Statically translate X86 binary to LLVM IR OF T
Supports Windows PE and Linux ELF files

X86 FPU instructions supported
Built with LLVM 3.2, Protocol Buffers, and Boost

Use LLVM transformations and passes on binary code
Analyze X86 binary code with LLVM tools such as:

KLEE, LLBMC, and PAGAI Source and documentation at

github.com/trailofbits/mcsema
Features

Most X86 instructions

o o EL e Re-Emit Translated X86

FPU registers

SSE registers

Explicit Flags registers
Callbacks

External Calls

Jump Tables

Data References

SSE instructions (very few)
FPU instructions (some)

LLVM IR

Use LLVM optimizations, obfuscation, and security passes
Many “source-only” LLVM tools now work on binary code
Tested Windows Apps running recompiled kernel32.dll

Architecture

~oa [Per-Function Translation
ﬁujudu A EXE

vAg
VU *

Translate just the functions you want and their dependencies

Modular Architecture

Designed to translate code from arbitrary sources
CFG recovery separate from translation

Integrate with tools such as INSIGHT or jakstab

Control Flow Graph Recovery Reuse specific functions from a library

Control flow graphs specified as Google protocol buffers

Use our CFG recovery tool bin_descend Calling convention agnostic

Use existing tools such as IDA Pro to generate CFG Saved register state between function boundaries

Translate Instructions

Meticulously implement each X86 instruction as sequence U N |t Te StS
of LLVM IR with the same input and output behavior

Future Improvements ADD @U T\

FADD PASS

More Linux/ELF t i g A
ore Linux suppor
More instruction translations [> [> ﬁ

Stack variable recovery

Exceptions support
Privileged instructions
More optimizations
More tests

Update LLVM

Instruction level comparison of translated
Instructions vs native execution

