Google

Seamless debugging of emulated
applications with LLDB

Pavel Labath

GEMU

Proprietary AArch64 (linux) user space emulator, with a
focus on accurate emulation and first class debugging
support.

GEMU vs. QEMU

Feature GEMU QEMU
Performance

Multithreaded debugging Yes Crashes
Expression evaluation Yes

(w/LLDB)

Attach Yes No
Other host/target No Yes
combinations

Full system emulation No Yes

Google

GEMU Architecture

[performer][performer][.“][performer]

compiler
(debug stub)

GDB Remote Serial Protocol
LLDB

GEMU Architecture: Signal handling

L=
L
L=

@

)

Host insn

Host insn

Host insn

Host insn

Host insn

(3

-

@

Guest insn

Guest insn

Guest insn

b

GEMU debug stub operation

Wait for event
(breakpoint, signal, user

interrupt, ...)
. All
Inte[?_chWIth threads
stopped?
Resume Signal remaining

thread(s) threads

LLDB
Integration

Initial state

terml$ gemu —gemu args.. .. /binary -binary args..

term2$ 11db -0 “platform select remote-linux” ../binary -o “settings set

7”7 7”7

target.exec-search-paths ..” -o .. —o “process connect ..

(11db)

Google

Solution: Platform plugin

A plug-in interface definition class for debug platform that includes many platform abilities such
as:

e getting platform information such as supported architectures, supported binary file formats

and more

e |aunching new processes

e altaching to existing processes

e download/upload files

e execute shell commands

e [isting and getting info for existing processes

e aftaching and possibly debugging the platform'’s kernel

Source: lldb/include/lldb/Target/Platform.h, see also: lldb/source/Plugins/Platform/QemuUser/PlatformQemuUser.h

https://github.com/llvm/llvm-project/blob/main/lldb/include/lldb/Target/Platform.h#L61
https://github.com/llvm/llvm-project/blob/main/lldb/source/Plugins/Platform/QemuUser/PlatformQemuUser.h

Solution: Platform plugin

std::vector<ArchSpec>
PlatformGemuUser: :GetSupportedArchitectures(...) {

return {ArchSpec ("aarch64-unknown-linux-gnu");};

Launch

PlatformGemuUser: :DebugProcess (ProcessLaunchInfo &launch info, ..) {
launch info.SetArguments (adjust (launch info.GetArguments(), true);

error = Host::LaunchProcess (launch info);

error = process sp->ConnectRemote (socket path);

Attach

bool PlatformGemuUser::GetProcessInfo(lldb::pid t pid, ..)

- Combine emulator-provided info from unix-abstract://gemu/processinfo/$PID, With

Host::GetProcessInfo (pid).

1lldb: :ProcessSP PlatformGemuUser: :Attach (ProcessAttachInfo &attach_info,...

- process sp->ConnectRemote (“unix-abstract://gemu/processes/SPID”)

- Read additional data (library paths) from unix-abstract://gemu/processinfo/$PID

Make platform default (optional)

Invoked from 1lldbinit

Currently, there is no way to associate a platform with a debugger without
selecting it, so set our platform as selected, and then immediately go back
to the old one.

old platform = debugger.GetSelectedPlatform()
debugger.SetSelectedPlatform(lldb.SBPlatform("gemu-user"))

debugger.SetSelectedPlatform(old platform)

Thank you

