Using livm-exegesis to
Benchmark Memory-accessing
Straightline Assembly

Aiden Grossman

UCDAVIS

COMPUTER SCIENCE

The Case for Benchmarking

Tools like llvm-mca will never
be 100% accurate.

Need some obtaining ground
truth data for systematic
evaluation of performance
analysis tools.

Generation of training data
for learned cost models.

BHivey

BHivey

pArch Predictor MAPE Kendall

uiCA 0.45%
Ithemal 8.28%
JACA 3.0 13.49%
IACA 2.3 11.85%
OSACA 14.95%
SKL llvm-mca-10 15.61%
llvm-mca-8 15.39%
Diff Tune 24.48%
CQA
Measured [13] 4.40%
Baseline 17.28%

0.9798
0.8172
0.7802
0.8071

0.7639
258

0.7434
0.6626

).
0.
).

0.9113
0.7228

MAPE Kendall

0.38%
13.66%
14.26%

8.42%
11.25%
12.01%
11.98%

104.88%

7.44%

10.03%

0.9895
0.7582
0.8290
0.8477
0.8045
0.8015
0.8021
0.6426
0.8847

0.7999

Chart from “uiCA: Accurate Throughput Prediction of Basic Blocks

on Recent Intel Microarchitectures”.

COMPUTER SCIENCE

Mircobenchmarking is difficult

. Details like kernel interrupts and TLB/cache misses can have a
massive impact on benchmark results.

.- Creating the execution environment in regards to elements like
memory can be difficult.

Solution (for the second part): memory annotations in llvm-exegesis

Memory Annotations

. LLVM-EXEGESIS-MEM-DEF <value name> <size> <value> - Allows the
definition of a value that can be mapped into memory.
. LLVM-EXEGESIS-MEM-MAP <value name> <address> - Maps a

memory value into the virtual address space of the benchmark.

Separate definitions/mapping to ensure control over pages.

Important if no L1 cache misses are desired.

How does this work?

> Clear virtual address Execute Snippet
space

Memory Definition Setup Fork Benchmarking Setup Performance} Collect Performance Cleanup/Report
: —>
Snippet Assembly Subprocess Counters J Data Results

Case Study: A Basic Block Accessing Memory

Let’s say we have the following basic assembly:

addg (%rax), 5srll
addg (%srcx), 5srll

Both instructions access memory, so we need to add memory
annotations.

Case Study: Memory Annotations

Now let’s add in some memory annotations

LLVM-EXEGESIS-MEM-DEF examplel 4096 42
LLVM-EXEGESIS-MEM-MAP examplel 131072
LLVM-EXEGESIS-MEM-MAP example2 262144
LLVM-EXEGESIS-DEFREG RAX 20000
LLVM-EXEGESIS-DEFREG RCX 40000

addg (%rax), 5srll

addg (%rcx), 5srll

H H= HF FH FF

This will use a single page of memory.

Case Study: Benchmarking

Now let’s run this through llvm-exegesis:

llvm-exegesis -mode=latency -snippets-file=path/to/snippet.S
—execution-mode=subprocess

Will return measurements:

measurements:
- { key: latency, value: 1.0811, per snippet value: 2.1622 }

(These results are from a znver2 machine)

Limitations/Future Work

. Currently not a battle tested implementation. Systematic accuracy
analysis/extensive testing being worked on.
Minor quirks such as hex/decimal values in different places.

Results can be fairly noisy.

No measurements/control over variables like kernel interrupts/cache misses
currently.

. Automatic memory annotations given register values also being
worked on.

