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Machine Outlining
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ldr x8, [x19, #8]
str x0, [x19, #8]
mov x0, x8
bl  _objc_release
mov x0, x19
…
ldr x8, [x19, #8]
str x0, [x19, #8]
mov x0, x8
bl  _objc_release
…

bl OUTLINED_FUNCTION_1 
mov x0, x19
…
bl OUTLINED_FUNCTION_1 
…

OUTLINED_FUNCTION_1:
  ldr x8, [x19, #8]
  str x0, [x19, #8]
  mov x0, x8
  b _objc_release

• Replacing repeated sequences of instructions with calls to equivalent 
functions [Paquette, 2016]



Global Machine Outlining
• Goal: outline common sequences across compilation units

• Use LTO-based techniques
• Example: correctly deciding to outline seqA from different CUs
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a.o:
seqA
seqB

b.o:
seqA
seqC

ab_merged.o:
seqA
seqB

…
seqA
seqC

a.o:
seqA
seqB

b.o:
seqA
seqC

summary:
seqA: twice
seqB: once
seqC: once 

No LTO FullLTO ThinLTO

missed opportunity compile time too long



Two-Round ThinLTO [Lee, et al., 2020] 

• 1st round: gather MIR hashes 
(summary) of outlined 
functions

• 2nd round: outline more 
candidates that match MIR 
hashes

• compile time increased by 
~50%
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Collect MIR hashes of outlining candidates



Our Proposal
• Observation

• Production apps evolve slowly 
• Summaries change little in consecutive builds

• Idea
• Decouple summary generation and summary consumption

• Like profile-guided optimization, but “profiling” done during compilation
• Summary generation done offline during profile builds
• Production builds are now faster since they directly read the summary
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High Level Design
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Implementation Details
• Each entry in the summary is a pair of (sequence hash, frequency)
• Summary reading speed is key to reduce overall compile time overhead

• Small summary file: add option –min-seq-freq controls the minimum occurrence of 
sequences in the summary

• Fast lookup: sort entries based on hash values to speed up lookup during production 
runs

• In production build, machine outliner considers every sequence within 
certain sizes:

• 𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 𝐺𝑙𝑜𝑏𝑎𝑙𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡 ∗ 𝑃𝑒𝑟𝐶𝑎𝑙𝑙𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑆𝑖𝑧𝑒 +
𝐹𝑟𝑎𝑚𝑒𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑

• 𝑁𝑜𝑡𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡 = 	𝐺𝑙𝑜𝑏𝑎𝑙𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝐶𝑜𝑢𝑛𝑡 ∗ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑆𝑖𝑧𝑒
• Beneficial if 𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡 < 𝑁𝑜𝑡𝑂𝑢𝑡𝑙𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡
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Experiment
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• Tested on a demo Swift app (~10MB binary size)
• min-freq controls the minimum frequency of sequences in the summary

• Sequences with occurrence < min-freq are dropped

• Compile time increase is barely measurable due to small app size
• <10% compile time increase in our internal large apps with min-freq >= 4



Conclusions
• Compilation time for production builds is an important metric in 

our build flow
• We proposed a profiling-based technique to speed up global 

machine outlining without reducing its effectiveness
• The proposed technique could potentially be applied to other 

ThinLTO-like optimizations

8


