
© 2022 Arm

How to create an
embedded compiler for
the Game Boy Advance

2 © 2022 Arm

Me
Fairly obsessed with Game Boy Advance
Made my first substantial program on it:
• Bookreader: read tons of books on 240x160 screen

Taught me assembly, made a toy compiler
Got my first two jobs out of it
All good things came from the GBA
Got to work at Arm in LLVM Embedded team
Wanted LLVM-based toolchain
Has been tricky to find info

3 © 2022 Arm

Talk about
embedded compiler how
State of the art
Current LLVM embedded hot topics
GCC toolchain compatibility issues
What parts of LLVM needed/will need to be fixed up?

4 © 2022 Arm

vehicle

Game Boy Advance (GBA) toolchain
• completely based on LLVM (no GCC)
• Grafted on top of ‘LLVM Embedded Toolchain for Arm’ aka BMT + GBA essentials
• Completely open source
• https://github.com/stuij/gba-llvm-devkit
• 1st release

I worked on both the BMT and of course the GBA toolchain
Some content relates to BMT, some to GBA toolchain,

https://github.com/stuij/gba-llvm-devkit

5 © 2022 Arm

Talk overview
Short history of embedded LLVM
Game Boy Advance (re)introduction
embedded toolchain component overview
Build setup
Components: Compiler, LLD, etc..
Example program
Evaluation

6 © 2022 Arm

Short history of LLVM embedded

Traditionally LLVM effort has concentrated on hosted systems
Up until 2020, mostly just Arm baremetal support, and not well maintained
2020 LLVM talk: LLVM in a Bare Metal Environment, Hafiz Abid Qadeer
Now also support for RiscV, PowerPC, AArch64
Community has grown, LLVM Embedded Toolchains Working group

7 © 2022 Arm

Game Boy Advance overview
Nintendo handheld, long awaited successor of Game Boy
Released in March 2001, 82M units sold
Graphics-wise Super Nintendo in your pocket, but totally different arch
ARM7TDMI processor at 16.78 MHz, ARMv4T ISA, 32-bit ALU
Arm + Thumb, 16bit instruction format
made famous by Nokia 6110 (1998), 3210 (1999), 3310	(2000)
Thought	up	by	Dave	Jagger,	in	trip	to	Japan	in	;94
10 billion chips in total (200M in 2020)
GBA details inline

8 © 2022 Arm

GBA toolchain components
• LLVM compiler suite tools: clang/clang++, lld, lldb, etc..
• compiler-rt builtins
• LLVM libcxx: C++ library
• picolibc: embedded C library
• gba_cart.ld: linker script for GBA cart executables
• gba_crt0.s: startup code for the GBA
• libtonc: GBA library
• Apex Audio System: play music and sound effects on the GBA
• Grit: GBA graphics swiss army knife
• gbafix: fix up GBA headers

9 © 2022 Arm

GBA internals
Picture Processing Unit (PPU)
• bitmap modes, tile modes

Orig Game Boy hardware
• No access, except for..

Sound
• Orig Game Boy Programmable Sound Chip (PSG)

Manipulate 4 waveforms, 4 channels
• 2 channels to convert PGM format to DAC

Link port with varous comm. Modes
Bunch of memory we’ll talk about later

10 © 2022 Arm

Cmdline invocation
grit bg.bmp -gB4 -Mw 8 -Mh 8 -pS -o bg -fa -pT1
conv2aas AAS_Data
clang --config armv4t-gba.cfg -Wl,-T,gba_cart.ld program.c bg.s AAS_Data.s -o
program.elf
llvm-objcopy -O binary program.elf program.gba
gbafix program.gba

11 © 2022 Arm

armv4t-gba.cfg
--target=arm-none-eabi -mcpu=arm7tdmi
-fno-exceptions
-fno-rtti
--sysroot <CFGDIR>/../lib/clang-runtimes/arm-none-eabi/armv4t
-lcrt0-gba
-D_LIBCPP_AVAILABILITY_HAS_NO_VERBOSE_ABORT

12 © 2022 Arm

LLVM Components and layout
Pure convention, following Hafiz Abid Qadeer
bin/
• compiler tools, gba tools
• armv4t-gba.cfg

lib/clang-runtimes/
• multilib.yaml
• arm-none-eabi/armv4t

lib/
§ crt0.o, Gba_cart.ld
§ libraries: compiler-rt, c libraries, C++ libraries, GBA libraries

include/
§ headers

13 © 2022 Arm

Dependency graph
GBA tools + config files
compiler tools
• c library (headers)

compiler-rt builtins
libunwind (headers)
§ C++abi

libcxx
§ Libcxxabi (also libunwind dep)

§ GBA libraries

14 © 2022 Arm

Build setup
Everything built from scratch, no GCC components
GBA toolchain built on top of LLVM Embedded Toolchain for Arm
• CMake, very composable
• Piggyback on everything: CPACK, testing infra

Theme: juggling to set the right lib and include between host and target
• Create subproject for what needs to be built by ready toolchain
• Don’t leak say CPPFLAGS

-DCMAKE_SYSTEM_NAME=Generic
When building for other arches, use LLVM Embedded Toolchain for Arm as example
Loop through library variants

15 © 2022 Arm

Configuration themes

Set target\n
Specify building for embedded
• -DLIBCXX_ENABLE_STATIC=ON
• CMAKE_SYSTEM_NAME=Generic
• * -D*_BAREMETAL*=ON

Feature options
Where are tools, config files
Where is target sysroot
Test/build configuration

16 © 2022 Arm

cmake ${CT_DIR} \
 -GNinja \
 -DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY \
 -DCOMPILER_RT_BUILD_BUILTINS=ON \
 -DCOMPILER_RT_BUILD_SANITIZERS=OFF \
 -DCOMPILER_RT_BUILD_XRAY=OFF \
 -DCOMPILER_RT_BUILD_LIBFUZZER=OFF \
 -DCOMPILER_RT_BUILD_PROFILE=OFF \
 -DCMAKE_C_COMPILER_TARGET="armv4t-none-eabi" \
 -DCMAKE_ASM_COMPILER_TARGET="armv4t-none-eabi" \

17 © 2022 Arm

 -DCMAKE_C_COMPILER=${BIN}/clang \
 -DCMAKE_AR=${BIN}/llvm-ar \
 -DCMAKE_NM=${BIN}/llvm-nm \
 -DCMAKE_RANLIB=${BIN}/llvm-ranlib \
 -DCOMPILER_RT_BAREMETAL_BUILD=ON \
 -DCOMPILER_RT_DEFAULT_TARGET_ONLY=ON \
 -DLLVM_CONFIG_PATH=${BIN}/llvm-config \
 -DCOMPILER_RT_INCLUDE_TESTS=OFF

18 © 2022 Arm

For c++;c++abi;libunwind we use the runtimes CMakelists.txt file
 -DLIBCXX_ENABLE_MONOTONIC_CLOCK=OFF
 -DLIBCXX_ENABLE_THREADS=OFF
 -DLIBCXX_ENABLE_RANDOM_DEVICE=OFF
 -DLIBCXX_ENABLE_RTTI=OFF
 -DLIBCXX_ENABLE_WIDE_CHARACTERS=OFF
 -DLIBUNWIND_ENABLE_THREADS=OFF
 -DCMAKE_SYSTEM_NAME=Generic
 -DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY
 -DLIBC_LINKER_SCRIPT=picolibcpp.ld
 -DLIBCXXABI_BAREMETAL=ON

19 © 2022 Arm

(cont..)
 -DLIBCXXABI_ENABLE_SHARED=OFF
 -DLIBCXXABI_ENABLE_ASSERTIONS=OFF
 -DLIBCXXABI_ENABLE_STATIC=ON
 -DLIBCXXABI_LIBCXX_INCLUDES="${INSTALL_DIR}/include/c++/v1"
 -DLIBCXXABI_USE_COMPILER_RT=ON
 -DLIBCXXABI_USE_LLVM_UNWINDER=ON

Check talk by Hafiz Abid Qadeer for some more details and test setup

20 © 2022 Arm

Individual components
What to look out for
GBA issues
Hot topics

21 © 2022 Arm

Clang
Currently ARMv4T is the lowest supported Arm architecture in LLVM
In fact for Arm, Clang defaults to ARMv4T and the ARM7TDMI is default CPU
Bare metal file:
• clang/lib/Driver/ToolChains/BareMetal.cpp
• Adds things like –nostdsysteminc and handle multilib

Old syntax

22 © 2022 Arm

Multilib

Solving issues:
• need to build lots of libraries for variants.
• Libraries don’t need to map to target triples.

hardwiring library paths in C++ code not practical
Can make build systems quite complex
GCC has spec files
Solution: more flexible option based on:
• normalizing cmdline arguments
• yaml files containing rules
• Sets –sysroot –isystem -L

Currently not working for GBA. Tiny bug when building for thumb. Can be fixed with
matcher rule.

23 © 2022 Arm

GBA memory layout (linker prepare)

24 © 2022 Arm

Linker script / startup code
Define memory regions (see previous slide)
Copy data from rom to ram
Zero initialize .bss
Call routines from .init_array
Call main

25 © 2022 Arm

LLD / linker script / startup code
For ARMv4T: Long branches and Arm/Thumb interworking was using BLX, which isn’t
supported on ARMv4(T). Also no MOVW/MOVT. So new thunks needed to cover all
bases.
For GBA:
• Using DevkitPro linker script
• Mostly worked as intended
• LLD didn’t accept overlay syntax
• Catch C++ data sections
• Clib incompatibilities
• Add picolibc stubs

26 © 2022 Arm

Linker improvements
LTO
• Respect code regions
• still bunch of issues

code size can worsen
• Todd Snider: goal is to implement API ... to honor linker script instructions.

Code packing/distribute code over memory locations
Compression
debuggability
place section at specific address: sys reg or io port
overlays

27 © 2022 Arm

Compiler-rt
rt stands for runtime support
builtins: low-level target-specific hooks. For Arm these are specified in the Arm ABI.
libgcc drop-in replacement

Also sanitizers, profiling, fuzzing, xray, scudo, BlocksRuntime, etc..
Currently anything but builtins is turned off.
• You get ubsan for free. It’s cheap.

For ARMv4(T) there was no builtins target. Easy to fix by rearranging files so right subset
would target.
Demo time

28 © 2022 Arm

clib
Lots of choice: Newlib(-nano), Picolibc, LLVM Libc, etc..
Choice for picolibc
• BSD license
• Newlib doesn’t have LLVM config
• Responsive maintainers
• More suitable for embedded development

LLVM Libc
• looks promising, but needs work done
• Has seen embedded build success
• Could scale from big iron to embedded. Talks underway.
• Hardware Abstraction Layer

For GBA development, can be convenient, but often inefficient.

29 © 2022 Arm

CPP lib
LLVM libcxx: Talks to make it more efficient for embedded.
Butano, a popular GBA C++ engine, uses Embedded Template Library (ETL), optimized
for embedded applications.
Distributed as source

30 © 2022 Arm

LLDB
Debugger works in combination with mGBA emulator
Also works from VSCode
• But use CodeLLDB VSCode extension, not gba toolchain liblldb
• Configure to attach to mGBA debugger stub
• Currently there’s a glitch when interrupting, but there’s a fix out for that

Shout-out to David Spickett for fixing some issues to get this to work.

31 © 2022 Arm

GBA tools
Grit
Apex Audio System
gbafix
GBFS
Maxmod
Posprintf

32 © 2022 Arm

Simple example
Let’s paint the screen red

int main() {
 draw_screen();
 while(1) {};
 return 1;
}

33 © 2022 Arm

Example continued
void draw_screen() {
 // set background mode 3 (bitmap) and turn on background 2
 (unsigned long) 0x4000000 = 0x403;

 unsigned short* vram = (unsigned short*) 0x6000000;
 // write red to every pixel on the 240x160 screen
 for(int x = 0; x < 240; x++)
 for(int y = 0; y < 160; y++)
 vram[x + y * 240] = 31;
}

34 © 2022 Arm

CoreMark scores
| compile settings | gcc | clang |
|------------------+----------+----------|
rom arm	0.377644	0.348422
rom thumb	0.520429	0.411079
rom thumb unroll	0.563485	0.481064
rom thumb jumpth		0.492934
rom thumb more		0.527294
iwram thumb	1.521745	1.191095
iwram arm	1.899094	1.735995
iwram arm (hw)	1.899087	1.735989
iwram arm jumpth		1.950470
iwram arm more		2.098647

35 © 2022 Arm

Evaluation
Legend:
• lots = -enable-dfa-jump-thread, -inline-threshold, -unroll-threshold

Comparable:

36 © 2022 Arm

Resources
repos
• GBA-llvm-devkit -> https://github.com/stuij/gba-llvm-devkit
• LLVM Embedded Toolchain for Arm (BMT) -> https://github.com/ARM-software/LLVM-embedded-

toolchain-for-Arm
• Runtimes ->

Documentation
• Multilib: https://clang.llvm.org/docs/Multilib.html
• compile bare-metal compiler-rt: https://llvm.org/docs/HowToCrossCompileBuiltinsOnArm.html
• LLVM in a Baremetal Environment -> https://www.youtube.com/watch?v=D9vCJwwTKaw

Hafiz Abid Qadeer

interact
• Discord: #embedded-toolchains
• Discourse/Monthly meets: LLVM Embedded Toolchains Working group:

https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up

https://github.com/stuij/gba-llvm-devkit
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://clang.llvm.org/docs/Multilib.html
https://llvm.org/docs/HowToCrossCompileBuiltinsOnArm.html
https://www.youtube.com/watch?v=D9vCJwwTKaw
https://discourse.llvm.org/t/llvm-embedded-toolchains-working-group-sync-up

37 © 2022 Arm

Dave Jaggar, in Japan Jan ’94 visiting Nintendo. While there on skiing trip sketched
solution on the back of a train napkin
• Nintendo wanted a 32-bit CPU, but the memory footprint was too big.
• Sharp, Arm’s 3rd licencee made their 8080/z80 cpu and also made all cartridge roms
• GBA would be follow up product

38 © 2022 Arm

GBA overview continued

Ram: 32 KB internal, 256 KB external, 96 KB VRAM
Game Boy HW inside, but only programmatic access to GB sound chip
No own sound chip, mixing in software, output PCM samples to DAC
Graphics: Picture Processing Unit (PPU)
• Bg tile modes, bg bitmap modes, mode-7-like scaling

Cart sizes up till 32MB (64MB video carts came out with mem remapping trickery)

