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I They were llvm only.

I Easy to write. Important for a small (at the time) project.

I llvm-link was “95% persent working” in October 2001.

I Combine with opt and we already had LTO!
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I Adding llvm-link, opt and llc to a build is a pain.

I We added gccld to help in January 2002. It hides the extra
build steps. Produces a shell script that runs lli.

I Libraries can be created with llvm-ar since August 2003.

I Native codegen added to gccld in September 2003).

I gccld is renamed llvm-ld in r16305 September 2004.
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Some limitations remained

I They don’t know about native object files. Have to be
conservative.

I The archive symbol table only lists llvm members.

I To assemble and link, llvm-ld runs gcc.

I Semantics not exactly right.

I Slow.

I Build changes are still required.

I Hacks everywhere.
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Recent developments

Decided to start with llvm-ar and make it generic.
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I And they include native object formats!
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I For IR, only symbols make sense.

I Added a new SymbolicFile with a simpler interface.

I An ObjectFile is a SymbolicFile.
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I lib/Object doesn’t know what it is being used

for.

I lib/Object uses lib/IR to find out.

I lib/IR doesn’t know what it is being used for.

I lib/IR parses the entire file.

I Using a lazy module helps, but still reads metadata.
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I llvm-ar would never even create a Module.
I Code that needs more info can create a Module and query.

I llvm-nm: Not performance critical.
I LTO: Can delay creating a Module in some cases.
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LTO according to ld64

I ld64 uses libLTO to create Modules for all IR files.
I ld64 requests the list of all symbols in each module

I Really all symbols, even uses and defs in inline assembly.
I Asks whether a symbol can be hidden form the symbol table.

I C++ inline function whose address is not taken.

I Requires loading all function bodies.

I Does symbol resolution.

I Decides which symbols llvm should keep.

I libLTO creates a MachO file.
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I Requests the list of global symbols of each file.

I Defined/Undefined/Weak/. . .
I Visibility
I Comdat Key

I Does symbol resolution. May close some files.
I Notifies the plugin of the result for each symbol.

I Symbol is used from an ELF or BC file.
I Symbol is used by the symbol table.
I Symbol was preempted.
I . . .

I Plugin decides which symbols to keep and creates an ELF file.

I Only now do we need a Module!

I Can trim the Module before IR linking!
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Reorganizing lib/LTO, tools/gold and tools/lto

I lib/LTO logic needed by any linker doing lto.

I Codegen can add calls to memcpy, don’t drop it.
I MCStreamer to find asm symbols.

I tools/gold

I Implemented on top of lib/Object and lib/LTO.
I No longer uses a C api.
I Will serve to test LTO strategies.

I tools/lto

I Free to be just the api used by ld64 again.
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Metadata issues

I We have support for lazy loading function bodies.

I Debug metadata is larger than code and not lazy loaded.

I It is uniqued at the context level. Many nodes end up dead.

I Making Module own metadata would help gold, hurt lld.

I Lazy loading it during IR linking should be possible.

I Maybe do a GC pass? Slower than having the module own it.

I Might still need to find a denser representation.
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I One optimization decision can prevent other optimizations.

I Inlining C in B can prevent inlining B in A.

I Some optimization order is also important.

I Try to find loop bounds before unrolling.

I LLVM is fairly well tuned for these.

I Under the assumption it will never see the code again :-(

I We should probably drop some passes with -flto (loop-unroll,
vectorize).

I Others (inliner) should know that -flto is being used.
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Profiling and LTO

I We need to get basic LTO working well first.

I Lots of possibilities, have to be careful to not over engineer.
I Should we support fat binaries?

I Do a first build using the ELF half.
I Do a sampling run.
I Only LTO relink with the profile info.

I Partial LTO.

I Just cherry pick hot functions for LTO.
I And use the others from the ELF part (-ffunction-sections).

I LIPO style build also possible.

I In the second build, read some funtions from other IR files.
I Add them as available-externally to the current TU.
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