
10/11/2023 @ LLVM developers’ meeting

APX & AVX10
The next major evolution of
Intel® architecture

2SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

AVX10: Advanced Vector Extensions

• Introduces generational umbrella enumeration of all vector ISA
• Replaces current numerous disjoint vector features of AVX/AVX2/AVX-512.
• Single CPUID for AVX10 version number and the max supported vector length (VL)
• All future Intel CPUs will support some version of AVX10, at least AVX10.1/256

• AVX10.1/256: supported on all Intel CPUs (P/E-cores)
• All modern AVX-512 vector instructions with a maximum VL=256
• 32 vector register (through EVEX prefix)
• 8 mask registers (32-bit)
• New: embedded rounding with 256-bit instructions

• AVX10.1/512: will continue to be supported in all P-cores.
• Inclusive: AVX10.N supports all of AVX10.N-1 plus new features!

The converged vector ISA for all Intel CPUs

3SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

AVX10: enabling in SW

• -m[no-]evex512
• A proxy option to be able to re-compile current SW and continue running it on

the current HW, even not the very latest. It provides guarantees that no 512-bit
instructions are generated (even through intrinsics).

• -mavx10.1[-256,-512] (default is 256)
• Introduced for early SW enablement and supports the subset of AVX10.1:

• all the Intel AVX512 instruction set available with P-cores codenamed Granite Rapids
• will not include the new 256-bit vector instructions supporting embedded rounding

• -mavx10.2[-256,-512] (default is 256)
• Include the new 256-bit vector instructions supporting embedded rounding
• A suite of new Intel AVX10 instructions covering new AI data types and

conversions, data movement optimizations, and standards support

This is WIP, details can change

4SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

APX: Advanced Performance Extensions

• +16 GPRs, for a total of 32 integer EGPRs (extended GPRs) via new REX2 prefix
• NDD: adds unique destination register for legacy GPR instructions
• XSAVE-enabled (overlays deprecated MMX state)
• New instructions/capabilities:

• PP2: PUSH2/POP2 instructions to bundle couple of EGPR in one instruction
• FSFP+PPX: Fast Store Forwarding Predictor optimizations in a faster and more stable manner
• CCMP+CFCMOV: replace more branches with conditional instructions
• NF: encode suppress of status flag writes of common instruction
• Zero-upper SETcc: Write full register to reduce extra pre-zeroing instructions and reduce data dependency
• JMPABS : Replace indirect branches with direct branches (at link time) for better branch prediction, along

with benefits in security, and power

• Transparent interaction with legacy x86 code using a legacy-compliant ABI (new
EGPRs are all caller-saved/volatile)

General-purpose extension of 64-bit x86 for all Intel CPUs

5SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

EGPR: 32 GPR

• Value: Eliminate relatively expensive memory operations keeping more state in registers
• Static register class for each instruction in the tablgen file is unchanged to not affect pass whose

analysis relies on the static type of operands in TD, e.g. machine instruction schedule.
• Leverage the target hook TargetInstrInfo:getRegClass to update register class before RA
• Reserve R16-R31 for all instructions when GPR32 is not supported

(X86RegisterInfo::getReservedRegs)

Design principle : least intrusive and not affecting legacy

def GR64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,

R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31,

RBX, R14, R15, R12, R13, RBP, RSP, RIP)>;

def GR64_NOREX2 : RegisterClass<"X86", [i64], 64, (sub GR64, (sequence "R%u", 16, 31))>;

def A_MAP0_INST: I<..., (outs GR64:$dst), (ins GR64:$src)>

def A_MAP2_INST: I<..., (outs GR64:$dst), (ins GR64:$src)>

New class

Updated to GR64_NOREX2 if no APX

6SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

New destination register (NDD)

• Value: Eliminate relatively expensive memory operations keeping more state in registers
• Prefer NDD than non-NDD at instruction selection
• Give a hint to RA to make source and destination are same when it’s profitable (e.g. source

register is killed)
• Compress the NDD instruction to non-NDD instruction, if possible, for code size

Principle : always prefer NDD over spilling

Current Dst1 (coalesced with src1) = ADD src1, src2

Dst3 = ADD_NDD src1, src2

reg1 = ADD_NDD reg1, reg2

reg3 = ADD_NDD reg1, reg2

reg1 = ADD reg1, reg2

NDD

If reg1 is killed

7SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Prologue/epilogue (PP2, PPX)

Current

push rbp
push r15
push r14
push r13
push r12
push rbx
subq 16, rsp

addq 16, rsp
pop rbx
pop r12
pop r13
pop r14
pop r15
pop rbp
ret

Level of Optimization

PPX hints

push.p rbp
push.p r15
push.p r14
push.p r13
push.p r12
push.p rbx
subq 16, rsp

addq 16, rsp
pop.p rbx
pop.p r12
pop.p r13
pop.p r14
pop.p r15
pop.p rbp
ret

Pr
ol

og
ue

PPX & PP2
Alignment

push.p rbp
push2.p r15, r14
push2.p r13, r12
push.p rbx
subq 16, rsp

addq 16, rsp
pop.p rbx
pop2.p r12, r13
pop2.p r14, r15
pop.p rbp
retEp

ilo
gu

e

• Value: reduce number of push/pop
memory operations

• PPX applies FSFP optimizations for
matched push/pop in a quick and stable
manner

• The PUSH2/POP2 require 16B stack
alignment (avoids splits in fused
operations)

• Red = Pad alignment to maximize PP2
opportunities

8SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Call-site optimization (PP2, PPX)
caller

PUSHX r15
PUSH2X r14, r13
PUSH2X r12, rbx

[..def r12-r17]

PUSH2X r16, r17
CALL foo
POP2X r17, r16

[..use r12-r17]

RET

callee

• Legacy compatible ABI: all new EGPRs are caller-saved, and no
changes to parameter passing/returning a value.

• Instead of spilling with MOV to pre-allocated slots in the stack frame,
aggressively use PUSH2/POP2 around calls.

PUSHX r15
PUSH2X r14, r13
PUSH2X r12, rbx

[..def/use r12-r17]

POP2X rbx, r12
POP2X r13, r14
POPX r15
RET

• Value: less spill code that is also more efficient due
to PPX hints.

9SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

• Example:

• Speculatively execute compare operation
based on the result of a prior compare

• Value: Eliminate conditional branches to
reduce branch mis-prediction

• Update the probabilities of edges:
• P(Tail|Compare) = P(Tail|Head) + P(Compare|Head) *

P(Tail|Compare)
• P(I|Compare) = P(Compare|Head) * P(I|Compare)

Conditional compares (CCMP)

Head

CompareTail

Hidd
en

. . .

Head
Compare

Tail

. . .

Head:
cmpl $5, $edi
je Tail

Compare:
cmpl $17, $esi
je Tail

...
Tail:
call foo

if (a == 5 || b == 17)
foo();

Head:
cmpl $5, $edi
ccmpel {zf} $17, $edi
je Tail
...
Tail:
call foo

10SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

• Example:

• Load/store instructions in the
conditional blocks TBB and/or FBB are
spliced into the Head block.

• Increases scope of if-conversion
• Value: Eliminate conditional branches to

reduce branch mis-prediction

Conditional load/store (CFCMOV)

Head

[TF]BB

Tail

Head

FBB

Tail

Triangle: Diamond:

TBB

// int *p, *q, n;
if (*p > n)

*p = *q;

Head:
cmpl %edx, (%rdi)
cfcmovgl (%rsi), %eax
cfcmovgl %eax, (%rdi)

Tail:

Head:
cmpl %edx, (%rdi)
jle Tail

TBB:
movl (%rsi), %eax
movl %eax, (%rdi)

Tail:

11SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

• Intel intends to provide/enable the necessary compilers,
debuggers, tools, and libraries well in advance of HW to support
general APX and AVX10 SW enablement (LLVM, GCC, etc.)

• Whitepapers and further reading:
• APX:

https://www.intel.com/content/www/us/en/developer/articles/technica
l/advanced-performance-extensions-apx.html

• AVX10: https://cdrdv2-public.intel.com/784343/356368-intel-avx10-
tech-paper.pdf

Summary

