
Leveraging MLIR for Loop Vectorization and 
GPU Porting of FFT Libraries

Yifei He, Artur Podobas and Stefano Markidis

KTH Royal Institute of Technology



Outline

2023-10-08 2

• Why new FFT library?

• FFT DSL and dialect

• Challeges: In FFT computation, how do we utilize MLIR/LLVM to 
achieve:

– Sparsity

– Complex number handling

– Parallellization

• Progress & Plans



Motivation: Importance of FFT

2023-10-08 4

• Applications

• Libraries for FFT:

Signal 

processing

Partial 

Differential 

Equations(PDE)



Motivation: 

2023-10-08 8

• Hand-written Libraries:

– Requires significant efforts for performance tuning

– Hard to adapt to new hardwares

• Compiler-based libraries like FFTW:

– Lack of portability over heterogeneous hardware (modern hardware features)

– Cannot utilize the evolving compiler community

> MLIR/LLVM is more adaptive to search/learn based methods

– Emit C level code, lack of control on low level compilation



FFT Algorithm in matrix-formalism

2023-10-08 13



FFTc DSL: Declarative representation of FFT tensor Algorithm

2023-10-08 14

Fourier transform

Kronecker product

Diagonal matrix (twiddles)

PermutationIdentity



FFT Dialect: Operations, attributes, and types to represent the FFT 

formula

2023-10-08 15



Utilize sparsity in FFT Computation: Sparse Fusion

2023-10-08 16



From Stockham FFT to Vector Parallel Loops

2023-10-08 18

[cite] Franchetti, Franz, and Markus Püschel. "Fast Fourier 
Transform." Encyclopedia of Parallel Computing.

MLIR Affine Loop Nests

Fused

MKIV

Fusion Bufferization



Complex Data Handling: Convert Complex Data to an Array of 

Floating-point

2023-10-08 19

• Solution: 

• fft-convert-complex-to-floating
• fft-complex-mem-rep
• affine-scalrep

• Problem: Complex data not a first-class type in LLVM, nor supported by most hardware ISA:

• Vectorizers cannot work on complex data (aggregate data type)

• Benefits : 

• Vectorization enabled
• Support multiple data layouts

• Interleaved & Splited



Automatic CPU Vectorization

2023-10-08 20

• MLIR-SuperVectorize: all dimension

• virtual vector operations -> machine-specific vector operations

• SLP vectorizer: innermost loop vectorized

• VPLAN vectorizer: outermost loop vectorized



Vectorization: Memory Access Optimization on the 

Fly

2023-10-08 21

Interleaved memory access optimization for complex array



CPU Vectorization

2023-10-08 22

LLVM VPLAN Vectorizer LLVM SLP Vectorizer (Interleaved )

mask.gather Load<16 x double>

shufflevector<16 x double>



Automatic GPU Kernel Generation

2023-10-08

CUDA Grid

CUDA 

Block

… … …

Map affine parallel loops 

to GPU parallel hierarchy

Convert to NVVM 

dialect

Convert GPU kernel 

to CUDA binary

GPU Kernel

NVVM Dialect CUDA Binary

Convert to LLVM 

dialect
Host Code

LLVM Dialect

Same Source code as CPU



FFTc DSL

FFT 

MLIR Python Binding

Sparse Fusion

Affine

Bufferization

Complex Mem Rep

Affine Scalrep
Loop Tiling, 
Unroll

Vector

LLVM

Super Vectorize

GPU

Translation Convert Affine For to GPU

LLVMNon-Vec

Vec

LLVM

Complex 
Type

Array of 
Floating 

Point

Hardware-

Agnostic

Hardware-

Specific



2023-10-08 27

Performance Evaluation: higher the better

A): Difference optimizations B): Difference vectorizers



2023-10-08 28

Performance Evaluation

C): Compared with FFTW D): GPU performance



Future Work

2023-10-08 31

• Fully Optimized Compilation:

– Auto-tuning for Loop tiling, vectorization, etc

– Optimize MLIR vectorization

– Data layout transformation for complex numbers

• Support various hardware backends:

– CPU, NVIDIA/AMD GPU, Tensor core, FPGA, etc

• Runtime

– Automatically generate decomposition plans(cost model)



Thanks!

2023-10-08 32

Q&A


	Slide 1: Leveraging MLIR for Loop Vectorization and GPU Porting of FFT Libraries
	Slide 2: Outline
	Slide 4: Motivation: Importance of FFT
	Slide 8: Motivation: 
	Slide 13: FFT Algorithm in matrix-formalism
	Slide 14: FFTc DSL: Declarative representation of FFT tensor Algorithm
	Slide 15: FFT Dialect: Operations, attributes, and types to represent the FFT formula
	Slide 16: Utilize sparsity in FFT Computation: Sparse Fusion
	Slide 18: From Stockham FFT to Vector Parallel Loops
	Slide 19: Complex Data Handling: Convert Complex Data to an Array of Floating-point
	Slide 20: Automatic CPU Vectorization
	Slide 21: Vectorization: Memory Access Optimization on the Fly
	Slide 22: CPU Vectorization
	Slide 23: Automatic GPU Kernel Generation
	Slide 24
	Slide 27: Performance Evaluation: higher the better
	Slide 28: Performance Evaluation
	Slide 31: Future Work
	Slide 32: Thanks!

