Compromises with large
x80-64 binaries

Arthur Eubanks

Link errors with large binaries

a.o:(function foo: .text+0x100): relocation
R_X86_64_REX_GOTPCRELX out of range: 22148799760 is not in
[-2147483648, 2147483647]: references 'bar'

relocation R_X86_64_PC32 out of range: 2158227261 is not in
[-2147483648, 2147483647]

static int 1i; Object file:
.
int* f() { lea rax, [rip + i]
return &i; ret
}
Linked executable:
.
lea rax, [rip + Ox2ebd]
ret

.rodata (immutable data)

text (code)

.data (mutable data)

.bss (mutable data, 0 initialized)

Position Independent Code

-fpic -fno-pic -W1,--no-pie
(default nowadays) (default back in the day)
f: f:

lea rax, [rip + Ox2ebd] mov eax, 0x404014

ret ret

extern int 1i; Object file:
.
int* f() { mov rax, gword ptr [rip + i@GOTPCREL]
return &i; ret

}

Linked executable:

T
mov rax, qgword ptr [rip + Ox2e71]
ret

main executable

.rodata

text

.got (global offset table)

.data

.bss

"

a.so

.rodata

text

.data

.bss

extern int 1i; Object file:

.
int* f() { mov rax, gword ptr [rip + i@GOTPCREL]
return &i; ret
}
Linked executable:
// b.c .
// same executable e ase— e et p—— G2 e -
int i; lea rax, [rip + Ox2ebd]

ret

main executable
(-W1, --no-relax)

.rodata

text

.got (global offset table)

.data

.bss

>
>

main executable
(-W1, --relax, default)

.-rodata

text

-got{global-offsettable)

.data

.bss

R X86 64 REX GOTPCRELX

e |ld relaxed unconditionally for simplicity

e Downsides of -W1, --no-relax
o Extra load when getting address of a global
o Slightly larger GOT
o Slightly longer startup time
e D157020 makes this conditional on if rip offset fits in 32-bit signed integer

o Fixpoint iteration

https://reviews.llvm.org/D157020

External globals are fixed!

Static globals?

x86-64's medium code model

e Assume data may be further than 2GB from text
o lea rax, [rip + i] won't work

e So instead we add a 64-bit constant from some base
o ; get (absolute) address of GOT relative to rip

lea rcx, [rip + _GLOBAL_OFFSET_TABLE_]
; get address of global relative to GOT
: offset i@GOTOFF is a link-time constant
movabs rax, offset i@GOTOFF
; get absolute address of global
add rax, rcx

e \Wow, this is terrible!

gcc's -mlarge-data-threshold

e Split globals into "large" and "small" data based on size of the global
o Hopefully large data makes up a good portion of binary size

e Place large data farther away from text (SHF _X86_64_LARGE section flag)
e Hopefully performance of accessing large data is negligible

e Trade performance for relocation pressure Irodata

.rodata

.rodata text

zext .data

.data bss

.bss data

/AN N\

Ibss

clang/lld changes

e Place large data sections farther from text (lid)

Set SHF_X86_64_L ARGE flag for data sections in medium/large code model
(LLVM codegen)

Add large data threshold for medium code model (LLVM codegen)

Add -mlarge-data-threshold (Clang)

Match gcc's default -mlarge-data-threshold (Clang)

Feature parity with gcc's x86-64 (PIC) medium code model!

https://reviews.llvm.org/D150510
https://reviews.llvm.org/D148836
https://reviews.llvm.org/D148836
https://reviews.llvm.org/D149288
https://github.com/llvm/llvm-project/pull/66839
https://github.com/llvm/llvm-project/pull/67506

Future work

e Ability to mark specific globals as large
o Instrumentation-added globals
e Try making all global references go through GOT
o Static globals no longer contribute to relocation pressure
e Code size over 2GB?

o Function calls have the same 32-bit signed integer restriction
o Large code model exists but is expensive

Thanks!

aeubanks@google.com

https://discourse.llvm.org/

