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Introduction

■ The TableGen framework plays a crucial role in both LLVM and MLIR.

Number of lines of TableGen code in LLVM over the years Number of lines of TableGen code in MLIR over the years
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challenges for maintaining and reading the code.
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Testing the Formatter

■ We ran the formatter on all the TableGen files under LLVM project.

■ Following the formatting process, we ran all the LLVM regression tests using 
the check-llvm target.

■ Overall, we successfully formatted 802 files of TableGen code without 
breaking the build.



Example: Recognizing TableGen keywords
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Example: Recognizing TableGen keywords

SeparateDefinitionBlocks: true

InsertBraces: true



Example: Parsing loops and conditional statements

RemoveBracesLLVM: true{



Example: Support for existing Clang-Format options
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Future Works

■ Formatting of multi-line string literals between ‘[{‘’ and ‘}]’ (TokCode).

■ Adding support for other TableGen keywords and constructs such as defset, 
defm, etc.

■ Adding support for the remaining relevant Clang-Format Style Options.
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