
LTO: History and work to be done

Rafael Ávila de Esṕındola

World Wide Studios - Sony Computer Entertainment

2014-04-07

Very quick history overview

I We had llvm specific tools (llvm-nm, llvm-ar, llvm-ld, . . .)

I We wrote plugins for native tools (libLTO.dylib, LLVMgold.so)

I We are writing new tools (new llvm-nm and llvm-ar, lld, . . .)

I Are we going back and forth?!?

I Yes!

I Probably the correct choice at every point in time.

Very quick history overview

I We had llvm specific tools (llvm-nm, llvm-ar, llvm-ld, . . .)

I We wrote plugins for native tools (libLTO.dylib, LLVMgold.so)

I We are writing new tools (new llvm-nm and llvm-ar, lld, . . .)

I Are we going back and forth?!?

I Yes!

I Probably the correct choice at every point in time.

Very quick history overview

I We had llvm specific tools (llvm-nm, llvm-ar, llvm-ld, . . .)

I We wrote plugins for native tools (libLTO.dylib, LLVMgold.so)

I We are writing new tools (new llvm-nm and llvm-ar, lld, . . .)

I Are we going back and forth?!?

I Yes!

I Probably the correct choice at every point in time.

Very quick history overview

I We had llvm specific tools (llvm-nm, llvm-ar, llvm-ld, . . .)

I We wrote plugins for native tools (libLTO.dylib, LLVMgold.so)

I We are writing new tools (new llvm-nm and llvm-ar, lld, . . .)

I Are we going back and forth?!?

I Yes!

I Probably the correct choice at every point in time.

Very quick history overview

I We had llvm specific tools (llvm-nm, llvm-ar, llvm-ld, . . .)

I We wrote plugins for native tools (libLTO.dylib, LLVMgold.so)

I We are writing new tools (new llvm-nm and llvm-ar, lld, . . .)

I Are we going back and forth?!?

I Yes!

I Probably the correct choice at every point in time.

Very quick history overview

I We had llvm specific tools (llvm-nm, llvm-ar, llvm-ld, . . .)

I We wrote plugins for native tools (libLTO.dylib, LLVMgold.so)

I We are writing new tools (new llvm-nm and llvm-ar, lld, . . .)

I Are we going back and forth?!?

I Yes!

I Probably the correct choice at every point in time.

Very quick history overview

I We had llvm specific tools (llvm-nm, llvm-ar, llvm-ld, . . .)

I We wrote plugins for native tools (libLTO.dylib, LLVMgold.so)

I We are writing new tools (new llvm-nm and llvm-ar, lld, . . .)

I Are we going back and forth?!?

I Yes!

I Probably the correct choice at every point in time.

Early tools

I They were llvm only.

I Easy to write. Important for a small (at the time) project.

I llvm-link was “95% persent working” in October 2001.

I Combine with opt and we already had LTO!

Early tools

I They were llvm only.

I Easy to write. Important for a small (at the time) project.

I llvm-link was “95% persent working” in October 2001.

I Combine with opt and we already had LTO!

Early tools

I They were llvm only.

I Easy to write. Important for a small (at the time) project.

I llvm-link was “95% persent working” in October 2001.

I Combine with opt and we already had LTO!

Early tools

I They were llvm only.

I Easy to write. Important for a small (at the time) project.

I llvm-link was “95% persent working” in October 2001.

I Combine with opt and we already had LTO!

Early tools

I They were llvm only.

I Easy to write. Important for a small (at the time) project.

I llvm-link was “95% persent working” in October 2001.

I Combine with opt and we already had LTO!

Evolution of the early tools

I Adding llvm-link, opt and llc to a build is a pain.

I We added gccld to help in January 2002. It hides the extra
build steps. Produces a shell script that runs lli.

I Libraries can be created with llvm-ar since August 2003.

I Native codegen added to gccld in September 2003).

I gccld is renamed llvm-ld in r16305 September 2004.

Evolution of the early tools

I Adding llvm-link, opt and llc to a build is a pain.

I We added gccld to help in January 2002. It hides the extra
build steps. Produces a shell script that runs lli.

I Libraries can be created with llvm-ar since August 2003.

I Native codegen added to gccld in September 2003).

I gccld is renamed llvm-ld in r16305 September 2004.

Evolution of the early tools

I Adding llvm-link, opt and llc to a build is a pain.

I We added gccld to help in January 2002. It hides the extra
build steps. Produces a shell script that runs lli.

I Libraries can be created with llvm-ar since August 2003.

I Native codegen added to gccld in September 2003).

I gccld is renamed llvm-ld in r16305 September 2004.

Evolution of the early tools

I Adding llvm-link, opt and llc to a build is a pain.

I We added gccld to help in January 2002. It hides the extra
build steps. Produces a shell script that runs lli.

I Libraries can be created with llvm-ar since August 2003.

I Native codegen added to gccld in September 2003).

I gccld is renamed llvm-ld in r16305 September 2004.

Evolution of the early tools

I Adding llvm-link, opt and llc to a build is a pain.

I We added gccld to help in January 2002. It hides the extra
build steps. Produces a shell script that runs lli.

I Libraries can be created with llvm-ar since August 2003.

I Native codegen added to gccld in September 2003).

I gccld is renamed llvm-ld in r16305 September 2004.

Evolution of the early tools

I Adding llvm-link, opt and llc to a build is a pain.

I We added gccld to help in January 2002. It hides the extra
build steps. Produces a shell script that runs lli.

I Libraries can be created with llvm-ar since August 2003.

I Native codegen added to gccld in September 2003).

I gccld is renamed llvm-ld in r16305 September 2004.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.

The native tools

I Native tools (ld, ar, ranlib . . .) know the command line args.

I They know all semantic corner cases.

I They know the library format.

I Build systems are already using them!

I They know all there is to know about LTO, except llvm IR.

The native tools

I Native tools (ld, ar, ranlib . . .) know the command line args.

I They know all semantic corner cases.

I They know the library format.

I Build systems are already using them!

I They know all there is to know about LTO, except llvm IR.

The native tools

I Native tools (ld, ar, ranlib . . .) know the command line args.

I They know all semantic corner cases.

I They know the library format.

I Build systems are already using them!

I They know all there is to know about LTO, except llvm IR.

The native tools

I Native tools (ld, ar, ranlib . . .) know the command line args.

I They know all semantic corner cases.

I They know the library format.

I Build systems are already using them!

I They know all there is to know about LTO, except llvm IR.

The native tools

I Native tools (ld, ar, ranlib . . .) know the command line args.

I They know all semantic corner cases.

I They know the library format.

I Build systems are already using them!

I They know all there is to know about LTO, except llvm IR.

The native tools

I Native tools (ld, ar, ranlib . . .) know the command line args.

I They know all semantic corner cases.

I They know the library format.

I Build systems are already using them!

I They know all there is to know about LTO, except llvm IR.

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The plugin era

I Idea: Use the native tools, but have them ask llvm for help.

I First implemented in ld64.

I tools/lto added in August 2006.

I gold got plugin support in September 2008.

I tools/gold added in February 2009.

I bfd (nm, ar) gets plugin support in May 2009.

I bfd (ld) gets plugin support in October 2010.

I We can now do LTO by setting CFLAGS, CXXFLAGS and
LDFLAGS!

The llvm project around 2009

I llvm had become a good compiler toolkit:

I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:

I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.

I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.

I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.

I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!

I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers

I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers

I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers

I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The llvm project around 2009

I llvm had become a good compiler toolkit:
I High quality.
I Liberal license.
I Modular.
I . . .

I That is not enough!
I These are also desirabilities of

I Assemblers
I Linkers
I Debuggers
I . . .

I We need a toolchain toolkit!

The project expands to other areas

I lib/MC added in June 2009.

I libcxx added in r103490 May 2010.

I lldb added in r105617 June 2010.

I lib/Object added in r119107 November 2010.

I lld added in r146598 December 2011 (was named lold).

The project expands to other areas

I lib/MC added in June 2009.

I libcxx added in r103490 May 2010.

I lldb added in r105617 June 2010.

I lib/Object added in r119107 November 2010.

I lld added in r146598 December 2011 (was named lold).

The project expands to other areas

I lib/MC added in June 2009.

I libcxx added in r103490 May 2010.

I lldb added in r105617 June 2010.

I lib/Object added in r119107 November 2010.

I lld added in r146598 December 2011 (was named lold).

The project expands to other areas

I lib/MC added in June 2009.

I libcxx added in r103490 May 2010.

I lldb added in r105617 June 2010.

I lib/Object added in r119107 November 2010.

I lld added in r146598 December 2011 (was named lold).

The project expands to other areas

I lib/MC added in June 2009.

I libcxx added in r103490 May 2010.

I lldb added in r105617 June 2010.

I lib/Object added in r119107 November 2010.

I lld added in r146598 December 2011 (was named lold).

The project expands to other areas

I lib/MC added in June 2009.

I libcxx added in r103490 May 2010.

I lldb added in r105617 June 2010.

I lib/Object added in r119107 November 2010.

I lld added in r146598 December 2011 (was named lold).

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!
I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.
I In archives, IR files go in the same symbol table.
I Implement the same semantics and options as the native tools.
I Should still be able to do LTO by setting CFLAGS,

CXXFLAGS and LDFLAGS.

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!
I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.
I In archives, IR files go in the same symbol table.
I Implement the same semantics and options as the native tools.
I Should still be able to do LTO by setting CFLAGS,

CXXFLAGS and LDFLAGS.

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!

I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.
I In archives, IR files go in the same symbol table.
I Implement the same semantics and options as the native tools.
I Should still be able to do LTO by setting CFLAGS,

CXXFLAGS and LDFLAGS.

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!
I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.
I In archives, IR files go in the same symbol table.
I Implement the same semantics and options as the native tools.
I Should still be able to do LTO by setting CFLAGS,

CXXFLAGS and LDFLAGS.

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!
I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.

I In archives, IR files go in the same symbol table.
I Implement the same semantics and options as the native tools.
I Should still be able to do LTO by setting CFLAGS,

CXXFLAGS and LDFLAGS.

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!
I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.
I In archives, IR files go in the same symbol table.

I Implement the same semantics and options as the native tools.
I Should still be able to do LTO by setting CFLAGS,

CXXFLAGS and LDFLAGS.

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!
I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.
I In archives, IR files go in the same symbol table.
I Implement the same semantics and options as the native tools.

I Should still be able to do LTO by setting CFLAGS,
CXXFLAGS and LDFLAGS.

The new tools and LTO

I We are building a complete toolchain.

I Lets make sure it supports LTO!
I Very different tools form the original tools:

I They are not llvm only. ELF, COFF and MachO work.
I In archives, IR files go in the same symbol table.
I Implement the same semantics and options as the native tools.
I Should still be able to do LTO by setting CFLAGS,

CXXFLAGS and LDFLAGS.

Recent developments

Decided to start with llvm-ar and make it generic.

The first expected items

I lvm-ar was rewritten to use lib/Object.

I Removed lib/Archive.

I llvm-ar could then create native symbol tables!

I And they include native object formats!

I Pretty much done by July 2013.

I Then I “only” needed to add IR support to lib/Object.

The first expected items

I lvm-ar was rewritten to use lib/Object.

I Removed lib/Archive.

I llvm-ar could then create native symbol tables!

I And they include native object formats!

I Pretty much done by July 2013.

I Then I “only” needed to add IR support to lib/Object.

The first expected items

I lvm-ar was rewritten to use lib/Object.

I Removed lib/Archive.

I llvm-ar could then create native symbol tables!

I And they include native object formats!

I Pretty much done by July 2013.

I Then I “only” needed to add IR support to lib/Object.

The first expected items

I lvm-ar was rewritten to use lib/Object.

I Removed lib/Archive.

I llvm-ar could then create native symbol tables!

I And they include native object formats!

I Pretty much done by July 2013.

I Then I “only” needed to add IR support to lib/Object.

The first expected items

I lvm-ar was rewritten to use lib/Object.

I Removed lib/Archive.

I llvm-ar could then create native symbol tables!

I And they include native object formats!

I Pretty much done by July 2013.

I Then I “only” needed to add IR support to lib/Object.

The first expected items

I lvm-ar was rewritten to use lib/Object.

I Removed lib/Archive.

I llvm-ar could then create native symbol tables!

I And they include native object formats!

I Pretty much done by July 2013.

I Then I “only” needed to add IR support to lib/Object.

The first expected items

I lvm-ar was rewritten to use lib/Object.

I Removed lib/Archive.

I llvm-ar could then create native symbol tables!

I And they include native object formats!

I Pretty much done by July 2013.

I Then I “only” needed to add IR support to lib/Object.

Yak shaving, part 1

I The symbol table in archives uses the final (mangled) name.

I llvm-ar should not depend on lib/Target.

I The mangler had to move from lib/Target to lib/IR.

I And the mangling had to be specified in DataLayout.

I The DataLayout specs were out of sync in llvm and clang.

I Move completed in Jan 2014.

Yak shaving, part 1

I The symbol table in archives uses the final (mangled) name.

I llvm-ar should not depend on lib/Target.

I The mangler had to move from lib/Target to lib/IR.

I And the mangling had to be specified in DataLayout.

I The DataLayout specs were out of sync in llvm and clang.

I Move completed in Jan 2014.

Yak shaving, part 1

I The symbol table in archives uses the final (mangled) name.

I llvm-ar should not depend on lib/Target.

I The mangler had to move from lib/Target to lib/IR.

I And the mangling had to be specified in DataLayout.

I The DataLayout specs were out of sync in llvm and clang.

I Move completed in Jan 2014.

Yak shaving, part 1

I The symbol table in archives uses the final (mangled) name.

I llvm-ar should not depend on lib/Target.

I The mangler had to move from lib/Target to lib/IR.

I And the mangling had to be specified in DataLayout.

I The DataLayout specs were out of sync in llvm and clang.

I Move completed in Jan 2014.

Yak shaving, part 1

I The symbol table in archives uses the final (mangled) name.

I llvm-ar should not depend on lib/Target.

I The mangler had to move from lib/Target to lib/IR.

I And the mangling had to be specified in DataLayout.

I The DataLayout specs were out of sync in llvm and clang.

I Move completed in Jan 2014.

Yak shaving, part 1

I The symbol table in archives uses the final (mangled) name.

I llvm-ar should not depend on lib/Target.

I The mangler had to move from lib/Target to lib/IR.

I And the mangling had to be specified in DataLayout.

I The DataLayout specs were out of sync in llvm and clang.

I Move completed in Jan 2014.

Yak shaving, part 1

I The symbol table in archives uses the final (mangled) name.

I llvm-ar should not depend on lib/Target.

I The mangler had to move from lib/Target to lib/IR.

I And the mangling had to be specified in DataLayout.

I The DataLayout specs were out of sync in llvm and clang.

I Move completed in Jan 2014.

Yak shaving, part 2

I The ObjectFile interface is huge.

I Has to handle symbols, sections, segments, relocations,

I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.

I Finally implemented IRObjectFile in February 2014.

Yak shaving, part 2

I The ObjectFile interface is huge.

I Has to handle symbols, sections, segments, relocations,

I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.

I Finally implemented IRObjectFile in February 2014.

Yak shaving, part 2

I The ObjectFile interface is huge.

I Has to handle symbols, sections, segments, relocations,

I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.

I Finally implemented IRObjectFile in February 2014.

Yak shaving, part 2

I The ObjectFile interface is huge.

I Has to handle symbols, sections, segments, relocations,

I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.

I Finally implemented IRObjectFile in February 2014.

Yak shaving, part 2

I The ObjectFile interface is huge.

I Has to handle symbols, sections, segments, relocations,

I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.

I Finally implemented IRObjectFile in February 2014.

Yak shaving, part 2

I The ObjectFile interface is huge.

I Has to handle symbols, sections, segments, relocations,

I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.

I Finally implemented IRObjectFile in February 2014.

Yak shaving, part 2

I The ObjectFile interface is huge.

I Has to handle symbols, sections, segments, relocations,

I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.

I Finally implemented IRObjectFile in February 2014.

Yak shaving, part 3

I We could then mangle a GlobalValue’s name using
DataLayout!

I But DataLayout is an ImmutablePass.

I And llvm-ar has no pass manager :-(

I Split DataLayout into DataLayoutPass and DataLayout.

I Split finished in February 2014.

I The symbol tables are now correct and include IR files!

Yak shaving, part 3

I We could then mangle a GlobalValue’s name using
DataLayout!

I But DataLayout is an ImmutablePass.

I And llvm-ar has no pass manager :-(

I Split DataLayout into DataLayoutPass and DataLayout.

I Split finished in February 2014.

I The symbol tables are now correct and include IR files!

Yak shaving, part 3

I We could then mangle a GlobalValue’s name using
DataLayout!

I But DataLayout is an ImmutablePass.

I And llvm-ar has no pass manager :-(

I Split DataLayout into DataLayoutPass and DataLayout.

I Split finished in February 2014.

I The symbol tables are now correct and include IR files!

Yak shaving, part 3

I We could then mangle a GlobalValue’s name using
DataLayout!

I But DataLayout is an ImmutablePass.

I And llvm-ar has no pass manager :-(

I Split DataLayout into DataLayoutPass and DataLayout.

I Split finished in February 2014.

I The symbol tables are now correct and include IR files!

Yak shaving, part 3

I We could then mangle a GlobalValue’s name using
DataLayout!

I But DataLayout is an ImmutablePass.

I And llvm-ar has no pass manager :-(

I Split DataLayout into DataLayoutPass and DataLayout.

I Split finished in February 2014.

I The symbol tables are now correct and include IR files!

Yak shaving, part 3

I We could then mangle a GlobalValue’s name using
DataLayout!

I But DataLayout is an ImmutablePass.

I And llvm-ar has no pass manager :-(

I Split DataLayout into DataLayoutPass and DataLayout.

I Split finished in February 2014.

I The symbol tables are now correct and include IR files!

Yak shaving, part 3

I We could then mangle a GlobalValue’s name using
DataLayout!

I But DataLayout is an ImmutablePass.

I And llvm-ar has no pass manager :-(

I Split DataLayout into DataLayoutPass and DataLayout.

I Split finished in February 2014.

I The symbol tables are now correct and include IR files!

Work to be done

Finish llvm-ar

I We need to finish it so that it can be used on any build.

I Support for non-gnu format is missing.

I BFD format should make it possible to align objects!

I Thin archives are missing.

I File handling could use open, ftruncate, mmap.

I Hopefully no yaks.

Finish llvm-ar

I We need to finish it so that it can be used on any build.

I Support for non-gnu format is missing.

I BFD format should make it possible to align objects!

I Thin archives are missing.

I File handling could use open, ftruncate, mmap.

I Hopefully no yaks.

Finish llvm-ar

I We need to finish it so that it can be used on any build.

I Support for non-gnu format is missing.

I BFD format should make it possible to align objects!

I Thin archives are missing.

I File handling could use open, ftruncate, mmap.

I Hopefully no yaks.

Finish llvm-ar

I We need to finish it so that it can be used on any build.

I Support for non-gnu format is missing.

I BFD format should make it possible to align objects!

I Thin archives are missing.

I File handling could use open, ftruncate, mmap.

I Hopefully no yaks.

Finish llvm-ar

I We need to finish it so that it can be used on any build.

I Support for non-gnu format is missing.

I BFD format should make it possible to align objects!

I Thin archives are missing.

I File handling could use open, ftruncate, mmap.

I Hopefully no yaks.

Finish llvm-ar

I We need to finish it so that it can be used on any build.

I Support for non-gnu format is missing.

I BFD format should make it possible to align objects!

I Thin archives are missing.

I File handling could use open, ftruncate, mmap.

I Hopefully no yaks.

Finish llvm-ar

I We need to finish it so that it can be used on any build.

I Support for non-gnu format is missing.

I BFD format should make it possible to align objects!

I Thin archives are missing.

I File handling could use open, ftruncate, mmap.

I Hopefully no yaks.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Some inefficiencies of IR handling in llvm-ar

I llvm-ar needs the name of global symbols.

I llvm-ar uses lib/Object to find out.

I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.

Making lib/Object lazier

I Reading only the names and DataLayout is a special case.

I Implement it directly with lib/Bitcode.

I llvm-ar would never even create a Module.
I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.
I LTO: Can delay creating a Module in some cases.

Making lib/Object lazier

I Reading only the names and DataLayout is a special case.

I Implement it directly with lib/Bitcode.

I llvm-ar would never even create a Module.
I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.
I LTO: Can delay creating a Module in some cases.

Making lib/Object lazier

I Reading only the names and DataLayout is a special case.

I Implement it directly with lib/Bitcode.

I llvm-ar would never even create a Module.
I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.
I LTO: Can delay creating a Module in some cases.

Making lib/Object lazier

I Reading only the names and DataLayout is a special case.

I Implement it directly with lib/Bitcode.

I llvm-ar would never even create a Module.

I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.
I LTO: Can delay creating a Module in some cases.

Making lib/Object lazier

I Reading only the names and DataLayout is a special case.

I Implement it directly with lib/Bitcode.

I llvm-ar would never even create a Module.
I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.
I LTO: Can delay creating a Module in some cases.

Making lib/Object lazier

I Reading only the names and DataLayout is a special case.

I Implement it directly with lib/Bitcode.

I llvm-ar would never even create a Module.
I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.

I LTO: Can delay creating a Module in some cases.

Making lib/Object lazier

I Reading only the names and DataLayout is a special case.

I Implement it directly with lib/Bitcode.

I llvm-ar would never even create a Module.
I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.
I LTO: Can delay creating a Module in some cases.

How linkers view LTO

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.

I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.

I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.

LTO according to gold

I Requests the list of global symbols of each file.

I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.

I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .

I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility

I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.

I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.

I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.

I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.

I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

LTO according to gold

I Requests the list of global symbols of each file.
I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.

I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold

I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.

I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold

I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.

I MCStreamer to find asm symbols.

I tools/gold

I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold

I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold

I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold
I Implemented on top of lib/Object and lib/LTO.

I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold
I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.

I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold
I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold
I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.

Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.
I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold
I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto
I Free to be just the api used by ld64 again.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.

Making LTO useful

I One optimization decision can prevent other optimizations.

I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.

I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.

I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.

I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.
I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.

I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.
I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.

I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.
I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.
I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.
I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.
I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.
I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.
I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.
I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.
I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Making LTO useful

I One optimization decision can prevent other optimizations.
I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.
I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.

I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.

I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.

I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.
I Just cherry pick hot functions for LTO.

I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.
I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.
I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.
I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.
I In the second build, read some funtions from other IR files.

I Add them as available-externally to the current TU.

Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.
I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.
I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.

