
compilertree.com

Implementing Data Layout Optimizations Implementing Data Layout Optimizations 
in the LLVM Frameworkin the LLVM Framework

Prashantha NR (Speaker)
CompilerTree TechnologiesCompilerTree Technologies
http://in.linkedin.com/in/mynrp

Vikram TV
CompilerTree Technologies
http://in.linkedin.com/in/tvvikram

Vaivaswatha N
CompilerTree Technologies
http://in.linkedin.com/in/vaivaswatha



Abstract

� Speed difference between processor and memory is
increasing everydayincreasing everyday

� Array/structure access patterns are modified for better
cache behaviour

� We discuss the implementation of a few data layout
modification optimizations in the LLVM framework

� All are Module Passes and implemented under
lib/Transforms/DLO (currently not in llvm repo)

CompilerTree DLO 2

lib/Transforms/DLO (currently not in llvm repo)



Outline

� Structure peeling, structure splitting and
structure field reorderingstructure field reordering

� Struct-array copy

� Instance interleaving

� Array remapping

CompilerTree DLO 3



Outline

� Structure peeling, structure splitting and
structure field reorderingstructure field reordering

� Struct-array copy

� Instance interleaving

� Array remapping

CompilerTree DLO 4



Structure Peeling: Motivation

struct S {
int A;
int B;

A,C – Hot fields
int B;
int C;

};

A,C – Hot fields
B   – Cold field

CompilerTree DLO 5



Structure Peeling: Motivation

struct S {
int A;
int B;

A,C – Hot fields
int B;
int C;

};

Peeled structures:

A,C – Hot fields
B   – Cold field

CompilerTree DLO 6

struct S.Hot {
int A;
int C;

};

struct S.Cold {
int B;

};



Structure Splitting: Motivation

struct S {
int A;

A – Hot
B – Coldint A;

int B;
struct S *C;

};

B – Cold
C – Pointer to struct S

Presence of pointer  
to same type makes 
peeling invalid

CompilerTree DLO 7



Structure Splitting: Motivation

struct S {
int A;
int B;

A – Hot
B – Cold

int B;
struct S *C;

};

struct S {

Split structures:

B – Cold
C – Pointer to struct S

CompilerTree DLO 8

struct S {
int A;
struct S  *C;
struct S.Cold *ColdPtr;

};

struct S.Cold {
int B;

};



Structure Peeling/Splitting 
Implementation in LLVM

� Done in 5 phases:Done in 5 phases:
− Profile structure accesses

− Legality

− Reordering the fields

− Create new structure types

− Replace old structure accesses with new accesses

CompilerTree DLO 9

− Replace old structure accesses with new accesses



Structure Peeling/Splitting 
Implementation in LLVM

� Profile structure accesses

− Currently static profile is used− Currently static profile is used

− Each GetElementPtr of struct type is analyzed

− Static profile count is maintained for each field of each struct

− LoopInfo is used to get more accurate counts

− This data is used in later phases to reorder the fields, decide
whether to peel, split the structure

CompilerTree DLO 10



Structure Peeling/Splitting 
Implementation in LLVM

� Legality

− Not all structures can be peeled or split!− Not all structures can be peeled or split!

− Cast to/from a given struct type

− Escaped types / address of individual fields taken

− Parameter types

− Nested structures

− Few others

CompilerTree DLO 11

Few others



Structure Peeling/Splitting 
Implementation in LLVM

� Reordering the fields� Reordering the fields

− Based on hotness of the fields

− Based on affinity of the fields

− Phase ordering problem

CompilerTree DLO 12



Structure Peeling/Splitting 
Implementation in LLVM

� Creating new structure types

− Decide to peel or split the structure− Decide to peel or split the structure

− Split the structure if:

� any of the fields of the StructType is a self referring pointer or

� this StructType is a pointer in some other Struct Type

− Otherwise peel

− Don't split or peel if:

there is only one field in the structure or

CompilerTree DLO 13

� there is only one field in the structure or

� fields already show good affinity or

� just reordering the fields yield good profitability



Structure Peeling/Splitting 
Implementation in LLVM

� Replace old structure accesses with new accesses:

− Replace each getelementptr that computes address to a field of
the old struct, with another one that computes the new address of
that field.

− Cold field access of a split structure need an additional
getelementptr followed by a Load of the pointer in hot field that
points to cold structure

CompilerTree DLO 14



Outline

� Structure peeling, structure splitting and
structure field reorderingstructure field reordering

� Struct-array copy

� Instance interleaving

� Array remapping

CompilerTree DLO 15



Struct Array Copy: Motivation

After Structure to Array copy:Original access of structure field:

for (i = 0; i < n; i++) {
temp[i] = AoS[i].x;

}

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
sum = sum + temp[j];

}
}

struct S {
.
int x;
.
.

} AoS[10000];  

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
sum = sum + AoS[j].x;

CompilerTree DLO 16

sum = sum + AoS[j].x;
}

}



Struct Array Copy: Motivation

� We consider only Read-only loops. However, loops with� We consider only Read-only loops. However, loops with
writes can also be chosen if profitable

� Profitable when the access patterns of structure fields vary
across the program – modifying the structure itself is not
beneficial

CompilerTree DLO 17



Struct Array Copy
Implementation in LLVM

� Module Pass

� Analysis:

− Identify Array of Structures

− Identify loops with read-only struct field accesses

− Legality

� Trip count of the loop must be known before entering the loop

� Type casts, escaped types, etc (as before)

CompilerTree DLO 18



Struct Array Copy
Implementation in LLVM

� Transformation

− Allocate a temporary array of size equal to loop’s trip count and− Allocate a temporary array of size equal to loop’s trip count and
structure field type

− Create a loop before the read-only loop

− Add instructions to initialize temporary array with specific field of
AoS

− Replace the AoS access in the read-only array with temporary
array accesses. Index is translated if necessary

Free the temporary array after the loop

CompilerTree DLO 19

− Free the temporary array after the loop



Outline

� Structure peeling, structure splitting and
structure field reorderingstructure field reordering

� Struct-array copy

� Instance interleaving

� Array remapping

CompilerTree DLO 20



Instance Interleaving: Motivation

for (i = 0; i < N; i++) {

struct S {
int a;
int b;
int c;
int d;

} A[N];

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++)
A[j].a /= 2;

for (j = 10; j < (N/2); j++)
A[j].b *= 5;

for (j = 0; j < (N/4); j++)
A[j].c *= 76;

for (j = 0; j < N; j++)
A[j].d /= 5;

CompilerTree DLO 21

A[j].d /= 5;
}



Instance Interleaving: Motivation

struct S {
int a;

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++)
A[j].a /= 2;int a;

int b;
int c;
int d;

} A[N];

A[j].a /= 2;
a[j]

for (j = 10; j < (N/2); j++)
A[j].b *= 5;
b[j]

for (j = 0; j < (N/4); j++)
A[j].c *= 76;
c[j]

for (j = 0; j < N; j++)

int a[N];
int b[N];
int c[N];

CompilerTree DLO 22

for (j = 0; j < N; j++)
A[j].d /= 5;
d[j]

}

int c[N];
int d[N];

Array of structures to structure of arrays



� Module Pass

� Identify arrays of structures whose different fields are accessed

Instance Interleaving
Implementation in LLVM

� Identify arrays of structures whose different fields are accessed
in different loops

� Identify the “length” of the array of structures

� Legality (as before)

� Create new arrays of size “length” and corresponding field types

� Modify getelementptr computations to reflect indexing a specific

CompilerTree DLO 23

Modify getelementptr computations to reflect indexing a specific
array, instead of an array of structures



Outline

� Structure peeling, structure splitting and
structure field reorderingstructure field reordering

� Struct-array copy

� Instance interleaving

� Array remapping

CompilerTree DLO 24



Array Remapping: Motivation

� Non-contiguous array accesses can be rearranged� Non-contiguous array accesses can be rearranged
(remapped) to make them contiguous

� Array remapping is conceptually same as instance
interleaving but happens with arrays

CompilerTree DLO 25



0 1 2 3

4 5 6 7

for (i = 5; i < 4004; i = i + 4) 
{

A[i + 6]Iter 1

GroupSize

Array Remapping: Motivation

8 9 10 11

12 11 14 15

16 17 18 19

. . . .

. . . .

A[i + 6]
A[i + 1]
A[i + 0]
A[i - 5]

}

Iter 1

Iter 2

Iter 3
N

um
be

r 
of

 g
ro

up
s

� The locality here is very poor
− No locality can be found in a single iteration

CompilerTree DLO 26

. . .

. . . .
Iter N

No locality can be found in a single iteration
− No locality can be found across iterations

(think of large strides/less cache line size)
� What if we remap this array?



Array Remapping: Motivation
0 1 2 3

4 5 6 7

Iter 1

GroupSize

0(0) 4(1) 8(2) 12 16 . . . .

1(1000) 5(1001) 9(1002) 11 17 . . .

2(2000) 6(2001) 10(2002) 14 18 . . . .

Iter 1 Iter 2 Iter 3 Iter 1000

� Remap all accesses of A[i] as A[remap(i)]

� Fetching current iteration data also brings in the next iteration
data. That is, we prefetch data of future “n” iterations in the
current iteration

8 9 10 11

12 11 14 15

16 17 18 19

. . . .

. . . .

Iter 1

Iter 2

Iter 3
N

um
be

r 
of

 g
ro

up
s

2(2000) 6(2001) 10(2002) 14 18 . . . .

3(3000) 7(3001) 11(3002) 15 19 . . . .

CompilerTree DLO 27

current iteration
. . .

. . . .Iter N

remap(i) = i % GroupSize * NumberOfGroups + i / GroupSize



Array Remapping
Implementation in LLVM

� Get Loop Information (IndVar, Stride, TripCount)

� Identify array remapping candidates

− Get array access pattern by analyzing constants

� GEP accesses are checked for A[i + const] type accesses

− Identify groups

� Remainder = constant % stride

� Groups of constants which have same remainder are identified

CompilerTree DLO 28

� All groups must have equal number of remainders



Array Remapping
Implementation in LLVM

� Compute new array-access locations

− Insert new instructions in the entire module for every access of array A i.e. A[i] becomes
A[remap(i)]A[remap(i)]

� remap(i) = i % GroupSize * NumberOfGroups + i / GroupSize

� (GroupSize = Stride, NumberOfGroups = TripCount)

− %1 = add nsw i64 %indvars.iv, 19

%arrayidx = getelementptr [100 x i32]* @a, i64 0, i64 %1

becomes

%1 = add nsw i64 %indvars.iv, 19

%IterNum = urem i64 %1, %GroupSizeLD

CompilerTree DLO 29

%IterNum = urem i64 %1, %GroupSizeLD

%Iter = mul i64 %IterNum, %NumGroupsLD

%IterOffset = udiv i64 %1, %GroupSizeLD

%NewIndex = add i64 %Iter, %IterOffset

%arrayidx = getelementptr [100 x i32]* @a, i64 0, i64 %NewIndex



Experimental Observations

� Following benchmarks show significant gains with data layout 
optimizations

− libquantum with struct splitting/peeling

− mcf with array copy/instance interleaving

− lbm with array remapping

CompilerTree DLO 30



Conclusion

� Different data layout optimizations are closely related

� Going forward ...

− Framework for combined legality, profitability

− Make Data layout optimizations work closely with Loop
Optimizer (much harder)

CompilerTree DLO 31



Thank YouThank You

Questions?

CompilerTree DLO 32



References

� D.C. Suresh et. Al. Multi-core scalability impacting
compiler optimizations - Springer COMPUTER SCIENCE -compiler optimizations - Springer COMPUTER SCIENCE -
RESEARCH AND DEVELOPMENT Volume 25, Numbers
1-2 (2010), 15-24,

� G Chakrabarti et. al. Structure Layout Optimizations in the
Open64 Compiler

� Michael Lai – Extensions to Structure Layout Optimizations
in the Open64 compiler

CompilerTree DLO 33

in the Open64 compiler

� Region Based Structure Layout Optimization by Selective
Data Copying by Sandya S. Mannarswamy, R.
Govindarajan and Rishi Surendran


