
TableGen Formatter
Extending Clang-Format Capabilities

Himanshu Shishir Shah
Venkat Nikhil Tatavarthy



Introduction

■ The TableGen framework plays a crucial role in both LLVM and MLIR.

Number of lines of TableGen code in LLVM over the years Number of lines of TableGen code in MLIR over the years



Need for TableGen Formatter

■ TableGen currently lacks a dedicated code formatting tool, which poses 
challenges for maintaining and reading the code.

■ A code formatter ensures consistent and readable code, fostering 
collaboration and ease of maintenance.



Need for TableGen Formatter

■ TableGen currently lacks a dedicated code formatting tool, which poses 
challenges for maintaining and reading the code.

■ A code formatter ensures consistent and readable code, fostering 
collaboration and ease of maintenance.

Inconsistent def record formatting



Need for TableGen Formatter

■ TableGen currently lacks a dedicated code formatting tool, which poses 
challenges for maintaining and reading the code.

■ A code formatter ensures consistent and readable code, fostering 
collaboration and ease of maintenance.

Inconsistent foreach loop formatting



Considered Approaches

■ Approach 1: Pull out relevant libraries from Clang-Format

❏ Can be built independently as a new tool.

❏ Difficult to extract common files to be shared between Clang-Format and TableGen Formatter.



Considered Approaches

■ Approach 1: Pull out relevant libraries from Clang-Format

❏ Can be built independently as a new tool.

❏ Difficult to extract common files to be shared between Clang-Format and TableGen Formatter.

■ Approach 2: Build everything from scratch

❏ Can be built independently as a new tool.

❏ This introduces code duplication and additional effort to maintain both tools.



Considered Approaches

■ Approach 1: Pull out relevant libraries from Clang-Format

❏ Can be built independently as a new tool.

❏ Difficult to extract common files to be shared between Clang-Format and TableGen Formatter.

■ Approach 2: Build everything from scratch

❏ Can be built independently as a new tool.

❏ This introduces code duplication and additional effort to maintain both tools.

■ Approach 3: Adding TableGen support in Clang-Format

❏ Reusing current infrastructure as there are similarities between C++ and TableGen, needing to only focus 
on the differences.



Considered Approaches

■ Approach 1: Pull out relevant libraries from Clang-Format

❏ Can be built independently as a new tool.

❏ Difficult to extract common files to be shared between Clang-Format and TableGen Formatter.

■ Approach 2: Build everything from scratch

❏ Can be built independently as a new tool.

❏ This introduces code duplication and additional effort to maintain both tools.

■ Approach 3: Adding TableGen support in Clang-Format

❏ Reusing current infrastructure as there are similarities between C++ and TableGen, needing to 
only focus on the differences.



Implementation



Implementation



Implementation



Implementation



Implementation



Implementation



Implementation



Implementation



Testing the Formatter

■ We ran the formatter on all the TableGen files under LLVM project.

■ Following the formatting process, we ran all the LLVM regression tests using 
the check-llvm target.

■ Overall, we successfully formatted 802 files of TableGen code without 
breaking the build.



Example: Recognizing TableGen keywords



Example: Recognizing TableGen keywords



Example: Recognizing TableGen keywords

SeparateDefinitionBlocks: true

InsertBraces: true



Example: Parsing loops and conditional statements

RemoveBracesLLVM: true{



Example: Support for existing Clang-Format options



Example: Support for existing Clang-Format options
AlignConsecutiveAssignments: Consecutive



Example: Support for existing Clang-Format options
AlignConsecutiveAssignments: Consecutive

AlignConsecutiveAssignments: Consecutive



Future Works

■ Formatting of multi-line string literals between ‘[{‘’ and ‘}]’ (TokCode).

■ Adding support for other TableGen keywords and constructs such as defset, 
defm, etc.

■ Adding support for the remaining relevant Clang-Format Style Options.



Acknowledgement

■ Dr. Min-Yih Hsu (@mshockwave) for providing guidance and support 
throughout the project.



Thank you


