Generation of Fast and Parallel Code in LLVM
Tobias Grosser

LLVM and Clang Summer School
Paris, June 2017
COSMO: Weather Prediction in Switzerland

- > 500,000 Lines Code
- > 15,000 Loops
- 12 nodes + 192 GPUs
 @CSCS Lugano
Performance vs. Code Complexity

Runtime

Baseline

Best Single-Thread Performance

Best Multi-Thread Performance

Best Single Node Performance

Best Multi Node Performance

The Code we (want to) write!

The Performance we need!

Textbook Code

ILP

Data Locality

SIMDization

Shared Memory Thread-Parallelism

Data Parallel Programming Models (GPU/FPGA)

Message Passing
GEMM: Generalized Matrix Multiplication

The Simple Textbook Version

C = A x B

```c
void gemm(int N, int M, int K, 
    double A[N][K], double B[K][M], double C[N][M]) {

    for (i = 0; i < N; i++)
        for (j = 0; j < M; j++)
            for (k = 0; k < K; k++)
                C[i][j] += A[i][k] * B[k][j];
}
```
GEMM: Performance Single Threaded

Optimized Codes

The Simple Textbook Version
GEMM: Computing on Micro Panels

\[C = A \times B \]
GEMM: Computing on Micro Panels
GEMM: Repack Micro Panels

BLIS: A Framework for Rapidly Instantiating BLAS Functionality
FIELD G. VAN ZEE and ROBERT A. VAN DE GEIJN
GEMM: The BLIS Kernel Structure

L1: for jc = 0,...,n-1 in steps of nc
L2: for pc = 0,...,k-1 in steps of kc
 B(pc : pc + kc -1,jc : jc + nc -1) → Bc // Pack into Bc
L3: for ic = 0,...,m-1 in steps of mc
 A(ic : ic + mc -1,pc : pc + kc -1) → Ac // Pack into Ac
L4: for jr = 0,...,nc -1 in steps of nr // Macro-kernel
L5: for ir = 0,...,mc -1 in steps of mr
L6: for pr = 0,...,kc -1 in steps of 1 // Micro-kernel
 Cc(ir : ir + mr -1,jr : jr + nr -1) +=
 Ac(ir : ir + mr -1,pr) • Bc(pr,jr : jr + nr -1)

BLIS: A Framework for Rapidly Instantiating BLAS Functionality
FIELD G. VAN ZEE and ROBERT A. VAN DE GEIJN
Parallel Code Generation

Which facilities does LLVM provide?
What we learn today (and tomorrow):

- LLVM Analysis Passes
- Automatic SIMDization
- Modeling of Computational Loops with Presburger Sets
- Detection of Parallel Loops
Analysis Passes in LLVM
LLVM IR: Modeling high-level knowledge in LLVM-IR

Metadata
- Information **cannot be derived** from IR directly
 - No need to recompute
 - Must be kept consistent

Analysis
- Information **can be derived** from IR directly
 - Must be recomputed
 - Never outdated

Preferred!
Analysis Passes in LLVM

Loops

Scalar Evolution

(Post) Dominance

Regions
Dominance

A \textit{dominates} B, if each path from the entry to B contains A.

A \textit{post-dominates} B if each path from B to the exit contains A.
Loop Info: Detect Natural Loops

- Pre-header
- Header
- Body 1
- Exiting 1
- Exit 1
- Body 2
- Exiting 2
- Exit 2
- Latch 1
- Latch 2
Loop Info: Detect Natural Loops

No Natural Loop!
“Header” does not dominate latches.

LLVM *does not* model this loop!
A simple region is a subgraph of the CFG with a single entry and a single exit edge.
Region Info: No Regions

- BB 1
 - Single Entry Edge
 - Single Exit Edge

- BB 2
 - Single Entry Edge
 - Single Exit Edge

- BB 3
 - Single Entry Edge
 - Single Exit Edge

- BB 4
 - Single Entry Edge
 - Single Exit Edge
A region is **canonical** if it cannot be split into a sequence of smaller regions.
Region Info: Refined Regions

Refined Region

A refined region can be transformed into a simple region by interesting a single merge block.

Simplified Region
The (Refine) Region Tree

(Refined) regions form a tree. This tree is unique!
Scalar Evolution

define void @foo(i64 %a, i64 %b, i64 %c) {
 %t0 = add i64 %b, %a
 %t1 = add i64 %t0, 7
 %t2 = add i64 %t1, %c
 ret i64 %t2
}

SCEV: (7 + %a + %b +%c)
History: Scalar Evolution

- **Bachmann 1994:** “Chains of recurrences - A method to expedit the evaluation of closed-form functions”
- **Engelen 2000:** “Chains of recurrences for loop optimization”
- **Pop 2003:** “Analysis of induction variables using chains of recurrences”

- Introduced in Compilers:
 - **GCC:** 20 June, 2004 by Sebastian Pop
 - **LLVM:** 2 April, 2004 by Chris Lattner
ScalarEvolution: Components

- **Arithmetic Operations**
 - Addition (SCEVAdd)
 - Multiplication (SCEVMul)
 - Signed Division (SCEVSDiv)
 - SignExtension (SCEVSExt)
 - ZeroExtension (SCEVZExt)
 - Truncation (SCEVTrunc)
 - Signed Maximum (SCEVSMax)
 - Unsigned Maximum (SCEVUMax)

- **Special Values**
 - Reference to LLVM Value (SCEVUnknown)
 - Integer Constant (SCEVConstant)
 - *Symbolic Type Size*
 - *Symbolic Alignment*
 - *Symbolic Field Offset*
 - Add Recurrences (SCEVAddRec)

Many heuristics to recover these common patterns
Two Dimensional Array – No Loops

double *bar(double a[10][10], long b, long c) {
 return &a[b * 3 + 7][c + 5];
}

define double* @bar([10 x double]* %a, i64 %b, i64 %c) {
 %bx3 = mul i64 %b, 3
 %bx3a7 = add i64 %bx3, 7
 %ca5 = add i64 %c, 5
 %z = getelementptr [10 x double]* %a, i64 %bx3a7,
 i64 %ca5
 ret double* %z
}

SCEV (no TargetData): (((75 + %c + (30 * %b)) * sizeof(double)) + %a)
SCEV (with TargetData): (600 + (8 * %c) + (240 * %b) + %a)
Add-Recurrences

Template of an Add Recurrence: \{base, +, stride\}_<loop>

```c
void foo(long n, double *p) {
    for (long i = 0; i < n; ++i)
        double *ptr = &p[i];
}
```

SCEV (no TargetData): %ptr = {p, +, sizeof(double)}_<%for.body>
SCEV (with TargetData): %ptr = {p, +, 8}_<%for.body>

Value: base + <virtual_iv> * stride

%for.body: reference to header of loop in which expression evolves!
Using Scalar Evolution

void YourPass::getAnalysisUsage(AnalysisUsage &AU) const {
 AU.setPreservesAll(); AU.addRequired();
}

bool YourPass::runOnFunction(Function &F) {
 ScalarEvolution &SE = getAnalysis();

 // Get SVEV for the first instruction of the function.
 Instruction *FirstInstruction = (*F.begin())->begin();
 const SCEV *evolution = SE->getSCEV(FirstInstruction);

 if (isa<SCEVConstant>(evolution))
 errs() << "The first instruction is a constant SCEV";
}
Analyzing and Modifying Scalar Evolutions

1. Analyse
 - ScalarEvolution

 LLVM-IR → {%A, +, 12}_<L1>

2. Transform
 - SCEVVisitor
 - SCEVTraversal

 %A → + → 12

3. Code Generation
 - SCEVExpander

 {%A, +, 12}_<L1> → LLVM-IR
Scalar Evolution: nsw / nuw

- Scalar Evolution allows integer wrapping

 \[a + b < a \] is possible

- Flags: no-signed-wrap (nsw) and no-unsigned-wrap (nuw)

 If present, one can assume no (un)signed wrapping to happen

- Information is derived from LLVM-IR nsw, nuw flags
Predicated Scalar Evolution

for (unsigned i = p; i <= n + m; i++)
...

const SCEV *getPredicatedBackedgeTakenCount(
 const Loop *L,
 SCEVUnionPredicate &Predicates);

Count: \(n + m - p \)

Predicate: Assuming \(n + m - p \) does not wrap
Loop Transformations in LLVM

First Loop Condition

Pre-Header

Header + Body

Latch
Loop Optimizations in LLVM (ignoring Polly)

- **-loop-deletion**: Deletion of dead loops
- **-loop-distribute**: Split loops (e.g., to expose SIMDization opportunities)
- **-loop-idiom**: Recognize loop idioms (e.g., memcpy)
- **-loop-interchange**: Improve data-locality by interchanging loops
- **-loop-reduce**: Loop Strength reduction
- **-loop-reroll**: Reroll loops
- **-loop-rotate**: Rotate loops
- **-loop-simplify**: Canonicalize natural loops (e.g., insert preheader)
- **-loop-unroll**: Unroll loops (also done by the vectorizer)
- **-loop-unswitch**: Unswitch loops
- **-indvars**: Induction Variable Simplification

Uses Hal’s BB Vectorizer

Very Conservative
Loop Rotation

Benefits:
• Invariant instructions can be hoisted to pre-header
• All instructions are executed equally often.

Standard For-Loop

Rotated Loop

No computational code in Latch!
Loop Simplify Form

Exit Block (no non-loop predecessors)

Pre-Header

First Loop Condition

Pre-Header

Header + Body

Latch

Exit

One backedge
The LLVM Pass Pipeline

Canonicalization is essential for analysis to work!
Automatic Vectorization (SIMDization)

\[\begin{align*}
A[i+0] & + B[i+0] & \rightarrow & C[i+0] \\
A[i+1] & + B[i+1] & \rightarrow & C[i+1] \\
A[i+3] & + B[i+3] & \rightarrow & C[i+3]
\end{align*} \]
Recap: Vectorization (SIMDization)

Scalar Execution

$$C[i] = A[i] + B[i]$$

SIMD (Single Instruction Multiple Data) Execution

Intel SIMD Extensions

Vector width grows constantly!
SIMDization as solution for higher-performance at constant frequency

Wider Vectors drive performance growth!

Figure 1. Measuring performance on the same processor using Linpack benchmarks shows substantial increases from Intel Streaming SIMD Extensions 4.2 (Intel® SSE 4.2) to Intel® Advanced Vector Extensions (Intel® AVX) and from Intel AVX to Intel® AVX2, with up to 2.8x the GFLOPS throughput when comparing Intel SSE 4.2 to Intel AVX2.²
State-of-the-art SIMD Instruction Set Extensions

<table>
<thead>
<tr>
<th>Property</th>
<th>Intel / AMD</th>
<th>ARM / ARM64</th>
<th>ARM HPC</th>
<th>PowerPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>AVX 512</td>
<td>NEON</td>
<td>SVE</td>
<td>Altivec</td>
</tr>
<tr>
<td>Vector Size [Bits]</td>
<td>512</td>
<td>128</td>
<td>128 – 2048</td>
<td>128</td>
</tr>
<tr>
<td>Vector Size [floats]</td>
<td>16</td>
<td>4</td>
<td>4 – 64</td>
<td>4</td>
</tr>
<tr>
<td>Vector Size [doubles]</td>
<td>8</td>
<td>2</td>
<td>2 – 32</td>
<td>2</td>
</tr>
</tbody>
</table>

Introduced predicated loads/stores into LLVM

Requires LLVM-IR changes (not yet implemented)
How to write SIMD Code

Option 1: Manually Write SIMD Code

- Use intrinsic or write assembly code
- **Pro**
 - Maximal control
- **Con**
 - Complex
 - Not portable
 - Not available in Java

Option 2: Auto-generated SIMD Code

- Automatic Loop Vectorization techniques to introduce SIMD instructions
- **Pro**
 - Automatic
 - Portable
- **Con**
 - Not always statically provable
 - Java compilers not good at it
LLVM IR Vector Instructions

```llvm
define i32 @foo(<4 x i32>* %P0, <4 x i32>* %P1, <6 x i32>* %P2) {
  %V0 = load <4 x i32>, <4 x i32>* %P0
  %V1 = load <4 x i32>, <4 x i32>* %P1
  %V2 = add <4 x i32> %V0, %V1
  %V3 = shufflevector <4 x i32> %V2, <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
       <6 x i32> <i32 0, i32 4, i32 1, i32 2, i32 3, i32 5>
  %VX = insertelement <6 x i32> %V3, i32 42, i32 1
  %val = extractelement <6 x i32> %VX, i32 0
  store <6 x i32> %VX, <6 x i32>* %P2
  ret i32 %val
}
```

- **SIMD Type**
- **SIMD Load**
- **SIMD Arithmetic**
- **SIMD Shuffle**
- **SIMD Per-element Access**
- **SIMD Store**

`http://llvm.org/docs/LangRef.html`
C/C++ Vector Extension

typedef int int4 __attribute__((__vector_size__(16)));
typedef int int6 __attribute__((__vector_size__(24)));

int foo(int4* P0, int4* P1, int6* P2) {
 int4 V0 = *P0;
 int4 V1 = *P1;
 int4 V2 = V0 + V1;
 int4 Constants = {1, 1, 1, 1};
 int6 V3 = __builtin_shufflevector(V2, Constants, 0, 4, 1, 2, 3, 5);
 V3[1] = 42;
 *P2 = V3;
 return V3[0];
}
Operations on Vector Extensions

<table>
<thead>
<tr>
<th>Operator</th>
<th>OpenCL</th>
<th>AltiVec</th>
<th>GCC</th>
<th>NEON</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Unary +, -</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>++, --</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>+, -, *, /, %</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Bitwise &,,</td>
<td>^, ^</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>>>, <<</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>!, &&,</td>
<td></td>
<td></td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>==, !=, >, <, >=, <=</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>=</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>?:</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sizeof</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
avxintrin.h: Vector addition

typedef float __m256 __attribute__((__vector_size__(32)));

/// \brief Subtracts two 256-bit vectors of [8 x float].
///
/// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
///
/// \param __a A 256-bit vector of [8 x float] containing the minuend.
/// \param __b A 256-bit vector of [8 x float] containing the subtrahend.
/// \returns A 256-bit vector of [8 x float] containing the differences between
/// both operands.
static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a, __m256 __b)
{
 return (__m256)((__v8sf)__a - (__v8sf)__b);
}
avxintr.h: Implementation of VMOVSHDUP

/// \brief Moves and duplicates high-order (odd-indexed) values from a 256-bit vector of [8 x float] to float values in a 256-bit vector of [8 x float].
///
/// \param a
/// A 256-bit vector of [8 x float].
/// Bits [127:96] of a are written to bits [127:96] and [95:64] of return value.
/// Bits [63:32] of a are written to bits [63:32] and [31:0] of return value.
/// \returns A 256-bit vector of [8 x float] containing the moved and duplicated values.

static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 a)
{
 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
}
Different Kinds of Automatic SIMDization

Loop Vectorization

for (i = 0; i < n; i++)
A[i] = ...

for (i = 0; i < n; i+=X)
A[i:i+X] = ...

Superworld Level Parallelism (SLP) SIMDization

load
op
store
SLP Vectorization

Find Vector Seed Instructions

Form Groups of Isomorphic Instructions Following Data Flow Graph

Compute Scalar Cost

Compute Vector Cost

YES

SIMD Profitable

NO

Keep Original Code

Vectorize
SLP Vectorization - Example

Exploiting Superword Level Parallelism with Multimedia Instruction Sets, PLDI 2000, Samuel Larsen and Saman Amarasinghe
SLP Vectorization - Example

Exploiting Superword Level Parallelism with Multimedia Instruction Sets, PLDI 2000, Samuel Larsen and Saman Amarasinghe
Cost Evaluation

<table>
<thead>
<tr>
<th>Expression</th>
<th>Cost</th>
<th>Cost Evaluated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b = a[i+0]$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$c = 5$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$d = b + c$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$e = a[i+1]$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$f = 6$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$g = e + f$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$h = a[i+2]$</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>$j = 7$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$k = h + j$</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Exploiting Superword Level Parallelism with Multimedia Instruction Sets, PLDI 2000, Samuel Larsen and Saman Amarasinghe
SLP Vectorization – Seed Instructions

- Instructions that access neighboring memory locations
- Today, GCC and LLVM start from store instructions
- In general, any two independent instructions are valid seed instructions
Inner Loop Vectorization

\[
\text{for (int } i = 0; i < 1024; i++)
\]
\[
B[i] += A[i];
\]

\[
\text{for (int } i = 0; i < 1024; i+=4)
\]
\[
B[i:i+3] += A[i:i+3];
\]
Automatic (Inner) Loop Vectorization

- **Validity**
 - Innermost loop must be parallel (or behave after vectorization as if it was)
 - No aliasing between different arrays

- **Profitability**
 - Memory accesses must be “stride-one”
 - or
 - Computational cost must dominate the loop
Can these loops be vectorized?

```c
for (int i = 0; i <= n; i++)
    B[i] += A[i];

for (int i = 0; i <= n; i++)
    A[i] += A[i];
```

YES, the arrays are different objects

YES, there is no dependence to any previous iteration
Can these loops be vectorized?

for (int i = 1; i <= n; i++)
Can these loops be vectorized: pointer-to-pointer arrays

```c
int[ ][ ] A = new int[N][M];
int[ ][ ] B = new int[N][M];

for (int i = 0; i <= N; i++)
    for (int j = 0; i <= M; i++)
        A[i][j] += B[i][j];
```

YES, in C/C++/Fortran array dimensions are independent.

We now assume multi-dimensional arrays in the mathematical sense.
Can these loops be vectorized?

```c
for (i = 0; i < N; i++)
    for (j = 0; j < M; j++)
        for (k = 0; k < K; k++)
            C[i][j] += A[i][k] * B[k][j];
```

NO, the inner loop has data-dependences between subsequent iterations
Can these loops be vectorized?

```
for (i = 0; i < N; i++)
    for (k = 0; k < K; k++)
        for (j = 0; j < M; j++)
            C[i][j] += A[i][k] * B[k][j];
```

YES, the inner loop has no data-dependences between subsequent iterations
Advanced Support for SIMDization
/// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc.
/// \p Args is an optional argument which holds the instruction operands
/// values so the TTI can analyze those values searching for special
/// cases\optimizations based on those values.
int getArithmeticInstrCost(
 unsigned Opcode, Type *Ty,
 OperandValueKind Opd1Info = OK_AnyValue,
 OperandValueKind Opd2Info = OK_AnyValue,
 OperandValueProperties Opd1PropInfo = OP_None,
 OperandValueProperties Opd2PropInfo = OP_None,
 ArrayRef<const Value *> Args = ArrayRef<const Value *>(()) const;

/// \return The cost of a shuffle instruction of kind Kind and of type Tp.
/// The index and subtype parameters are used by the subvector insertion and
/// extraction shuffle kinds.
int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
 Type *SubTp = nullptr) const;
LoopAccessAnalysis

- Analyze Innermost Loops
- Check data-dependences and legality of SIMDization
- Generates run-time Alias Checks
- Analysis the Stride of Memory Accesses
Presburger Sets and Relations
Quasi-Affine Expression

- **Base**
 - Constants ($c \downarrow i$)
 - Parameters ($p \downarrow i$)
 - Variables ($v_\downarrow i$)

- **Operations**
 - Negation ($-e$)
 - Addition ($e \downarrow 0 + e \downarrow 1$)
 - Multiplication by constant ($c \ast e$)
 - Division by constant (c / e)
 - Remainder of constant division ($e \mod c$)

```cpp
void foo (int n, int m) {
    for (int i = 0; ...; ...)
        int tmp = ...
    for (int j = 0; ...; ...) {
        ...}
```
Presburger Formula

- **Base**
 - Boolean Constants (T, ⊥)

- **Operations**
 - Comparisons of quasi-affine expressions
 \[e \downarrow 0 \bigoplus e \downarrow 1 , \bigoplus \{ <, \leq, =, \neq, \geq, > \} \]
 - Boolean Operations between Presburger Formula
 \[p \downarrow 0 \bigotimes p \downarrow 1 , \bigotimes \{ \land, \lor, \neg, \Rightarrow, \Leftarrow, \Leftrightarrow \} \]
 - Quantified Variables
 \[\exists x \mid p(x, \ldots) \]
 \[\forall x \mid p(x, \ldots) \]
Presburger Sets and Relations

Presburger Set

\[S = p \to \{ v \mid v \in \mathbb{Z}^n : p(v, p) \} \]

Presburger Relation

\[R = p \to \{ v \downarrow 0 \to v \downarrow 1 \mid v \downarrow 0 \in \mathbb{Z}^n, v \downarrow 1 \in \mathbb{Z}^m : p(v \downarrow 0, v \downarrow 1, p) \} \]
Example: Presburger Set

\[S = (x, y) 1 \leq x, y \leq 4 \land (x + y \leq 3 \lor x + y \geq 5) \]
Example: Presburger Map

\[R = \{ (x,y) \mapsto (x', y') \mid x + y = 3 \land x' + y' = 5 \} \]
Presburger Arithmetic

- Benefits
 - Decidable
 - Closed under common operations
 \(\cap, \cup, \setminus, \text{proj}, \circ, \text{not transitive hull} \)
 - Precise results

- Computational Complexity
 - Some operations double-exponential (in dimensions)
 - Often lower complexity for bounded dimension
Can we solve more complex Diophantine equations?

- Does $x^3 + y^3 = z^3$ with $x, y, z \in \mathbb{Z}$ have a solution? No, Fermat’s last theorem! Answered in 1994, after year 357 years!

- Does $x^3 + y^3 + z^3 = 29$ have a solution? Yes, $(3, 1, 1)$!

- Does $x^3 + y^3 + z^3 = 33$ have a solution? No, this is unknown today!

Note: No general algorithm for solving polynomial equations over integers exists! (Hilbert’s 10th problem)

Proof is interesting: encodes Turing machine in Diophantine equations

Demo: Presburger Sets
Modeling Loop Programs with Presburger Sets
Polyhedral Loop Modeling

Program Code

```
for (i = 0; i <= N; i++)
    for (j = 0; j <= i; j++)
        S(i,j);
```

N = 4

Iteration Space

\[D = \{ (i,j) \mid 0 \leq i \leq N \land 0 \leq j \leq i \} \]
Static Control Parts - SCoPs

- Structured Control
 - IF-conditions
 - Counted FOR-loops (Fortran style)
- Multi-dimensional array accesses (and scalars)
- Loop-conditions and IF-conditions are Presburger Formula
- Loop increments are constant (non-parametric)
- Array subscript expressions are piecewise-affine

- Can be modeled precisely with Presburger Sets
Polyhedral Model of Static Control Part

```
for (i = 0; i <= N; i++)
    for (j = 0; j <= i; j++)
```

- **Iteration Space (Domain)**
 \[\text{IS} = \{ (i,j) \mid 0 \leq i \leq N \land 0 \leq j \leq i \} \]

- **Schedule**
 \[\theta \downarrow S = \{ S(i,j) \mapsto (i,j) \} \]

- **Access Relation**
 - **Reads:** \(\{ S(i,j) \mapsto A(i,j); S(i,j) \mapsto A(i, j+1) \} \)
 - **Writes:** \(\{ S(i,j) \mapsto B(i,j) \} \)
Polyhedral Schedule: Original

Model
\[I \downarrow S = S(i, j) \quad 0 \leq i \leq n \land 0 \leq j \leq i \]
\[\Theta \downarrow S = \{ S(i, j) \rightarrow (i, j) \} \rightarrow (\lfloor i/4 \rfloor, j, i \mod 4) \]

Code
```java
for (i = 0; i <= n; i++)
    for (j = 0; j <= i; j++)
        S(i, j);
```
Polyhedral Schedule: Original

Model

\[I↓S = S(i,j) 0 \leq i \leq n \land 0 \leq j \leq i \]

\[θ↓S = \{ S(i,j) \rightarrow (i,j) \} \rightarrow ([i/4], j, i \mod 4) \]

Code

```c
for (c0 = 0; c0 <= n; c0++)
    for (c1 = 0; c1 <= c0; c1++)
        S(c0, c1);
```
Polyhedral Schedule: Interchanged

Model

$I↓S = S(i, j) \quad 0 \leq i \leq n \land 0 \leq j \leq i$

$θ↓S = \{S(i, j) \rightarrow (j, i)\} \rightarrow ([i/4], j, i \ mod \ 4)$

Code

for (c0 = 0; c0 <= n; c0++)

for (c1 = c0; c1 <= n; c1++)

S(c1, c0);
Polyhedral Schedule: Strip-mined

Model

\[I↓S = S(i, j) \mid 0 \leq i \leq n \land 0 \leq j \leq i \]
\[θ↓S = \{ S(i, j) \rightarrow ([i/4], j, i \mod 4) \} \]

Code

```
for (c0 = 0; c0 <= floor(n, 4); c0++)
    for (c1 = 0; c1 <= min(n, 4 * c0 + 3); c1++)
        for (c2 = max(0, -4 * c0 + c1); c1 <= min(3, n - 4 * c0); c2++)
            S(4 * c0 + c2, c1);
```
Polyhedral Schedule: Blocked

Model

\[
I_{\downarrow} S = S(i,j) \quad 0 \leq i \leq n \land 0 \leq j \leq i
\]

\[
\theta_{\downarrow} S = \{ S(i,j) \rightarrow (\lfloor i/4 \rfloor, \lfloor j/4 \rfloor, i \mod 4, j \mod 4) \}
\]

Code

```cpp
def polyhedral_schedule_blocked(n):
    c0 = 0
    while c0 <= (n // 4):
        c1 = 0
        while c1 <= c0:
            c2 = 0
            while c2 <= min(3, n - 4 * c0):  # Corrected line
                c3 = 0
                while c3 <= min(3, 4 * c0 - 4 * c1 + c2):
                    S(4 * c0 + c2, 4 * c1 + c3);
                    c3 += 1
                c2 += 1
            c1 += 1
        c0 += 1
```

```
# How to derive a good schedule

## Stepwise Improvement
- Interchange
- Fusion
- Distribution
- Skewing
- Tiling
- Unroll-and-Jam

## Construct “perfect” Schedule
- **Feautrier Scheduler**
  - Resolve data-dependences at outer levels
  - Maximize inner parallelism
- **Pluto Scheduler**
  - Resolve data-dependences at inner levels
  - Maximize outer parallelism
  - Fusion model to minimize dependence distances
Classical Loop Transformations – Loop Reversal

// Original Loop
for (i = 0; i <= n; i+=1)
S(i);

D↓I = S(i) 0 ≤ i ≤ n
S↓Orig = \{S(i)→(i)\}
S↓T = \{S(i)→(n−i)\}

// Transformed Loop
for (i = n; i >= 0; i-=1)
S(i);
Classical Loop Transformations – Loop Interchange

// Original Loop
for (i = 0; i <= n; i+=1)
    for (j = 0; j <= n; j+=1)
        S(i,j);

D↓I = S(i,j)0 ≤ i, j ≤ n
S↓Orig = { S(i,j)→ (i,j) }
S↓T = { S(i,j)→ (j,i) }

// Transformed Loop
for (j = 0; j <= n; j+=1)
    for (i = 0; i <= n; i+=1)
        S(i,j);
Classical Loop Transformations – Fusion

// Original Loop
for (i = 0; i <= n; i+=1) {
    S1(i);
    for (i = 0; i <= n; i+=1)
        S2(i);
}

// Transformed Loop
for (i = 0; i <= n; i+=1) {
    S1(i);
    S2(i);
}

\[ D_{\downarrow I} = S(i)_{0 \leq i \leq n} T(i)_{0 \leq j \leq n} \]
\[ S_{\downarrow \text{Orig}} = \{ S(i) \rightarrow (0, i); T(i) \rightarrow (1, i) \} \]
\[ S_{\downarrow \text{T}} = \{ S(i) \rightarrow (i, 0); T(i) \rightarrow (i, 1) \} \]
Classical Loop Transformations – Fission (also called Distribution)

// Original Loop
for (i = 0; i <= n; i+=1) {
    S1(i);
    S2(i);
}

// Transformed Loop
for (i = 0; i <= n; i+=1) {
    S1(i);
    for (i = 0; i <= n; i+=1) {
        S2(i);
    }
}

\[
D_{↓\mathcal{I}} = \{S(i) | 0 \leq i \leq n \land 0 \leq j \leq n \}
\]

\[
S_{↓\text{Orig}} = \{S(i) \rightarrow (i,0) ; T(i) \rightarrow (i,1) \}
\]

\[
S_{↓\text{T}} = \{S(i) \rightarrow (0,1) ; T(i) \rightarrow (1,i) \}
\]
Classical Loop Transformations – Skewing

// Original Loop
for (i = 0; i <= n; i+=1)
    for (j = 0; j <= n; j+=1)
        S(i,j);

\[ D_{\downarrow I} = S(i,j) \quad 0 \leq i, j \leq n \]
\[ S_{\downarrow \text{Orig}} = \{ S(i,j) \rightarrow (i,j) \} \]
\[ S_{\downarrow T} = \{ S(i,j) \rightarrow (i,i+j) \} \]

// Transformed Loop
for (i = 0; i <= n; i+=1)
    for (j = i+1; j <= n+i; j+=1)
        S(i,j);
Classical Loop Transformations – Strip-Mining

// Original Loop
for (i = 0; i <= 1024; i+=1)
    S(i);

// Transformed Loop
for (i = 0; i <= 1024; i+=4)
    for (ii = i; ii <= i+3; ii+=1)
        S(ii);

\[ D\downarrow I = S(i)_{0 \leq i \leq n} \]
\[ S\downarrow \text{Orig} = \{ S(i) \rightarrow (i) \} \]
\[ S\downarrow T = \{ S(i) \rightarrow ([i/4], i) \} \]
Classical Loop Transformations – Blocking (Tiling)

// Original Loop
for (i = 0; i <= 1024; i+=1)
    for (j = 0; j <= 1024; j+=1)
        S(i,j);

// Transformed Loop
for (i = 0; i <= 1024; i+=8)
    for (j = 0; j <= 1024; j+=8)
        for (ii = i; ii <= i+8; ii+=1)
            for (jj = j; jj <= j+8; j+=1)
                S(ii, jj);

\[ D_{\downarrow I} = S(i,j)_{0 \leq i, j \leq n} \]
\[ S_{\downarrow \text{Orig}} = \{ S(i,j) \rightarrow (i,j) \} \]
\[ S_{\downarrow T} = \{ S(i) \rightarrow ([i/4], [j/4], i,j) \} \]
Legality of Loop Transformations

1. **Conflicting Accesses**
   Two statement instance access the same memory location

2. **Execution**
   Each statement instance is known to be executed

3. **At least one write access**
   Two memory reads do not conflict

The direction of the data dependency is defined through the schedule.
Conditions for Data Dependence

1. **Conflicting Accesses**
   Two statement instance access the same memory location

2. **Execution**
   Each statement instance is known to be executed

3. **At least one write access**
   Two memory reads do not conflict

The direction of the data dependency is defined through the schedule.
Data Dependence Types

- Read-After-Write (true)
  - Flow (subset of RAW-dependences that carries data)
- Write-After-Read (anti)
- Write-After-Write (output)
- Read-After-Read

False dependences: Write-After-Read + Write-After-Write
Precision of Data Dependences

- **Direction Vectors**
  Dependences are tuples over: +, -, =
  \[ D(+, =, -) \]

- **Distance Vectors**
  Dependences are given through their integer distance
  \[ D(1, 0, -1) \]

- **Presburger Sets**
  Dependences are described as Presburger Relations
  \[ \{(I, J, K) \rightarrow (I+1, J, K-1) | 0 \leq I, J, K \leq N\} \]

Example: for \( I = 0..N \)
for \( J = 0..N \)
for \( K = 0..N \)
\[ A(I+1, J, K-1) = A(I, J, K) \]
Invariants on Dependences

- **The first non-zero component must be positive**
  Otherwise, the dependence goes backwards in time
Validity of a Schedule

A schedule $\theta_{\downarrow S}$ is valid for an iteration space $I_{\downarrow S}$ and a set of dependences $D_{\downarrow S}$ iff $\forall (s,d) \in D_{\downarrow S}: \theta_{\downarrow S}(s) < \theta_{\downarrow S}(d)$. 
Loop Carried Dependences

- A data dependence $\mathbf{D}$ is carried by a loop $\mathbf{L}$ that corresponds to the first non-zero dimension of the dependence vector

```plaintext
for (i = 0; i < N; i++)
 for (j = 0; j < M; j++)
 for (k = 0; k < K; k++)
 C[i][j] += ...
```

$\mathbf{D}(0, 0, +1)$

```plaintext
for (i = 0; i < N; i++)
 for (k = 0; k < K; k++)
 for (j = 0; j < M; j++)
 C[i][j] += ...
```

$\mathbf{D}(0, +1, 0)$
Parallel Loops

- A loop is parallel if it does not carry any data dependences

\[
\text{parfor (} i = 0; i < N; i++ \) \\
\text{parfor (} j = 0; j < M; j++ \) \\
\text{for (} k = 0; k < K; k++ \) \\
\text{\quad C}[i][j] += \ldots
\]

\[
\text{parfor (} i = 0; i < N; i++ \) \\
\text{\quad for (} k = 0; k < K; k++ \) \\
\text{\quad parfor (} j = 0; j < M; j++ \) \\
\text{\quad \quad C}[i][j] += \ldots
\]

\[
\text{D}(0, 0, +1) \\
\text{D}(0, +1, 0)
\]
Elimination of Scalar Dependences: Static Array Expansion

for (i = 0; i < 100; i++) {
    tmp = A[i];
    A[i] = B[i];
    B[i] = tmp;
}

for (i = 0; i < 100; i++) {
    TMP[i] = A[i];
    A[i] = B[i];
    B[i] = TMP[i];
}

A loop carried write-after-read (anti) dependence prevents parallel execution.

Transform scalar tmp into an array TMP that contains for each loop iteration private storage.
Demo: Loop Modeling with Presburger Sets
Tiling for Data-Locality and Parallelism
Tiling of a 1D Stencil

for (int t = 0; t < T; t++)
    for (int i = 0; i < N; i++)
Jacobi Stencil with 1D Space + Time
Jacobi Stencil with 1D Space + Time: Rectangular Tiles
Jacobi Stencil with 1D Space + Time: Skewed and Tiled
Jacobi Stencil with 1D Space + Time: Diamond Tiling
Advanced Tiling: A 2D Stencil

for (int t = 0; t < T; t++)
    for (int i = 0; i < N; i++)
        A[t+1][i][j] = A[t][i][j]
                        + A[t][i-1][j-1] + A[t][i-1][j+1]
                        + A[t][i+1][j-1] + A[t][i+1][j+1];
Hybrid Hexagonal/Parallelogram Tiling
AST Expression Generation

**Piecewise Affine Expr.**

\( (i) \rightarrow ([i/4]) \)
\( (i) \rightarrow (i \text{ mod } 4) \)

**AST Expression**

\( \rightarrow \text{floordiv}(i, 4) \)
\( \rightarrow i - 4 \ast \text{floordiv}(i, 4) \)

**C implementation**

```c
#define floordiv(n, d) \((((n)<0) \ ? \ -((-n)+(d)-1)/(d)) \ : \ (n)/(d))\)
```

<table>
<thead>
<tr>
<th>Pw. Aff. Expr.</th>
<th>Context</th>
<th>AST Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>( (i) \rightarrow ([i/4]) )</td>
<td>( i \geq 0 )</td>
<td>( \rightarrow i / 4 )</td>
</tr>
<tr>
<td>( i \leq 0 )</td>
<td>( \rightarrow -((-i + 3) / 4) )</td>
<td></td>
</tr>
<tr>
<td>( i \text{ mod } 4 = 0 )</td>
<td>( \rightarrow i / 4 )</td>
<td></td>
</tr>
<tr>
<td>( (i) \rightarrow (i \text{ mod } 4) )</td>
<td>( i \geq 0 )</td>
<td>( \rightarrow i % 4 )</td>
</tr>
<tr>
<td>( i \leq 0 )</td>
<td>( \rightarrow -((-i + 3) % 4) + 3 )</td>
<td></td>
</tr>
</tbody>
</table>
Schedule Trees

for (i = 0; i < n; i++) {
    for (j = i; j < n; j++)
        for (k = 0; k < p1; k++)
            S1: A[i][j] = k * B[i]

    // Mark "A"
}

\[
\begin{align*}
S1(i,j,k) & | 0 \leq i \leq j < n \land 0 \leq k < p1 \\
S2(i) & | 0 \leq i < n
\end{align*}
\]

dor

\[
\begin{align*}
S1(i,j,k) & \rightarrow (i) ; \\
S2(i) & \rightarrow (i)
\end{align*}
\]

band

\[
\begin{align*}
S1(i,j,k) & \text{ filter} \\
S2(i) & \text{ filter}
\end{align*}
\]

seq

\[
\begin{align*}
S1(i,j,k) & \rightarrow (j,k) \\
Mark "A" & \text{ mark}
\end{align*}
\]

Mark "A"
Schedule Tree – Original Code

\[ S_1(i, j, k) \mid 0 \leq i \leq j < n \land 0 \leq k < p1 \] domain
\[ S_1(i, j, k) \rightarrow (i, j, k) \] band

\[
\text{for } (i = 0; i < n; i++) \\
\text{for } (j = 1; j < n; j++) \\
\text{for } (k = 0; k < n; k++) \\
S_1: \quad S(1, j, k)
\]
Schedule Tree – Tiled

$S_1(i, j, k) | 0 \leq i \leq j < n \land 0 \leq k < p1$

domain

$S_1(i, j, k) \rightarrow ([i/128], [j/128], [k/128])$

band

$S_1(i, j, k) \rightarrow (i \% 128, j \% 128, k \% 128)$

band

for (c0 = 0; c0 < n; c0 += 128)
for (c1 = 0; c1 < n; c1 += 128)
for (c2 = 0; c2 < n; c2 += 128)
for (c3 = 0;
    c3 <= \text{min}(127, n - c0 - 1);
    c3 += 1)
for (c4 = 0;
    c4 <= \text{min}(127, n - c1 - 1);
    c4 += 1)
for (c5 = 0;
    c5 <= \text{min}(127, n - c2 - 1);
    c5 += 1)
$S_1(c0 + c3, c1 + c4, c2 + c5)$
Schedule Tree – Split Band

\[
S1(i, j, k) | 0 \leq i \leq j < n \land 0 \leq k < p1
\]

domain

\[
S1(i, j, k) \rightarrow ([i/128], [j/128], [k/128])
\]

band

\[
S1(i, j, k) \rightarrow (i\%128)
\]

band

\[
S1(i, j, k) \rightarrow (j\%128)
\]

band

\[
S1(i, j, k) \rightarrow (k\%128)
\]

band

\[
\text{for } (c0 = 0; c0 < n; c0 += 128) \\
\text{for } (c1 = 0; c1 < n; c1 += 128) \\
\text{for } (c2 = 0; c2 < n; c2 += 128) \\
\text{for } (c3 = 0; \\
\quad c3 = \min(127, n - c0 - 1); \\
\quad c3 += 1) \\
\text{for } (c4 = 0; \\
\quad c4 = \min(127, n - c1 - 1); \\
\quad c4 += 1) \\
\text{for } (c5 = 0; \\
\quad c5 = \min(127, n - c2 - 1); \\
\quad c5 += 1) \\
S1(c0 + c3, c1 + c4, c2 + c5)
\]
Schedule Tree – Strip-mine and Interchange

\[
S_1(i,j,k) \mid 0 \leq i \leq j < n \land 0 \leq k < p1 \quad \text{domain}
\]

\[
S_1(i,j,k) \rightarrow ([i/128], [j/128], [k/128]) \quad \text{band}
\]

\[
S_1(i,j,k) \rightarrow (i\%128) \quad \text{band}
\]

\[
S_1(i,j,k) \rightarrow ((j\%128)/8) \quad \text{band}
\]

\[
S_1(i,j,k) \rightarrow (k\%128) \quad \text{band}
\]

\[
S_1(i,j,k) \rightarrow (j\%8) \quad \text{band}
\]

[...]

for (c3 = 0;
    c3 <= min(127, n - c0 - 1);
    c3 += 1)
for (c4 = 0;
    c4 <= min(127, n - c1 - 1);
    c4 += 1)
for (c5 = 0;
    c5 <= min(127, n - c2 - 1);
    c5 += 1)

// SIMD Parallel Loop
// at most 8 iterations
for (c6 = 0;
    c6 <= min(7, n - c1 - c4 - 1);
    c6 += 1)
    S1(c0 + c3, c1 + c4 + c6, c2 + c5)
Schedule Tree – Isolate

\[ S1(i, j, k) \mid 0 \leq i \leq j < n \land 0 \leq k < p1 \]

\[ S1(i, j, k) \rightarrow ([i/128], [j/128], [k/128]) \]

\[ S1(i, j, k) \rightarrow (i\%128) \]

\[ S1(i, j, k) \rightarrow ([j/128]/8) \]

\{ isolate\([a, b, c, d] \rightarrow [e] : b < [n/128] \} \]

\[ S1(i, j, k) \rightarrow (k\%128) \]

\[ S1(i, j, k) \rightarrow (j\%8) \]

\[ \ldots \]

\[
\text{for } (c3 = 0; c3 <= \min(127, n - c0 - 1); c3 += 1) \\
\text{if } (n \geq 128 + c1 + 128) \{
\text{for } (c4 = 0; c4 <= 127; c4 += 8) \\
\text{for } (c5 = 0; c5 <= \min(127, n - c2 - 1); c5 += 8) \\
\text{// SIMD Parallel Loop} \\
\text{// Exactly 0 Iterations} \\
\text{for } (c6 = 0; c6 <= 7; c6 += 1) \\
S1(c0 + c3, c1 + c4 + c6, c2 + c5); \\
\} \text{ else } \\
\text{// Handle remainder}
\]
Evaluation

AST Generation
Generated Code Performance - Consistent
Generated Code Performance – Differing
Code Quality: youcefn [Bastoul 2004]

CLooG 0.14.1

```c
for(i=1; i<=n-2; i++) {
 S0(i,i);
 S1(i,i);
 for(j=i+1; j<=n-1; j++)
 S1(i,j);
 S1(i,n);
 S2(i,n);
}
S0(n-1,n-1);
S1(n-1,n-1);
S1(n-1,n);
S2(n-1,n);
S0(n,n);
S1(n,n);
S2(n,n);
for (i=n+1; i <= m; i++)
 S3(i,j);
```
Code Quality: youcef [Bastoul 2004]

Instruction Count

Code Size
Code Quality: [Chen 2012] - Figure 8(b)

```
CLooG 0.18.1

if (n >= 2)
 for (i = 2; i <= n; i += 2) {
 if (i%4 == 0)
 S0(i);
 if (((i+2)%4 == 0)
 S1(i);
 }
```
Code Quality: [Chen 2012] - Figure 8(b)

**Instruction Count**

- **Code Generator**
  - ClooG 0.18.1
  - CodeGen+
  - isl

**Code Size**

- **Code Generator**
  - ClooG 0.18.1
  - CodeGen+
  - isl
Code Quality: [Chen 2012] - Figure 8(b) novec/unroll

Instruction Count

Code Size
Modulo and Existentially Quantified Variables

CodeGen+

// Simple
for(i = intMod(n,128); i <= 127; i += 128)
   S(i);

// Shifted
for(i = 7+intMod(t1-7,128); i <= 134; i += 128)
   S(i);

// Conditional
for(i = 7+intMod(t1-7,128); i <= 130; i += 128)
   S(i);
Modulo and Existentially Quantified Variables

### Instruction Count

<table>
<thead>
<tr>
<th></th>
<th>clang</th>
<th>gcc</th>
<th>icc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shifted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditional</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Code Size

<table>
<thead>
<tr>
<th></th>
<th>clang</th>
<th>gcc</th>
<th>icc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shifted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditional</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polyhedral Unrolling

Normal loop code

// Two e.q. variables
for (c0 = 0; c0 <= 7; c0 += 1)
    if (2 * (2 * c0 / 3) >= c0)
        S(c0);

// Multiple bounds
for (c0 = 0; c0 <= 1; c0 += 1)
    for (c1 = max(t1 - 384, t2 - 514);
        c1 < t1 - 255; c1 += 1)
        if (c1 + 256 == t1 ||
            (t1 >= 126 && t2 <= 255 &&
             c1 + 384 == t1) ||
            (t2 == 256 && c1 + 384 == t1))
            S(c0, c1);
Polyhedral Unrolling

Two variables

Multi Bound
Hybrid Hexagonal Tiling for Stencil Programs
AST Generation Strategies for Hybrid-Hexagonal Tiling

**Heat 2D**

<table>
<thead>
<tr>
<th>Options</th>
<th>GFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>30</td>
</tr>
<tr>
<td>all - isolation</td>
<td>25</td>
</tr>
<tr>
<td>all - IO unrolling</td>
<td>15</td>
</tr>
<tr>
<td>all - compute unrolling</td>
<td>10</td>
</tr>
<tr>
<td>all - modulo detection</td>
<td>5</td>
</tr>
</tbody>
</table>

**Heat 3D**

<table>
<thead>
<tr>
<th>Options</th>
<th>GFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>30</td>
</tr>
<tr>
<td>all - isolation</td>
<td>25</td>
</tr>
<tr>
<td>all - IO unrolling</td>
<td>15</td>
</tr>
<tr>
<td>all - compute unrolling</td>
<td>10</td>
</tr>
<tr>
<td>all - modulo detection</td>
<td>5</td>
</tr>
</tbody>
</table>
Clearly beneficial loop interchange

```c
void oddEvenCopy(int N, int M, float A[][M]) {
 for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
}
```

$\Rightarrow 15s$
Assumption: Fixed size arrays do not overflow

```c
void arrayOverflow(int N, float A[][20000]) {
 for (int i = 1; i < N; i++)
 for (int j = 1; j < M; j++) {
 S1: A[i][j-1] = ...;
 S2: A[i][j] = ...;
 S3: A[i][j+1] = ...;
 }
}
```
Simplify Assumptions

- $A_{S1} := \forall i, j : 1 \leq i < N \land 1 \leq j < M \implies 0 \leq j - 1 < 20000$
- $A_{S2} := \forall i, j : 1 \leq i < N \land 1 \leq j < M \implies 0 \leq j < 20000$
- $A_{S3} := \forall i, j : 1 \leq i < N \land 1 \leq j < M \implies 0 \leq j + 1 < 20000$
Run-time check generation

- Set of constraints $\rightarrow$ AST expression
- Arbitrary Presburger Formula
- Implemented in a polyhedral code generator (as part of isl)

```c
void arrayOverflow(int N, float A[][20000]) {
 if (M <= 19999) {
 // optimized code
 } else {
 // original code
 }
}
```
Optimistic Delinearization

```c
void copyOddEven(int N, float *Ptr) {

 #define A(x, y) Ptr[(x) * N + (y)]

 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 A(2 * j, i) = A(2 * j + 1, i);
}
```

Tobias Grosser, Sebastian Pop, Louis-Noël Pouchet, P. Sadayappan, and Sebastian Pop
Optimistic delinearization of parametrically sized arrays, ICS 2015
void copy(float A[][100], float B[][100],
   int DebugLevel, int N)
{
    for (int i = 0; i < N; i++)
      for (int j = 0; j < 100; j++)
        S1: A[j][i] = B[j][i];
        if (DebugLevel > 5)
          S2: printf("Column %d copied\n", i);
    }
}
void copy(struct Array A) {

    int tmp0, tmp1;
    tmp0 = size0(A);

    if (tmp0 > 0)
        tmp1 = size1(A); |

    for (int i = 0; i < tmp0; i++)
        for (int j = 0; j < tmp1; j++)
            S1: access(A, j, i) += ..;
}
Integer Overflow

void overflow(unsigned n, unsigned m, float A[]) {
  for (unsigned i = 0; i < n; i++) {
    A[i] = 0;
  }
  for (unsigned i = 0; i < n + m; i++) {
    A[i] = 1;
  }
}