
A Domain-specific Compilation Framework for
High-performance Fast Fourier Transform

Yifei He Artur Podobas Stefano Markidis

Motivation

Discrete Fourier Transforms (DFT) and their efficient formulations,
called Fast Fourier Transforms (FFT), are a critical building block for
efficient and high-performance data analysis and scientific computing.

Existing FFT libraries such as the Fastest Fourier Transform in the
West (FFTW) library, was first designed and implemented with
compiler technologies, nowadays outdated and support only multicore
CPUs and not GPUs:
▶ Lack of portability over heterogeneous hardware
▶ Cannot utilize the evolving compiler community
▶ Emit C level code, lack of control on low level

compilation

Frontend: The FFTc DSL

The Cooley-Tukey general-radix decimation-in-time algorithm for an
input of size N can be written as:

DFTN = (DFTK ⊗ IM) DN
M(IK ⊗ DFTM) ΠN

K with N = MK , (1)
where ΠN

K is a stride permute operator and DN
M is a diagonal matrix of

twiddle factors. DFT for an input of size four, in matrix formulation:

DFT4 =


1 1

1 1
1 −1

1 −1


︸ ︷︷ ︸

DFTm ⊗ In


1

1
1

−i




1 1
1 −1

1 1
1 −1


︸ ︷︷ ︸

I2 ⊗ DFT2


1

1
1

1

 , (2)

An example source code of our DSL is shown in Listing 1. It’s
designed as a declarative representation of FFT tensor Algorithm.
Here, we propose to keep inputs as similar to abstract mathematical
expressions as possible, such as Eq. (1).
1 var InputReal <4, 1> = [[1], [2], [3], [4]];

2 var InputImg <4, 1> = [[1], [2], [3], [4]];

3 var InputComplex = createComplex(InputReal , InputImg);

4 var result = (DFT(2) ⊗ I(2)) · twiddle (4,2) · (I(2) ⊗ DFT (2)) ·
Permute (4,2) · InputComplex;

Listing 1: DSL FFT language

1

FFT Dialect: Abstractions in MLIR

The FFT dialect wraps the operations, attributes, and types to
represent the FFT formula.

Table: From FFTc DSL to FFT Dialect MLIR
FFTc DSL FFT Dialect

createComplex(A, B) fft.createCT(a,b)
A · B fft.matmul a, b :
A ⊗ B fft.kroneckerproduct a, b

twiddle (a,b) fft.twiddle (a , b)
I(size) fft.identity (a)

DFT(size) fft.dft(a)
Permute (a ,b) fft.Permute(a, b)

The FFT dialect carries high-level information about the FFT
computation. We perform the Sparse Fusion Transform (SFT) that
performs the tensor products using sparse matrix formats.

FFT Compilation Pipeline

FFTc DSL

FFT 

MLIR Python Binding

Sparse Fusion

Affine

Bufferization

Complex Mem Rep

Affine Scalrep

Affine Polyhedral:
e.g., Loop Tiling

Vector

LLVM

Super Vectorize

GPU

Translation Convert Affine For to GPU

LLVMNon-Vec

Vec

LLVM

Complex 
Type

Array of 
Floating 
Point

1

3

2

4

5

6

A progressive lowering compilation pipeline, which consists of
high-level domain-specific optimizations in MLIR and target-specific
transformations in MLIR and LLVM.

Vectorization

We explore three vectorizers in MLIR and LLVM:
▶ MLIR Super-vectorize on Affine loops
▶ LLVM SLP Vectorizer (Innermost Loop)
▶ LLVM VPlan Vectorizer (Outermost Loop)

1 2 3 4 5 6 7 8

1 3 5 7 2 4 6 8

Memory

SIMD 

Register

Gather

(a) Directly Load Complex Data
Using Gather Instructions

1 2 3 4 5 6 7 8

1 3 5 7 2 4 6 8

1 2 3 4 5 6 7 8Memory

SIMD 

Register

SIMD 

Register

Consecutive Load

Shuffle

(b) Optimized Interleaved Memory
Access

Figure: Pack Complex Data into SIMD Registers during Auto-vectorization

Results

64 12
8

25
6

51
2

10
24

FFT Size

500

1000

1500

2000

2500

3000

sp
ee

d(
m

flo
ps

)

Tiling
Interleave
Vectorization
Sparsified

(a) Different and combined
optimizations on CPU.

64 12
8

25
6

51
2

10
24

FFT Size

0

500

1000

1500

2000

2500

3000

sp
ee

d(
m

flo
ps

)

FFTc_SLP
FFTc_VPlan
FFTc_MLIR_Vec

(b) Different vectorizers approaches
on CPU.

Future Work

Datalay
out

Tanslation Formula
Rewriting

Operator
Fusion/

Schedluing

Bufferization/
Optimization

FFTLang FFT Linalg Affine

Translation

LLVM

Runtime

Compilation Time
MIddle-end 

Optimization/
Code Generation

for CPU target

GPU Target

FFT Plan 
Generation

Cost Model
Plan 

Selection
Task 

Scheduling
…...

...

Autotuning


