
Compromises with large
x86-64 binaries

Arthur Eubanks

Link errors with large binaries

a.o:(function foo: .text+0x100): relocation
R_X86_64_REX_GOTPCRELX out of range: 2214879970 is not in
[-2147483648, 2147483647]; references 'bar'

relocation R_X86_64_PC32 out of range: 2158227201 is not in
[-2147483648, 2147483647]

static int i;

int* f() {
 return &i;
}

Object file:
f:
 lea rax, [rip + i]
 ret

Linked executable:
f:
 lea rax, [rip + 0x2ebd]
 ret

.rodata (immutable data)

.text (code)

.data (mutable data)

.bss (mutable data, 0 initialized)

Position Independent Code

-fpic

(default nowadays)

f:
 lea rax, [rip + 0x2ebd]
 ret

-fno-pic -Wl,--no-pie

(default back in the day)

f:
 mov eax, 0x404014
 ret

extern int i;

int* f() {
 return &i;
}

Object file:
f:
 mov rax, qword ptr [rip + i@GOTPCREL]
 ret

Linked executable:
f:
 mov rax, qword ptr [rip + 0x2e71]
 ret

.rodata

.text

.got (global offset table)

.data

.bss

.rodata

.text

.data

.bss

main executable

a.so

extern int i;

int* f() {
 return &i;
}

// b.c
// same executable
int i;

Object file:
f:
 mov rax, qword ptr [rip + i@GOTPCREL]
 ret

Linked executable:
f:
 mov rax, qword ptr [rip + 0x2e71]
 lea rax, [rip + 0x2ebd]
 ret

.rodata

.text

.got (global offset table)

.data

.bss

main executable
(-Wl,--no-relax)

.rodata

.text

.got (global offset table)

.data

.bss

main executable
(-Wl,--relax, default)

R_X86_64_REX_GOTPCRELX

● lld relaxed unconditionally for simplicity
● Downsides of -Wl,--no-relax

○ Extra load when getting address of a global
○ Slightly larger GOT
○ Slightly longer startup time

● D157020 makes this conditional on if rip offset fits in 32-bit signed integer
○ Fixpoint iteration

https://reviews.llvm.org/D157020

External globals are fixed!
Static globals?

x86-64's medium code model

● Assume data may be further than 2GB from text
○ lea rax, [rip + i] won't work

● So instead we add a 64-bit constant from some base
○ ; get (absolute) address of GOT relative to rip

lea rcx, [rip + _GLOBAL_OFFSET_TABLE_]
; get address of global relative to GOT
; offset i@GOTOFF is a link-time constant
movabs rax, offset i@GOTOFF
; get absolute address of global
add rax, rcx

● Wow, this is terrible!

gcc's -mlarge-data-threshold

● Split globals into "large" and "small" data based on size of the global
○ Hopefully large data makes up a good portion of binary size

● Place large data farther away from text (SHF_X86_64_LARGE section flag)
● Hopefully performance of accessing large data is negligible
● Trade performance for relocation pressure .lrodata

.rodata

.text

.data

.bss

.ldata

.lbss

.rodata

.text

.data

.bss

clang/lld changes

● Place large data sections farther from text (lld)
● Set SHF_X86_64_LARGE flag for data sections in medium/large code model

(LLVM codegen)
● Add large data threshold for medium code model (LLVM codegen)
● Add -mlarge-data-threshold (Clang)
● Match gcc's default -mlarge-data-threshold (Clang)
● Feature parity with gcc's x86-64 (PIC) medium code model!

https://reviews.llvm.org/D150510
https://reviews.llvm.org/D148836
https://reviews.llvm.org/D148836
https://reviews.llvm.org/D149288
https://github.com/llvm/llvm-project/pull/66839
https://github.com/llvm/llvm-project/pull/67506

Future work

● Ability to mark specific globals as large
○ Instrumentation-added globals

● Try making all global references go through GOT
○ Static globals no longer contribute to relocation pressure

● Code size over 2GB?
○ Function calls have the same 32-bit signed integer restriction
○ Large code model exists but is expensive

Thanks!

aeubanks@google.com

https://discourse.llvm.org/

