
Lang Hames
October 11th 2023

What’s New in the LLVM JIT

In November 2021…

In November 2021…

Components:

ORC Core

JITLink

ORC Runtime

In November 2021…

Components:

ORC Core

JITLink

ORC Runtime

Features:

Use regular compilers

Laziness

Concurrency

Out-of-process Execution

Low-level Control

Dynamic loader features

In November 2021…

Components:

ORC Core

JITLink

ORC Runtime

Features:

Use regular compilers

Laziness

Concurrency

Out-of-process Execution

Low-level Control

Dynamic loader features

ORCv2 Deep Dive: https://youtu.be/i-inxFudrgI

https://youtu.be/i-inxFudrgI

Since then…

Since then…

Many new users and contributors — thank you to everyone involved!

Since then…

Many new users and contributors — thank you to everyone involved!

• Platform Coverage

Since then…

Many new users and contributors — thank you to everyone involved!

• Platform Coverage
• Features

Since then…

Many new users and contributors — thank you to everyone involved!

• Platform Coverage
• Features
• Quality

Since then…

Many new users and contributors — thank you to everyone involved!

• Platform Coverage
• Features
• Quality
• Convenience

Since then…

Many new users and contributors — thank you to everyone involved!

• Platform Coverage
• Features
• Quality
• Convenience

Time to talk about MCJIT / RuntimeDyld deprecation

Platform Coverage

In November 2021…

Darwin Linux / BSD
x86-64 🟢 🟧
aarch64 🟢
RISC-V 🟢

🟢 = useable 🟧 = partial support

In October 2023…

Darwin Linux / BSD Windows
x86-64 🟢 🟢 🟢
aarch64 🟢 🟢
RISC-V 🟢

LoongArch 🟢
PowerPC 64 🟢
aarch32 🟧
i386 🟧

In October 2023…

Darwin Linux / BSD Windows
x86-64 🟢 🟢 🟢
aarch64 🟢 🟢
RISC-V 🟢

LoongArch 🟢
PowerPC 64 🟢
aarch32 🟧
i386 🟧

Native Windows JITing in LLVM: https://youtu.be/UwHgCqQ2DDA

https://youtu.be/UwHgCqQ2DDA

In 2024…?

Darwin Linux / BSD Windows
x86-64 🟢 🟢 🟢
aarch64 🟢 🟢 💖
RISC-V 🟢

LoongArch 🟢
PowerPC 64 🟢
aarch32 🟧
i386 🟧
BPF 💖

In 2024…?

Darwin Linux / BSD Windows
x86-64 🟢 🟢 🟢
aarch64 🟢 🟢 💖
RISC-V 🟢

LoongArch 🟢
PowerPC 64 🟢
aarch32 🟧 🤷
i386 🟧 🤷
BPF 💖
MIPS 🤷

Features

New Features — Darwin

New Features — Darwin

• Swift and Objective-C support

• Register language metadata sections using _objc_map_images
and _objc_load_image (same approach as dyld)

• Swift Extensions and Objective-C Categories now work

• Swift / Objective-C interoperability is improved

New Features — Darwin

• Swift and Objective-C support

• Register language metadata sections using _objc_map_images
and _objc_load_image (same approach as dyld)

• Swift Extensions and Objective-C Categories now work

• Swift / Objective-C interoperability is improved

• Improved JIT’d code debugging

• Communicate memory layout changes to debugger via STABS

New Features — Memory Management, Profiling

New Features — Memory Management, Profiling

• MapperJITLinkMemoryManager — Anubhab Ghosh

• Reserve address space up front to avoid out-of-range errors

• Supports using shared memory for JIT’d code / data

• See Anubhab’s talk: https://youtu.be/dosXtBAFWiE

https://youtu.be/dosXtBAFWiE
https://reviews.llvm.org/D146411

New Features — Memory Management, Profiling

• MapperJITLinkMemoryManager — Anubhab Ghosh

• Reserve address space up front to avoid out-of-range errors

• Supports using shared memory for JIT’d code / data

• See Anubhab’s talk: https://youtu.be/dosXtBAFWiE

• PerfSupportPlugin — Prem Chintalapudi

• Enables Linux Perf profiling for JIT’d code

• VTune support https://reviews.llvm.org/D146411 (needs new owner)

https://youtu.be/dosXtBAFWiE
https://reviews.llvm.org/D146411

New Features — Reoptimization

New Features — Reoptimization

• Compile code at a low optimization level

New Features — Reoptimization

• Compile code at a low optimization level

• Re-compile hot code at a higher level and swap in implementation

New Features — Reoptimization

• Compile code at a low optimization level

• Re-compile hot code at a higher level and swap in implementation

• See Sunho Kim’s talk at 4:15pm today!

Quality

Quality

Quality

% grep -R report_fatal_error lib/ExecutionEngine | wc -l

 59

% grep -R report_fatal_error lib/ExecutionEngine/{Orc,JITLink} | wc -l

 0

Quality

Quality

• Improved error handling

• Better plumbing, unit and regression tests for error paths

Quality

• Improved error handling

• Better plumbing, unit and regression tests for error paths

• More async operations, fewer mutexes

• Definition generator serialization is now via suspension, not mutex

Quality

• Improved error handling

• Better plumbing, unit and regression tests for error paths

• More async operations, fewer mutexes

• Definition generator serialization is now via suspension, not mutex

• Reduced library dependencies, code size

• APIs needing DWARF have been moved to OrcDebugging

Convenience

auto J = LLJITBuilder().create();

Process Symbols

Before:

auto J = ExitOnErr(LLJITBuilder().Create()); 
J->getMainJITDylib().addGenerator( 
 ExitOnErr(DynamicLibrarySearchGenerator:: 
 GetForCurrentProcess( 
 J->getDataLayout().getGlobalPrefix())));

Process Symbols

After:

auto J = ExitOnErr(LLJITBuilder().create());

Process Symbols

Disable:

auto J = ExitOnErr( 
 LLJITBuilder() 
 .setLinkProcessSymbolsByDefault(false) 
 .create());

Linking Against Precompiled Libraries

J.loadDynamicLibrary("libX.so")

J.linkStaticLibraryInto( 
 J.getMainJITDylib(), "libX.a")

Using the ORC Runtime

• Build compiler-rt:

Add -DLLVM_ENABLE_RUNTIMES=compiler-rt to cmake

auto J = LLJITBuilder() 
 .setPlatformSetUp( 
 ExecutorNativePlatform("liborc_rt.a")) 
 .create();

Enable debugger support

Link libLLVMOrcDebugging.a, call

enableDebuggerSupport(J)

Where to next?

Road to MCJIT Deprecation

Road to MCJIT Deprecation

• Platform coverage: Almost there (in many cases better already)

Road to MCJIT Deprecation

• Platform coverage: Almost there (in many cases better already)

• Debugger support: Already better

Road to MCJIT Deprecation

• Platform coverage: Almost there (in many cases better already)

• Debugger support: Already better

• Profiling support: Mostly there (do we need OProfile?)

Road to MCJIT Deprecation

• Platform coverage: Almost there (in many cases better already)

• Debugger support: Already better

• Profiling support: Mostly there (do we need OProfile?)

• Quality: Already higher

Road to MCJIT Deprecation

• Platform coverage: Almost there (in many cases better already)

• Debugger support: Already better

• Profiling support: Mostly there (do we need OProfile?)

• Quality: Already higher

• Stability: Need to be stable enough

Road to MCJIT Deprecation

• Platform coverage: Almost there (in many cases better already)

• Debugger support: Already better

• Profiling support: Mostly there (do we need OProfile?)

• Quality: Already higher

• Stability: Need to be stable enough

• Can we define a MCJIT-like subset that we can stabilize?

Get Involved

• JITLink backends — Windows / aarch64, Linux / BPF, others…?

• Profiling support — VTune needs an owner, OProfile still needed

• API design

• Library Layering

• Testing

• Documentation

