enabling heterogeneous hardware acceleration using novel programming and scheduling models

PROJECT TOPICS & WORKING PACKAGES

- **Automatic Program Analysis and Semi-Automatic Parallelization**
 - C / C++ / Fortran
 - Performance modeling implements determination of runtimes by static analysis with LLVM and the automated estimation of object memory footprints alongside with their data-directions

- **Checkerpointing Detection and Insertion**
 - Intermediate Code
 - We instrument the code with the LLVM Functions, BasicBlock, Instruction manipulation to insert the user space scheduler calls

- **Performance Modeling and Generic Components**
 - Performance modeling implements determination of runtimes by static analysis with LLVM and the automated estimation of object memory footprints alongside with their data-directions

- **C / C++ / FORTRAN Application**
 - Program Analysis
 - Pre-Processing
 - Loop Optimization Parallelization
 - Code Generation
 - Checkpointing
 - Performance Model

- **Resource Management and Scheduling**
 - OS / Scheduler

- **Runtime Layer**
 - CPU
 - GPU
 - FPGA

- **Application**
 - Thermodynamics
 - Particle Dynamics
 - Aeroacoustics
 - Genome Analysis
 - Map Reduce Framework

- **THE ENHANCE CONSORTIUM**

 - **TWT GmbH Science & Innovation**
 - **Fraunhofer SCAI**
 - **ZIB**
 - **openpba member**

- **PROJECT DURATION**
 - April 2011 – September 2013

- **Support the application developer by a tool-chain with semi-automatic parallelization capabilities**
- **Optimization of loops by transforming memory access patterns**
- **Hardware aware transformations and optimization approach**

- **Project targets a system platform with Multi-Core, GPU & FPGA processing devices**
- **OS should schedule tasks on different processing devices depending on available resources**
- **Kernel metadata support decision making**

- **THE ENHANCE CONSORTIUM**

- **SPONSORED BY THE**
 - **Federal Ministry of Education and Research**

- **http://www.enhance-project.de**