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BiSheng Compiler

 LLVM-based C/C++/Fortran compiler developed by Huawei.

› Under development since late 2019.

 Primarily optimized for Kunpeng AArch64 servers.

 Supports X86 as well.

 We have talked about BiSheng internals in LLVM Dev meeting and other 

conferences in the past couple of years.
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Data layout optimizations

 Many well-known data layout optimizations in the literature.

› Array of Structure to Structure of Arrays. (AKA structure peeling).

» See the picture.

› Array reorganization.

› Structure repacking.

 Improve spatial locality of memory accesses

› Better cache utilization.

› Better memory bandwidth utilization.

 Critical for SPEC CPU benchmarks.

 Previous talk at LATHC workshop (CGO 2023) covers our new approach to structure peeling
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The new data layout optimization

 We introduce our new optimization: Nested Container Flattening

 Will explain the name during this presentation.

 What is covered:

› High level description of the transformation and the motivation behind it.

› Major issues in legality analysis

 What is not covered

› Details of transformation

› Details of legality analysis

› Cost analysis
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The problem

class A {

public:
B *b;

};

class B {

public:
C *c;

};

class C {

public:
std::vector<D *> d;

};

void func(A *a) {
……
a->b[i].c->d[k]->DoWork();
……

}
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 Objects in different arrays are likely to be in different memory locations. 

 Each load is likely to cause a cache miss. 

 Intermediate loads has no other use.
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How to make it faster?
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 All D pointers reachable from an A object are now copied within that object.

 Old D pointers may or may not be removed.

 Nested Container Flattening
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Legality analysis

 Compiler needs very deep understanding of life time of the objects involved. 

 This requires the ability to analyze where the objects are created and where the 

fields are written to or read from.

 It looks like we need pointer analysis.

 In a C++ workload, it is not likely that pointer analysis can reach the precision 

level that we need, while  being fast enough.

 We mostly rely on preserving C++ source code level information and analyzing 

that in the mid-end.

› Full legality analysis is complex and has many details.

› We just explain two central concepts: Nested objects, Containers.

› This completes explanation of the name: Nested Container Flattening.
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Legality analysis: Nested Objects

 Saying b is Nested in class A means

› There is no access to b outside of class A member functions.

› Entire lifetime of b, from allocation to deallocation, is within the lifetime of an A object.

› Relying on C++ source code information to prove this property requires considering many different 

C++ features and intricacies. Some pointer analysis is still needed.

› It is easier to reason about a nested B object.

» e.g. Consider only relevant B member functions.

» See the toy example on the right.

» Only two functions are relevant. 

class A {

B *b;

public:
void func() {

b = new B();
b->func1();
b->func2();
delete b;

}
};

class B {
int x; 
int y;

public:
void func1();
void func2();
void func3();
void func4();

};
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Legality Analysis: Containers

 What does it mean to say object b is a container?

 Intuitively, that means some information is passed to b and

preserved.

class A {

B *b; // b is nested in A.
// only b->addNewObject() is called.

};

class B {
int x; 
C* c; // array of C objects

public:
void addNewObject(C &c);
void removeLast();
void updateLast();
void updateAll();

};
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How useful is an optimization like this?

 Data layout optimizations are usually too complex.

› It is hard to prove their legality

› It is hard to perform the transformation

 The optimization is not triggered that often.

 We get 35% improvement on a SPEC benchmark, what else?

 The infrastructure developed is usually useful beyond the optimization itself.

 Many DL opts require a good pointer analysis.

› Pointer analysis is useful beyond these optimizations.

 We believe our ideas for legality analysis of this new transformation are useful 

beyond this optimization.

› Some potential applications of these techniques for other optimizations are under investigation.
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