934MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4935 const MDNode *BaseNode,
4936 APInt &Offset,
4937 bool IsNewFormat) {
4938 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")(static_cast <bool> (BaseNode->getNumOperands() >=
2 && "Invalid base node!") ? void (0) : __assert_fail
("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/lib/IR/Verifier.cpp"
, 4938, __extension__ __PRETTY_FUNCTION__))
;
4939
4940 // Scalar nodes have only one possible "field" -- their parent in the access
4941 // hierarchy. Offset must be zero at this point, but our caller is supposed
4942 // to Assert that.
4943 if (BaseNode->getNumOperands() == 2)
4944 return cast<MDNode>(BaseNode->getOperand(1));
4945
4946 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4947 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4948 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4949 Idx += NumOpsPerField) {
4950 auto *OffsetEntryCI =
4951 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4952 if (OffsetEntryCI->getValue().ugt(Offset)) {
4953 if (Idx == FirstFieldOpNo) {
4954 CheckFailed("Could not find TBAA parent in struct type node", &I,
4955 BaseNode, &Offset);
4956 return nullptr;
4957 }
4958
4959 unsigned PrevIdx = Idx - NumOpsPerField;
4960 auto *PrevOffsetEntryCI =
4961 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4962 Offset -= PrevOffsetEntryCI->getValue();
4963 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4964 }
4965 }
4966
4967 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4968 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4969 BaseNode->getOperand(LastIdx + 1));
4970 Offset -= LastOffsetEntryCI->getValue();
4971 return cast<MDNode>(BaseNode->getOperand(LastIdx));
4972}
4973
4974static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
4975 if (!Type || Type->getNumOperands() < 3)
4976 return false;
4977
4978 // In the new format type nodes shall have a reference to the parent type as
4979 // its first operand.
4980 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4981 if (!Parent)
4982 return false;
4983
4984 return true;
4985}
4986
4987bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4988 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
4989 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
4990 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
4991 "This instruction shall not have a TBAA access tag!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("This instruction shall not have a TBAA access tag!", &I
); return false; } } while (false)
;
4992
4993 bool IsStructPathTBAA =
4994 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4995
4996 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4997 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4998 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4999
5000 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5001 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5002
5003 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5004
5005 if (IsNewFormat) {
5006 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
5007 "Access tag metadata must have either 4 or 5 operands", &I, MD)do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands
() == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands"
, &I, MD); return false; } } while (false)
;
5008 } else {
5009 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
5010 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
5011 }
5012
5013 // Check the access size field.
5014 if (IsNewFormat) {
5015 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5016 MD->getOperand(3));
5017 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD)do { if (!(AccessSizeNode)) { CheckFailed("Access size field must be a constant"
, &I, MD); return false; } } while (false)
;
5018 }
5019
5020 // Check the immutability flag.
5021 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5022 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5023 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5024 MD->getOperand(ImmutabilityFlagOpNo));
5025 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
5026 "Immutability tag on struct tag metadata must be a constant",do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
5027 &I, MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
5028 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5029 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5030 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
5031 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
5032 }
5033
5034 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5035 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5036 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
5037 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
5038
5039 if (!IsNewFormat) {
5040 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
5041 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
5042 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
5043 }
5044
5045 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5046 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
5047
5048 APInt Offset = OffsetCI->getValue();
5049 bool SeenAccessTypeInPath = false;
5050
5051 SmallPtrSet<MDNode *, 4> StructPath;
5052
5053 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5054 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5055 IsNewFormat)) {
5056 if (!StructPath.insert(BaseNode).second) {
5057 CheckFailed("Cycle detected in struct path", &I, MD);
5058 return false;
5059 }
5060
5061 bool Invalid;
5062 unsigned BaseNodeBitWidth;
5063 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5064 IsNewFormat);
5065
5066 // If the base node is invalid in itself, then we've already printed all the
5067 // errors we wanted to print.
5068 if (Invalid)
5069 return false;
5070
5071 SeenAccessTypeInPath |= BaseNode == AccessType;
5072
5073 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5074 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
5075 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
5076
5077 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5078 (BaseNodeBitWidth == 0 && Offset == 0) ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5079 (IsNewFormat && BaseNodeBitWidth == ~0u),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5080 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
5081 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth
== ~0u))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
5082
5083 if (IsNewFormat && SeenAccessTypeInPath)
5084 break;
5085 }
5086
5087 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
5088 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
5089 return true;
5090}
5091
5092char VerifierLegacyPass::ID = 0;
5093INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
5094
5095FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5096 return new VerifierLegacyPass(FatalErrors);
5097}
5098
5099AnalysisKey VerifierAnalysis::Key;
5100VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5101 ModuleAnalysisManager &) {
5102 Result Res;
5103 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5104 return Res;
5105}
5106
5107VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5108 FunctionAnalysisManager &) {
5109 return { llvm::verifyFunction(F, &dbgs()), false };
5110}
5111
5112PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5113 auto Res = AM.getResult<VerifierAnalysis>(M);
5114 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5115 report_fatal_error("Broken module found, compilation aborted!");
5116
5117 return PreservedAnalyses::all();
5118}
5119
5120PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5121 auto res = AM.getResult<VerifierAnalysis>(F);
5122 if (res.IRBroken && FatalErrors)
5123 report_fatal_error("Broken function found, compilation aborted!");
5124
5125 return PreservedAnalyses::all();
5126}