Open Open

Code size reduction
using
Similar Function Merging

Tobias Edler von Koch
(University of Edinburgh,
Qualcomm Innovation Center)

Pranav Bhandarkar
(Qualcomm Innovation Center)

" QUALCOMM INNOVATION CENTER, INC.

A S

Outline

Why optimize for code size?

The Problem of Duplicate Code
Existing LLVM MergeFunctions Pass
Similar Function Merging

Results

Why optimize for code size?

* Traditionally three goals of
compiler optimization:
Cortex-A8
— Performance
— Power
— Code size

128 MBIt
Flash

* External factors determine
relative importance; there
are complex interactions.

. . 0.523mm?
 Codessizeis key in many

embedded scenarios 1 MB = 1/16t of Cortex-A8 die size

Code Size Reduction Approaches

Three main types:

 Hardware-based, e.g. ARM Thumb ISA.
e Software-based:

— By re-tuning standard optimizations,
e.g. inlining thresholds, loop unroll factor, etc.

— By actively reducing code size of existing user code, e.g.
elimination of redundancy.

We're looking at the last category.

The Problem of Duplicate Code

e Software contains duplicate code due to:
(1) Laziness, a.k.a. copy & paste
@ Manual templating
(3) C++templates
(4) Compiler optimizations
* |t may be possible for the user to fix 1) &) but 3
and (4) are much harder to control

e All types of duplication occur across the board in
SPEC benchmarks, embedded systems code, ...

OO\ DN N W=

0NN DN kW

Example from 400.perlbench

OP *Perl_scalarkids (pTHX_ 0P *o0) {
0P xkid;
if (o && o->op_flags & OPf_KIDS) {
for (kid = cLISTOPo->op_first; kid; kid = kid->op_sibling)
scalar (kid) ;
}

return o;

}

OP *Perl_listkids (pTHX_ 0P =xo0) {
OP =*kid;
if (o && o->op_flags & OPf_KIDS) {
for (kid = cLISTOPo->op_first; kid; kid = kid->op_sibling)
list (kid);
+

return o;

’ Only a 1-instruction difference between

the two functions in LLVM IR!

Example from 400.perlbench

* Merge the two functions:
— Combine code from both in a new ‘merged function’
— Insert if-statement where there are differences
— Replace original functions with calls to merged function

* |n our case, on x86:

Function 1 + Y = 128 bytes
64 bytes 64 bytes
AN Thunk 1 Thunk 2
Function + = 112 bytes
80 bytes

Total savings: 12.5%

Existing MergeFunctions Pass

Pass originally written by Nick Lewycky
Disabled by default
Merges ‘identical’ functions

Introduces two key concepts we rely on:

— Notion of structural similarity of functions
to make analysis tractable

— Pointer-pointer-integer equivalence:
pointers and integers of the same size are treated as
equivalent.... except where the difference matters.

What if functions aren’t quite identical? We should still
be able to merge them!

Structural Similarity

* Comparing all functions would be O(n?)
... and we could theoretically merge everything!

* Introduce a number of practical constraints:

Functions must have
— Equivalent control flow graph and signature

— Same number of instructions in corresponding basic blocks
but: allow differences in what these instructions are

— A minimum amount of similarity

Similar Function Merging

The algorithm involves four main steps:

Build
hash table
of functions

Compare
functions

pairwise

Merge

identical

functions
Merge

similar
functions

Similar Function Merging

e Step 1: Insert functions into a hash table
— Based on signature, number of basic blocks, ...

— This avoids comparing functions that have no chance of
being merged anyway

e Step 2: Compare all functions in each bucket
Still O(n?) worst case, but better in practice

— Follow control flow and compare block-by-block,
instruction-by-instruction

— Mark differing instructions
— Give up if control flow or basic block length differs

Example from 400.perlbench
,7'

B
K|

N

Similar Function Merging

e Step 3: Merge identical functions
— Update call sites after merging
— Other functions may become more similar as a result
— Re-compare functions that have changed

Iterate this process until a fixed point is reached

Similar Function Merging

* Step 4: Merge similar
functions

Order pairs of functions by
similarity

Pick most similar pair (A,B)
Find all (A,B’) for which
thereis nota (B’ ,C) with
greater similarity

Merge A with B and the B’ s

Remove all pairs involving A,
B, and the B’ s

Repeat this until there are no
more functions to merge

B L A M
0, 0, 0,
5% A | K 1% 0%
2%
Set of similar functions
J,L AB,K,M

Merged functions

Similar Function Merging

* Run as a late optimization

* Tricky bits | haven’t mentioned:
— Must maintain SSA form throughout

— Have to compare, update, and insert PHINodes:
you can’t put a conditional around two differing PHINodes

— Thresholds are ISA-specific, need tuning for each arch

e How well does it work?

Results

* We run the pass on
— SPEC CPU2006 (Integer & FP benchmarks)
* Xx86
* Qualcomm Krait ™ (ARMv7-A Thumb)
— A significant application at QulC on Hexagon DSP ™

e At -Os optimization level
* Using LLVM/Clang 3.3

SPEC2006 — Code Size Reduction

i x86

5%
£ ARM

4%

3%

2%

1% -

0% l -
-1%
& ¢ SR O & N 3+ 2\ < % N <) g >
By S S AN F < & K &
< ¥ ©

Higher is better

SPEC 2006 — x86 Performance

5.00%

4.00%

3.00%

2.00%

1.00%

0,00% T T T T T T T T T T T T T T T T T T

-1.00%

-2.00%

-3.00%
X v © & NG o NG \ + A < & 5
@ Q Qo(; O N ’b@ 60((\ be:b\ OQ\Q/ 04<b o (QQ/ c)\eﬁ\ &0& bb‘d?/ ®@ \'QQ
) S Q R 0\?'27 \0’1/
< N

Slowdown — lower is better

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

SPEC 2006 — x86 Performance

il L

-1.00%
-2.00%
& Code Size Reduction
-3.00%
> D & & O > N N + 3 & & & & Q& Q <) & Q
\oé\c, so,‘,\Q & & N Q,bé‘ 606‘ 6‘2? %oQ\e 0\\@ &6\ 6\@0 6‘9 ,\/bb‘& O (\é& 'b‘:’@ \(\+ &06\ @e'b
?5\ % Q AN 0\52’ QN 0((‘ R \,b(\ L
] © ©® ©

Slowdown — lower is better

Conclusions

* Function merging is a promising technique for code
size reduction

e Can reduce total code size for SPEC benchmarks by
over 4% on x86

* We need a stronger focus on code size optimizations
—as LLVM adoption in the embedded world
increases this is becoming more critical

. \,
\‘r‘ > A
2 L |

3 A A
1 .| e Was = &9 :'n.=_: e ™
g ; e et A | ”| l : .9‘3:3’3".‘ I h) PG : H
[:{ i ., r'i : r;- 5t ';‘yljl‘ = — N o .A..,.'.'.' » 4 ',.H"', ’
w:n ¥ _IV > ‘ 'I_"; Y wmr & "P
otlana*
ne 11 |

ril 7-8, 2014

Thank you

and see you in Edinburgh!

