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Motivation

Discrete Fourier Transforms (DFT) and their efficient formulations,
called Fast Fourier Transforms (FFT), are a critical building block for
efficient and high-performance data analysis and scientific computing.

Existing FFT libraries such as the Fastest Fourier Transform in the
West (FFTW) library, was first designed and implemented with
compiler technologies, nowadays outdated and support only multicore
CPUs and not GPUs:
▶ Lack of portability over heterogeneous hardware
▶ Cannot utilize the evolving compiler community
▶ Emit C level code, lack of control on low level

compilation

Frontend: The FFTc DSL

The Cooley-Tukey general-radix decimation-in-time algorithm for an
input of size N can be written as:

DFTN = (DFTK ⊗ IM) DN
M(IK ⊗ DFTM) ΠN

K with N = MK , (1)
where ΠN

K is a stride permute operator and DN
M is a diagonal matrix of

twiddle factors. DFT for an input of size four, in matrix formulation:
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An example source code of our DSL is shown in Listing 1. It’s
designed as a declarative representation of FFT tensor Algorithm.
Here, we propose to keep inputs as similar to abstract mathematical
expressions as possible, such as Eq. (1).
1 var InputReal <4, 1> = [[1], [2], [3], [4]];

2 var InputImg <4, 1> = [[1], [2], [3], [4]];

3 var InputComplex = createComplex(InputReal , InputImg);

4 var result = (DFT(2) ⊗ I(2)) · twiddle (4,2) · (I(2) ⊗ DFT (2)) ·
Permute (4,2) · InputComplex;

Listing 1: DSL FFT language
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FFT Dialect: Abstractions in MLIR

The FFT dialect wraps the operations, attributes, and types to
represent the FFT formula.

Table: From FFTc DSL to FFT Dialect MLIR
FFTc DSL FFT Dialect

createComplex(A, B) fft.createCT(a,b)
A · B fft.matmul a, b :
A ⊗ B fft.kroneckerproduct a, b

twiddle (a,b) fft.twiddle (a , b)
I(size) fft.identity (a)

DFT(size) fft.dft(a)
Permute (a ,b) fft.Permute(a, b)

The FFT dialect carries high-level information about the FFT
computation. We perform the Sparse Fusion Transform (SFT) that
performs the tensor products using sparse matrix formats.
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A progressive lowering compilation pipeline, which consists of
high-level domain-specific optimizations in MLIR and target-specific
transformations in MLIR and LLVM.

Vectorization

We explore three vectorizers in MLIR and LLVM:
▶ MLIR Super-vectorize on Affine loops
▶ LLVM SLP Vectorizer (Innermost Loop)
▶ LLVM VPlan Vectorizer (Outermost Loop)
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Figure: Pack Complex Data into SIMD Registers during Auto-vectorization
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(a) Different and combined
optimizations on CPU.
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