
Profiling-Based
Global Machine Outlining

Gai Liu, Bo Hu, Zhuoli Li, Nian Sun, Luchuan Guo

Machine Outlining

1

ldr x8, [x19, #8]
str x0, [x19, #8]
mov x0, x8
bl _objc_release
mov x0, x19
…
ldr x8, [x19, #8]
str x0, [x19, #8]
mov x0, x8
bl _objc_release
…

bl OUTLINED_FUNCTION_1
mov x0, x19
…
bl OUTLINED_FUNCTION_1
…

OUTLINED_FUNCTION_1:
 ldr x8, [x19, #8]
 str x0, [x19, #8]
 mov x0, x8
 b _objc_release

• Replacing repeated sequences of instructions with calls to equivalent
functions [Paquette, 2016]

Global Machine Outlining
• Goal: outline common sequences across compilation units

• Use LTO-based techniques
• Example: correctly deciding to outline seqA from different CUs

2

a.o:
seqA
seqB

b.o:
seqA
seqC

ab_merged.o:
seqA
seqB

…
seqA
seqC

a.o:
seqA
seqB

b.o:
seqA
seqC

summary:
seqA: twice
seqB: once
seqC: once

No LTO FullLTO ThinLTO

missed opportunity compile time too long

Two-Round ThinLTO [Lee, et al., 2020]

• 1st round: gather MIR hashes
(summary) of outlined
functions

• 2nd round: outline more
candidates that match MIR
hashes

• compile time increased by
~50%

3

.o .o .o .o
frontend

linker

Traditional linking

.bc .bc .bc .bc

opt opt opt opt

CG CG CG CG1st codegen round

CG CG CG CG2nd codegen round

Collect MIR hashes of outlining candidates

Our Proposal
• Observation

• Production apps evolve slowly
• Summaries change little in consecutive builds

• Idea
• Decouple summary generation and summary consumption

• Like profile-guided optimization, but “profiling” done during compilation
• Summary generation done offline during profile builds
• Production builds are now faster since they directly read the summary

4

High Level Design

5

a.bc b.bc c.bc

passes

machine
outliner

local summary
of outlineable

sequences

passes

machine
outliner

local summary
of outlineable

sequences

passes

machine
outliner

local summary
of outlineable

sequences

global summary of
outlineable sequences

Profile build: generate the summary

merge into
global info

a.bc b.bc c.bc

passes

machine
outliner

a.o

passes

machine
outliner

b.o

passes

machine
outliner

c.o

Production build: use the summary

query
global info

linker: deduplicates identical
outlined functions

Implementation Details
• Each entry in the summary is a pair of (sequence hash, frequency)
• Summary reading speed is key to reduce overall compile time overhead

• Small summary file: add option –min-seq-freq controls the minimum occurrence of
sequences in the summary

• Fast lookup: sort entries based on hash values to speed up lookup during production
runs

• In production build, machine outliner considers every sequence within
certain sizes:

• 𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 𝐺𝑙𝑜𝑏𝑎𝑙𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡 ∗ 𝑃𝑒𝑟𝐶𝑎𝑙𝑙𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑆𝑖𝑧𝑒 +
𝐹𝑟𝑎𝑚𝑒𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑

• 𝑁𝑜𝑡𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 	𝐺𝑙𝑜𝑏𝑎𝑙𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡 ∗ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑆𝑖𝑧𝑒
• Beneficial if 𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡 < 𝑁𝑜𝑡𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡

6

Experiment

7

1.0000

0.8994 0.8992 0.9005 0.9046 0.9075

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

base min-freq=2 min-freq=3 min-freq=4 min-freq=6 min-freq=8

Normalized Binary Size
1.00

0.46

0.29

0.16
0.11

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

min-freq=2 min-freq=3 min-freq=4 min-freq=6 min-freq=8

Normalized Summary File Size

• Tested on a demo Swift app (~10MB binary size)
• min-freq controls the minimum frequency of sequences in the summary

• Sequences with occurrence < min-freq are dropped

• Compile time increase is barely measurable due to small app size
• <10% compile time increase in our internal large apps with min-freq >= 4

Conclusions
• Compilation time for production builds is an important metric in

our build flow
• We proposed a profiling-based technique to speed up global

machine outlining without reducing its effectiveness
• The proposed technique could potentially be applied to other

ThinLTO-like optimizations

8

