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Outline
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• Why new FFT library?

• FFT DSL and dialect

• Challeges: In FFT computation, how do we utilize MLIR/LLVM to 
achieve:

– Sparsity

– Complex number handling

– Parallellization

• Progress & Plans



Motivation: Importance of FFT
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• Applications

• Libraries for FFT:

Signal 

processing

Partial 

Differential 

Equations(PDE)



Motivation: 
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• Hand-written Libraries:

– Requires significant efforts for performance tuning

– Hard to adapt to new hardwares

• Compiler-based libraries like FFTW:

– Lack of portability over heterogeneous hardware (modern hardware features)

– Cannot utilize the evolving compiler community

> MLIR/LLVM is more adaptive to search/learn based methods

– Emit C level code, lack of control on low level compilation



FFT Algorithm in matrix-formalism
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FFTc DSL: Declarative representation of FFT tensor Algorithm
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Fourier transform

Kronecker product

Diagonal matrix (twiddles)

PermutationIdentity



FFT Dialect: Operations, attributes, and types to represent the FFT 

formula
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Utilize sparsity in FFT Computation: Sparse Fusion
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From Stockham FFT to Vector Parallel Loops
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[cite] Franchetti, Franz, and Markus Püschel. "Fast Fourier 
Transform." Encyclopedia of Parallel Computing.

MLIR Affine Loop Nests

Fused

MKIV

Fusion Bufferization



Complex Data Handling: Convert Complex Data to an Array of 

Floating-point
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• Solution: 

• fft-convert-complex-to-floating
• fft-complex-mem-rep
• affine-scalrep

• Problem: Complex data not a first-class type in LLVM, nor supported by most hardware ISA:

• Vectorizers cannot work on complex data (aggregate data type)

• Benefits : 

• Vectorization enabled
• Support multiple data layouts

• Interleaved & Splited



Automatic CPU Vectorization
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• MLIR-SuperVectorize: all dimension

• virtual vector operations -> machine-specific vector operations

• SLP vectorizer: innermost loop vectorized

• VPLAN vectorizer: outermost loop vectorized



Vectorization: Memory Access Optimization on the 

Fly
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Interleaved memory access optimization for complex array



CPU Vectorization
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LLVM VPLAN Vectorizer LLVM SLP Vectorizer (Interleaved )

mask.gather Load<16 x double>

shufflevector<16 x double>



Automatic GPU Kernel Generation
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CUDA Grid

CUDA 

Block

… … …

Map affine parallel loops 

to GPU parallel hierarchy

Convert to NVVM 

dialect

Convert GPU kernel 

to CUDA binary

GPU Kernel

NVVM Dialect CUDA Binary

Convert to LLVM 

dialect
Host Code

LLVM Dialect

Same Source code as CPU



FFTc DSL

FFT 

MLIR Python Binding

Sparse Fusion

Affine

Bufferization

Complex Mem Rep

Affine Scalrep
Loop Tiling, 
Unroll

Vector

LLVM

Super Vectorize

GPU

Translation Convert Affine For to GPU

LLVMNon-Vec

Vec

LLVM

Complex 
Type

Array of 
Floating 

Point

Hardware-

Agnostic

Hardware-

Specific
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Performance Evaluation: higher the better

A): Difference optimizations B): Difference vectorizers
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Performance Evaluation

C): Compared with FFTW D): GPU performance



Future Work
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• Fully Optimized Compilation:

– Auto-tuning for Loop tiling, vectorization, etc

– Optimize MLIR vectorization

– Data layout transformation for complex numbers

• Support various hardware backends:

– CPU, NVIDIA/AMD GPU, Tensor core, FPGA, etc

• Runtime

– Automatically generate decomposition plans(cost model)



Thanks!
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Q&A
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